SpeeDP: an algorithm to compute SDP bounds for very large Max-Cut instances
We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints....
        Saved in:
      
    
          | Published in | Mathematical programming Vol. 136; no. 2; pp. 353 - 373 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article Conference Proceeding | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer-Verlag
    
        01.12.2012
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0025-5610 1436-4646  | 
| DOI | 10.1007/s10107-012-0593-0 | 
Cover
| Abstract | We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained
quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans–Williamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours. | 
    
|---|---|
| AbstractList | We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained $$\{-1,1\}$$ quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans-Williamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours. We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans–Williamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue on Mixed Integer Nonlinear Programming (MINLP) We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained ... quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans-Williamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours.[PUBLICATION ABSTRACT]  | 
    
| Author | Rinaldi, Giovanni Grippo, Luigi Piccialli, Veronica Palagi, Laura Piacentini, Mauro  | 
    
| Author_xml | – sequence: 1 givenname: Luigi surname: Grippo fullname: Grippo, Luigi organization: Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti, Sapienza Università di Roma – sequence: 2 givenname: Laura surname: Palagi fullname: Palagi, Laura organization: Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti, Sapienza Università di Roma – sequence: 3 givenname: Mauro surname: Piacentini fullname: Piacentini, Mauro organization: Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti, Sapienza Università di Roma – sequence: 4 givenname: Veronica surname: Piccialli fullname: Piccialli, Veronica email: piccialli@disp.uniroma2.it organization: Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università degli Studi di Roma Tor Vergata – sequence: 5 givenname: Giovanni surname: Rinaldi fullname: Rinaldi, Giovanni organization: Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” del CNR  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26797616$$DView record in Pascal Francis | 
    
| BookMark | eNp9kV1rFDEUhoNUcFv9Ad4FRPAm9eR7xjvZahUrFqrXIZs5WafMJmuSEfvvnWUrSEGvzs3zvOcc3lNyknJCQp5zOOcA9nXlwMEy4IKB7iWDR2TFlTRMGWVOyApAaKYNhyfktNZbAOCy61bk080e8eL6DfWJ-mmby9i-72jLNOTdfm5Iby6u6SbPaag05kJ_Yrmjky9bpJ_9L7aeGx1TbT4FrE_J4-inis_u5xn59v7d1_UHdvXl8uP67RULSunGhg1yoazSMQwYeyFFHEL0uLGDgi6EABqVNd5shMYgTd93ppPRCNsrWF6SZ-TVMXdf8o8Za3O7sQacJp8wz9Vx0UnLdSfsgr54gN7muaTlOsd5b63UttcL9fKe8jX4KZblnbG6fRl3vtw5YWxvDT8stkculFxrwejC2Hwbc2rFj5Pj4A5luGMZbinDHcpwsJj8gfkn_H-OODp1YdMWy1-3_1P6Dc5Bm1w | 
    
| CODEN | MHPGA4 | 
    
| CitedBy_id | crossref_primary_10_1007_s12532_016_0107_9 crossref_primary_10_1016_j_ejor_2014_09_054 crossref_primary_10_1007_s13218_017_0517_5 crossref_primary_10_1109_TPAMI_2014_2372791 crossref_primary_10_1587_transinf_2017RCP0015 crossref_primary_10_1137_140960657  | 
    
| Cites_doi | 10.1007/BF02574037 10.1016/0166-218X(94)00155-7 10.1007/s10898-008-9328-4 10.1137/S1052623497328987 10.1137/S1052623497328008 10.1016/0024-3795(90)90006-X 10.1007/s10107-009-0275-8 10.1080/10556780108805819 10.1006/jpdc.1997.1381 10.1007/BF01585184 10.1137/0323032 10.1007/s101070100263 10.1007/s10107-002-0352-8 10.1007/s101070100279 10.1007/BF01100205 10.1137/080731359 10.1287/moor.23.2.339 10.1145/227683.227684 10.1080/10556780108805818 10.1023/A:1020587701058 10.1080/10556789808805690 10.15807/jorsj.46.164 10.1007/s10107-002-0355-5 10.1002/3527603794.ch4 10.1007/s10107-008-0235-8 10.1007/s10107-005-0661-9  | 
    
| ContentType | Journal Article Conference Proceeding  | 
    
| Copyright | Springer and Mathematical Optimization Society 2012 2014 INIST-CNRS Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012  | 
    
| Copyright_xml | – notice: Springer and Mathematical Optimization Society 2012 – notice: 2014 INIST-CNRS – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012  | 
    
| DBID | AAYXX CITATION IQODW 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1007/s10107-012-0593-0 | 
    
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Proquest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics Applied Sciences  | 
    
| EISSN | 1436-4646 | 
    
| EndPage | 373 | 
    
| ExternalDocumentID | 2824834591 26797616 10_1007_s10107_012_0593_0  | 
    
| Genre | Feature | 
    
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c445t-dbe124745fcdef9232fdcfaeb7d408ccc05e476a6b25ec36998683f6279404363 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0025-5610 | 
    
| IngestDate | Sun Aug 24 03:50:54 EDT 2025 Thu Sep 25 00:43:11 EDT 2025 Mon Jul 21 09:17:13 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Wed Oct 01 04:22:06 EDT 2025 Fri Feb 21 02:32:40 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Semidefinite programming 20G40 20C20 Low rank factorization Unconstrained binary quadratic programming 20E28 Nonlinear programming Max-Cut Non convex programming Semidefinite relaxation Constraint satisfaction Semi definite programming Matrix factorization Critical point Non linear programming Separation method Zero one programming Mathematical programming Unconstrained optimization Minimization Quadratic programming Cutting plane method Equality constraint Heuristic method Representation theory Quadratic function  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MeetingName | Mixed Integer Nonlinear Programming (MINLP) | 
    
| MergedId | FETCHMERGED-LOGICAL-c445t-dbe124745fcdef9232fdcfaeb7d408ccc05e476a6b25ec36998683f6279404363 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23  | 
    
| PQID | 1197735795 | 
    
| PQPubID | 25307 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | proquest_miscellaneous_1283715827 proquest_journals_1197735795 pascalfrancis_primary_26797616 crossref_citationtrail_10_1007_s10107_012_0593_0 crossref_primary_10_1007_s10107_012_0593_0 springer_journals_10_1007_s10107_012_0593_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-12-01 | 
    
| PublicationDateYYYYMMDD | 2012-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationSubtitle | A Publication of the Mathematical Optimization Society | 
    
| PublicationTitle | Mathematical programming | 
    
| PublicationTitleAbbrev | Math. Program | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer-Verlag Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V  | 
    
| References | Poljak, Rendl, Wolkowicz (CR31) 1995; 7 Dolan, Morè (CR9) 2002; 91 Homer, Peinado (CR20) 1997; 46 Grippo, Sciandrone (CR17) 2002; 23 Rendl, Rinaldi, Wiegele (CR32) 2010; 121 Mittelmann (CR25) 2003; 95 CR14 CR13 Liers, Jünger, Reinelt, Rinaldi, Hartmann, Rieger (CR24) 2004 Delorme, Poljak (CR8) 1993; 62 Laurent, Poljak, Rendl (CR23) 1997; 77 CR33 Benson, Ye, Zhang (CR3) 2000; 10 Grippo, Palagi, Piccialli (CR16) 2011; 126 Barvinok (CR1) 1995; 13 Journée, Bach, Absil, Sepulchre (CR21) 2010; 20 Fischer, Gruber, Rendl, Sotirov (CR10) 2006; 105 Goemans, Williamson (CR12) 1995; 42 Kim, Kojima (CR22) 2000; 15 CR2 Nesterov (CR28) 1998; 9 Grippo, Palagi, Piccialli (CR15) 2009; 44 Grone, Pierce, Watkins (CR18) 1990; 134 Burer, Monteiro (CR7) 2003; 95 Helmberg, Rendl (CR19) 2000; 10 CR27 CR26 Poljak, Rendl (CR30) 1995; 62 Burer, Monteiro (CR6) 2001; 15 Pataki (CR29) 1998; 23 Burer, Monteiro, Zhang (CR5) 2002; 93 Bertsekas (CR4) 1999 Fletcher (CR11) 1985; 23 593_CR14 593_CR13 C Delorme (593_CR8) 1993; 62 L Grippo (593_CR15) 2009; 44 S Burer (593_CR5) 2002; 93 L Grippo (593_CR17) 2002; 23 DP Bertsekas (593_CR4) 1999 R Grone (593_CR18) 1990; 134 MX Goemans (593_CR12) 1995; 42 593_CR2 L Grippo (593_CR16) 2011; 126 E Dolan (593_CR9) 2002; 91 593_CR26 593_CR25 SJ Benson (593_CR3) 2000; 10 S Poljak (593_CR31) 1995; 7 593_CR27 S Burer (593_CR6) 2001; 15 S Burer (593_CR7) 2003; 95 R Fletcher (593_CR11) 1985; 23 Y Nesterov (593_CR28) 1998; 9 A Barvinok (593_CR1) 1995; 13 M Journée (593_CR21) 2010; 20 F Liers (593_CR24) 2004 M Laurent (593_CR23) 1997; 77 G Pataki (593_CR29) 1998; 23 S Homer (593_CR20) 1997; 46 S Poljak (593_CR30) 1995; 62 C Helmberg (593_CR19) 2000; 10 593_CR33 593_CR10 593_CR32 S Kim (593_CR22) 2000; 15  | 
    
| References_xml | – volume: 13 start-page: 189 year: 1995 end-page: 202 ident: CR1 article-title: Problems of distance geometry and convex properties of quadratic maps publication-title: Discret. Comput. Geom. doi: 10.1007/BF02574037 – year: 1999 ident: CR4 publication-title: Nonlinear Programming – volume: 62 start-page: 249 issue: 1–3 year: 1995 end-page: 278 ident: CR30 article-title: Solving the Max-Cut problem using eigenvalues publication-title: Discret. Appl. Math. doi: 10.1016/0166-218X(94)00155-7 – volume: 44 start-page: 339 issue: 3 year: 2009 end-page: 348 ident: CR15 article-title: Necessary and sufficient global optimality conditions for NLP reformulations of linear SDP problems publication-title: J. Glob. Optim. doi: 10.1007/s10898-008-9328-4 – ident: CR14 – volume: 10 start-page: 673 year: 2000 end-page: 696 ident: CR19 article-title: A spectral bundle method for semidefinite programming publication-title: SIAM J. Optim. doi: 10.1137/S1052623497328987 – start-page: 47 year: 2004 end-page: 69 ident: CR24 article-title: Computing exact ground states of hard Ising spin glass problems by branch-and-cut publication-title: New Optimization Algorithms in Physics – ident: CR2 – volume: 10 start-page: 443 issue: 2 year: 2000 end-page: 461 ident: CR3 article-title: Solving large-scale sparse semidefinite programs for combinatorial optimization publication-title: SIAM J. Optim. doi: 10.1137/S1052623497328008 – volume: 77 start-page: 225 year: 1997 end-page: 246 ident: CR23 article-title: Connections between semidefinite relaxations of the Max-Cut and stable set problems publication-title: Math. Program. – volume: 134 start-page: 63 year: 1990 end-page: 70 ident: CR18 article-title: Extremal correlation matrices publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(90)90006-X – volume: 126 start-page: 119 year: 2011 end-page: 146 ident: CR16 article-title: An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem publication-title: Math. Program. doi: 10.1007/s10107-009-0275-8 – volume: 15 start-page: 201 year: 2000 end-page: 224 ident: CR22 article-title: Second order cone programming relaxation of nonconvex quadratic optimization problems publication-title: Optim. Methods Softw. doi: 10.1080/10556780108805819 – volume: 46 start-page: 48 year: 1997 end-page: 61 ident: CR20 article-title: Design and performance of parallel and distributed approximation algorithm for the Maxcut publication-title: J. Parallel Distrib. Comput. doi: 10.1006/jpdc.1997.1381 – ident: CR33 – volume: 62 start-page: 557 issue: 3 year: 1993 end-page: 574 ident: CR8 article-title: Laplacian eigenvalues and the maximum cut problem publication-title: Math. Program. doi: 10.1007/BF01585184 – ident: CR27 – volume: 105 start-page: 451 issue: 2–3 year: 2006 end-page: 469 ident: CR10 article-title: Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and equipartition publication-title: Math. Program. – volume: 23 start-page: 493 year: 1985 end-page: 513 ident: CR11 article-title: Semi-definite matrix constraints in optimization publication-title: SIAM J. Cont. Optim. doi: 10.1137/0323032 – volume: 121 start-page: 307 issue: 2 year: 2010 end-page: 335 ident: CR32 article-title: Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations publication-title: Math. Program. – volume: 91 start-page: 201 year: 2002 end-page: 213 ident: CR9 article-title: Benchmarking optimization software with performance profile publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 95 start-page: 329 year: 2003 end-page: 357 ident: CR7 article-title: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization publication-title: Math. Program. doi: 10.1007/s10107-002-0352-8 – volume: 93 start-page: 97 year: 2002 end-page: 122 ident: CR5 article-title: Solving a class of semidefinite programs via nonlinear programming publication-title: Math. Program. doi: 10.1007/s101070100279 – volume: 7 start-page: 51 year: 1995 end-page: 73 ident: CR31 article-title: A recipe for semidefinite relaxation for 0-1 quadratic programming publication-title: J. Glob. Optim. doi: 10.1007/BF01100205 – volume: 20 start-page: 2327 issue: 5 year: 2010 end-page: 2351 ident: CR21 article-title: Low-rank optimization for semidefinite convex problems publication-title: SIAM J. Optim. doi: 10.1137/080731359 – volume: 23 start-page: 339 year: 1998 end-page: 358 ident: CR29 article-title: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues publication-title: Math. Oper. Res. doi: 10.1287/moor.23.2.339 – ident: CR13 – volume: 95 start-page: 407 year: 2003 end-page: 430 ident: CR25 article-title: An independent benchmarking of SDP and SOCP solvers publication-title: Math. Program. – volume: 42 start-page: 1115 issue: 6 year: 1995 end-page: 1145 ident: CR12 article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming publication-title: J. ACM doi: 10.1145/227683.227684 – volume: 15 start-page: 175 issue: 3–4 year: 2001 end-page: 200 ident: CR6 article-title: A projected gradient algorithm for solving the maxcut sdp relaxation publication-title: Optim. Methods Softw. doi: 10.1080/10556780108805818 – ident: CR26 – volume: 23 start-page: 143 year: 2002 end-page: 169 ident: CR17 article-title: Nonmonotone globalization techniques for the Barzilai–Borwein gradient method publication-title: Comput. Optim. Appl. doi: 10.1023/A:1020587701058 – volume: 9 start-page: 141 issue: 1–3 year: 1998 end-page: 160 ident: CR28 article-title: Semidefinite relaxation and nonconvex quadratic optimization publication-title: Optim. Methods Softw. doi: 10.1080/10556789808805690 – volume: 46 start-page: 48 year: 1997 ident: 593_CR20 publication-title: J. Parallel Distrib. Comput. doi: 10.1006/jpdc.1997.1381 – volume: 62 start-page: 249 issue: 1–3 year: 1995 ident: 593_CR30 publication-title: Discret. Appl. Math. doi: 10.1016/0166-218X(94)00155-7 – ident: 593_CR14 – volume: 10 start-page: 673 year: 2000 ident: 593_CR19 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497328987 – volume: 134 start-page: 63 year: 1990 ident: 593_CR18 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(90)90006-X – ident: 593_CR26 doi: 10.15807/jorsj.46.164 – volume: 9 start-page: 141 issue: 1–3 year: 1998 ident: 593_CR28 publication-title: Optim. Methods Softw. doi: 10.1080/10556789808805690 – ident: 593_CR33 – ident: 593_CR25 doi: 10.1007/s10107-002-0355-5 – volume: 23 start-page: 339 year: 1998 ident: 593_CR29 publication-title: Math. Oper. Res. doi: 10.1287/moor.23.2.339 – volume: 44 start-page: 339 issue: 3 year: 2009 ident: 593_CR15 publication-title: J. Glob. Optim. doi: 10.1007/s10898-008-9328-4 – start-page: 47 volume-title: New Optimization Algorithms in Physics year: 2004 ident: 593_CR24 doi: 10.1002/3527603794.ch4 – volume: 13 start-page: 189 year: 1995 ident: 593_CR1 publication-title: Discret. Comput. Geom. doi: 10.1007/BF02574037 – volume: 15 start-page: 175 issue: 3–4 year: 2001 ident: 593_CR6 publication-title: Optim. Methods Softw. doi: 10.1080/10556780108805818 – volume: 42 start-page: 1115 issue: 6 year: 1995 ident: 593_CR12 publication-title: J. ACM doi: 10.1145/227683.227684 – volume: 15 start-page: 201 year: 2000 ident: 593_CR22 publication-title: Optim. Methods Softw. doi: 10.1080/10556780108805819 – volume: 23 start-page: 143 year: 2002 ident: 593_CR17 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1020587701058 – volume: 126 start-page: 119 year: 2011 ident: 593_CR16 publication-title: Math. Program. doi: 10.1007/s10107-009-0275-8 – ident: 593_CR13 – volume: 10 start-page: 443 issue: 2 year: 2000 ident: 593_CR3 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497328008 – ident: 593_CR32 doi: 10.1007/s10107-008-0235-8 – volume: 7 start-page: 51 year: 1995 ident: 593_CR31 publication-title: J. Glob. Optim. doi: 10.1007/BF01100205 – volume: 93 start-page: 97 year: 2002 ident: 593_CR5 publication-title: Math. Program. doi: 10.1007/s101070100279 – volume: 23 start-page: 493 year: 1985 ident: 593_CR11 publication-title: SIAM J. Cont. Optim. doi: 10.1137/0323032 – volume: 77 start-page: 225 year: 1997 ident: 593_CR23 publication-title: Math. Program. – volume: 20 start-page: 2327 issue: 5 year: 2010 ident: 593_CR21 publication-title: SIAM J. Optim. doi: 10.1137/080731359 – volume: 91 start-page: 201 year: 2002 ident: 593_CR9 publication-title: Math. Program. doi: 10.1007/s101070100263 – ident: 593_CR2 – ident: 593_CR10 doi: 10.1007/s10107-005-0661-9 – ident: 593_CR27 – volume: 62 start-page: 557 issue: 3 year: 1993 ident: 593_CR8 publication-title: Math. Program. doi: 10.1007/BF01585184 – volume: 95 start-page: 329 year: 2003 ident: 593_CR7 publication-title: Math. Program. doi: 10.1007/s10107-002-0352-8 – volume-title: Nonlinear Programming year: 1999 ident: 593_CR4  | 
    
| SSID | ssj0001388 | 
    
| Score | 2.071872 | 
    
| Snippet | We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained
quadratic problems (or, equivalently, of Max-Cut problems) that can be... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue on Mixed Integer Nonlinear Programming (MINLP) We... We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained $$\{-1,1\}$$ quadratic problems (or, equivalently, of Max-Cut problems) that...  | 
    
| SourceID | proquest pascalfrancis crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 353 | 
    
| SubjectTerms | Algorithms Applied sciences Calculus of Variations and Optimal Control; Optimization Combinatorics Equivalence Exact sciences and technology Full Length Paper Graphs Heuristic Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Nonlinear programming Numerical Analysis Operational research and scientific management Operational research. Management science Optimization Programming Studies Theoretical  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxNBFD7U5EWRYr3gai0j-KQM7m1mNoUimrQUJSFYC31bZueiQtxEs4H23_ecvbUR2sdld_ZyzpmZb_ac-T6Ad1lovFUK1yYYTjyNlOMjZzV31hNe0Ihg62qLmTw9T79eiIsdmHV7YaisshsT64HaLg39I_9I6S6VCDUSn1Z_OalGUXa1k9DQrbSCPaopxh7AMCZmrAEMvxzP5t_7sTlKsqwTcSXk0OU5m810UV2GGXOSuePh1kz1eKXXaDTfqF1swdH_Mqj1xHTyBHZbRMk-NyGwBzuufAqPbvEM4tG0J2ddP4NvZyvnJvNDpkumFz_xI6tff1i1ZKZReGBnkzkrSG5pzRDSMgz2K7aginE21Zd8vKnY7xpU4hDzHM5Pjn-MT3mrqcBNmoqK28LhjK5S4Y11HtFd7K3x2hXKpmFmjAmFS5XUsoiFM4nE1ZjMEi9j7LfEVp-8gEG5LN1LYBG62EVWCxUiptKmSGhXgMiw6Uh6pwMIO_vlpiUcJ92LRX5DlUwmz9HkOZk8DwN43zdZNWwb9118sOWUvkUsFYKsSAaw33kpb3vmOr-JowDe9qexT1GiRJduucFriBIoElmsAvjQeffWLe56o1f3P_A1PIwpvOpimH0YVP827g1Cmqo4aOP0GrOz74U priority: 102 providerName: ProQuest  | 
    
| Title | SpeeDP: an algorithm to compute SDP bounds for very large Max-Cut instances | 
    
| URI | https://link.springer.com/article/10.1007/s10107-012-0593-0 https://www.proquest.com/docview/1197735795 https://www.proquest.com/docview/1283715827  | 
    
| Volume | 136 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1436-4646 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1436-4646 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AMVHM dateStart: 19711201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AFBBN dateStart: 19711201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1436-4646 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1436-4646 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 8FG dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7W5qVljK0_mNcuaNCnFoF_SXL6lrVJykJLaBpon4wsS20hc0LtQPvf7-TYXlLawZ6MsSTM3Un6xJ2-D-AocpVJhcCzCYYTDT2haUenkurUWLwgEcGW1RZX_GIS_rplt9U97ryudq9TkuVKvXLZzSvLJH1qZegontNbzLJ5YRBP_G6z_HpBFNU6rRYc1KnMt4ZY24w-zmWOdjFLQYs1xPkqSVruPf3P8KkCjaS79PIX-KCzHdheoRLEt8uGfzXfheF4rvX56JTIjMjp_ezpsXj4TYoZUUsRBzI-H5HEKirlBFErwXh-IVNbFE4u5TM9WxTkscSNuIrswaTfuzm7oJVsAlVhyAqaJho3bREyo1JtEMD5JlVG6kSkoRsppVymQ8ElT3ymVcDxwMWjwHAfp6YlpA_2YTObZforEA-9qL1UMuEibJIqCWzhP4uwa4cbLR1wa_vFquIUt9IW0_gvG7I1eYwmj63JY9eB46bLfEmo8a_G7TWnND18LhBHedyBw9pLcTX58thmRkXARIc58KP5jNPG5kJkpmcLbGNZfzwW-cKBk9q7K0O890ff_qv1AWz5NtrK8pdD2CyeFvo7gpgiacNG1B-0odUd3A17-PzZuxpdt8tQ_gOqmelj | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6V9gEQQpwivTASvIAsctnOIlUVdFtt2e5qRVupb8HxAUjb7NJkBf1z_DbGudpFom99jBI70cx4_DlzfACvE19ZLQSeTdCcaBwIQ3tGS2q0dXhBIoKtsi3GfHAafz5jZyvwp62FcWmVrU-sHLWeKfeP_L0Ld4mIiR7bnf-kjjXKRVdbCg3ZUCvonarFWFPYMTSXv_AIV-wc9lHfb8LwYP9kb0AblgGq4piVVGcG9zgRM6u0sYh3QquVlSYTOvYTpZTPTCy45FnIjIo4nk94ElkeoiW7_u0RznsH1uIo7uHhb-3T_njypdsLgihJWtJYh1TauGpdvBdUaZ8hdbR61F_aGR_MZYFKsjW7xhL8_SdiW22EB4_gYYNgycfa5B7DismfwP1rfQ3xatQ1gy2ewvB4bkx_8oHInMjpNxRq-f2clDOiakYJctyfkMzROxUEITTBxXVJpi5DnYzkb7q3KMmPCsSiS3sGp7ci3eewms9y8wJIgCZlAi2Z8BHDSZVFrgqBJTi0x62RHvit_FLVNDh3PBvT9Ko1sxN5iiJPnchT34O33ZB53d3jpoe3l5TSjQi5QFAXcA82Wy2ljSco0iu79eBVdxvXsAvMyNzMFviMa0EUsCQUHrxrtXttiv990frNL3wJdwcno6P06HA83IB7oTO1KhFnE1bLi4XZQjhVZtuNzRL4etvL5C8bvizg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSyQxEC4WhUUR2UOxvTbCPq0E-0rS45s4O7jrwYAO-Nakc6gw9gx2D-i_t9LXziyusI9NDpqqSvKFqnwfwPfEV1YLgXcTDCcaB8LQntGSGm0dXpCIYKtqiyt-Nop_37LbRue0aKvd25Rk_abBsTTl5dFU26O5h29BVTIZUidJR_HOvhw7ngQM6FF40m3FQZQkrWarAwptWvOtKRYOprWpLNBGtha3WECffyVMq3No8AnWGwBJTmqPf4YPJv8Cq3O0gvh12XGxFl_h_HpqTH94TGRO5Phu8vRQ3j-SckJULehArvtDkjl1pYIggiUY2y9k7ArEyaV8pqezkjxUGBJ3lA0YDX7enJ7RRkKBqjhmJdWZwQNcxMwqbSyCudBqZaXJhI79RCnlMxMLLnkWMqMijpcvnkSWh7hMHTl9tAlL-SQ3W0AC9KgJtGTCRwglVRa5RwAswaE9bo30wG_tl6qGX9zJXIzTP8zIzuQpmjx1Jk99D350Q6Y1ucZ7nfcXnNKNCLlATBVwD3ZbL6XNQixSlyUVERM95sFB14xLyOVFZG4mM-zjGIACloTCg8PWu3NT_OuPtv-r9zf4OOwP0otfV-c7sBK6wKuqYnZhqXyamT3ENmW2X8XvK0Tr7Hc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Mathematical+programming&rft.atitle=SpeeDP%3A+an+algorithm+to+compute+SDP+bounds+for+very+large+Max-Cut+instances&rft.au=GRIPPO%2C+Luigi&rft.au=PALAGI%2C+Laura&rft.au=PIACENTINI%2C+Mauro&rft.au=PICCIALLI%2C+Veronica&rft.date=2012-12-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=136&rft.issue=2&rft.spage=353&rft.epage=373&rft_id=info:doi/10.1007%2Fs10107-012-0593-0&rft.externalDBID=n%2Fa&rft.externalDocID=26797616 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |