SpeeDP: an algorithm to compute SDP bounds for very large Max-Cut instances

We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints....

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 136; no. 2; pp. 353 - 373
Main Authors Grippo, Luigi, Palagi, Laura, Piacentini, Mauro, Piccialli, Veronica, Rinaldi, Giovanni
Format Journal Article Conference Proceeding
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.12.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-012-0593-0

Cover

Abstract We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans–Williamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours.
AbstractList We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained $$\{-1,1\}$$ quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans-Williamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours.
We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans–Williamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue on Mixed Integer Nonlinear Programming (MINLP) We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained ... quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans-Williamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours.[PUBLICATION ABSTRACT]
Author Rinaldi, Giovanni
Grippo, Luigi
Piccialli, Veronica
Palagi, Laura
Piacentini, Mauro
Author_xml – sequence: 1
  givenname: Luigi
  surname: Grippo
  fullname: Grippo, Luigi
  organization: Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti, Sapienza Università di Roma
– sequence: 2
  givenname: Laura
  surname: Palagi
  fullname: Palagi, Laura
  organization: Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti, Sapienza Università di Roma
– sequence: 3
  givenname: Mauro
  surname: Piacentini
  fullname: Piacentini, Mauro
  organization: Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti, Sapienza Università di Roma
– sequence: 4
  givenname: Veronica
  surname: Piccialli
  fullname: Piccialli, Veronica
  email: piccialli@disp.uniroma2.it
  organization: Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università degli Studi di Roma Tor Vergata
– sequence: 5
  givenname: Giovanni
  surname: Rinaldi
  fullname: Rinaldi, Giovanni
  organization: Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” del CNR
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26797616$$DView record in Pascal Francis
BookMark eNp9kV1rFDEUhoNUcFv9Ad4FRPAm9eR7xjvZahUrFqrXIZs5WafMJmuSEfvvnWUrSEGvzs3zvOcc3lNyknJCQp5zOOcA9nXlwMEy4IKB7iWDR2TFlTRMGWVOyApAaKYNhyfktNZbAOCy61bk080e8eL6DfWJ-mmby9i-72jLNOTdfm5Iby6u6SbPaag05kJ_Yrmjky9bpJ_9L7aeGx1TbT4FrE_J4-inis_u5xn59v7d1_UHdvXl8uP67RULSunGhg1yoazSMQwYeyFFHEL0uLGDgi6EABqVNd5shMYgTd93ppPRCNsrWF6SZ-TVMXdf8o8Za3O7sQacJp8wz9Vx0UnLdSfsgr54gN7muaTlOsd5b63UttcL9fKe8jX4KZblnbG6fRl3vtw5YWxvDT8stkculFxrwejC2Hwbc2rFj5Pj4A5luGMZbinDHcpwsJj8gfkn_H-OODp1YdMWy1-3_1P6Dc5Bm1w
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s12532_016_0107_9
crossref_primary_10_1016_j_ejor_2014_09_054
crossref_primary_10_1007_s13218_017_0517_5
crossref_primary_10_1109_TPAMI_2014_2372791
crossref_primary_10_1587_transinf_2017RCP0015
crossref_primary_10_1137_140960657
Cites_doi 10.1007/BF02574037
10.1016/0166-218X(94)00155-7
10.1007/s10898-008-9328-4
10.1137/S1052623497328987
10.1137/S1052623497328008
10.1016/0024-3795(90)90006-X
10.1007/s10107-009-0275-8
10.1080/10556780108805819
10.1006/jpdc.1997.1381
10.1007/BF01585184
10.1137/0323032
10.1007/s101070100263
10.1007/s10107-002-0352-8
10.1007/s101070100279
10.1007/BF01100205
10.1137/080731359
10.1287/moor.23.2.339
10.1145/227683.227684
10.1080/10556780108805818
10.1023/A:1020587701058
10.1080/10556789808805690
10.15807/jorsj.46.164
10.1007/s10107-002-0355-5
10.1002/3527603794.ch4
10.1007/s10107-008-0235-8
10.1007/s10107-005-0661-9
ContentType Journal Article
Conference Proceeding
Copyright Springer and Mathematical Optimization Society 2012
2014 INIST-CNRS
Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012
Copyright_xml – notice: Springer and Mathematical Optimization Society 2012
– notice: 2014 INIST-CNRS
– notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-012-0593-0
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Proquest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
EISSN 1436-4646
EndPage 373
ExternalDocumentID 2824834591
26797616
10_1007_s10107_012_0593_0
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c445t-dbe124745fcdef9232fdcfaeb7d408ccc05e476a6b25ec36998683f6279404363
IEDL.DBID U2A
ISSN 0025-5610
IngestDate Sun Aug 24 03:50:54 EDT 2025
Thu Sep 25 00:43:11 EDT 2025
Mon Jul 21 09:17:13 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Wed Oct 01 04:22:06 EDT 2025
Fri Feb 21 02:32:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Semidefinite programming
20G40
20C20
Low rank factorization
Unconstrained binary quadratic programming
20E28
Nonlinear programming
Max-Cut
Non convex programming
Semidefinite relaxation
Constraint satisfaction
Semi definite programming
Matrix factorization
Critical point
Non linear programming
Separation method
Zero one programming
Mathematical programming
Unconstrained optimization
Minimization
Quadratic programming
Cutting plane method
Equality constraint
Heuristic method
Representation theory
Quadratic function
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MeetingName Mixed Integer Nonlinear Programming (MINLP)
MergedId FETCHMERGED-LOGICAL-c445t-dbe124745fcdef9232fdcfaeb7d408ccc05e476a6b25ec36998683f6279404363
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1197735795
PQPubID 25307
PageCount 21
ParticipantIDs proquest_miscellaneous_1283715827
proquest_journals_1197735795
pascalfrancis_primary_26797616
crossref_citationtrail_10_1007_s10107_012_0593_0
crossref_primary_10_1007_s10107_012_0593_0
springer_journals_10_1007_s10107_012_0593_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2012
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References Poljak, Rendl, Wolkowicz (CR31) 1995; 7
Dolan, Morè (CR9) 2002; 91
Homer, Peinado (CR20) 1997; 46
Grippo, Sciandrone (CR17) 2002; 23
Rendl, Rinaldi, Wiegele (CR32) 2010; 121
Mittelmann (CR25) 2003; 95
CR14
CR13
Liers, Jünger, Reinelt, Rinaldi, Hartmann, Rieger (CR24) 2004
Delorme, Poljak (CR8) 1993; 62
Laurent, Poljak, Rendl (CR23) 1997; 77
CR33
Benson, Ye, Zhang (CR3) 2000; 10
Grippo, Palagi, Piccialli (CR16) 2011; 126
Barvinok (CR1) 1995; 13
Journée, Bach, Absil, Sepulchre (CR21) 2010; 20
Fischer, Gruber, Rendl, Sotirov (CR10) 2006; 105
Goemans, Williamson (CR12) 1995; 42
Kim, Kojima (CR22) 2000; 15
CR2
Nesterov (CR28) 1998; 9
Grippo, Palagi, Piccialli (CR15) 2009; 44
Grone, Pierce, Watkins (CR18) 1990; 134
Burer, Monteiro (CR7) 2003; 95
Helmberg, Rendl (CR19) 2000; 10
CR27
CR26
Poljak, Rendl (CR30) 1995; 62
Burer, Monteiro (CR6) 2001; 15
Pataki (CR29) 1998; 23
Burer, Monteiro, Zhang (CR5) 2002; 93
Bertsekas (CR4) 1999
Fletcher (CR11) 1985; 23
593_CR14
593_CR13
C Delorme (593_CR8) 1993; 62
L Grippo (593_CR15) 2009; 44
S Burer (593_CR5) 2002; 93
L Grippo (593_CR17) 2002; 23
DP Bertsekas (593_CR4) 1999
R Grone (593_CR18) 1990; 134
MX Goemans (593_CR12) 1995; 42
593_CR2
L Grippo (593_CR16) 2011; 126
E Dolan (593_CR9) 2002; 91
593_CR26
593_CR25
SJ Benson (593_CR3) 2000; 10
S Poljak (593_CR31) 1995; 7
593_CR27
S Burer (593_CR6) 2001; 15
S Burer (593_CR7) 2003; 95
R Fletcher (593_CR11) 1985; 23
Y Nesterov (593_CR28) 1998; 9
A Barvinok (593_CR1) 1995; 13
M Journée (593_CR21) 2010; 20
F Liers (593_CR24) 2004
M Laurent (593_CR23) 1997; 77
G Pataki (593_CR29) 1998; 23
S Homer (593_CR20) 1997; 46
S Poljak (593_CR30) 1995; 62
C Helmberg (593_CR19) 2000; 10
593_CR33
593_CR10
593_CR32
S Kim (593_CR22) 2000; 15
References_xml – volume: 13
  start-page: 189
  year: 1995
  end-page: 202
  ident: CR1
  article-title: Problems of distance geometry and convex properties of quadratic maps
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/BF02574037
– year: 1999
  ident: CR4
  publication-title: Nonlinear Programming
– volume: 62
  start-page: 249
  issue: 1–3
  year: 1995
  end-page: 278
  ident: CR30
  article-title: Solving the Max-Cut problem using eigenvalues
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(94)00155-7
– volume: 44
  start-page: 339
  issue: 3
  year: 2009
  end-page: 348
  ident: CR15
  article-title: Necessary and sufficient global optimality conditions for NLP reformulations of linear SDP problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9328-4
– ident: CR14
– volume: 10
  start-page: 673
  year: 2000
  end-page: 696
  ident: CR19
  article-title: A spectral bundle method for semidefinite programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497328987
– start-page: 47
  year: 2004
  end-page: 69
  ident: CR24
  article-title: Computing exact ground states of hard Ising spin glass problems by branch-and-cut
  publication-title: New Optimization Algorithms in Physics
– ident: CR2
– volume: 10
  start-page: 443
  issue: 2
  year: 2000
  end-page: 461
  ident: CR3
  article-title: Solving large-scale sparse semidefinite programs for combinatorial optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497328008
– volume: 77
  start-page: 225
  year: 1997
  end-page: 246
  ident: CR23
  article-title: Connections between semidefinite relaxations of the Max-Cut and stable set problems
  publication-title: Math. Program.
– volume: 134
  start-page: 63
  year: 1990
  end-page: 70
  ident: CR18
  article-title: Extremal correlation matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(90)90006-X
– volume: 126
  start-page: 119
  year: 2011
  end-page: 146
  ident: CR16
  article-title: An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem
  publication-title: Math. Program.
  doi: 10.1007/s10107-009-0275-8
– volume: 15
  start-page: 201
  year: 2000
  end-page: 224
  ident: CR22
  article-title: Second order cone programming relaxation of nonconvex quadratic optimization problems
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780108805819
– volume: 46
  start-page: 48
  year: 1997
  end-page: 61
  ident: CR20
  article-title: Design and performance of parallel and distributed approximation algorithm for the Maxcut
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1006/jpdc.1997.1381
– ident: CR33
– volume: 62
  start-page: 557
  issue: 3
  year: 1993
  end-page: 574
  ident: CR8
  article-title: Laplacian eigenvalues and the maximum cut problem
  publication-title: Math. Program.
  doi: 10.1007/BF01585184
– ident: CR27
– volume: 105
  start-page: 451
  issue: 2–3
  year: 2006
  end-page: 469
  ident: CR10
  article-title: Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and equipartition
  publication-title: Math. Program.
– volume: 23
  start-page: 493
  year: 1985
  end-page: 513
  ident: CR11
  article-title: Semi-definite matrix constraints in optimization
  publication-title: SIAM J. Cont. Optim.
  doi: 10.1137/0323032
– volume: 121
  start-page: 307
  issue: 2
  year: 2010
  end-page: 335
  ident: CR32
  article-title: Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations
  publication-title: Math. Program.
– volume: 91
  start-page: 201
  year: 2002
  end-page: 213
  ident: CR9
  article-title: Benchmarking optimization software with performance profile
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 95
  start-page: 329
  year: 2003
  end-page: 357
  ident: CR7
  article-title: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0352-8
– volume: 93
  start-page: 97
  year: 2002
  end-page: 122
  ident: CR5
  article-title: Solving a class of semidefinite programs via nonlinear programming
  publication-title: Math. Program.
  doi: 10.1007/s101070100279
– volume: 7
  start-page: 51
  year: 1995
  end-page: 73
  ident: CR31
  article-title: A recipe for semidefinite relaxation for 0-1 quadratic programming
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF01100205
– volume: 20
  start-page: 2327
  issue: 5
  year: 2010
  end-page: 2351
  ident: CR21
  article-title: Low-rank optimization for semidefinite convex problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/080731359
– volume: 23
  start-page: 339
  year: 1998
  end-page: 358
  ident: CR29
  article-title: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.23.2.339
– ident: CR13
– volume: 95
  start-page: 407
  year: 2003
  end-page: 430
  ident: CR25
  article-title: An independent benchmarking of SDP and SOCP solvers
  publication-title: Math. Program.
– volume: 42
  start-page: 1115
  issue: 6
  year: 1995
  end-page: 1145
  ident: CR12
  article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: 15
  start-page: 175
  issue: 3–4
  year: 2001
  end-page: 200
  ident: CR6
  article-title: A projected gradient algorithm for solving the maxcut sdp relaxation
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780108805818
– ident: CR26
– volume: 23
  start-page: 143
  year: 2002
  end-page: 169
  ident: CR17
  article-title: Nonmonotone globalization techniques for the Barzilai–Borwein gradient method
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1020587701058
– volume: 9
  start-page: 141
  issue: 1–3
  year: 1998
  end-page: 160
  ident: CR28
  article-title: Semidefinite relaxation and nonconvex quadratic optimization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789808805690
– volume: 46
  start-page: 48
  year: 1997
  ident: 593_CR20
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1006/jpdc.1997.1381
– volume: 62
  start-page: 249
  issue: 1–3
  year: 1995
  ident: 593_CR30
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(94)00155-7
– ident: 593_CR14
– volume: 10
  start-page: 673
  year: 2000
  ident: 593_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497328987
– volume: 134
  start-page: 63
  year: 1990
  ident: 593_CR18
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(90)90006-X
– ident: 593_CR26
  doi: 10.15807/jorsj.46.164
– volume: 9
  start-page: 141
  issue: 1–3
  year: 1998
  ident: 593_CR28
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789808805690
– ident: 593_CR33
– ident: 593_CR25
  doi: 10.1007/s10107-002-0355-5
– volume: 23
  start-page: 339
  year: 1998
  ident: 593_CR29
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.23.2.339
– volume: 44
  start-page: 339
  issue: 3
  year: 2009
  ident: 593_CR15
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9328-4
– start-page: 47
  volume-title: New Optimization Algorithms in Physics
  year: 2004
  ident: 593_CR24
  doi: 10.1002/3527603794.ch4
– volume: 13
  start-page: 189
  year: 1995
  ident: 593_CR1
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/BF02574037
– volume: 15
  start-page: 175
  issue: 3–4
  year: 2001
  ident: 593_CR6
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780108805818
– volume: 42
  start-page: 1115
  issue: 6
  year: 1995
  ident: 593_CR12
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: 15
  start-page: 201
  year: 2000
  ident: 593_CR22
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780108805819
– volume: 23
  start-page: 143
  year: 2002
  ident: 593_CR17
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1020587701058
– volume: 126
  start-page: 119
  year: 2011
  ident: 593_CR16
  publication-title: Math. Program.
  doi: 10.1007/s10107-009-0275-8
– ident: 593_CR13
– volume: 10
  start-page: 443
  issue: 2
  year: 2000
  ident: 593_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497328008
– ident: 593_CR32
  doi: 10.1007/s10107-008-0235-8
– volume: 7
  start-page: 51
  year: 1995
  ident: 593_CR31
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF01100205
– volume: 93
  start-page: 97
  year: 2002
  ident: 593_CR5
  publication-title: Math. Program.
  doi: 10.1007/s101070100279
– volume: 23
  start-page: 493
  year: 1985
  ident: 593_CR11
  publication-title: SIAM J. Cont. Optim.
  doi: 10.1137/0323032
– volume: 77
  start-page: 225
  year: 1997
  ident: 593_CR23
  publication-title: Math. Program.
– volume: 20
  start-page: 2327
  issue: 5
  year: 2010
  ident: 593_CR21
  publication-title: SIAM J. Optim.
  doi: 10.1137/080731359
– volume: 91
  start-page: 201
  year: 2002
  ident: 593_CR9
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– ident: 593_CR2
– ident: 593_CR10
  doi: 10.1007/s10107-005-0661-9
– ident: 593_CR27
– volume: 62
  start-page: 557
  issue: 3
  year: 1993
  ident: 593_CR8
  publication-title: Math. Program.
  doi: 10.1007/BF01585184
– volume: 95
  start-page: 329
  year: 2003
  ident: 593_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0352-8
– volume-title: Nonlinear Programming
  year: 1999
  ident: 593_CR4
SSID ssj0001388
Score 2.071872
Snippet We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained quadratic problems (or, equivalently, of Max-Cut problems) that can be...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue on Mixed Integer Nonlinear Programming (MINLP) We...
We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained $$\{-1,1\}$$ quadratic problems (or, equivalently, of Max-Cut problems) that...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 353
SubjectTerms Algorithms
Applied sciences
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Equivalence
Exact sciences and technology
Full Length Paper
Graphs
Heuristic
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Nonlinear programming
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Optimization
Programming
Studies
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxNBFD7U5EWRYr3gai0j-KQM7m1mNoUimrQUJSFYC31bZueiQtxEs4H23_ecvbUR2sdld_ZyzpmZb_ac-T6Ad1lovFUK1yYYTjyNlOMjZzV31hNe0Ihg62qLmTw9T79eiIsdmHV7YaisshsT64HaLg39I_9I6S6VCDUSn1Z_OalGUXa1k9DQrbSCPaopxh7AMCZmrAEMvxzP5t_7sTlKsqwTcSXk0OU5m810UV2GGXOSuePh1kz1eKXXaDTfqF1swdH_Mqj1xHTyBHZbRMk-NyGwBzuufAqPbvEM4tG0J2ddP4NvZyvnJvNDpkumFz_xI6tff1i1ZKZReGBnkzkrSG5pzRDSMgz2K7aginE21Zd8vKnY7xpU4hDzHM5Pjn-MT3mrqcBNmoqK28LhjK5S4Y11HtFd7K3x2hXKpmFmjAmFS5XUsoiFM4nE1ZjMEi9j7LfEVp-8gEG5LN1LYBG62EVWCxUiptKmSGhXgMiw6Uh6pwMIO_vlpiUcJ92LRX5DlUwmz9HkOZk8DwN43zdZNWwb9118sOWUvkUsFYKsSAaw33kpb3vmOr-JowDe9qexT1GiRJduucFriBIoElmsAvjQeffWLe56o1f3P_A1PIwpvOpimH0YVP827g1Cmqo4aOP0GrOz74U
  priority: 102
  providerName: ProQuest
Title SpeeDP: an algorithm to compute SDP bounds for very large Max-Cut instances
URI https://link.springer.com/article/10.1007/s10107-012-0593-0
https://www.proquest.com/docview/1197735795
https://www.proquest.com/docview/1283715827
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1436-4646
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AMVHM
  dateStart: 19711201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1436-4646
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 8FG
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7W5qVljK0_mNcuaNCnFoF_SXL6lrVJykJLaBpon4wsS20hc0LtQPvf7-TYXlLawZ6MsSTM3Un6xJ2-D-AocpVJhcCzCYYTDT2haUenkurUWLwgEcGW1RZX_GIS_rplt9U97ryudq9TkuVKvXLZzSvLJH1qZegontNbzLJ5YRBP_G6z_HpBFNU6rRYc1KnMt4ZY24w-zmWOdjFLQYs1xPkqSVruPf3P8KkCjaS79PIX-KCzHdheoRLEt8uGfzXfheF4rvX56JTIjMjp_ezpsXj4TYoZUUsRBzI-H5HEKirlBFErwXh-IVNbFE4u5TM9WxTkscSNuIrswaTfuzm7oJVsAlVhyAqaJho3bREyo1JtEMD5JlVG6kSkoRsppVymQ8ElT3ymVcDxwMWjwHAfp6YlpA_2YTObZforEA-9qL1UMuEibJIqCWzhP4uwa4cbLR1wa_vFquIUt9IW0_gvG7I1eYwmj63JY9eB46bLfEmo8a_G7TWnND18LhBHedyBw9pLcTX58thmRkXARIc58KP5jNPG5kJkpmcLbGNZfzwW-cKBk9q7K0O890ff_qv1AWz5NtrK8pdD2CyeFvo7gpgiacNG1B-0odUd3A17-PzZuxpdt8tQ_gOqmelj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6V9gEQQpwivTASvIAsctnOIlUVdFtt2e5qRVupb8HxAUjb7NJkBf1z_DbGudpFom99jBI70cx4_DlzfACvE19ZLQSeTdCcaBwIQ3tGS2q0dXhBIoKtsi3GfHAafz5jZyvwp62FcWmVrU-sHLWeKfeP_L0Ld4mIiR7bnf-kjjXKRVdbCg3ZUCvonarFWFPYMTSXv_AIV-wc9lHfb8LwYP9kb0AblgGq4piVVGcG9zgRM6u0sYh3QquVlSYTOvYTpZTPTCy45FnIjIo4nk94ElkeoiW7_u0RznsH1uIo7uHhb-3T_njypdsLgihJWtJYh1TauGpdvBdUaZ8hdbR61F_aGR_MZYFKsjW7xhL8_SdiW22EB4_gYYNgycfa5B7DismfwP1rfQ3xatQ1gy2ewvB4bkx_8oHInMjpNxRq-f2clDOiakYJctyfkMzROxUEITTBxXVJpi5DnYzkb7q3KMmPCsSiS3sGp7ci3eewms9y8wJIgCZlAi2Z8BHDSZVFrgqBJTi0x62RHvit_FLVNDh3PBvT9Ko1sxN5iiJPnchT34O33ZB53d3jpoe3l5TSjQi5QFAXcA82Wy2ljSco0iu79eBVdxvXsAvMyNzMFviMa0EUsCQUHrxrtXttiv990frNL3wJdwcno6P06HA83IB7oTO1KhFnE1bLi4XZQjhVZtuNzRL4etvL5C8bvizg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSyQxEC4WhUUR2UOxvTbCPq0E-0rS45s4O7jrwYAO-Nakc6gw9gx2D-i_t9LXziyusI9NDpqqSvKFqnwfwPfEV1YLgXcTDCcaB8LQntGSGm0dXpCIYKtqiyt-Nop_37LbRue0aKvd25Rk_abBsTTl5dFU26O5h29BVTIZUidJR_HOvhw7ngQM6FF40m3FQZQkrWarAwptWvOtKRYOprWpLNBGtha3WECffyVMq3No8AnWGwBJTmqPf4YPJv8Cq3O0gvh12XGxFl_h_HpqTH94TGRO5Phu8vRQ3j-SckJULehArvtDkjl1pYIggiUY2y9k7ArEyaV8pqezkjxUGBJ3lA0YDX7enJ7RRkKBqjhmJdWZwQNcxMwqbSyCudBqZaXJhI79RCnlMxMLLnkWMqMijpcvnkSWh7hMHTl9tAlL-SQ3W0AC9KgJtGTCRwglVRa5RwAswaE9bo30wG_tl6qGX9zJXIzTP8zIzuQpmjx1Jk99D350Q6Y1ucZ7nfcXnNKNCLlATBVwD3ZbL6XNQixSlyUVERM95sFB14xLyOVFZG4mM-zjGIACloTCg8PWu3NT_OuPtv-r9zf4OOwP0otfV-c7sBK6wKuqYnZhqXyamT3ENmW2X8XvK0Tr7Hc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Mathematical+programming&rft.atitle=SpeeDP%3A+an+algorithm+to+compute+SDP+bounds+for+very+large+Max-Cut+instances&rft.au=GRIPPO%2C+Luigi&rft.au=PALAGI%2C+Laura&rft.au=PIACENTINI%2C+Mauro&rft.au=PICCIALLI%2C+Veronica&rft.date=2012-12-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=136&rft.issue=2&rft.spage=353&rft.epage=373&rft_id=info:doi/10.1007%2Fs10107-012-0593-0&rft.externalDBID=n%2Fa&rft.externalDocID=26797616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon