Biosynthesized silver nanoparticles protect against hepatic injury induced by murine blood-stage malaria infection
Biosynthesized nanoparticles proposed to have antiplasmodial activities have attracted increasing attention for malaria that considered being one of the foremost hazardous diseases. In this study, Indigofera oblongifolia leaf extracts were used for the synthesis of silver nanoparticles (AgNPs), whic...
Saved in:
Published in | Environmental science and pollution research international Vol. 27; no. 15; pp. 17762 - 17769 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0944-1344 1614-7499 1614-7499 |
DOI | 10.1007/s11356-020-08280-8 |
Cover
Summary: | Biosynthesized nanoparticles proposed to have antiplasmodial activities have attracted increasing attention for malaria that considered being one of the foremost hazardous diseases. In this study,
Indigofera oblongifolia
leaf extracts were used for the synthesis of silver nanoparticles (AgNPs), which were characterized utilizing transmission electron microscopy. We investigated the antiplasmodial and hepatoprotective effects of AgNPs against
Plasmodium chabaudi
–induced infection in mice. Treatment of the infected mice with 50 mg/kg AgNPs for seven days caused a significant decrease in parasitemia and reduced the histopatholoical changes in the liver, as indicated by Ishak’s histology index. Further, the AgNPs alleviated the oxidative damage in the liver infected with
P. chabaudi
. This was evidenced by the changed levels of malondialdehyde, nitric oxide, and glutathione, as well as increased catalase activity after treatment with AgNPs. In addition, levels of the liver enzymes alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase were increased after treatment. Moreover, the findings showed the efficiency of AgNPs in improving the infected mice’s erythrocyte counts and hemoglobin content. Generally, our results reported that AgNPs possess antiplasmodial and hepatoprotective properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0944-1344 1614-7499 1614-7499 |
DOI: | 10.1007/s11356-020-08280-8 |