The Double-Sided Information Bottleneck Function

A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf PXY. The problem is to find two independent channels PU|X and PV|Y (setting the Markovian structure U→X→Y→V), that maximize I(U;V) subject to constraints on the rel...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 24; no. 9; p. 1321
Main Authors Dikshtein, Michael, Ordentlich, Or, Shamai (Shitz), Shlomo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e24091321

Cover

Abstract A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf PXY. The problem is to find two independent channels PU|X and PV|Y (setting the Markovian structure U→X→Y→V), that maximize I(U;V) subject to constraints on the relevant mutual information expressions: I(U;X) and I(V;Y). For jointly Gaussian X and Y, we show that Gaussian channels are optimal in the low-SNR regime but not for general SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z and S channels are optimal when the correlation is 1 (i.e., X=Y) and provide supporting numerical evidence. Furthermore, we present a Blahut–Arimoto type alternating maximization algorithm and demonstrate its performance for a representative setting. This problem is closely related to the domain of biclustering.
AbstractList A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf PXY. The problem is to find two independent channels PU|X and PV|Y (setting the Markovian structure U→X→Y→V), that maximize I(U;V) subject to constraints on the relevant mutual information expressions: I(U;X) and I(V;Y). For jointly Gaussian X and Y, we show that Gaussian channels are optimal in the low-SNR regime but not for general SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z and S channels are optimal when the correlation is 1 (i.e., X=Y) and provide supporting numerical evidence. Furthermore, we present a Blahut–Arimoto type alternating maximization algorithm and demonstrate its performance for a representative setting. This problem is closely related to the domain of biclustering.
A double-sided variant of the information bottleneck method is considered. Let ( X , Y ) be a bivariate source characterized by a joint pmf P X Y . The problem is to find two independent channels P U | X and P V | Y (setting the Markovian structure U → X → Y → V ), that maximize I ( U ; V ) subject to constraints on the relevant mutual information expressions: I ( U ; X ) and I ( V ; Y ) . For jointly Gaussian X and Y , we show that Gaussian channels are optimal in the low-SNR regime but not for general SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z and S channels are optimal when the correlation is 1 (i.e., X = Y ) and provide supporting numerical evidence. Furthermore, we present a Blahut–Arimoto type alternating maximization algorithm and demonstrate its performance for a representative setting. This problem is closely related to the domain of biclustering.
A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf P[sub.XY]. The problem is to find two independent channels P[sub.U|X] and P[sub.V|Y] (setting the Markovian structure U→X→Y→V), that maximize I(U;V) subject to constraints on the relevant mutual information expressions: I(U;X) and I(V;Y). For jointly Gaussian X and Y, we show that Gaussian channels are optimal in the low-SNR regime but not for general SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z and S channels are optimal when the correlation is 1 (i.e., X=Y) and provide supporting numerical evidence. Furthermore, we present a Blahut–Arimoto type alternating maximization algorithm and demonstrate its performance for a representative setting. This problem is closely related to the domain of biclustering.
A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf PXY. The problem is to find two independent channels PU|X and PV|Y (setting the Markovian structure U→X→Y→V), that maximize I(U;V) subject to constraints on the relevant mutual information expressions: I(U;X) and I(V;Y). For jointly Gaussian X and Y, we show that Gaussian channels are optimal in the low-SNR regime but not for general SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z and S channels are optimal when the correlation is 1 (i.e., X=Y) and provide supporting numerical evidence. Furthermore, we present a Blahut-Arimoto type alternating maximization algorithm and demonstrate its performance for a representative setting. This problem is closely related to the domain of biclustering.A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf PXY. The problem is to find two independent channels PU|X and PV|Y (setting the Markovian structure U→X→Y→V), that maximize I(U;V) subject to constraints on the relevant mutual information expressions: I(U;X) and I(V;Y). For jointly Gaussian X and Y, we show that Gaussian channels are optimal in the low-SNR regime but not for general SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z and S channels are optimal when the correlation is 1 (i.e., X=Y) and provide supporting numerical evidence. Furthermore, we present a Blahut-Arimoto type alternating maximization algorithm and demonstrate its performance for a representative setting. This problem is closely related to the domain of biclustering.
Audience Academic
Author Ordentlich, Or
Dikshtein, Michael
Shamai (Shitz), Shlomo
AuthorAffiliation 1 Department of Electrical and Computer Engineering, Technion, Haifa 3200003, Israel
2 School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
AuthorAffiliation_xml – name: 1 Department of Electrical and Computer Engineering, Technion, Haifa 3200003, Israel
– name: 2 School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-0498-273X
  surname: Dikshtein
  fullname: Dikshtein, Michael
– sequence: 2
  givenname: Or
  orcidid: 0000-0002-5791-7923
  surname: Ordentlich
  fullname: Ordentlich, Or
– sequence: 3
  givenname: Shlomo
  orcidid: 0000-0002-6594-3371
  surname: Shamai (Shitz)
  fullname: Shamai (Shitz), Shlomo
BookMark eNp9kU9v1DAQxSNUJNrCgW-wEhdASrEdx38uSG2hsFIlDpSzNbYnWy-JvTgJqN8eh1QV5YB8sPX8m2fPm5PqKKaIVfWSkrOm0eQdMk40bRh9Uh1TonXNG0KO_jo_q07GcU8IK4w4rsjNLW4-pNn2WH8NHv1mG7uUB5hCipuLNE09RnTfN1dzdIv2vHraQT_ii_v9tPp29fHm8nN9_eXT9vL8unact1PthFcoHAXKgRL0ukFQ3loB0lKupAUnO-G0ptJz0QnBlVe-JZ1j0rLONqfVdvX1CfbmkMMA-c4kCOaPkPLOQJ6C69GollNJPROyBe69sJI1TlMHqG2jwBevt6vXHA9w9wv6_sGQErPkZh5yK_D7FT7MdkDvME4Z-kc_eHwTw63ZpZ9Gcy0VWQxe3xvk9GPGcTJDGB32PURM82iYpFIoxZsFffUPuk9zjiXXhRItk0ws1NlK7aB0G8p8yruuLI9DcGX-XSj6ueStJJoTXgrerAUup3HM2P2n3d-jDK58
Cites_doi 10.1214/aoms/1177706532
10.1109/TIT.2008.924659
10.1088/1742-5468/ab3985
10.1109/TIT.1965.1053768
10.1109/TIT.1987.1057383
10.1109/ISIT.2007.4557285
10.1088/1742-5468/ab3430
10.1214/18-AAP1384
10.1080/01621459.1972.10481214
10.1109/TIT.1962.1057738
10.1109/TIT.1972.1054753
10.1109/ALLERTON.2018.8635884
10.1109/TIT.2005.844077
10.1109/OJCOMS.2020.2994048
10.1109/TIT.1972.1054855
10.3390/e20050383
10.1561/2000000018
10.1109/TIT.2012.2225405
10.1109/TIT.2018.2883295
10.1109/JSAIT.2020.2991561
10.3390/e22020151
10.3390/a12090192
10.1109/TNNLS.2020.2968509
10.1109/TIT.1975.1055437
10.1109/TIT.1973.1055107
10.1109/ICC.2017.7996419
10.1109/ITW.2017.8278006
10.1109/18.490552
10.1109/TIT.1970.1054469
10.1002/047174882X
10.1145/956755.956764
10.1134/S0032946010040022
10.1109/ICM2CS.2009.5397969
10.1016/S0019-9958(71)90346-9
10.1109/ALLERTON.2014.7028531
10.1109/TPAMI.2019.2909031
10.1109/ALLERTON.2019.8919805
10.1109/TCBB.2004.2
10.1109/TPAMI.2019.2928806
10.1109/TIT.2021.3059338
10.1109/WCNCW.2018.8368978
10.1109/TIT.2020.2972348
10.1109/18.669153
10.1109/TIT.2019.2948636
10.1109/TIT.2009.2030487
10.1017/CBO9780511791338
10.1561/0100000013
10.1109/ITW.2015.7133169
10.1109/TIT.2014.2326877
10.1109/TIT.2007.911296
10.1109/TIT.2013.2288257
10.1109/ISIT.2016.7541827
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e24091321
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection (Proquest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_854171d2675a4dd6b723c91cae9b38ad
10.3390/e24091321
PMC9497801
A745709404
10_3390_e24091321
GrantInformation_xml – fundername: ISF
  grantid: 1641/21
– fundername: WIN consortium via the Israel minister of economy and science
– fundername: European Union’s Horizon 2020 Research And Innovation Programme
  grantid: 694630
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c445t-c6d8e6c1a14a10ed93ea8dbb6a7b1487bac7f6c9917d46f6648d8d50fc27b2fb3
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Tue Oct 14 19:05:18 EDT 2025
Sun Oct 26 03:32:52 EDT 2025
Tue Sep 30 17:19:02 EDT 2025
Fri Sep 05 08:19:30 EDT 2025
Fri Jul 25 11:57:20 EDT 2025
Mon Oct 20 16:49:58 EDT 2025
Thu Oct 16 04:42:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-c6d8e6c1a14a10ed93ea8dbb6a7b1487bac7f6c9917d46f6648d8d50fc27b2fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This paper is an extended version of our paper published in 2021 IEEE International Symposium on Information Theory.
ORCID 0000-0002-6594-3371
0000-0002-5791-7923
0000-0002-0498-273X
OpenAccessLink https://www.proquest.com/docview/2716527261?pq-origsite=%requestingapplication%&accountid=15518
PQID 2716527261
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_854171d2675a4dd6b723c91cae9b38ad
unpaywall_primary_10_3390_e24091321
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9497801
proquest_miscellaneous_2717688431
proquest_journals_2716527261
gale_infotracacademiconefile_A745709404
crossref_primary_10_3390_e24091321
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Mehler (ref_66) 1866; 66
Ugur (ref_40) 2020; 66
ref_58
ref_12
Aguerri (ref_20) 2021; 43
ref_11
ref_55
Sanderovich (ref_30) 2008; 54
Arimoto (ref_18) 1972; 18
Bhatt (ref_57) 2021; 67
Stark (ref_56) 2020; 1
ref_59
Sutskover (ref_23) 2005; 51
Land (ref_35) 2006; 3
Berger (ref_37) 1996; 42
Guo (ref_28) 2013; 6
ref_61
ref_60
Bustin (ref_29) 2013; 59
Courtade (ref_13) 2014; 60
ref_69
ref_24
ref_68
ref_22
ref_21
Erkip (ref_43) 1998; 44
ref_65
ref_64
(ref_44) 1973; 2
ref_63
Witsenhausen (ref_17) 1975; 21
Pichler (ref_2) 2021; 11
Goldfeld (ref_62) 2020; 1
Pichler (ref_14) 2018; 28
ref_70
Dytso (ref_33) 2019; 66
Saxe (ref_52) 2019; 2019
ref_36
Ferrari (ref_53) 2018; Volume 11215
Chechik (ref_26) 2005; 6
Vera (ref_39) 2019; 65
Wyner (ref_25) 1973; 19
Dobrushin (ref_15) 1962; 8
Steinberg (ref_34) 2009; 55
ref_38
Lancaster (ref_67) 1958; 29
Sharma (ref_32) 2010; 46
Smith (ref_31) 1971; 18
Madeira (ref_6) 2004; 1
ref_47
ref_46
ref_45
ref_42
ref_41
ref_1
ref_3
Wolf (ref_16) 1970; 16
Courtade (ref_8) 2014; 60
Hartigan (ref_5) 1972; 67
ref_49
ref_48
Han (ref_9) 1987; 33
Blachman (ref_27) 1965; 11
Amjad (ref_51) 2020; 42
Yu (ref_54) 2021; 32
Blahut (ref_19) 1972; 18
ref_4
ref_7
Westover (ref_10) 2008; 54
References_xml – volume: 29
  start-page: 719
  year: 1958
  ident: ref_67
  article-title: The Structure of Bivariate Distributions
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177706532
– volume: 54
  start-page: 3008
  year: 2008
  ident: ref_30
  article-title: Communication Via Decentralized Processing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.924659
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_52
  article-title: On the information bottleneck theory of deep learning
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/ab3985
– ident: ref_68
– volume: 11
  start-page: 267
  year: 1965
  ident: ref_27
  article-title: The convolution inequality for entropy powers
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1965.1053768
– volume: 33
  start-page: 759
  year: 1987
  ident: ref_9
  article-title: Hypothesis Testing with Multiterminal Data Compression
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1987.1057383
– ident: ref_63
  doi: 10.1109/ISIT.2007.4557285
– ident: ref_49
  doi: 10.1088/1742-5468/ab3430
– volume: 28
  start-page: 3094
  year: 2018
  ident: ref_14
  article-title: Dictator Functions Maximize Mutual Information
  publication-title: Ann. Appl. Prob.
  doi: 10.1214/18-AAP1384
– ident: ref_61
– ident: ref_1
– volume: 67
  start-page: 123
  year: 1972
  ident: ref_5
  article-title: Direct Clustering of a Data Matrix
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1972.10481214
– volume: 8
  start-page: 293
  year: 1962
  ident: ref_15
  article-title: Information transmission with additional noise
  publication-title: IRE Trans. Inf. Theory
  doi: 10.1109/TIT.1962.1057738
– volume: 18
  start-page: 14
  year: 1972
  ident: ref_18
  article-title: An algorithm for computing the capacity of arbitrary discrete memoryless channels
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1972.1054753
– volume: 2
  start-page: 149
  year: 1973
  ident: ref_44
  article-title: Common information is far less than mutual information
  publication-title: Probl. Contr. Inform. Theory
– ident: ref_45
  doi: 10.1109/ALLERTON.2018.8635884
– volume: 51
  start-page: 1313
  year: 2005
  ident: ref_23
  article-title: Extremes of information combining
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.844077
– volume: 1
  start-page: 646
  year: 2020
  ident: ref_56
  article-title: Decoding rate-compatible 5G-LDPC codes with coarse quantization using the information bottleneck method
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2020.2994048
– volume: 18
  start-page: 460
  year: 1972
  ident: ref_19
  article-title: Computation of channel capacity and rate-distortion functions
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1972.1054855
– ident: ref_65
  doi: 10.3390/e20050383
– volume: 6
  start-page: 243
  year: 2013
  ident: ref_28
  article-title: The interplay between information and estimation measures
  publication-title: Found. Trends Signal Process.
  doi: 10.1561/2000000018
– volume: 59
  start-page: 818
  year: 2013
  ident: ref_29
  article-title: On MMSE Crossing Properties and Implications in Parallel Vector Gaussian Channels
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2012.2225405
– ident: ref_48
– volume: 65
  start-page: 787
  year: 2019
  ident: ref_39
  article-title: Collaborative Information Bottleneck
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2018.2883295
– volume: 1
  start-page: 19
  year: 2020
  ident: ref_62
  article-title: The Information Bottleneck Problem and its Applications in Machine Learning
  publication-title: IEEE J. Sel. Areas Inf. Theory
  doi: 10.1109/JSAIT.2020.2991561
– ident: ref_41
– ident: ref_24
  doi: 10.3390/e22020151
– ident: ref_38
– ident: ref_60
  doi: 10.3390/a12090192
– volume: 32
  start-page: 435
  year: 2021
  ident: ref_54
  article-title: Understanding Convolutional Neural Networks with Information Theory: An Initial Exploration
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2968509
– volume: 21
  start-page: 493
  year: 1975
  ident: ref_17
  article-title: A Conditional Entropy Bound for a Pair of Discrete Random Variables
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1975.1055437
– volume: 19
  start-page: 769
  year: 1973
  ident: ref_25
  article-title: A theorem on the entropy of certain binary sequences and applications–I
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1973.1055107
– ident: ref_21
  doi: 10.1109/ICC.2017.7996419
– ident: ref_36
  doi: 10.1109/ITW.2017.8278006
– ident: ref_3
– volume: 42
  start-page: 887
  year: 1996
  ident: ref_37
  article-title: The CEO Problem
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.490552
– ident: ref_47
– ident: ref_11
– volume: 16
  start-page: 406
  year: 1970
  ident: ref_16
  article-title: Transmission of noisy information to a noisy receiver with minimum distortion
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1970.1054469
– volume: 66
  start-page: 161
  year: 1866
  ident: ref_66
  article-title: Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung
  publication-title: J. Reine Angew. Math.
– ident: ref_69
  doi: 10.1002/047174882X
– ident: ref_7
  doi: 10.1145/956755.956764
– volume: 46
  start-page: 283
  year: 2010
  ident: ref_32
  article-title: Transition points in the capacity-achieving distribution for the peak-power limited AWGN and free-space optical intensity channels
  publication-title: Probl. Inf. Transm.
  doi: 10.1134/S0032946010040022
– ident: ref_4
  doi: 10.1109/ICM2CS.2009.5397969
– ident: ref_59
  doi: 10.3390/a12090192
– volume: 18
  start-page: 203
  year: 1971
  ident: ref_31
  article-title: The information capacity of amplitude-and variance-constrained scalar Gaussian channels
  publication-title: Inf. Control.
  doi: 10.1016/S0019-9958(71)90346-9
– ident: ref_42
  doi: 10.1109/ALLERTON.2014.7028531
– volume: 42
  start-page: 2225
  year: 2020
  ident: ref_51
  article-title: Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2019.2909031
– volume: 11
  start-page: 137
  year: 2021
  ident: ref_2
  article-title: Distributed information-theoretic clustering
  publication-title: Inf. Inference J. Ima
– ident: ref_12
  doi: 10.1109/ALLERTON.2019.8919805
– volume: 1
  start-page: 24
  year: 2004
  ident: ref_6
  article-title: Biclustering algorithms for biological data analysis: A survey
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2004.2
– volume: 43
  start-page: 120
  year: 2021
  ident: ref_20
  article-title: Distributed Variational Representation Learning
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2019.2928806
– volume: 67
  start-page: 2472
  year: 2021
  ident: ref_57
  article-title: Information-distilling quantizers
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2021.3059338
– ident: ref_58
  doi: 10.1109/WCNCW.2018.8368978
– volume: 6
  start-page: 165
  year: 2005
  ident: ref_26
  article-title: Information Bottleneck for Gaussian Variables
  publication-title: J. Mach. Learn. Res.
– ident: ref_50
– volume: Volume 11215
  start-page: 181
  year: 2018
  ident: ref_53
  article-title: Evaluating Capability of Deep Neural Networks for Image Classification via Information Plane
  publication-title: Lecture Notes in Computer Science, Proceedings of the Computer Vision-ECCV 2018-15th European Conference, Munich, Germany, 8–14 September 2018, Proceedings, Part XI
– volume: 66
  start-page: 4183
  year: 2020
  ident: ref_40
  article-title: Vector Gaussian CEO Problem Under Logarithmic Loss and Applications
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2020.2972348
– volume: 44
  start-page: 1026
  year: 1998
  ident: ref_43
  article-title: The Efficiency of Investment Information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.669153
– volume: 66
  start-page: 2006
  year: 2019
  ident: ref_33
  article-title: The Capacity Achieving Distribution for the Amplitude Constrained Additive Gaussian Channel: An Upper Bound on the Number of Mass Points
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2948636
– volume: 55
  start-page: 4995
  year: 2009
  ident: ref_34
  article-title: Coding and Common Reconstruction
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2030487
– ident: ref_64
  doi: 10.1017/CBO9780511791338
– volume: 3
  start-page: 227
  year: 2006
  ident: ref_35
  article-title: Information Combining
  publication-title: Found. Trends Commun. Inf. Theory
  doi: 10.1561/0100000013
– ident: ref_46
  doi: 10.1109/ITW.2015.7133169
– volume: 60
  start-page: 4515
  year: 2014
  ident: ref_8
  article-title: Which Boolean Functions Maximize Mutual Information on Noisy Inputs?
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2326877
– volume: 54
  start-page: 299
  year: 2008
  ident: ref_10
  article-title: Achievable Rates for Pattern Recognition
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2007.911296
– volume: 60
  start-page: 740
  year: 2014
  ident: ref_13
  article-title: Multiterminal Source Coding Under Logarithmic Loss
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2013.2288257
– ident: ref_55
  doi: 10.1109/ISIT.2016.7541827
– ident: ref_70
– ident: ref_22
SSID ssj0023216
Score 2.2804756
Snippet A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf PXY. The problem is to...
A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf P[sub.XY]. The problem...
A double-sided variant of the information bottleneck method is considered. Let ( X , Y ) be a bivariate source characterized by a joint pmf P X Y . The problem...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1321
SubjectTerms Algorithms
biclustering
Bivariate analysis
Channels
Clustering
Codes
Correlation
Data compression
Gene expression
Hypothesis testing
information bottleneck
Information sources
lossy compression
Optimization
Pattern recognition
Random variables
remote source coding
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA7iRS_LyirWdaX-AE_FJM2vHnVxEEEvKngLyUvCikNHdAbxv9-XtjM4iHjx2iQlfF-T9z768oWQI8l08CG5ikfqKwG1qzygcIUogOEg09fmXF2riztxeS_v3131lWvCenvgHrgTIwXTLHBMbJ0IQXnNa2gYuNj42riQd19qmrmYGqRWzZnqfYRqFPUnEeNWg7qLLUWfzqT_41b8sTxybdY-ubdXNx6_iz2jn-THkDSWp_1kN8hKbH8RigyXmP_6caxuHkIM5XC0KENdnk2yOXEb4bEcYejKzzbJ3ej89u9FNdx_UIEQclqBCiYqYI4Jx2gMTR2dCd4rpz2qGO0d6KQAMzwdhEpKCRNMkDQB154nX2-R1XbSxm1SOio9xNSAUFwAvkNqBynRJGvaBBEKcjDHxT71NhcW5UEGzy7AK8hZRmzRITtTdw-QLzvwZb_iqyDHGW-b1w-iC244BoDzzE5U9lQLqbOpnyjI7pwSOyysF8tR30muUfcVZH_RjEsi_-dwbZzMuj4oogymRgXRS1QuTX25pX3415lrN_nKPYojDxekf47Izncg8pus83ymoitc2yWr0-dZ_IOZztTvdR_1f1FM_m0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gAXHgJEoEXhIXFKYzt-JCe0RV1VSFRIsFI5BXtsw6qr7KrdBdFfzzjxrthWSEhc40ccz4xnvnj8mZDXkmlnXTAF99QWAipTWEDgCl4Aw0b1kJvz4VSdTMX7M3mW7jm9TGmVCMVn_SIdd20KUVFaclE2JQInVi5dePsj_Upi6C7Rv-h4hnxPSQzGR2Rvevpx_KXf40yNBz6hCsF96dF_NbGbHS_Uk_XfXJJvpkneXndL8-unmc__8EGTe-TrZvRD6sn54XplD-HqGrHjf3zefXI3xaf5eFCoB-SW7x4SisqUY6ht5774NHPe5ekUU5RqfrSIPMidh_N8gl4yPntEppPjz-9OinTVQgFCyFUBytVeATNMGEa9aypvametMtoiYNLWgA4KMJjUTqiglKhd7SQNwLXlwVaPyahbdP4JyQ2VFnxoQCguAPuQ2kAINMiKNk64jLzcTH27HBg1WkQiUT7tVj4ZOYpC2VaIJNj9g8XFtzbZVFtLwTRzHDGPEc4pq3kFDQPjG1vVBt_0Joq0jaaKAgSTThzgOCPpVTvWQurIHygysr-Repts-LLlCCUl1wgxM_JiW4zWF7dUTOcX674O4rUao7CM6B1t2Rn6bkk3-97zeDfxdj-KLV9t9ervM_L0n2o9I3d4PJ_RJ8Htk9HqYu0PMGpa2efJMn4Dr6AThQ
  priority: 102
  providerName: Unpaywall
Title The Double-Sided Information Bottleneck Function
URI https://www.proquest.com/docview/2716527261
https://www.proquest.com/docview/2717688431
https://pubmed.ncbi.nlm.nih.gov/PMC9497801
https://www.mdpi.com/1099-4300/24/9/1321/pdf?version=1663661771
https://doaj.org/article/854171d2675a4dd6b723c91cae9b38ad
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (ASU) - EBSCO
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QO8IBAgAqMKHxJP0WLHH8kDQi1aNyFRTUCl8hTZZwcmqqTbWiH-e85pEqgmeMmDYyfWnc93Z9_9DuC1ZNpZV5mE-9QmAjOTWCTHFb1ARoPyXWzOx7k6X4gPS7k8gHmfCxPCKvs9sd2oXYPhjPyEk2EvuSaD_936KglVo8Ltal9Cw3SlFdzbFmLsEI54QMYawdH0dH7xaXDBMs7UDl8oI2f_xJM-K8gfY3taqQXvv71F3w6bvLOt1-bXT7Na_aWTZvfhXmdMxpMd9x_Aga8fQkqcj8kutiuffL503sVdylFgQTxtAmhx7fFHPCOVFtoewWJ2-uX9edLVRUhQCLlJULncK2SGCcNS74rMm9xZq4y25N1oa1BXCsny006oSimRu9zJtEKuLa9s9hhGdVP7JxCbVFr0VYFCcYH0DakNVlVaySwtnHARvOzpUq538BcluQ2BeOVAvAimgWJDh4BY3TY019_KTgDKXAqmmePkoBjhnLKaZ1gwNL6wWW7oT28CvcsgV0RdNF16AM0zIFSVEy2kDmB_IoLjniVlJ3A35Z_lEcGL4TWJSrj_MLVvtm0fcq5yMpki0Hus3Jv6_pv68nsLul2EUnwpjXw1MP3fFHn6_yk-g7s8ZFG0oWrHMNpcb_1zsm02dgyH-exs3C3bcXtCQM-zJaO2xfxi8vU3YuMA1w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAuCASIQAHzEier3rd9qFADjVLaRghaqbdlX4aKyA5toqp_jt_GrGMbogpuve7Lq5mdnfm88wB4LYjy1pcmpSGzKXfMpNYhcHWBO4KT8qVvztFEjk_4x1Nxuga_uliY6FbZ3YnNRe1rF_-Rb1M07AVVaPC_m_1MY9Wo-LraldAwbWkFv9OkGGsDOw7C1SVCuIud_Q_I7zeUjvaO34_TtspA6jgX89RJnwfpiCHckCz4ggWTe2ulURaxgrLGqVI6tKOU57KUkuc-9yIrHVWWlpbhurdggzNeIPjbGO5NPn3uIR-jRC7zGTFWZNsB9WeB-I-saMGmWMB1lXDdTXNzUc3M1aWZTv_SgaO7cKc1XpPd5Wm7B2uhug8ZnrQE7XA7DemXMx980oY4RZYnwzomSa6C-5GMUIXGtgdwciMUegjrVV2FR5CYTFgXysJxSbnDNYQyriyzUrCs8NwP4GVHFz1bptvQCFMi8XRPvAEMI8X6ATFDdtNQn3_TrcDpXHCiiKcIiAz3XlpFmSuIM6GwLDf4pbeR3jrKMVLXmTYcAfcZM2LpXcWFiskF-QC2OpboVsAv9J_jOIAXfTeKZnxvMVWoF80YBHM5mmgDUCusXNn6ak919r1J8l3E0n8ZznzVM_3fFHn8_y0-h83x8dGhPtyfHDyB2zRGcDRucluwPj9fhKdoV83ts_bwJvD1puXlN172OxE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALAgEiUCC8xCna2PEjOSDUUkJLoUKCSr259tiGilWytLuq-tf4dYzzWFhVcOs1jh1rHp6ZeOYbQl4Iqpx1wWTM5zbjUJjMAgau4DlQnFT2uTmf9uXOAf9wKA7XyK-xFiamVY5nYndQuxbiP_IJQ8deMIUO_yQMaRGft-s3s59Z7CAVb1rHdhq9iOz58zMM305f724jr18yVr_7-nYnGzoMZMC5mGcgXeklUEO5obl3VeFN6ayVRlmME5Q1oIIE9KGU4zJIyUtXOpEHYMqyYAtc9wq5qiKKe6xSr98vg72CUdkjGRVFlU88Ws4KIz-6Yv-6NgEXjcHFBM3ri2Zmzs_MdPqX9atvkZuD25pu9nJ2m6z55g7JUcZS9MDt1Gdfjp136VDcFJmdbrURHrnx8COt0XjGZ3fJwaXQ5x5Zb9rG3yepyYUFHyrgknHANYQyEEIeRJFXjruEPBvpomc90IbGACUSTy-Jl5CtSLHlCxEbu3vQnnzTg6rpUnCqqGMYChnunLSKFVBRML6yRWnwS68ivXXUYKQumKEQAfcZsbD0puJCRVhBnpCNkSV6UO1T_UcQE_J0OYxKGW9aTOPbRfcOhnElOmcJUSusXNn66khz_L2D965i078cZz5fMv3fFHnw_y0-IddQS_TH3f29h-QGi6UbXX7cBlmfnyz8I3So5vZxJ7kpObpsVfkN0zA4qw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gAXHgJEoEXhIXFKYzt-JCe0RV1VSFRIsFI5BXtsw6qr7KrdBdFfzzjxrthWSEhc40ccz4xnvnj8mZDXkmlnXTAF99QWAipTWEDgCl4Aw0b1kJvz4VSdTMX7M3mW7jm9TGmVCMVn_SIdd20KUVFaclE2JQInVi5dePsj_Upi6C7Rv-h4hnxPSQzGR2Rvevpx_KXf40yNBz6hCsF96dF_NbGbHS_Uk_XfXJJvpkneXndL8-unmc__8EGTe-TrZvRD6sn54XplD-HqGrHjf3zefXI3xaf5eFCoB-SW7x4SisqUY6ht5774NHPe5ekUU5RqfrSIPMidh_N8gl4yPntEppPjz-9OinTVQgFCyFUBytVeATNMGEa9aypvametMtoiYNLWgA4KMJjUTqiglKhd7SQNwLXlwVaPyahbdP4JyQ2VFnxoQCguAPuQ2kAINMiKNk64jLzcTH27HBg1WkQiUT7tVj4ZOYpC2VaIJNj9g8XFtzbZVFtLwTRzHDGPEc4pq3kFDQPjG1vVBt_0Joq0jaaKAgSTThzgOCPpVTvWQurIHygysr-Repts-LLlCCUl1wgxM_JiW4zWF7dUTOcX674O4rUao7CM6B1t2Rn6bkk3-97zeDfxdj-KLV9t9ervM_L0n2o9I3d4PJ_RJ8Htk9HqYu0PMGpa2efJMn4Dr6AThQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Double-Sided+Information+Bottleneck+Function&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Dikshtein%2C+Michael&rft.au=Or+Ordentlich&rft.au=Shamai%2C+Shlomo&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=9&rft.spage=1321&rft_id=info:doi/10.3390%2Fe24091321&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon