Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction
Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy...
Saved in:
| Published in | Environmental science and pollution research international Vol. 28; no. 20; pp. 25265 - 25282 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0944-1344 1614-7499 1614-7499 |
| DOI | 10.1007/s11356-021-12410-1 |
Cover
| Abstract | Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (
R
2
) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis. |
|---|---|
| AbstractList | Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (
R
2
) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis. Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R ) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis. Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R²) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis. Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R2) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis. Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R2) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis.Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R2) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis. |
| Author | Tabbussum, Ruhhee Dar, Abdul Qayoom |
| Author_xml | – sequence: 1 givenname: Ruhhee orcidid: 0000-0002-9926-6276 surname: Tabbussum fullname: Tabbussum, Ruhhee email: ruhhee_10phd17@nitsri.ac.in organization: Department of Civil Engineering, National Institute of Technology Srinagar – sequence: 2 givenname: Abdul Qayoom orcidid: 0000-0001-7663-2168 surname: Dar fullname: Dar, Abdul Qayoom organization: Department of Civil Engineering, National Institute of Technology Srinagar |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33453033$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktu1jAUhS1URP8WNsAAWWLCoAE_42SIKl5SJRjAOHKc618uiR1sp-jviEWwBTbGSsijPNRBGd2Bv3N8ru45QUc-eEDoMSXPKSHqRaKUy7IgjBaUCUoKeg_taElFoURdH6EdqYUoKBfiGJ2kdEkIIzVTD9Ax50JywvkO_fgA0YY4aG8Aw5XuJ51d8DhYrGN21hmne-x8hr53e1ioUUfduf2Qfn77_g_jYYrryF9D_JzOsJ2urw-4D3tnzrD2HdadHrO7ghUNxfbuvIW4-qZDyjDgOQ22fQgdHiN0zixxHqL7VvcJHt3MU_Tp9auP52-Li_dv3p2_vCiMEDIXbcmE0bqUEqhsJenKspZWGVFxClVLFVGM6ZZVHVOmEh3hVVkJO6sYBaktP0XPNt8xhi8TpNwMLpl5de0hTKlhUgkuiCrL_6NCVbKWSi7o01voZZiinxeZDTkTcwqyUE9uqKkdoGvG6AYdD83vW80A2wATQ0oR7B-EkmYpRLMVopkL0ayFaOgsqm6JjMvriXPUrr9byjdpmv_xe4h_Y9-h-gVkLc0M |
| CitedBy_id | crossref_primary_10_1016_j_compag_2023_107836 crossref_primary_10_1016_j_chemolab_2023_104930 crossref_primary_10_3390_su15021360 crossref_primary_10_1016_j_asr_2022_06_008 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_1155_2021_1994732 crossref_primary_10_1109_TFUZZ_2024_3359652 crossref_primary_10_3390_math11040875 crossref_primary_10_1109_ACCESS_2025_3525757 crossref_primary_10_1016_j_asoc_2024_112334 crossref_primary_10_1016_j_nhres_2023_10_001 crossref_primary_10_1016_j_arabjc_2023_105526 crossref_primary_10_1016_j_grets_2023_100039 crossref_primary_10_1016_j_jhydrol_2022_128608 crossref_primary_10_1007_s11356_023_27844_y crossref_primary_10_1088_1755_1315_1086_1_012036 crossref_primary_10_1016_j_aej_2024_07_083 crossref_primary_10_3390_rs15143471 crossref_primary_10_1007_s11269_021_02816_4 crossref_primary_10_1155_2024_2894031 crossref_primary_10_1007_s40808_024_02081_5 crossref_primary_10_1007_s11069_021_04694_w crossref_primary_10_1038_s41598_024_83695_8 crossref_primary_10_3389_feart_2024_1378956 crossref_primary_10_1016_j_ultsonch_2024_106762 crossref_primary_10_1016_j_geogeo_2022_100153 crossref_primary_10_1007_s11356_021_16430_9 crossref_primary_10_1080_17455030_2022_2123572 crossref_primary_10_1007_s12145_024_01223_8 crossref_primary_10_1016_j_scitotenv_2024_175700 crossref_primary_10_1016_j_grets_2023_100021 crossref_primary_10_1007_s40899_024_01069_4 crossref_primary_10_1016_j_susoc_2023_11_002 crossref_primary_10_1080_02626667_2023_2246956 crossref_primary_10_2298_FUEE2204603D crossref_primary_10_1007_s00382_022_06206_3 crossref_primary_10_3390_rs13204147 crossref_primary_10_2166_wcc_2022_257 crossref_primary_10_3233_JIFS_233265 crossref_primary_10_3390_su14084670 crossref_primary_10_1007_s10668_025_06092_9 crossref_primary_10_1142_S0219649224500941 crossref_primary_10_1007_s00521_024_09909_2 crossref_primary_10_3390_s23229156 crossref_primary_10_1088_2631_8695_ad9cec crossref_primary_10_1155_2022_3684727 crossref_primary_10_3390_su15086844 crossref_primary_10_3390_w13111547 crossref_primary_10_1007_s11356_022_20213_1 crossref_primary_10_3390_min14010040 crossref_primary_10_1016_j_ijdrr_2024_105110 crossref_primary_10_1007_s42461_024_00933_3 crossref_primary_10_1109_ACCESS_2024_3493753 crossref_primary_10_1016_j_matpr_2021_11_561 crossref_primary_10_1080_10106049_2022_2093990 crossref_primary_10_1007_s11356_022_20385_w crossref_primary_10_1155_2022_3498060 crossref_primary_10_1007_s00500_024_09859_w crossref_primary_10_1016_j_psep_2023_11_073 crossref_primary_10_3390_min14080737 crossref_primary_10_1007_s11356_024_35871_6 crossref_primary_10_3390_math12203296 crossref_primary_10_3390_w14050774 |
| Cites_doi | 10.1016/S0022-1694(01)00349-3 10.5194/hess-12-123-2008 10.1016/j.scitotenv.2019.135983 10.1007/s11269-014-0600-8 10.1080/19942060.2018.1448896 10.1016/j.scitotenv.2018.10.064 10.1109/21.256541 10.3923/jas.2007.3451.3459 10.1016/j.jclepro.2018.03.217 10.1177/030913330102500104 10.1016/j.jenvman.2019.06.102 10.1016/j.jhydrol.2015.10.047 10.1016/j.jher.2014.12.001 10.1007/s11356-019-05473-8 10.1002/hyp.1359 10.1016/j.jhydrol.2016.11.057 10.1061/(asce)he.1943-5584.0000245 10.1007/s11356-020-08057-z 10.1016/j.jhydrol.2014.03.064 10.5194/hess-10-1-2006 10.1080/02626669809492102 10.1016/j.jclepro.2017.07.205 10.1016/j.jhydrol.2020.125007 10.1016/j.scitotenv.2019.07.203 10.1016/j.jhydrol.2006.02.009 10.4236/jwarp.2010.210105 10.1007/s11356-019-07270-9 10.1016/j.protcy.2016.05.015 10.1016/j.scitotenv.2017.05.197 10.1007/s12544-012-0086-5 10.1016/j.jhydrol.2013.11.011 10.1007/s11356-017-0418-z 10.1002/joc.1920 10.1007/s11069-015-1861-0 10.1016/j.envsoft.2017.06.012 10.1111/jfr3.12521 10.1016/j.jhydrol.2007.10.050 10.14445/22315381/IJETT-V12P295 10.1016/j.jclepro.2017.06.047 10.1016/j.jclepro.2018.06.047 10.1111/jfr3.12492 10.1016/j.jclepro.2018.12.008 10.1623/hysj.52.1.114 10.5194/hess-11-1869-2007 10.1007/s00521-013-1344-8 10.1016/j.engappai.2010.04.003 10.1061/(ASCE)HE.1943-5584.0000040 10.3390/w10111536 10.1016/j.jhydrol.2003.12.010 10.2166/hydro.2017.076 10.1080/02626669609491511 10.1029/2004WR003562 10.1007/s11356-018-3203-8 10.1623/hysj.54.2.261 10.1016/j.jclepro.2019.118515 10.1007/s11356-019-06849-6 10.1016/j.procs.2017.11.187 10.5897/IJPS10.649 10.1016/j.scitotenv.2017.10.114 10.1007/s00521-013-1443-6 10.1007/s00382-015-2755-2 10.1016/S0925-2312(03)00388-6 10.1016/j.asoc.2013.07.007 10.1016/j.jhydrol.2005.07.032 10.3923/jest.2011.366.376 10.2166/hydro.2001.0002 10.1007/s12517-011-0517-y 10.1016/0893-6080(88)90007-X 10.1016/j.jclepro.2019.03.044 10.1016/j.jhydrol.2009.06.005 10.1016/j.scitotenv.2020.137875 10.1016/j.jclepro.2017.11.066 10.1016/j.advwatres.2005.04.015 10.1007/s11069-016-2220-5 10.1007/s13201-016-0515-z 10.1016/j.jksues.2015.02.001 10.1016/j.quaint.2018.09.039 10.5194/nhess-2016-86 10.5194/nhess-2019-44 10.3390/w10091158 10.1007/s00521-020-05098-w 10.1007/978-981-15-3125-5_12 10.1016/j.jclepro.2019.119468 10.1111/jfr3.12656 10.1007/s11356-020-11430-7 10.1007/978-981-15-1632-0_5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
| DBID | AAYXX CITATION NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11356-021-12410-1 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users] ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| EndPage | 25282 |
| ExternalDocumentID | 33453033 10_1007_s11356_021_12410_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Ministry of Human Resource Development funderid: http://dx.doi.org/10.13039/501100004541 |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c445t-b624caa655e15b50d6695f7c4831e8b170722ab28d27c84d038684f62421e5af3 |
| IEDL.DBID | U2A |
| ISSN | 0944-1344 1614-7499 |
| IngestDate | Fri Sep 05 15:09:04 EDT 2025 Thu Oct 02 10:50:00 EDT 2025 Tue Oct 07 06:16:31 EDT 2025 Wed Feb 19 02:29:41 EST 2025 Thu Apr 24 22:56:22 EDT 2025 Wed Oct 01 02:53:31 EDT 2025 Fri Feb 21 02:49:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | Gaussian membership function Takagi-Sugeno fuzzy inference system Levenberg Marquardt neural network Flood forecasting Subtractive clustering Adaptive neuro-fuzzy inference system |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c445t-b624caa655e15b50d6695f7c4831e8b170722ab28d27c84d038684f62421e5af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7663-2168 0000-0002-9926-6276 |
| PMID | 33453033 |
| PQID | 2532438606 |
| PQPubID | 54208 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2574340766 proquest_miscellaneous_2478595756 proquest_journals_2532438606 pubmed_primary_33453033 crossref_primary_10_1007_s11356_021_12410_1 crossref_citationtrail_10_1007_s11356_021_12410_1 springer_journals_10_1007_s11356_021_12410_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationTitleAlternate | Environ Sci Pollut Res Int |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Nayak, Sudheer, Rangan, Ramasastri (CR66) 2004; 291 Lavers, Charlesworth (CR56) 2018; 25 Patel, Parekh (CR72) 2014; 12 Mekanik, Imteaz, Talei (CR60) 2016; 46 Chang, Chiang, Tsai (CR23) 2014; 508 CR38 Gnanaprakkasam, Ganapathy (CR37) 2019; 26 Özger (CR71) 2009; 54 Arabameri, Saha, Chen, Roy, Pradhan, Bui (CR10) 2020; 587 Zounemat-Kermani, Kisi, Rajaee (CR100) 2013; 13 Nayak, Sudheer, Rangan, Ramasastri (CR67) 2005; 41 Nguyen, Thorstensen, Sorooshian, Hsu, AghaKouchak, Sanders, Koren, Cui, Smith (CR68) 2015; 541 Rashetnias (CR78) 2016 Mpallas, Tzimopoulos, Evangelides (CR64) 2011; 4 Meraj, Romshoo, Yousuf, Altaf, Altaf (CR61) 2015; 78 CR47 CR46 CR45 Chang, Chiang, Chang (CR22) 2007; 52 CR43 Wu, Chau (CR95) 2010; 23 Othman, Naseri (CR70) 2011; 6 Karl, Lohani (CR53) 2010; 02 Firat (CR34) 2008; 12 Rao, Brevern, El-Tayeb, Vengkatesh (CR77) 2009; 9 Shu, Ouarda (CR84) 2008; 349 Kamp, Savenije (CR51) 2007; 11 CR57 Mosavi, Ozturk, Chau (CR63) 2018; 10 Surampudi, Yarrakula (CR87) 2020; 27 Rezaeian-Zadeh, Tabari, Abghari (CR80) 2013; 6 Yadav, Naresh, Sharma (CR97) 2011; 3 Ballesteros-Cánovas, Koul, Bashir, del Pozo, Allen, Guillet, Rashid, Alamgir, Shah, Bhat, Alam, Stoffel (CR13) 2020; 722 Solgi, Zarei, Nourani, Bahmani (CR85) 2017; 7 Minns, Hall (CR62) 1996; 41 Qasem, Ebtehaj, Madavar (CR76) 2017; 7 Xiong, Shamseldin, O’Connor (CR96) 2001; 245 Saleh, Rather, Jabbar (CR83) 2017; 7 Chang, Chang (CR21) 2006; 29 Dawson, Abrahart, Shamseldin, Wilby (CR30) 2006; 319 Kourgialas, Karatzas (CR54) 2017; 601–602 Illahi, Mir (CR44) 2020 Ding, Hua, Jiang, Bao, Yu (CR31) 2017; 167 Gautam, Holz (CR36) 2001; 3 Noymanee, Nikitin, Kalyuzhnaya (CR69) 2017; 119 Pourghasemi, Gayen, Panahi, Rezaie, Blaschke (CR75) 2019; 692 Ashrafi, Chua, Quek, Qin (CR11) 2017; 545 Anusree, Varghese (CR9) 2016; 24 Dodangeh, Choubin, Eigdir, Nabipour, Panahi, Shamshirband, Mosavi (CR32) 2020; 705 Jacquin, Shamseldin (CR48) 2006; 329 Ahmad, Afzal (CR4) 2020; 27 Sun, Tang, Sun, Cui (CR86) 2016; 82 Zhong, Jiang, Li, Lu, Wang, Zhu (CR99) 2020; 27 Alvisi, Mascellani, Franchini, Bárdossy (CR8) 2006; 10 Hua, Yang, Qi, Jiang, Xie, Gu, Li, Zhang, Krebs (CR42) 2020; 242 Mahabir, Hicks, Fayek (CR58) 2003; 17 Fotovatikhah, Herrera, Shamshirband, Chau, Faizollahzadeh Ardabili, Piran (CR35) 2018; 12 Duncan, Chen, Keedwell (CR33) 2012; 351 Zeleňáková, Fijko, Labant, Weiss, Markovič, Weiss (CR98) 2019; 212 Cai, Lye, Khan (CR19) 2009; 2 Adamowski, Karapataki (CR3) 2010; 15 Bazartseren, Hildebrandt, Holz (CR14) 2003; 55 Mahmoud, Gan (CR59) 2018; 196 Bhat, Alam, Ahmad, Kotlia, Farooq, Taloor, Ahmad (CR16) 2019; 507 CR5 Dawson, Wilby (CR29) 2001; 25 Mukerji, Chatterjee, Singh Raghuwanshi (CR65) 2009; 14 CR89 CR88 Alvisi, Mascellani, Franchini (CR7) 2006; 10 Rossi, Gastaldi, Gecchele (CR82) 2013; 5 Wang, Hong, Chen, Li, Panahi, Khosravi, Shirzadi, Shahabi, Panahi, Costache (CR93) 2019; 247 Cloke, Pappenberger (CR26) 2009; 375 Hu, Zhang, Li, Yang, Tanaka (CR41) 2019; 222 Roodsari, Chandler, Kelleher, Kroll (CR81) 2019; 12 Kant, Suman, Giri, Tiwari, Chatterjee, Nayak, Kumar (CR52) 2013; 23 Dawson, Wilby (CR28) 1998; 43 Rezaeianzadeh, Tabari, Arabi Yazdi, Isik, Kalin (CR79) 2014; 25 Bhat, Ahmad, Alam, Farooq, Ahmad (CR15) 2019; 12 Chapi, Singh, Shirzadi, Shahabi, Bui, Pham, Khosravi (CR24) 2017; 95 Choubin, Moradi, Golshan, Adamowski, Sajedi-Hosseini, Mosavi (CR25) 2019; 651 Chan, Chuah, Ziegler, Dąbrowski, Varis (CR20) 2018; 187 CR18 CR12 CR92 Haykin (CR39) 1999 CR90 Tareghian, Kashefipour (CR91) 2007; 7 Hong, Panahi, Shirzadi, Ma, Liu, Zhu, Chen, Kougias, Kazakis (CR40) 2017; 621 Werbos (CR94) 1988; 1 Jayawardena, Perera, Zhu, Amarasekara, Vereivalu (CR50) 2014; 514 Perera, Lahat (CR73) 2015; 9 Bhutiyani, Kale, Pawar (CR17) 2010; 548 Jang (CR49) 1993; 23 Ahmed, Shah (CR6) 2017; 29 Petit-Boix, Sevigné-Itoiz, Rojas-Gutierrez, Barbassa, Josa, Rieradevall, Gabarrell (CR74) 2017; 162 Latt, Wittenberg (CR55) 2014; 28 Abebe, Kabir, Tesfamariam (CR2) 2018; 174 Abbas, Amjath-Babu, Kächele, Usman, Amjed Iqbal, Arshad, Adnan Shahid, Müller (CR1) 2018; 25 Dariane, Azimi (CR27) 2018; 20 SF Saleh (12410_CR83) 2017; 7 S Rao (12410_CR77) 2009; 9 NN Kourgialas (12410_CR54) 2017; 601–602 M Rezaeian-Zadeh (12410_CR80) 2013; 6 K Chapi (12410_CR24) 2017; 95 FJ Chang (12410_CR22) 2007; 52 A Mosavi (12410_CR63) 2018; 10 M Zhong (12410_CR99) 2020; 27 12410_CR18 12410_CR12 S Surampudi (12410_CR87) 2020; 27 B Choubin (12410_CR25) 2019; 651 A Mukerji (12410_CR65) 2009; 14 A Abbas (12410_CR1) 2018; 25 12410_CR92 K Anusree (12410_CR9) 2016; 24 PC Nayak (12410_CR66) 2004; 291 12410_CR90 D Patel (12410_CR72) 2014; 12 ZZ Latt (12410_CR55) 2014; 28 H Cai (12410_CR19) 2009; 2 PJ Werbos (12410_CR94) 1988; 1 Y Wang (12410_CR93) 2019; 247 12410_CR5 A Petit-Boix (12410_CR74) 2017; 162 M Özger (12410_CR71) 2009; 54 12410_CR89 12410_CR88 F Chang (12410_CR23) 2014; 508 CW Dawson (12410_CR28) 1998; 43 SH Mahmoud (12410_CR59) 2018; 196 A Kant (12410_CR52) 2013; 23 MR Bhutiyani (12410_CR17) 2010; 548 AP Jacquin (12410_CR48) 2006; 329 AW Jayawardena (12410_CR50) 2014; 514 CW Dawson (12410_CR29) 2001; 25 HL Cloke (12410_CR26) 2009; 375 BK Roodsari (12410_CR81) 2019; 12 S Rashetnias (12410_CR78) 2016 A Arabameri (12410_CR10) 2020; 587 AAM Ahmed (12410_CR6) 2017; 29 C Mahabir (12410_CR58) 2003; 17 S Gnanaprakkasam (12410_CR37) 2019; 26 Y Sun (12410_CR86) 2016; 82 M Ashrafi (12410_CR11) 2017; 545 X Ding (12410_CR31) 2017; 167 F Mekanik (12410_CR60) 2016; 46 Y Abebe (12410_CR2) 2018; 174 P Hua (12410_CR42) 2020; 242 L Mpallas (12410_CR64) 2011; 4 B Bazartseren (12410_CR14) 2003; 55 HR Pourghasemi (12410_CR75) 2019; 692 T Lavers (12410_CR56) 2018; 25 R Rossi (12410_CR82) 2013; 5 JA Ballesteros-Cánovas (12410_CR13) 2020; 722 E Dodangeh (12410_CR32) 2020; 705 M Rezaeianzadeh (12410_CR79) 2014; 25 D Ahmad (12410_CR4) 2020; 27 F Fotovatikhah (12410_CR35) 2018; 12 U Illahi (12410_CR44) 2020 M Hu (12410_CR41) 2019; 222 FJ Chang (12410_CR21) 2006; 29 12410_CR57 PC Nayak (12410_CR67) 2005; 41 J Noymanee (12410_CR69) 2017; 119 DK Gautam (12410_CR36) 2001; 3 S Alvisi (12410_CR7) 2006; 10 EDP Perera (12410_CR73) 2015; 9 M Zeleňáková (12410_CR98) 2019; 212 C Shu (12410_CR84) 2008; 349 M Zounemat-Kermani (12410_CR100) 2013; 13 H Hong (12410_CR40) 2017; 621 MS Bhat (12410_CR15) 2019; 12 12410_CR45 12410_CR47 12410_CR46 FKS Chan (12410_CR20) 2018; 187 12410_CR43 M Firat (12410_CR34) 2008; 12 JR Jang (12410_CR49) 1993; 23 MS Bhat (12410_CR16) 2019; 507 F Othman (12410_CR70) 2011; 6 AP Duncan (12410_CR33) 2012; 351 P Nguyen (12410_CR68) 2015; 541 G Meraj (12410_CR61) 2015; 78 12410_CR38 RG Kamp (12410_CR51) 2007; 11 S Haykin (12410_CR39) 1999 A Solgi (12410_CR85) 2017; 7 CL Wu (12410_CR95) 2010; 23 S Alvisi (12410_CR8) 2006; 10 SN Qasem (12410_CR76) 2017; 7 J Adamowski (12410_CR3) 2010; 15 L Xiong (12410_CR96) 2001; 245 CW Dawson (12410_CR30) 2006; 319 AK Karl (12410_CR53) 2010; 02 AW Minns (12410_CR62) 1996; 41 R Tareghian (12410_CR91) 2007; 7 D Yadav (12410_CR97) 2011; 3 AB Dariane (12410_CR27) 2018; 20 |
| References_xml | – ident: CR45 – volume: 245 start-page: 196 year: 2001 end-page: 217 ident: CR96 article-title: A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system publication-title: J Hydrol doi: 10.1016/S0022-1694(01)00349-3 – volume: 12 start-page: 123 year: 2008 end-page: 139 ident: CR34 article-title: Comparison of Artificial Intelligence Techniques for river flow forecasting publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-12-123-2008 – volume: 705 start-page: 135983 year: 2020 ident: CR32 article-title: Integrated machine learning methods with resampling algorithms for flood susceptibility prediction publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135983 – volume: 28 start-page: 2109 year: 2014 end-page: 2128 ident: CR55 article-title: Improving flood forecasting in a developing country: a comparative study of stepwise Multiple Linear Regression and Artificial Neural Network publication-title: Water Resour Manag doi: 10.1007/s11269-014-0600-8 – volume: 12 start-page: 411 year: 2018 end-page: 437 ident: CR35 article-title: Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2018.1448896 – volume: 651 start-page: 2087 year: 2019 end-page: 2096 ident: CR25 article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.10.064 – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: CR49 article-title: ANFIS : Adaptive-Network-Based Fuzzy Inference System publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.256541 – volume: 7 start-page: 3451 year: 2007 end-page: 3459 ident: CR91 article-title: Applications of fuzzy systems and artificial neural networks for flood forecasting publication-title: J Appl Sci doi: 10.3923/jas.2007.3451.3459 – volume: 187 start-page: 576 year: 2018 end-page: 589 ident: CR20 article-title: Towards resilient flood risk management for Asian coastal cities: lessons learned from Hong Kong and Singapore publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.03.217 – volume: 25 start-page: 80 year: 2001 end-page: 108 ident: CR29 article-title: Hydrological modelling using artificial neural networks publication-title: Prog Phys Geogr doi: 10.1177/030913330102500104 – volume: 247 start-page: 712 year: 2019 end-page: 729 ident: CR93 article-title: Flood susceptibility mapping in Dingnan county (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm publication-title: J Environ Manag doi: 10.1016/j.jenvman.2019.06.102 – volume: 541 start-page: 401 year: 2015 end-page: 420 ident: CR68 article-title: A high resolution coupled hydrologic – hydraulic model ( HiResFlood-UCI ) for flash flood modeling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.10.047 – ident: CR92 – ident: CR88 – volume: 9 start-page: 542 year: 2015 end-page: 553 ident: CR73 article-title: Fuzzy logic based flood forecasting model for the Kelantan River basin, Malaysia publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2014.12.001 – volume: 9 start-page: 37 year: 2009 end-page: 43 ident: CR77 article-title: GUI based mamdani fuzzy inference system modeling to predict surface roughness in laser machining publication-title: Int J Electr Comput Sci IJECS-IJENS – volume: 26 start-page: 22856 year: 2019 end-page: 22877 ident: CR37 article-title: Evaluation of regional flood quantiles at ungauged sites by employing nonlinearity-based clustering approaches publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-05473-8 – ident: CR57 – volume: 17 start-page: 3749 year: 2003 end-page: 3762 ident: CR58 article-title: Application of fuzzy logic to forecast seasonal runoff publication-title: Hydrol Process doi: 10.1002/hyp.1359 – ident: CR5 – volume: 545 start-page: 424 year: 2017 end-page: 435 ident: CR11 article-title: A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.11.057 – volume: 15 start-page: 729 year: 2010 end-page: 743 ident: CR3 article-title: Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN Learning algorithms publication-title: J Hydrol Eng doi: 10.1061/(asce)he.1943-5584.0000245 – volume: 27 start-page: 15375 year: 2020 end-page: 15387 ident: CR4 article-title: Flood hazards and factors influencing household flood perception and mitigation strategies in Pakistan publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-08057-z – volume: 514 start-page: 85 year: 2014 end-page: 101 ident: CR50 article-title: A comparative study of fuzzy logic systems approach for river discharge prediction publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.03.064 – volume: 10 start-page: 1 year: 2006 end-page: 17 ident: CR7 article-title: Water level forecasting through fuzzy logic and artificial neural network approaches publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-10-1-2006 – volume: 43 start-page: 47 year: 1998 end-page: 66 ident: CR28 article-title: An Artificial Neural Network approach to rainfall-runoff modeling publication-title: Hydrol Sci J doi: 10.1080/02626669809492102 – ident: CR18 – ident: CR47 – ident: CR89 – volume: 167 start-page: 908 year: 2017 end-page: 918 ident: CR31 article-title: Two-stage interval stochastic chance-constrained robust programming and its application in flood management publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.07.205 – year: 2020 ident: CR44 publication-title: Sustainable Transportation Attainment Index: multivariate analysis of indicators with an application to selected states and National Capital Territory (NCT) of India – volume: 587 start-page: 125007 year: 2020 ident: CR10 article-title: Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125007 – volume: 692 start-page: 556 year: 2019 end-page: 571 ident: CR75 article-title: Multi-hazard probability assessment and mapping in Iran publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.07.203 – volume: 329 start-page: 154 year: 2006 end-page: 173 ident: CR48 article-title: Development of rainfall-runoff models using takagi-sugeno fuzzy inference systems publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.02.009 – volume: 02 start-page: 880 year: 2010 end-page: 887 ident: CR53 article-title: Development of Flood forecasting system using statistical and ANN techniques in the downstream catchment of Mahanadi Basin, India publication-title: J Water Resour Prot doi: 10.4236/jwarp.2010.210105 – volume: 27 start-page: 37218 year: 2020 end-page: 37228 ident: CR99 article-title: Multiple environmental factors analysis of flash flood risk in Upper Hanjiang River, southern China publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-07270-9 – ident: CR38 – volume: 24 start-page: 101 year: 2016 end-page: 108 ident: CR9 article-title: Streamflow Prediction of Karuvannur River Basin Using ANFIS, ANN and MNLR Models publication-title: Procedia Technol doi: 10.1016/j.protcy.2016.05.015 – volume: 601–602 start-page: 441 year: 2017 end-page: 452 ident: CR54 article-title: A national scale flood hazard mapping methodology: the case of Greece – Protection and adaptation policy approaches publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.05.197 – volume: 5 start-page: 11 year: 2013 end-page: 26 ident: CR82 article-title: Comparison of fuzzy-based and AHP methods in sustainability evaluation: A case of traffic pollution-reducing policies publication-title: Eur Transp Res Rev doi: 10.1007/s12544-012-0086-5 – volume: 508 start-page: 374 year: 2014 end-page: 384 ident: CR23 article-title: Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.11.011 – volume: 25 start-page: 19313 year: 2018 end-page: 19322 ident: CR56 article-title: Opportunity mapping of natural flood management measures: a case study from the headwaters of the Warwickshire-Avon publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-0418-z – volume: 548 start-page: 535 year: 2010 end-page: 548 ident: CR17 article-title: Climate change and the precipitation variations in the northwestern Himalaya:1866 – 2006 publication-title: Int J Climatol doi: 10.1002/joc.1920 – volume: 78 start-page: 1 year: 2015 end-page: 5 ident: CR61 article-title: Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya publication-title: Nat Hazards doi: 10.1007/s11069-015-1861-0 – year: 2016 ident: CR78 publication-title: Flood vulnerability assessment by applying a fuzzy logic method : a case study from Melbourne – volume: 95 start-page: 229 year: 2017 end-page: 245 ident: CR24 article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.06.012 – volume: 12 start-page: 1 year: 2019 end-page: 13 ident: CR15 article-title: Flood hazard assessment of the Kashmir Valley using historical hydrology publication-title: J Flood Risk Manag doi: 10.1111/jfr3.12521 – volume: 349 start-page: 31 year: 2008 end-page: 43 ident: CR84 article-title: Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.10.050 – volume: 12 start-page: 510 year: 2014 end-page: 514 ident: CR72 article-title: Flood Forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS) publication-title: Int J Eng Trends Technol doi: 10.14445/22315381/IJETT-V12P295 – volume: 162 start-page: 601 year: 2017 end-page: 608 ident: CR74 article-title: Floods and consequential life cycle assessment: Integrating flood damage into the environmental assessment of stormwater Best Management Practices publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.06.047 – volume: 196 start-page: 216 year: 2018 end-page: 229 ident: CR59 article-title: Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.06.047 – volume: 12 start-page: 1 year: 2019 end-page: 12 ident: CR81 article-title: A comparison of SAC-SMA and Adaptive Neuro-fuzzy Inference System for real-time flood forecasting in small urban catchments publication-title: J Flood Risk Manag doi: 10.1111/jfr3.12492 – volume: 212 start-page: 109 year: 2019 end-page: 118 ident: CR98 article-title: Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.12.008 – volume: 52 start-page: 114 year: 2007 end-page: 130 ident: CR22 article-title: Multi-step-ahead neural networks for flood forecasting publication-title: Hydrol Sci J doi: 10.1623/hysj.52.1.114 – ident: CR12 – volume: 10 start-page: 1 year: 2006 end-page: 17 ident: CR8 article-title: Water level forecasting through Fuzzy Logic and Artificial Neural Network approaches publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-10-1-2006 – volume: 11 start-page: 3629 year: 2007 end-page: 3653 ident: CR51 article-title: Hydrological model coupling with ANNs publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-11-1869-2007 – volume: 23 start-page: 231 year: 2013 end-page: 246 ident: CR52 article-title: Comparison of multi-objective evolutionary neural network, adaptive neuro-fuzzy inference system and bootstrap-based neural network for flood forecasting publication-title: Neural Comput & Applic doi: 10.1007/s00521-013-1344-8 – volume: 23 start-page: 1350 year: 2010 end-page: 1367 ident: CR95 article-title: Data-driven models for monthly streamflow time series prediction publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.04.003 – volume: 14 start-page: 647 year: 2009 end-page: 652 ident: CR65 article-title: Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000040 – ident: CR46 – volume: 10 start-page: 1 year: 2018 end-page: 40 ident: CR63 article-title: Flood prediction using machine learning models: literature review publication-title: Water (Switzerland) doi: 10.3390/w10111536 – volume: 291 start-page: 52 year: 2004 end-page: 66 ident: CR66 article-title: A neuro-fuzzy computing technique for modeling hydrological time series publication-title: J Hydrol doi: 10.1016/j.jhydrol.2003.12.010 – volume: 20 start-page: 520 year: 2018 end-page: 532 ident: CR27 article-title: Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input variable selection publication-title: J Hydroinf doi: 10.2166/hydro.2017.076 – volume: 41 start-page: 399 year: 1996 end-page: 417 ident: CR62 article-title: Artificial neural networks as rainfall-runoff models publication-title: Hydrol Sci J doi: 10.1080/02626669609491511 – volume: 41 start-page: 1 year: 2005 end-page: 16 ident: CR67 article-title: Short-term flood forecasting with a neuro-fuzzy model publication-title: Water Resour Res doi: 10.1029/2004WR003562 – volume: 25 start-page: 32491 year: 2018 end-page: 32505 ident: CR1 article-title: Sustainable survival under climatic extremes: linking flood risk mitigation and coping with flood damages in rural Pakistan publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-3203-8 – volume: 54 start-page: 261 year: 2009 end-page: 273 ident: CR71 article-title: Comparison of fuzzy inference systems for streamflow prediction publication-title: Hydrol Sci J doi: 10.1623/hysj.54.2.261 – volume: 242 start-page: 118515 year: 2020 ident: CR42 article-title: Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118515 – volume: 27 start-page: 1521 year: 2020 end-page: 1532 ident: CR87 article-title: Mapping and assessing spatial extent of floods from multitemporal synthetic aperture radar images: a case study on Brahmaputra River in Assam State, India publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-06849-6 – volume: 119 start-page: 288 year: 2017 end-page: 297 ident: CR69 article-title: Urban pluvial flood forecasting using open data with machine learning techniques in Pattani Basin publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.187 – volume: 6 start-page: 434 year: 2011 end-page: 440 ident: CR70 article-title: Reservoir inflow forecasting using artificial neural network publication-title: Int J Phys Sci doi: 10.5897/IJPS10.649 – volume: 621 start-page: 1124 year: 2017 end-page: 1141 ident: CR40 article-title: Flood susceptibility assessment in Hengfeng area coupling Adaptive Neuro-Fuzzy Inference System with Genetic Algorithm and Differential Evolution publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.10.114 – volume: 25 start-page: 25 year: 2014 end-page: 37 ident: CR79 article-title: Flood flow forecasting using ANN, ANFIS and regression models publication-title: Neural Comput & Applic doi: 10.1007/s00521-013-1443-6 – volume: 46 start-page: 3097 year: 2016 end-page: 3111 ident: CR60 article-title: Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals publication-title: Clim Dyn doi: 10.1007/s00382-015-2755-2 – volume: 55 start-page: 439 year: 2003 end-page: 450 ident: CR14 article-title: Short-term water level prediction using neural networks and neuro-fuzzy approach publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00388-6 – ident: CR43 – volume: 13 start-page: 4633 year: 2013 end-page: 4644 ident: CR100 article-title: Performance of radial basis and LM-feed forward Artificial Neural Networks for predicting daily watershed runoff publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2013.07.007 – volume: 319 start-page: 391 year: 2006 end-page: 409 ident: CR30 article-title: Flood estimation at ungauged sites using artificial neural networks publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.07.032 – volume: 7 start-page: 290 year: 2017 end-page: 298 ident: CR76 article-title: Optimizing ANFIS for sediment transport in open channels using different evolutionary algorithms publication-title: J Appl Res Water Wastewater – volume: 4 start-page: 366 year: 2011 end-page: 376 ident: CR64 article-title: Comparison between neural networks and adaptive neuro-fuzzy inference system in modelling lake kerkini water level fluctuation lake management using artificial intelligence publication-title: J Environ Sci Technol doi: 10.3923/jest.2011.366.376 – volume: 3 start-page: 30 year: 2011 end-page: 40 ident: CR97 article-title: Stream flow forecasting using Levenberg-Marquardt algorithm approach publication-title: Environ Eng – volume: 3 start-page: 3 year: 2001 end-page: 10 ident: CR36 article-title: Rainfall-runoff modelling using adaptive neuro-fuzzy systems publication-title: J Hydroinf doi: 10.2166/hydro.2001.0002 – volume: 6 start-page: 2529 year: 2013 end-page: 2537 ident: CR80 article-title: Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions publication-title: Arab J Geosci doi: 10.1007/s12517-011-0517-y – volume: 351 start-page: 568 year: 2012 end-page: 573 ident: CR33 article-title: Urban flood prediction in real-time from weather radar and rainfall data using Artificial Neural Networks publication-title: IAHS-AISH Publ – volume: 1 start-page: 339 year: 1988 end-page: 356 ident: CR94 article-title: Generalization of backpropagation with application to a recurrent gas market model publication-title: Neural Netw doi: 10.1016/0893-6080(88)90007-X – volume: 222 start-page: 373 year: 2019 end-page: 380 ident: CR41 article-title: Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.03.044 – volume: 375 start-page: 613 year: 2009 end-page: 626 ident: CR26 article-title: Ensemble flood forecasting: A review publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.06.005 – volume: 722 start-page: 137875 year: 2020 ident: CR13 article-title: Recent flood hazards in Kashmir put into context with millennium-long historical and tree-ring records publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137875 – ident: CR90 – volume: 2 start-page: 611 year: 2009 end-page: 620 ident: CR19 article-title: Flood forecasting on the Humber river using an Artificial Neural Network approach publication-title: Can Soc Civ Eng Proc – volume: 174 start-page: 1629 year: 2018 end-page: 1641 ident: CR2 article-title: Assessing urban areas vulnerability to pluvial flooding using GIS applications and Bayesian Belief Network model publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.11.066 – volume: 29 start-page: 1 year: 2006 end-page: 10 ident: CR21 article-title: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2005.04.015 – year: 1999 ident: CR39 publication-title: Neural Networks. A Comprehensive Foundation – volume: 7 start-page: 6359 year: 2017 end-page: 6363 ident: CR83 article-title: Floods and mitigation techniques with reference to Kashmir publication-title: Int J Eng Sci Comput – volume: 82 start-page: 827 year: 2016 end-page: 844 ident: CR86 article-title: Comparison of a fuzzy control and the data-driven model for flood forecasting publication-title: Nat Hazards doi: 10.1007/s11069-016-2220-5 – volume: 7 start-page: 3691 year: 2017 end-page: 3706 ident: CR85 article-title: A new approach to flow simulation using hybrid models publication-title: Appl Water Sci doi: 10.1007/s13201-016-0515-z – volume: 29 start-page: 237 year: 2017 end-page: 243 ident: CR6 article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River publication-title: J King Saud Univ - Eng Sci doi: 10.1016/j.jksues.2015.02.001 – volume: 507 start-page: 288 year: 2019 end-page: 294 ident: CR16 article-title: Flood frequency analysis of river Jhelum in Kashmir basin publication-title: Quat Int doi: 10.1016/j.quaint.2018.09.039 – volume: 545 start-page: 424 year: 2017 ident: 12410_CR11 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.11.057 – volume: 507 start-page: 288 year: 2019 ident: 12410_CR16 publication-title: Quat Int doi: 10.1016/j.quaint.2018.09.039 – volume: 25 start-page: 32491 year: 2018 ident: 12410_CR1 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-3203-8 – volume: 242 start-page: 118515 year: 2020 ident: 12410_CR42 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118515 – volume: 41 start-page: 399 year: 1996 ident: 12410_CR62 publication-title: Hydrol Sci J doi: 10.1080/02626669609491511 – volume: 6 start-page: 2529 year: 2013 ident: 12410_CR80 publication-title: Arab J Geosci doi: 10.1007/s12517-011-0517-y – volume: 692 start-page: 556 year: 2019 ident: 12410_CR75 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.07.203 – ident: 12410_CR12 doi: 10.5194/nhess-2016-86 – volume: 27 start-page: 37218 year: 2020 ident: 12410_CR99 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-07270-9 – volume: 508 start-page: 374 year: 2014 ident: 12410_CR23 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.11.011 – volume: 7 start-page: 3451 year: 2007 ident: 12410_CR91 publication-title: J Appl Sci doi: 10.3923/jas.2007.3451.3459 – volume: 375 start-page: 613 year: 2009 ident: 12410_CR26 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.06.005 – volume: 5 start-page: 11 year: 2013 ident: 12410_CR82 publication-title: Eur Transp Res Rev doi: 10.1007/s12544-012-0086-5 – volume: 12 start-page: 411 year: 2018 ident: 12410_CR35 publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2018.1448896 – ident: 12410_CR38 doi: 10.5194/nhess-2019-44 – volume: 6 start-page: 434 year: 2011 ident: 12410_CR70 publication-title: Int J Phys Sci doi: 10.5897/IJPS10.649 – volume: 196 start-page: 216 year: 2018 ident: 12410_CR59 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.06.047 – volume: 15 start-page: 729 year: 2010 ident: 12410_CR3 publication-title: J Hydrol Eng doi: 10.1061/(asce)he.1943-5584.0000245 – volume: 722 start-page: 137875 year: 2020 ident: 12410_CR13 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137875 – volume: 2 start-page: 611 year: 2009 ident: 12410_CR19 publication-title: Can Soc Civ Eng Proc – volume: 162 start-page: 601 year: 2017 ident: 12410_CR74 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.06.047 – volume: 78 start-page: 1 year: 2015 ident: 12410_CR61 publication-title: Nat Hazards doi: 10.1007/s11069-015-1861-0 – ident: 12410_CR18 – volume: 23 start-page: 1350 year: 2010 ident: 12410_CR95 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.04.003 – volume: 13 start-page: 4633 year: 2013 ident: 12410_CR100 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2013.07.007 – volume: 247 start-page: 712 year: 2019 ident: 12410_CR93 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2019.06.102 – volume: 02 start-page: 880 year: 2010 ident: 12410_CR53 publication-title: J Water Resour Prot doi: 10.4236/jwarp.2010.210105 – volume: 25 start-page: 25 year: 2014 ident: 12410_CR79 publication-title: Neural Comput & Applic doi: 10.1007/s00521-013-1443-6 – volume: 4 start-page: 366 year: 2011 ident: 12410_CR64 publication-title: J Environ Sci Technol doi: 10.3923/jest.2011.366.376 – volume: 7 start-page: 3691 year: 2017 ident: 12410_CR85 publication-title: Appl Water Sci doi: 10.1007/s13201-016-0515-z – ident: 12410_CR92 doi: 10.3390/w10091158 – volume: 601–602 start-page: 441 year: 2017 ident: 12410_CR54 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.05.197 – volume: 7 start-page: 6359 year: 2017 ident: 12410_CR83 publication-title: Int J Eng Sci Comput – volume: 1 start-page: 339 year: 1988 ident: 12410_CR94 publication-title: Neural Netw doi: 10.1016/0893-6080(88)90007-X – volume: 41 start-page: 1 year: 2005 ident: 12410_CR67 publication-title: Water Resour Res doi: 10.1029/2004WR003562 – volume: 29 start-page: 1 year: 2006 ident: 12410_CR21 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2005.04.015 – volume: 12 start-page: 123 year: 2008 ident: 12410_CR34 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-12-123-2008 – volume: 28 start-page: 2109 year: 2014 ident: 12410_CR55 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0600-8 – volume: 587 start-page: 125007 year: 2020 ident: 12410_CR10 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125007 – ident: 12410_CR90 doi: 10.1007/s00521-020-05098-w – ident: 12410_CR46 – volume: 705 start-page: 135983 year: 2020 ident: 12410_CR32 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135983 – volume: 46 start-page: 3097 year: 2016 ident: 12410_CR60 publication-title: Clim Dyn doi: 10.1007/s00382-015-2755-2 – volume: 12 start-page: 510 year: 2014 ident: 12410_CR72 publication-title: Int J Eng Trends Technol doi: 10.14445/22315381/IJETT-V12P295 – volume: 541 start-page: 401 year: 2015 ident: 12410_CR68 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.10.047 – volume: 651 start-page: 2087 year: 2019 ident: 12410_CR25 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.10.064 – volume: 245 start-page: 196 year: 2001 ident: 12410_CR96 publication-title: J Hydrol doi: 10.1016/S0022-1694(01)00349-3 – volume: 174 start-page: 1629 year: 2018 ident: 12410_CR2 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.11.066 – volume: 329 start-page: 154 year: 2006 ident: 12410_CR48 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.02.009 – volume-title: Flood vulnerability assessment by applying a fuzzy logic method : a case study from Melbourne year: 2016 ident: 12410_CR78 – ident: 12410_CR45 doi: 10.1007/978-981-15-3125-5_12 – ident: 12410_CR43 – volume: 291 start-page: 52 year: 2004 ident: 12410_CR66 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2003.12.010 – volume: 20 start-page: 520 year: 2018 ident: 12410_CR27 publication-title: J Hydroinf doi: 10.2166/hydro.2017.076 – volume: 52 start-page: 114 year: 2007 ident: 12410_CR22 publication-title: Hydrol Sci J doi: 10.1623/hysj.52.1.114 – volume: 548 start-page: 535 year: 2010 ident: 12410_CR17 publication-title: Int J Climatol doi: 10.1002/joc.1920 – volume: 17 start-page: 3749 year: 2003 ident: 12410_CR58 publication-title: Hydrol Process doi: 10.1002/hyp.1359 – volume: 29 start-page: 237 year: 2017 ident: 12410_CR6 publication-title: J King Saud Univ - Eng Sci doi: 10.1016/j.jksues.2015.02.001 – volume: 9 start-page: 37 year: 2009 ident: 12410_CR77 publication-title: Int J Electr Comput Sci IJECS-IJENS – ident: 12410_CR57 doi: 10.1016/j.jclepro.2019.119468 – ident: 12410_CR89 doi: 10.1111/jfr3.12656 – volume: 10 start-page: 1 year: 2006 ident: 12410_CR7 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-10-1-2006 – volume: 222 start-page: 373 year: 2019 ident: 12410_CR41 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.03.044 – volume: 25 start-page: 19313 year: 2018 ident: 12410_CR56 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-0418-z – volume: 14 start-page: 647 year: 2009 ident: 12410_CR65 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000040 – volume: 43 start-page: 47 year: 1998 ident: 12410_CR28 publication-title: Hydrol Sci J doi: 10.1080/02626669809492102 – volume: 95 start-page: 229 year: 2017 ident: 12410_CR24 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.06.012 – volume-title: Sustainable Transportation Attainment Index: multivariate analysis of indicators with an application to selected states and National Capital Territory (NCT) of India year: 2020 ident: 12410_CR44 – volume: 10 start-page: 1 year: 2018 ident: 12410_CR63 publication-title: Water (Switzerland) doi: 10.3390/w10111536 – volume: 10 start-page: 1 year: 2006 ident: 12410_CR8 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-10-1-2006 – ident: 12410_CR5 doi: 10.1007/s11356-020-11430-7 – volume: 351 start-page: 568 year: 2012 ident: 12410_CR33 publication-title: IAHS-AISH Publ – volume: 119 start-page: 288 year: 2017 ident: 12410_CR69 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.187 – volume: 26 start-page: 22856 year: 2019 ident: 12410_CR37 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-05473-8 – volume: 24 start-page: 101 year: 2016 ident: 12410_CR9 publication-title: Procedia Technol doi: 10.1016/j.protcy.2016.05.015 – volume: 23 start-page: 231 year: 2013 ident: 12410_CR52 publication-title: Neural Comput & Applic doi: 10.1007/s00521-013-1344-8 – volume: 82 start-page: 827 year: 2016 ident: 12410_CR86 publication-title: Nat Hazards doi: 10.1007/s11069-016-2220-5 – volume: 621 start-page: 1124 year: 2017 ident: 12410_CR40 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.10.114 – volume: 3 start-page: 3 year: 2001 ident: 12410_CR36 publication-title: J Hydroinf doi: 10.2166/hydro.2001.0002 – volume: 212 start-page: 109 year: 2019 ident: 12410_CR98 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.12.008 – volume: 7 start-page: 290 year: 2017 ident: 12410_CR76 publication-title: J Appl Res Water Wastewater – volume: 319 start-page: 391 year: 2006 ident: 12410_CR30 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.07.032 – volume: 55 start-page: 439 year: 2003 ident: 12410_CR14 publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00388-6 – volume: 12 start-page: 1 year: 2019 ident: 12410_CR81 publication-title: J Flood Risk Manag doi: 10.1111/jfr3.12492 – volume: 11 start-page: 3629 year: 2007 ident: 12410_CR51 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-11-1869-2007 – volume: 187 start-page: 576 year: 2018 ident: 12410_CR20 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.03.217 – volume: 27 start-page: 15375 year: 2020 ident: 12410_CR4 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-08057-z – volume: 27 start-page: 1521 year: 2020 ident: 12410_CR87 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-06849-6 – volume-title: Neural Networks. A Comprehensive Foundation year: 1999 ident: 12410_CR39 – volume: 12 start-page: 1 year: 2019 ident: 12410_CR15 publication-title: J Flood Risk Manag doi: 10.1111/jfr3.12521 – volume: 167 start-page: 908 year: 2017 ident: 12410_CR31 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.07.205 – volume: 3 start-page: 30 year: 2011 ident: 12410_CR97 publication-title: Environ Eng – volume: 54 start-page: 261 year: 2009 ident: 12410_CR71 publication-title: Hydrol Sci J doi: 10.1623/hysj.54.2.261 – volume: 514 start-page: 85 year: 2014 ident: 12410_CR50 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.03.064 – volume: 9 start-page: 542 year: 2015 ident: 12410_CR73 publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2014.12.001 – volume: 349 start-page: 31 year: 2008 ident: 12410_CR84 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.10.050 – volume: 25 start-page: 80 year: 2001 ident: 12410_CR29 publication-title: Prog Phys Geogr doi: 10.1177/030913330102500104 – ident: 12410_CR47 – volume: 23 start-page: 665 year: 1993 ident: 12410_CR49 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.256541 – ident: 12410_CR88 doi: 10.1007/978-981-15-1632-0_5 |
| SSID | ssj0020927 |
| Score | 2.5411513 |
| Snippet | Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 25265 |
| SubjectTerms | Accuracy Adaptive systems Algorithms Aquatic Pollution Artificial intelligence Artificial neural networks Atmospheric Protection/Air Quality Control/Air Pollution Back propagation Back propagation networks Bayesian analysis Bayesian theory Computer simulation Conjugates Earth and Environmental Science Economic impact Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Flood control Flood forecasting Flood predictions Floods Fuzzy logic Fuzzy systems Inference Mathematical models Mean square errors Neural networks Performance evaluation Performance measurement prediction Prediction models prognosis Regularization Research Article Root-mean-square errors socioeconomics Statistical analysis Stream discharge Stream flow Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELbK9sIF8VdYWpCRuLEW8W-8B4QAbVUhsaoQlXqL7NhGK5Vk6e4e2hMPwSvwYjwJHjvZFFXsKQdPpJG-Gc8kM_MNQq9ijDBlXUgSrCiICEqSqdOOMMtFTEhr5TUMOH-eq5Mz8elcnu-heT8LA22V_Z2YLmrX1vCP_A2TMfRzHfPtd8sfBLZGQXW1X6FhutUK7m2iGLuD9hkwY43Q_ofZ_PTL9hOsmOYlrlMhCOVCdGM0eZiOcgkNuZTEmAc9C_-Gqlv5563aaQpJx_fRvS6XxO8z-A_Qnm8eooPZMLoWDzvfXT1Cv0-HGQE8kHzjNmAwn8wkgRc3KDox8IK7xbfvqz8_f92QAQ7M9Egd5KsJDpvr6yucbtEJNo3Dxpkl3KNJtCX5fNHPFuJMH42jNjhA4zxeXkK9CNR5jM6OZ18_npBuSQOphZBrYhUTtTFKSk-llYVTaipDWQvNqdeWlkXJmLFMO1bWWrgiYqijTUAp2ksT-AEaNW3jnyLMLTOm1CEvsw9Wa6WC0Z4HakSEboxoj0dVdwzmsEjjohq4lwHDKmJYJQwrOkavt-8sM3_HTumjHuaq8-VVNVjeGL3cHkcvhNKKaXy7iTKiBKK4Uu6SkTFbi9_PKso8ySa0VYlzIWMywcdo0tvUoMD_9X22W99DdJeBPaf-zCM0Wl9u_POYQ63ti84x_gI72RrU priority: 102 providerName: ProQuest |
| Title | Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction |
| URI | https://link.springer.com/article/10.1007/s11356-021-12410-1 https://www.ncbi.nlm.nih.gov/pubmed/33453033 https://www.proquest.com/docview/2532438606 https://www.proquest.com/docview/2478595756 https://www.proquest.com/docview/2574340766 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1614-7499 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoe-GC-CsstCsjcWMtxf_e41JtW4GoKsRKyymyExutVLKrZvdATzxEX6EvxpMwdpJNUaESl_jgSTTSN2NPNDPfIPQW7giri0yS4ERGRFCSjEtTEua4gIC0UN7EBudPZ-p0Jj7M5bxtCqu7avcuJZlO6r7ZjXIZC2YpgTsp1hTsoD0Z6bzAimdssv3NysbNoNaxEIRyIdpWmb9_48_r6E6MeSc_mq6d48foURsv4kkD8BP0wFdP0f60b0-DzdY_62fo5rzvA8A9kTdeBhxNpGGLwItbNJw4cn-Xi2_f618_r2_JRJ7LtKQq8XqEw-bq6gdOJ-UI26rEtrSreFYm0SVp9hdd_yBuKKIxaINDLI7Hq8uYE4rqPEez4-mXo1PSDmIghRByTZxiorBWSempdDIrlRrLoAthOPXGUZ1pxqxjpmS6MKLMuFEGcI_pZi9t4Ptot1pW_iXC3DFrtQnNwPrgjFEqWON5oFYAdANEOzzyomUpj8MyLvKeXzlimAOGecIwpwP0bvvOquHouFf6oIM5b_21zpmEwBK0ztQAvdlug6fF9Imt_HIDMkJHMjgt75OREJHBP7ICmReNCW1V4lxICBj4AI06m-oV-Le-r_5P_DV6yKJ9p5rMA7S7vtz4Q4ib1m6IdvRcw9Mc0SHam5x8_TiF9f307PzzMLnQb7LVFf4 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOcAF8SosFBgkOLEjknll9oAQKq229CEOrdRbmCQzaCVIlu6uUHviR_AXuPKj-CXYeWyKKvbWUw7jJI7ssT2x_RngBfoIl-SR5iFTEVfBaD4qbMFFJhUGpLnxlhqcDw7N-Fh9ONEna_C764WhssrOJtaGuqhy-kf-Wmh0_dJivP12-o3T1CjKrnYjNBq12PNn3_HINnuz-x7l-1KIne2jrTFvpwrwXCk955kRKnfOaO1jnemoMGakQ5IrK2NvsziJEiFcJmwhktyqIsKXWvwIyp167YLE516D60qKhAyB3VqWlIho1IyIHSnFY6lU26TTtOrFUlO5b8zRo1JFxL-O8FJ0eykzWzu8ndtwq41U2btGte7Ami_vwsZ23xiHi61lmN2DXx_7DgTWQ4izKjBSzgangk0uAIAyQh0vJp-_zv78-HmBhhA260tdnz4bsrA4Pz9jtY0eMlcWzBVuSla6Jq14sz7pOhdZA07NkBsWqCyfTU8pG0Xs3IfjKxHWBqyXVekfApOZcC6xQVI7rQ2ZtcYEZ70MsVMougHEnTzSvMVHpzEdX9Ie2ZlkmKIM01qGaTyAV8t7pg06yErqzU7MaWspZmmv1wN4vlzGPU6JG1f6aoE0KiEYukSvotEYC-Lp3CDNg0aFlixJqTSGKnIAw06negb-z--j1fw-gxvjo4P9dH_3cO8x3BSk23Ul6Casz08X_glGa_Psab1FGHy66j35F9PETz8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIiEuqPyUhhZYJDiRVe399wEhRBu1FKoeqJSbWdu7KBLEoU6E2hMPwSvwEjwOT8KMf-Kiitx6ymHH1kTzu56Zbwh5DjHCmTxSLGQyYjJoxZLCFoxnQkJCmmtvccD5w7E-OJXvxmq8Rn53szDYVtn5xNpRF2WO38h3uYLQLyzk27uhbYs42Ru9nn1juEEKK63dOo1GRY78-Xe4vlWvDvdA1i84H-1_fHvA2g0DLJdSzVmmucyd00r5WGUqKrROVDC5tCL2NotNZDh3GbcFN7mVRQQMWPhDWEf1ygUB771BbhohEmwnNOP-shclzbrYREoWCynbgZ1mbC8WClt_YwbRFbsj_g2KVzLdK1XaOviNNsidNmulbxo1u0vW_PQe2dzvh-TgsPUS1X3y66SfRqA9nDgtA0VFbTAr6OQSGChFBPJi8vlr9efHz0s0iLZZ_9S96tWQhsXFxTmt_fWQumlBXeFm6LFr0pI155NuipE2QNUUuKEBW_Tp7AwrU8jOA3J6LcLaJOvTcuq3CBUZd87YIHC01obMWq2Ds16E2EkQ3YDEnTzSvMVKx5UdX9Ie5RllmIIM01qGaTwgL5fPzBqkkJXUO52Y09ZrVGmv4wPybHkM9o5FHDf15QJopEFIOqNW0SjIC-GmroHmYaNCS5aEkArSFjEgw06negb-z--j1fw-JbfAGtP3h8dH2-Q2R9Wum0J3yPr8bOEfQ-I2z57UFkLJp-s2yb8DDFOu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+artificial+intelligence+paradigms%E2%80%94artificial+neural+networks%2C+fuzzy+logic%2C+and+adaptive+neuro-fuzzy+inference+system+for+flood+prediction&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Tabbussum%2C+Ruhhee&rft.au=Dar%2C+Abdul+Qayoom&rft.date=2021-05-01&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=28&rft.issue=20&rft.spage=25265&rft.epage=25282&rft_id=info:doi/10.1007%2Fs11356-021-12410-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_021_12410_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |