Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction

Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 28; no. 20; pp. 25265 - 25282
Main Authors Tabbussum, Ruhhee, Dar, Abdul Qayoom
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-1344
1614-7499
1614-7499
DOI10.1007/s11356-021-12410-1

Cover

Abstract Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation ( R 2 ) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis.
AbstractList Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation ( R 2 ) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis.
Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R ) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis.
Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R²) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis.
Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R2) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis.
Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R2) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis.Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in the near future. Artificial intelligence (AI) models have contributed significantly over the last few decades by providing improved accuracy and economical solutions to simulate physical flood processes. This study explores the potential of the AI computing paradigm to model the stream flow. Artificial neural network (ANN), fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) algorithms are used to develop nine different flood prediction models using all the available training algorithms. The performance of the developed models is evaluated using multiple statistical performance evaluators. The predictability and robustness of the models are tested through the simulation of a major flood event in the study area. A total of 12 inputs were used in the development of the models. Five training algorithms were used to develop the ANN models (Bayesian regularization, Levenberg Marquardt, conjugate gradient, scaled conjugate gradient, and resilient backpropagation), two fuzzy inference systems to develop fuzzy models (Mamdani and Sugeno), and two training algorithms to develop the ANFIS models (hybrid and backpropagation). The ANFIS model developed using hybrid training algorithm gave the best performance metrics with Nash-Sutcliffe Model Efficiency (NSE) of 0.968, coefficient of correlation (R2) of 97.066%, mean square error (MSE) of 0.00034, root mean square error (RMSE) of 0.018, mean absolute error (MAE) of 0.0073, and combined accuracy (CA) of 0.018, implying the potential of using the developed models for flood forecasting. The significance of this research lies in the fact that a combination of multiple inputs and AI algorithms has been used to develop the flood models. In summary, this research revealed the potential of AI algorithm-based models in predicting floods and also developed some useful techniques that can be used by the Flood Control Departments of various states/regions/countries for flood prognosis.
Author Tabbussum, Ruhhee
Dar, Abdul Qayoom
Author_xml – sequence: 1
  givenname: Ruhhee
  orcidid: 0000-0002-9926-6276
  surname: Tabbussum
  fullname: Tabbussum, Ruhhee
  email: ruhhee_10phd17@nitsri.ac.in
  organization: Department of Civil Engineering, National Institute of Technology Srinagar
– sequence: 2
  givenname: Abdul Qayoom
  orcidid: 0000-0001-7663-2168
  surname: Dar
  fullname: Dar, Abdul Qayoom
  organization: Department of Civil Engineering, National Institute of Technology Srinagar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33453033$$D View this record in MEDLINE/PubMed
BookMark eNqFkktu1jAUhS1URP8WNsAAWWLCoAE_42SIKl5SJRjAOHKc618uiR1sp-jviEWwBTbGSsijPNRBGd2Bv3N8ru45QUc-eEDoMSXPKSHqRaKUy7IgjBaUCUoKeg_taElFoURdH6EdqYUoKBfiGJ2kdEkIIzVTD9Ax50JywvkO_fgA0YY4aG8Aw5XuJ51d8DhYrGN21hmne-x8hr53e1ioUUfduf2Qfn77_g_jYYrryF9D_JzOsJ2urw-4D3tnzrD2HdadHrO7ghUNxfbuvIW4-qZDyjDgOQ22fQgdHiN0zixxHqL7VvcJHt3MU_Tp9auP52-Li_dv3p2_vCiMEDIXbcmE0bqUEqhsJenKspZWGVFxClVLFVGM6ZZVHVOmEh3hVVkJO6sYBaktP0XPNt8xhi8TpNwMLpl5de0hTKlhUgkuiCrL_6NCVbKWSi7o01voZZiinxeZDTkTcwqyUE9uqKkdoGvG6AYdD83vW80A2wATQ0oR7B-EkmYpRLMVopkL0ayFaOgsqm6JjMvriXPUrr9byjdpmv_xe4h_Y9-h-gVkLc0M
CitedBy_id crossref_primary_10_1016_j_compag_2023_107836
crossref_primary_10_1016_j_chemolab_2023_104930
crossref_primary_10_3390_su15021360
crossref_primary_10_1016_j_asr_2022_06_008
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1155_2021_1994732
crossref_primary_10_1109_TFUZZ_2024_3359652
crossref_primary_10_3390_math11040875
crossref_primary_10_1109_ACCESS_2025_3525757
crossref_primary_10_1016_j_asoc_2024_112334
crossref_primary_10_1016_j_nhres_2023_10_001
crossref_primary_10_1016_j_arabjc_2023_105526
crossref_primary_10_1016_j_grets_2023_100039
crossref_primary_10_1016_j_jhydrol_2022_128608
crossref_primary_10_1007_s11356_023_27844_y
crossref_primary_10_1088_1755_1315_1086_1_012036
crossref_primary_10_1016_j_aej_2024_07_083
crossref_primary_10_3390_rs15143471
crossref_primary_10_1007_s11269_021_02816_4
crossref_primary_10_1155_2024_2894031
crossref_primary_10_1007_s40808_024_02081_5
crossref_primary_10_1007_s11069_021_04694_w
crossref_primary_10_1038_s41598_024_83695_8
crossref_primary_10_3389_feart_2024_1378956
crossref_primary_10_1016_j_ultsonch_2024_106762
crossref_primary_10_1016_j_geogeo_2022_100153
crossref_primary_10_1007_s11356_021_16430_9
crossref_primary_10_1080_17455030_2022_2123572
crossref_primary_10_1007_s12145_024_01223_8
crossref_primary_10_1016_j_scitotenv_2024_175700
crossref_primary_10_1016_j_grets_2023_100021
crossref_primary_10_1007_s40899_024_01069_4
crossref_primary_10_1016_j_susoc_2023_11_002
crossref_primary_10_1080_02626667_2023_2246956
crossref_primary_10_2298_FUEE2204603D
crossref_primary_10_1007_s00382_022_06206_3
crossref_primary_10_3390_rs13204147
crossref_primary_10_2166_wcc_2022_257
crossref_primary_10_3233_JIFS_233265
crossref_primary_10_3390_su14084670
crossref_primary_10_1007_s10668_025_06092_9
crossref_primary_10_1142_S0219649224500941
crossref_primary_10_1007_s00521_024_09909_2
crossref_primary_10_3390_s23229156
crossref_primary_10_1088_2631_8695_ad9cec
crossref_primary_10_1155_2022_3684727
crossref_primary_10_3390_su15086844
crossref_primary_10_3390_w13111547
crossref_primary_10_1007_s11356_022_20213_1
crossref_primary_10_3390_min14010040
crossref_primary_10_1016_j_ijdrr_2024_105110
crossref_primary_10_1007_s42461_024_00933_3
crossref_primary_10_1109_ACCESS_2024_3493753
crossref_primary_10_1016_j_matpr_2021_11_561
crossref_primary_10_1080_10106049_2022_2093990
crossref_primary_10_1007_s11356_022_20385_w
crossref_primary_10_1155_2022_3498060
crossref_primary_10_1007_s00500_024_09859_w
crossref_primary_10_1016_j_psep_2023_11_073
crossref_primary_10_3390_min14080737
crossref_primary_10_1007_s11356_024_35871_6
crossref_primary_10_3390_math12203296
crossref_primary_10_3390_w14050774
Cites_doi 10.1016/S0022-1694(01)00349-3
10.5194/hess-12-123-2008
10.1016/j.scitotenv.2019.135983
10.1007/s11269-014-0600-8
10.1080/19942060.2018.1448896
10.1016/j.scitotenv.2018.10.064
10.1109/21.256541
10.3923/jas.2007.3451.3459
10.1016/j.jclepro.2018.03.217
10.1177/030913330102500104
10.1016/j.jenvman.2019.06.102
10.1016/j.jhydrol.2015.10.047
10.1016/j.jher.2014.12.001
10.1007/s11356-019-05473-8
10.1002/hyp.1359
10.1016/j.jhydrol.2016.11.057
10.1061/(asce)he.1943-5584.0000245
10.1007/s11356-020-08057-z
10.1016/j.jhydrol.2014.03.064
10.5194/hess-10-1-2006
10.1080/02626669809492102
10.1016/j.jclepro.2017.07.205
10.1016/j.jhydrol.2020.125007
10.1016/j.scitotenv.2019.07.203
10.1016/j.jhydrol.2006.02.009
10.4236/jwarp.2010.210105
10.1007/s11356-019-07270-9
10.1016/j.protcy.2016.05.015
10.1016/j.scitotenv.2017.05.197
10.1007/s12544-012-0086-5
10.1016/j.jhydrol.2013.11.011
10.1007/s11356-017-0418-z
10.1002/joc.1920
10.1007/s11069-015-1861-0
10.1016/j.envsoft.2017.06.012
10.1111/jfr3.12521
10.1016/j.jhydrol.2007.10.050
10.14445/22315381/IJETT-V12P295
10.1016/j.jclepro.2017.06.047
10.1016/j.jclepro.2018.06.047
10.1111/jfr3.12492
10.1016/j.jclepro.2018.12.008
10.1623/hysj.52.1.114
10.5194/hess-11-1869-2007
10.1007/s00521-013-1344-8
10.1016/j.engappai.2010.04.003
10.1061/(ASCE)HE.1943-5584.0000040
10.3390/w10111536
10.1016/j.jhydrol.2003.12.010
10.2166/hydro.2017.076
10.1080/02626669609491511
10.1029/2004WR003562
10.1007/s11356-018-3203-8
10.1623/hysj.54.2.261
10.1016/j.jclepro.2019.118515
10.1007/s11356-019-06849-6
10.1016/j.procs.2017.11.187
10.5897/IJPS10.649
10.1016/j.scitotenv.2017.10.114
10.1007/s00521-013-1443-6
10.1007/s00382-015-2755-2
10.1016/S0925-2312(03)00388-6
10.1016/j.asoc.2013.07.007
10.1016/j.jhydrol.2005.07.032
10.3923/jest.2011.366.376
10.2166/hydro.2001.0002
10.1007/s12517-011-0517-y
10.1016/0893-6080(88)90007-X
10.1016/j.jclepro.2019.03.044
10.1016/j.jhydrol.2009.06.005
10.1016/j.scitotenv.2020.137875
10.1016/j.jclepro.2017.11.066
10.1016/j.advwatres.2005.04.015
10.1007/s11069-016-2220-5
10.1007/s13201-016-0515-z
10.1016/j.jksues.2015.02.001
10.1016/j.quaint.2018.09.039
10.5194/nhess-2016-86
10.5194/nhess-2019-44
10.3390/w10091158
10.1007/s00521-020-05098-w
10.1007/978-981-15-3125-5_12
10.1016/j.jclepro.2019.119468
10.1111/jfr3.12656
10.1007/s11356-020-11430-7
10.1007/978-981-15-1632-0_5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-021-12410-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users]
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 25282
ExternalDocumentID 33453033
10_1007_s11356_021_12410_1
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Human Resource Development
  funderid: http://dx.doi.org/10.13039/501100004541
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c445t-b624caa655e15b50d6695f7c4831e8b170722ab28d27c84d038684f62421e5af3
IEDL.DBID U2A
ISSN 0944-1344
1614-7499
IngestDate Fri Sep 05 15:09:04 EDT 2025
Thu Oct 02 10:50:00 EDT 2025
Tue Oct 07 06:16:31 EDT 2025
Wed Feb 19 02:29:41 EST 2025
Thu Apr 24 22:56:22 EDT 2025
Wed Oct 01 02:53:31 EDT 2025
Fri Feb 21 02:49:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Gaussian membership function
Takagi-Sugeno fuzzy inference system
Levenberg Marquardt neural network
Flood forecasting
Subtractive clustering
Adaptive neuro-fuzzy inference system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-b624caa655e15b50d6695f7c4831e8b170722ab28d27c84d038684f62421e5af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7663-2168
0000-0002-9926-6276
PMID 33453033
PQID 2532438606
PQPubID 54208
PageCount 18
ParticipantIDs proquest_miscellaneous_2574340766
proquest_miscellaneous_2478595756
proquest_journals_2532438606
pubmed_primary_33453033
crossref_primary_10_1007_s11356_021_12410_1
crossref_citationtrail_10_1007_s11356_021_12410_1
springer_journals_10_1007_s11356_021_12410_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Nayak, Sudheer, Rangan, Ramasastri (CR66) 2004; 291
Lavers, Charlesworth (CR56) 2018; 25
Patel, Parekh (CR72) 2014; 12
Mekanik, Imteaz, Talei (CR60) 2016; 46
Chang, Chiang, Tsai (CR23) 2014; 508
CR38
Gnanaprakkasam, Ganapathy (CR37) 2019; 26
Özger (CR71) 2009; 54
Arabameri, Saha, Chen, Roy, Pradhan, Bui (CR10) 2020; 587
Zounemat-Kermani, Kisi, Rajaee (CR100) 2013; 13
Nayak, Sudheer, Rangan, Ramasastri (CR67) 2005; 41
Nguyen, Thorstensen, Sorooshian, Hsu, AghaKouchak, Sanders, Koren, Cui, Smith (CR68) 2015; 541
Rashetnias (CR78) 2016
Mpallas, Tzimopoulos, Evangelides (CR64) 2011; 4
Meraj, Romshoo, Yousuf, Altaf, Altaf (CR61) 2015; 78
CR47
CR46
CR45
Chang, Chiang, Chang (CR22) 2007; 52
CR43
Wu, Chau (CR95) 2010; 23
Othman, Naseri (CR70) 2011; 6
Karl, Lohani (CR53) 2010; 02
Firat (CR34) 2008; 12
Rao, Brevern, El-Tayeb, Vengkatesh (CR77) 2009; 9
Shu, Ouarda (CR84) 2008; 349
Kamp, Savenije (CR51) 2007; 11
CR57
Mosavi, Ozturk, Chau (CR63) 2018; 10
Surampudi, Yarrakula (CR87) 2020; 27
Rezaeian-Zadeh, Tabari, Abghari (CR80) 2013; 6
Yadav, Naresh, Sharma (CR97) 2011; 3
Ballesteros-Cánovas, Koul, Bashir, del Pozo, Allen, Guillet, Rashid, Alamgir, Shah, Bhat, Alam, Stoffel (CR13) 2020; 722
Solgi, Zarei, Nourani, Bahmani (CR85) 2017; 7
Minns, Hall (CR62) 1996; 41
Qasem, Ebtehaj, Madavar (CR76) 2017; 7
Xiong, Shamseldin, O’Connor (CR96) 2001; 245
Saleh, Rather, Jabbar (CR83) 2017; 7
Chang, Chang (CR21) 2006; 29
Dawson, Abrahart, Shamseldin, Wilby (CR30) 2006; 319
Kourgialas, Karatzas (CR54) 2017; 601–602
Illahi, Mir (CR44) 2020
Ding, Hua, Jiang, Bao, Yu (CR31) 2017; 167
Gautam, Holz (CR36) 2001; 3
Noymanee, Nikitin, Kalyuzhnaya (CR69) 2017; 119
Pourghasemi, Gayen, Panahi, Rezaie, Blaschke (CR75) 2019; 692
Ashrafi, Chua, Quek, Qin (CR11) 2017; 545
Anusree, Varghese (CR9) 2016; 24
Dodangeh, Choubin, Eigdir, Nabipour, Panahi, Shamshirband, Mosavi (CR32) 2020; 705
Jacquin, Shamseldin (CR48) 2006; 329
Ahmad, Afzal (CR4) 2020; 27
Sun, Tang, Sun, Cui (CR86) 2016; 82
Zhong, Jiang, Li, Lu, Wang, Zhu (CR99) 2020; 27
Alvisi, Mascellani, Franchini, Bárdossy (CR8) 2006; 10
Hua, Yang, Qi, Jiang, Xie, Gu, Li, Zhang, Krebs (CR42) 2020; 242
Mahabir, Hicks, Fayek (CR58) 2003; 17
Fotovatikhah, Herrera, Shamshirband, Chau, Faizollahzadeh Ardabili, Piran (CR35) 2018; 12
Duncan, Chen, Keedwell (CR33) 2012; 351
Zeleňáková, Fijko, Labant, Weiss, Markovič, Weiss (CR98) 2019; 212
Cai, Lye, Khan (CR19) 2009; 2
Adamowski, Karapataki (CR3) 2010; 15
Bazartseren, Hildebrandt, Holz (CR14) 2003; 55
Mahmoud, Gan (CR59) 2018; 196
Bhat, Alam, Ahmad, Kotlia, Farooq, Taloor, Ahmad (CR16) 2019; 507
CR5
Dawson, Wilby (CR29) 2001; 25
Mukerji, Chatterjee, Singh Raghuwanshi (CR65) 2009; 14
CR89
CR88
Alvisi, Mascellani, Franchini (CR7) 2006; 10
Rossi, Gastaldi, Gecchele (CR82) 2013; 5
Wang, Hong, Chen, Li, Panahi, Khosravi, Shirzadi, Shahabi, Panahi, Costache (CR93) 2019; 247
Cloke, Pappenberger (CR26) 2009; 375
Hu, Zhang, Li, Yang, Tanaka (CR41) 2019; 222
Roodsari, Chandler, Kelleher, Kroll (CR81) 2019; 12
Kant, Suman, Giri, Tiwari, Chatterjee, Nayak, Kumar (CR52) 2013; 23
Dawson, Wilby (CR28) 1998; 43
Rezaeianzadeh, Tabari, Arabi Yazdi, Isik, Kalin (CR79) 2014; 25
Bhat, Ahmad, Alam, Farooq, Ahmad (CR15) 2019; 12
Chapi, Singh, Shirzadi, Shahabi, Bui, Pham, Khosravi (CR24) 2017; 95
Choubin, Moradi, Golshan, Adamowski, Sajedi-Hosseini, Mosavi (CR25) 2019; 651
Chan, Chuah, Ziegler, Dąbrowski, Varis (CR20) 2018; 187
CR18
CR12
CR92
Haykin (CR39) 1999
CR90
Tareghian, Kashefipour (CR91) 2007; 7
Hong, Panahi, Shirzadi, Ma, Liu, Zhu, Chen, Kougias, Kazakis (CR40) 2017; 621
Werbos (CR94) 1988; 1
Jayawardena, Perera, Zhu, Amarasekara, Vereivalu (CR50) 2014; 514
Perera, Lahat (CR73) 2015; 9
Bhutiyani, Kale, Pawar (CR17) 2010; 548
Jang (CR49) 1993; 23
Ahmed, Shah (CR6) 2017; 29
Petit-Boix, Sevigné-Itoiz, Rojas-Gutierrez, Barbassa, Josa, Rieradevall, Gabarrell (CR74) 2017; 162
Latt, Wittenberg (CR55) 2014; 28
Abebe, Kabir, Tesfamariam (CR2) 2018; 174
Abbas, Amjath-Babu, Kächele, Usman, Amjed Iqbal, Arshad, Adnan Shahid, Müller (CR1) 2018; 25
Dariane, Azimi (CR27) 2018; 20
SF Saleh (12410_CR83) 2017; 7
S Rao (12410_CR77) 2009; 9
NN Kourgialas (12410_CR54) 2017; 601–602
M Rezaeian-Zadeh (12410_CR80) 2013; 6
K Chapi (12410_CR24) 2017; 95
FJ Chang (12410_CR22) 2007; 52
A Mosavi (12410_CR63) 2018; 10
M Zhong (12410_CR99) 2020; 27
12410_CR18
12410_CR12
S Surampudi (12410_CR87) 2020; 27
B Choubin (12410_CR25) 2019; 651
A Mukerji (12410_CR65) 2009; 14
A Abbas (12410_CR1) 2018; 25
12410_CR92
K Anusree (12410_CR9) 2016; 24
PC Nayak (12410_CR66) 2004; 291
12410_CR90
D Patel (12410_CR72) 2014; 12
ZZ Latt (12410_CR55) 2014; 28
H Cai (12410_CR19) 2009; 2
PJ Werbos (12410_CR94) 1988; 1
Y Wang (12410_CR93) 2019; 247
12410_CR5
A Petit-Boix (12410_CR74) 2017; 162
M Özger (12410_CR71) 2009; 54
12410_CR89
12410_CR88
F Chang (12410_CR23) 2014; 508
CW Dawson (12410_CR28) 1998; 43
SH Mahmoud (12410_CR59) 2018; 196
A Kant (12410_CR52) 2013; 23
MR Bhutiyani (12410_CR17) 2010; 548
AP Jacquin (12410_CR48) 2006; 329
AW Jayawardena (12410_CR50) 2014; 514
CW Dawson (12410_CR29) 2001; 25
HL Cloke (12410_CR26) 2009; 375
BK Roodsari (12410_CR81) 2019; 12
S Rashetnias (12410_CR78) 2016
A Arabameri (12410_CR10) 2020; 587
AAM Ahmed (12410_CR6) 2017; 29
C Mahabir (12410_CR58) 2003; 17
S Gnanaprakkasam (12410_CR37) 2019; 26
Y Sun (12410_CR86) 2016; 82
M Ashrafi (12410_CR11) 2017; 545
X Ding (12410_CR31) 2017; 167
F Mekanik (12410_CR60) 2016; 46
Y Abebe (12410_CR2) 2018; 174
P Hua (12410_CR42) 2020; 242
L Mpallas (12410_CR64) 2011; 4
B Bazartseren (12410_CR14) 2003; 55
HR Pourghasemi (12410_CR75) 2019; 692
T Lavers (12410_CR56) 2018; 25
R Rossi (12410_CR82) 2013; 5
JA Ballesteros-Cánovas (12410_CR13) 2020; 722
E Dodangeh (12410_CR32) 2020; 705
M Rezaeianzadeh (12410_CR79) 2014; 25
D Ahmad (12410_CR4) 2020; 27
F Fotovatikhah (12410_CR35) 2018; 12
U Illahi (12410_CR44) 2020
M Hu (12410_CR41) 2019; 222
FJ Chang (12410_CR21) 2006; 29
12410_CR57
PC Nayak (12410_CR67) 2005; 41
J Noymanee (12410_CR69) 2017; 119
DK Gautam (12410_CR36) 2001; 3
S Alvisi (12410_CR7) 2006; 10
EDP Perera (12410_CR73) 2015; 9
M Zeleňáková (12410_CR98) 2019; 212
C Shu (12410_CR84) 2008; 349
M Zounemat-Kermani (12410_CR100) 2013; 13
H Hong (12410_CR40) 2017; 621
MS Bhat (12410_CR15) 2019; 12
12410_CR45
12410_CR47
12410_CR46
FKS Chan (12410_CR20) 2018; 187
12410_CR43
M Firat (12410_CR34) 2008; 12
JR Jang (12410_CR49) 1993; 23
MS Bhat (12410_CR16) 2019; 507
F Othman (12410_CR70) 2011; 6
AP Duncan (12410_CR33) 2012; 351
P Nguyen (12410_CR68) 2015; 541
G Meraj (12410_CR61) 2015; 78
12410_CR38
RG Kamp (12410_CR51) 2007; 11
S Haykin (12410_CR39) 1999
A Solgi (12410_CR85) 2017; 7
CL Wu (12410_CR95) 2010; 23
S Alvisi (12410_CR8) 2006; 10
SN Qasem (12410_CR76) 2017; 7
J Adamowski (12410_CR3) 2010; 15
L Xiong (12410_CR96) 2001; 245
CW Dawson (12410_CR30) 2006; 319
AK Karl (12410_CR53) 2010; 02
AW Minns (12410_CR62) 1996; 41
R Tareghian (12410_CR91) 2007; 7
D Yadav (12410_CR97) 2011; 3
AB Dariane (12410_CR27) 2018; 20
References_xml – ident: CR45
– volume: 245
  start-page: 196
  year: 2001
  end-page: 217
  ident: CR96
  article-title: A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(01)00349-3
– volume: 12
  start-page: 123
  year: 2008
  end-page: 139
  ident: CR34
  article-title: Comparison of Artificial Intelligence Techniques for river flow forecasting
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-12-123-2008
– volume: 705
  start-page: 135983
  year: 2020
  ident: CR32
  article-title: Integrated machine learning methods with resampling algorithms for flood susceptibility prediction
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135983
– volume: 28
  start-page: 2109
  year: 2014
  end-page: 2128
  ident: CR55
  article-title: Improving flood forecasting in a developing country: a comparative study of stepwise Multiple Linear Regression and Artificial Neural Network
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0600-8
– volume: 12
  start-page: 411
  year: 2018
  end-page: 437
  ident: CR35
  article-title: Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1448896
– volume: 651
  start-page: 2087
  year: 2019
  end-page: 2096
  ident: CR25
  article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: CR49
  article-title: ANFIS : Adaptive-Network-Based Fuzzy Inference System
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 7
  start-page: 3451
  year: 2007
  end-page: 3459
  ident: CR91
  article-title: Applications of fuzzy systems and artificial neural networks for flood forecasting
  publication-title: J Appl Sci
  doi: 10.3923/jas.2007.3451.3459
– volume: 187
  start-page: 576
  year: 2018
  end-page: 589
  ident: CR20
  article-title: Towards resilient flood risk management for Asian coastal cities: lessons learned from Hong Kong and Singapore
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.03.217
– volume: 25
  start-page: 80
  year: 2001
  end-page: 108
  ident: CR29
  article-title: Hydrological modelling using artificial neural networks
  publication-title: Prog Phys Geogr
  doi: 10.1177/030913330102500104
– volume: 247
  start-page: 712
  year: 2019
  end-page: 729
  ident: CR93
  article-title: Flood susceptibility mapping in Dingnan county (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2019.06.102
– volume: 541
  start-page: 401
  year: 2015
  end-page: 420
  ident: CR68
  article-title: A high resolution coupled hydrologic – hydraulic model ( HiResFlood-UCI ) for flash flood modeling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.10.047
– ident: CR92
– ident: CR88
– volume: 9
  start-page: 542
  year: 2015
  end-page: 553
  ident: CR73
  article-title: Fuzzy logic based flood forecasting model for the Kelantan River basin, Malaysia
  publication-title: J Hydro-Environ Res
  doi: 10.1016/j.jher.2014.12.001
– volume: 9
  start-page: 37
  year: 2009
  end-page: 43
  ident: CR77
  article-title: GUI based mamdani fuzzy inference system modeling to predict surface roughness in laser machining
  publication-title: Int J Electr Comput Sci IJECS-IJENS
– volume: 26
  start-page: 22856
  year: 2019
  end-page: 22877
  ident: CR37
  article-title: Evaluation of regional flood quantiles at ungauged sites by employing nonlinearity-based clustering approaches
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05473-8
– ident: CR57
– volume: 17
  start-page: 3749
  year: 2003
  end-page: 3762
  ident: CR58
  article-title: Application of fuzzy logic to forecast seasonal runoff
  publication-title: Hydrol Process
  doi: 10.1002/hyp.1359
– ident: CR5
– volume: 545
  start-page: 424
  year: 2017
  end-page: 435
  ident: CR11
  article-title: A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.11.057
– volume: 15
  start-page: 729
  year: 2010
  end-page: 743
  ident: CR3
  article-title: Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN Learning algorithms
  publication-title: J Hydrol Eng
  doi: 10.1061/(asce)he.1943-5584.0000245
– volume: 27
  start-page: 15375
  year: 2020
  end-page: 15387
  ident: CR4
  article-title: Flood hazards and factors influencing household flood perception and mitigation strategies in Pakistan
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-08057-z
– volume: 514
  start-page: 85
  year: 2014
  end-page: 101
  ident: CR50
  article-title: A comparative study of fuzzy logic systems approach for river discharge prediction
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.03.064
– volume: 10
  start-page: 1
  year: 2006
  end-page: 17
  ident: CR7
  article-title: Water level forecasting through fuzzy logic and artificial neural network approaches
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-10-1-2006
– volume: 43
  start-page: 47
  year: 1998
  end-page: 66
  ident: CR28
  article-title: An Artificial Neural Network approach to rainfall-runoff modeling
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669809492102
– ident: CR18
– ident: CR47
– ident: CR89
– volume: 167
  start-page: 908
  year: 2017
  end-page: 918
  ident: CR31
  article-title: Two-stage interval stochastic chance-constrained robust programming and its application in flood management
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.07.205
– year: 2020
  ident: CR44
  publication-title: Sustainable Transportation Attainment Index: multivariate analysis of indicators with an application to selected states and National Capital Territory (NCT) of India
– volume: 587
  start-page: 125007
  year: 2020
  ident: CR10
  article-title: Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125007
– volume: 692
  start-page: 556
  year: 2019
  end-page: 571
  ident: CR75
  article-title: Multi-hazard probability assessment and mapping in Iran
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.07.203
– volume: 329
  start-page: 154
  year: 2006
  end-page: 173
  ident: CR48
  article-title: Development of rainfall-runoff models using takagi-sugeno fuzzy inference systems
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.02.009
– volume: 02
  start-page: 880
  year: 2010
  end-page: 887
  ident: CR53
  article-title: Development of Flood forecasting system using statistical and ANN techniques in the downstream catchment of Mahanadi Basin, India
  publication-title: J Water Resour Prot
  doi: 10.4236/jwarp.2010.210105
– volume: 27
  start-page: 37218
  year: 2020
  end-page: 37228
  ident: CR99
  article-title: Multiple environmental factors analysis of flash flood risk in Upper Hanjiang River, southern China
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-07270-9
– ident: CR38
– volume: 24
  start-page: 101
  year: 2016
  end-page: 108
  ident: CR9
  article-title: Streamflow Prediction of Karuvannur River Basin Using ANFIS, ANN and MNLR Models
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2016.05.015
– volume: 601–602
  start-page: 441
  year: 2017
  end-page: 452
  ident: CR54
  article-title: A national scale flood hazard mapping methodology: the case of Greece – Protection and adaptation policy approaches
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.05.197
– volume: 5
  start-page: 11
  year: 2013
  end-page: 26
  ident: CR82
  article-title: Comparison of fuzzy-based and AHP methods in sustainability evaluation: A case of traffic pollution-reducing policies
  publication-title: Eur Transp Res Rev
  doi: 10.1007/s12544-012-0086-5
– volume: 508
  start-page: 374
  year: 2014
  end-page: 384
  ident: CR23
  article-title: Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.11.011
– volume: 25
  start-page: 19313
  year: 2018
  end-page: 19322
  ident: CR56
  article-title: Opportunity mapping of natural flood management measures: a case study from the headwaters of the Warwickshire-Avon
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-0418-z
– volume: 548
  start-page: 535
  year: 2010
  end-page: 548
  ident: CR17
  article-title: Climate change and the precipitation variations in the northwestern Himalaya:1866 – 2006
  publication-title: Int J Climatol
  doi: 10.1002/joc.1920
– volume: 78
  start-page: 1
  year: 2015
  end-page: 5
  ident: CR61
  article-title: Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1861-0
– year: 2016
  ident: CR78
  publication-title: Flood vulnerability assessment by applying a fuzzy logic method : a case study from Melbourne
– volume: 95
  start-page: 229
  year: 2017
  end-page: 245
  ident: CR24
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2017.06.012
– volume: 12
  start-page: 1
  year: 2019
  end-page: 13
  ident: CR15
  article-title: Flood hazard assessment of the Kashmir Valley using historical hydrology
  publication-title: J Flood Risk Manag
  doi: 10.1111/jfr3.12521
– volume: 349
  start-page: 31
  year: 2008
  end-page: 43
  ident: CR84
  article-title: Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.10.050
– volume: 12
  start-page: 510
  year: 2014
  end-page: 514
  ident: CR72
  article-title: Flood Forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS)
  publication-title: Int J Eng Trends Technol
  doi: 10.14445/22315381/IJETT-V12P295
– volume: 162
  start-page: 601
  year: 2017
  end-page: 608
  ident: CR74
  article-title: Floods and consequential life cycle assessment: Integrating flood damage into the environmental assessment of stormwater Best Management Practices
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.06.047
– volume: 196
  start-page: 216
  year: 2018
  end-page: 229
  ident: CR59
  article-title: Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.06.047
– volume: 12
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR81
  article-title: A comparison of SAC-SMA and Adaptive Neuro-fuzzy Inference System for real-time flood forecasting in small urban catchments
  publication-title: J Flood Risk Manag
  doi: 10.1111/jfr3.12492
– volume: 212
  start-page: 109
  year: 2019
  end-page: 118
  ident: CR98
  article-title: Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.12.008
– volume: 52
  start-page: 114
  year: 2007
  end-page: 130
  ident: CR22
  article-title: Multi-step-ahead neural networks for flood forecasting
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.52.1.114
– ident: CR12
– volume: 10
  start-page: 1
  year: 2006
  end-page: 17
  ident: CR8
  article-title: Water level forecasting through Fuzzy Logic and Artificial Neural Network approaches
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-10-1-2006
– volume: 11
  start-page: 3629
  year: 2007
  end-page: 3653
  ident: CR51
  article-title: Hydrological model coupling with ANNs
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-11-1869-2007
– volume: 23
  start-page: 231
  year: 2013
  end-page: 246
  ident: CR52
  article-title: Comparison of multi-objective evolutionary neural network, adaptive neuro-fuzzy inference system and bootstrap-based neural network for flood forecasting
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-013-1344-8
– volume: 23
  start-page: 1350
  year: 2010
  end-page: 1367
  ident: CR95
  article-title: Data-driven models for monthly streamflow time series prediction
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.04.003
– volume: 14
  start-page: 647
  year: 2009
  end-page: 652
  ident: CR65
  article-title: Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000040
– ident: CR46
– volume: 10
  start-page: 1
  year: 2018
  end-page: 40
  ident: CR63
  article-title: Flood prediction using machine learning models: literature review
  publication-title: Water (Switzerland)
  doi: 10.3390/w10111536
– volume: 291
  start-page: 52
  year: 2004
  end-page: 66
  ident: CR66
  article-title: A neuro-fuzzy computing technique for modeling hydrological time series
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2003.12.010
– volume: 20
  start-page: 520
  year: 2018
  end-page: 532
  ident: CR27
  article-title: Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input variable selection
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2017.076
– volume: 41
  start-page: 399
  year: 1996
  end-page: 417
  ident: CR62
  article-title: Artificial neural networks as rainfall-runoff models
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669609491511
– volume: 41
  start-page: 1
  year: 2005
  end-page: 16
  ident: CR67
  article-title: Short-term flood forecasting with a neuro-fuzzy model
  publication-title: Water Resour Res
  doi: 10.1029/2004WR003562
– volume: 25
  start-page: 32491
  year: 2018
  end-page: 32505
  ident: CR1
  article-title: Sustainable survival under climatic extremes: linking flood risk mitigation and coping with flood damages in rural Pakistan
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-3203-8
– volume: 54
  start-page: 261
  year: 2009
  end-page: 273
  ident: CR71
  article-title: Comparison of fuzzy inference systems for streamflow prediction
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.54.2.261
– volume: 242
  start-page: 118515
  year: 2020
  ident: CR42
  article-title: Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118515
– volume: 27
  start-page: 1521
  year: 2020
  end-page: 1532
  ident: CR87
  article-title: Mapping and assessing spatial extent of floods from multitemporal synthetic aperture radar images: a case study on Brahmaputra River in Assam State, India
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-06849-6
– volume: 119
  start-page: 288
  year: 2017
  end-page: 297
  ident: CR69
  article-title: Urban pluvial flood forecasting using open data with machine learning techniques in Pattani Basin
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.187
– volume: 6
  start-page: 434
  year: 2011
  end-page: 440
  ident: CR70
  article-title: Reservoir inflow forecasting using artificial neural network
  publication-title: Int J Phys Sci
  doi: 10.5897/IJPS10.649
– volume: 621
  start-page: 1124
  year: 2017
  end-page: 1141
  ident: CR40
  article-title: Flood susceptibility assessment in Hengfeng area coupling Adaptive Neuro-Fuzzy Inference System with Genetic Algorithm and Differential Evolution
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.10.114
– volume: 25
  start-page: 25
  year: 2014
  end-page: 37
  ident: CR79
  article-title: Flood flow forecasting using ANN, ANFIS and regression models
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-013-1443-6
– volume: 46
  start-page: 3097
  year: 2016
  end-page: 3111
  ident: CR60
  article-title: Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals
  publication-title: Clim Dyn
  doi: 10.1007/s00382-015-2755-2
– volume: 55
  start-page: 439
  year: 2003
  end-page: 450
  ident: CR14
  article-title: Short-term water level prediction using neural networks and neuro-fuzzy approach
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00388-6
– ident: CR43
– volume: 13
  start-page: 4633
  year: 2013
  end-page: 4644
  ident: CR100
  article-title: Performance of radial basis and LM-feed forward Artificial Neural Networks for predicting daily watershed runoff
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2013.07.007
– volume: 319
  start-page: 391
  year: 2006
  end-page: 409
  ident: CR30
  article-title: Flood estimation at ungauged sites using artificial neural networks
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.07.032
– volume: 7
  start-page: 290
  year: 2017
  end-page: 298
  ident: CR76
  article-title: Optimizing ANFIS for sediment transport in open channels using different evolutionary algorithms
  publication-title: J Appl Res Water Wastewater
– volume: 4
  start-page: 366
  year: 2011
  end-page: 376
  ident: CR64
  article-title: Comparison between neural networks and adaptive neuro-fuzzy inference system in modelling lake kerkini water level fluctuation lake management using artificial intelligence
  publication-title: J Environ Sci Technol
  doi: 10.3923/jest.2011.366.376
– volume: 3
  start-page: 30
  year: 2011
  end-page: 40
  ident: CR97
  article-title: Stream flow forecasting using Levenberg-Marquardt algorithm approach
  publication-title: Environ Eng
– volume: 3
  start-page: 3
  year: 2001
  end-page: 10
  ident: CR36
  article-title: Rainfall-runoff modelling using adaptive neuro-fuzzy systems
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2001.0002
– volume: 6
  start-page: 2529
  year: 2013
  end-page: 2537
  ident: CR80
  article-title: Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-011-0517-y
– volume: 351
  start-page: 568
  year: 2012
  end-page: 573
  ident: CR33
  article-title: Urban flood prediction in real-time from weather radar and rainfall data using Artificial Neural Networks
  publication-title: IAHS-AISH Publ
– volume: 1
  start-page: 339
  year: 1988
  end-page: 356
  ident: CR94
  article-title: Generalization of backpropagation with application to a recurrent gas market model
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(88)90007-X
– volume: 222
  start-page: 373
  year: 2019
  end-page: 380
  ident: CR41
  article-title: Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.03.044
– volume: 375
  start-page: 613
  year: 2009
  end-page: 626
  ident: CR26
  article-title: Ensemble flood forecasting: A review
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.06.005
– volume: 722
  start-page: 137875
  year: 2020
  ident: CR13
  article-title: Recent flood hazards in Kashmir put into context with millennium-long historical and tree-ring records
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.137875
– ident: CR90
– volume: 2
  start-page: 611
  year: 2009
  end-page: 620
  ident: CR19
  article-title: Flood forecasting on the Humber river using an Artificial Neural Network approach
  publication-title: Can Soc Civ Eng Proc
– volume: 174
  start-page: 1629
  year: 2018
  end-page: 1641
  ident: CR2
  article-title: Assessing urban areas vulnerability to pluvial flooding using GIS applications and Bayesian Belief Network model
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.11.066
– volume: 29
  start-page: 1
  year: 2006
  end-page: 10
  ident: CR21
  article-title: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2005.04.015
– year: 1999
  ident: CR39
  publication-title: Neural Networks. A Comprehensive Foundation
– volume: 7
  start-page: 6359
  year: 2017
  end-page: 6363
  ident: CR83
  article-title: Floods and mitigation techniques with reference to Kashmir
  publication-title: Int J Eng Sci Comput
– volume: 82
  start-page: 827
  year: 2016
  end-page: 844
  ident: CR86
  article-title: Comparison of a fuzzy control and the data-driven model for flood forecasting
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2220-5
– volume: 7
  start-page: 3691
  year: 2017
  end-page: 3706
  ident: CR85
  article-title: A new approach to flow simulation using hybrid models
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-016-0515-z
– volume: 29
  start-page: 237
  year: 2017
  end-page: 243
  ident: CR6
  article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River
  publication-title: J King Saud Univ - Eng Sci
  doi: 10.1016/j.jksues.2015.02.001
– volume: 507
  start-page: 288
  year: 2019
  end-page: 294
  ident: CR16
  article-title: Flood frequency analysis of river Jhelum in Kashmir basin
  publication-title: Quat Int
  doi: 10.1016/j.quaint.2018.09.039
– volume: 545
  start-page: 424
  year: 2017
  ident: 12410_CR11
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.11.057
– volume: 507
  start-page: 288
  year: 2019
  ident: 12410_CR16
  publication-title: Quat Int
  doi: 10.1016/j.quaint.2018.09.039
– volume: 25
  start-page: 32491
  year: 2018
  ident: 12410_CR1
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-3203-8
– volume: 242
  start-page: 118515
  year: 2020
  ident: 12410_CR42
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118515
– volume: 41
  start-page: 399
  year: 1996
  ident: 12410_CR62
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669609491511
– volume: 6
  start-page: 2529
  year: 2013
  ident: 12410_CR80
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-011-0517-y
– volume: 692
  start-page: 556
  year: 2019
  ident: 12410_CR75
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.07.203
– ident: 12410_CR12
  doi: 10.5194/nhess-2016-86
– volume: 27
  start-page: 37218
  year: 2020
  ident: 12410_CR99
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-07270-9
– volume: 508
  start-page: 374
  year: 2014
  ident: 12410_CR23
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.11.011
– volume: 7
  start-page: 3451
  year: 2007
  ident: 12410_CR91
  publication-title: J Appl Sci
  doi: 10.3923/jas.2007.3451.3459
– volume: 375
  start-page: 613
  year: 2009
  ident: 12410_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.06.005
– volume: 5
  start-page: 11
  year: 2013
  ident: 12410_CR82
  publication-title: Eur Transp Res Rev
  doi: 10.1007/s12544-012-0086-5
– volume: 12
  start-page: 411
  year: 2018
  ident: 12410_CR35
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1448896
– ident: 12410_CR38
  doi: 10.5194/nhess-2019-44
– volume: 6
  start-page: 434
  year: 2011
  ident: 12410_CR70
  publication-title: Int J Phys Sci
  doi: 10.5897/IJPS10.649
– volume: 196
  start-page: 216
  year: 2018
  ident: 12410_CR59
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.06.047
– volume: 15
  start-page: 729
  year: 2010
  ident: 12410_CR3
  publication-title: J Hydrol Eng
  doi: 10.1061/(asce)he.1943-5584.0000245
– volume: 722
  start-page: 137875
  year: 2020
  ident: 12410_CR13
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.137875
– volume: 2
  start-page: 611
  year: 2009
  ident: 12410_CR19
  publication-title: Can Soc Civ Eng Proc
– volume: 162
  start-page: 601
  year: 2017
  ident: 12410_CR74
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.06.047
– volume: 78
  start-page: 1
  year: 2015
  ident: 12410_CR61
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1861-0
– ident: 12410_CR18
– volume: 23
  start-page: 1350
  year: 2010
  ident: 12410_CR95
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.04.003
– volume: 13
  start-page: 4633
  year: 2013
  ident: 12410_CR100
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2013.07.007
– volume: 247
  start-page: 712
  year: 2019
  ident: 12410_CR93
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2019.06.102
– volume: 02
  start-page: 880
  year: 2010
  ident: 12410_CR53
  publication-title: J Water Resour Prot
  doi: 10.4236/jwarp.2010.210105
– volume: 25
  start-page: 25
  year: 2014
  ident: 12410_CR79
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-013-1443-6
– volume: 4
  start-page: 366
  year: 2011
  ident: 12410_CR64
  publication-title: J Environ Sci Technol
  doi: 10.3923/jest.2011.366.376
– volume: 7
  start-page: 3691
  year: 2017
  ident: 12410_CR85
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-016-0515-z
– ident: 12410_CR92
  doi: 10.3390/w10091158
– volume: 601–602
  start-page: 441
  year: 2017
  ident: 12410_CR54
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.05.197
– volume: 7
  start-page: 6359
  year: 2017
  ident: 12410_CR83
  publication-title: Int J Eng Sci Comput
– volume: 1
  start-page: 339
  year: 1988
  ident: 12410_CR94
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(88)90007-X
– volume: 41
  start-page: 1
  year: 2005
  ident: 12410_CR67
  publication-title: Water Resour Res
  doi: 10.1029/2004WR003562
– volume: 29
  start-page: 1
  year: 2006
  ident: 12410_CR21
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2005.04.015
– volume: 12
  start-page: 123
  year: 2008
  ident: 12410_CR34
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-12-123-2008
– volume: 28
  start-page: 2109
  year: 2014
  ident: 12410_CR55
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0600-8
– volume: 587
  start-page: 125007
  year: 2020
  ident: 12410_CR10
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125007
– ident: 12410_CR90
  doi: 10.1007/s00521-020-05098-w
– ident: 12410_CR46
– volume: 705
  start-page: 135983
  year: 2020
  ident: 12410_CR32
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135983
– volume: 46
  start-page: 3097
  year: 2016
  ident: 12410_CR60
  publication-title: Clim Dyn
  doi: 10.1007/s00382-015-2755-2
– volume: 12
  start-page: 510
  year: 2014
  ident: 12410_CR72
  publication-title: Int J Eng Trends Technol
  doi: 10.14445/22315381/IJETT-V12P295
– volume: 541
  start-page: 401
  year: 2015
  ident: 12410_CR68
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.10.047
– volume: 651
  start-page: 2087
  year: 2019
  ident: 12410_CR25
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 245
  start-page: 196
  year: 2001
  ident: 12410_CR96
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(01)00349-3
– volume: 174
  start-page: 1629
  year: 2018
  ident: 12410_CR2
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.11.066
– volume: 329
  start-page: 154
  year: 2006
  ident: 12410_CR48
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.02.009
– volume-title: Flood vulnerability assessment by applying a fuzzy logic method : a case study from Melbourne
  year: 2016
  ident: 12410_CR78
– ident: 12410_CR45
  doi: 10.1007/978-981-15-3125-5_12
– ident: 12410_CR43
– volume: 291
  start-page: 52
  year: 2004
  ident: 12410_CR66
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2003.12.010
– volume: 20
  start-page: 520
  year: 2018
  ident: 12410_CR27
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2017.076
– volume: 52
  start-page: 114
  year: 2007
  ident: 12410_CR22
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.52.1.114
– volume: 548
  start-page: 535
  year: 2010
  ident: 12410_CR17
  publication-title: Int J Climatol
  doi: 10.1002/joc.1920
– volume: 17
  start-page: 3749
  year: 2003
  ident: 12410_CR58
  publication-title: Hydrol Process
  doi: 10.1002/hyp.1359
– volume: 29
  start-page: 237
  year: 2017
  ident: 12410_CR6
  publication-title: J King Saud Univ - Eng Sci
  doi: 10.1016/j.jksues.2015.02.001
– volume: 9
  start-page: 37
  year: 2009
  ident: 12410_CR77
  publication-title: Int J Electr Comput Sci IJECS-IJENS
– ident: 12410_CR57
  doi: 10.1016/j.jclepro.2019.119468
– ident: 12410_CR89
  doi: 10.1111/jfr3.12656
– volume: 10
  start-page: 1
  year: 2006
  ident: 12410_CR7
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-10-1-2006
– volume: 222
  start-page: 373
  year: 2019
  ident: 12410_CR41
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.03.044
– volume: 25
  start-page: 19313
  year: 2018
  ident: 12410_CR56
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-0418-z
– volume: 14
  start-page: 647
  year: 2009
  ident: 12410_CR65
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000040
– volume: 43
  start-page: 47
  year: 1998
  ident: 12410_CR28
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669809492102
– volume: 95
  start-page: 229
  year: 2017
  ident: 12410_CR24
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2017.06.012
– volume-title: Sustainable Transportation Attainment Index: multivariate analysis of indicators with an application to selected states and National Capital Territory (NCT) of India
  year: 2020
  ident: 12410_CR44
– volume: 10
  start-page: 1
  year: 2018
  ident: 12410_CR63
  publication-title: Water (Switzerland)
  doi: 10.3390/w10111536
– volume: 10
  start-page: 1
  year: 2006
  ident: 12410_CR8
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-10-1-2006
– ident: 12410_CR5
  doi: 10.1007/s11356-020-11430-7
– volume: 351
  start-page: 568
  year: 2012
  ident: 12410_CR33
  publication-title: IAHS-AISH Publ
– volume: 119
  start-page: 288
  year: 2017
  ident: 12410_CR69
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.187
– volume: 26
  start-page: 22856
  year: 2019
  ident: 12410_CR37
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05473-8
– volume: 24
  start-page: 101
  year: 2016
  ident: 12410_CR9
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2016.05.015
– volume: 23
  start-page: 231
  year: 2013
  ident: 12410_CR52
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-013-1344-8
– volume: 82
  start-page: 827
  year: 2016
  ident: 12410_CR86
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2220-5
– volume: 621
  start-page: 1124
  year: 2017
  ident: 12410_CR40
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.10.114
– volume: 3
  start-page: 3
  year: 2001
  ident: 12410_CR36
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2001.0002
– volume: 212
  start-page: 109
  year: 2019
  ident: 12410_CR98
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.12.008
– volume: 7
  start-page: 290
  year: 2017
  ident: 12410_CR76
  publication-title: J Appl Res Water Wastewater
– volume: 319
  start-page: 391
  year: 2006
  ident: 12410_CR30
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.07.032
– volume: 55
  start-page: 439
  year: 2003
  ident: 12410_CR14
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00388-6
– volume: 12
  start-page: 1
  year: 2019
  ident: 12410_CR81
  publication-title: J Flood Risk Manag
  doi: 10.1111/jfr3.12492
– volume: 11
  start-page: 3629
  year: 2007
  ident: 12410_CR51
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-11-1869-2007
– volume: 187
  start-page: 576
  year: 2018
  ident: 12410_CR20
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.03.217
– volume: 27
  start-page: 15375
  year: 2020
  ident: 12410_CR4
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-08057-z
– volume: 27
  start-page: 1521
  year: 2020
  ident: 12410_CR87
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-06849-6
– volume-title: Neural Networks. A Comprehensive Foundation
  year: 1999
  ident: 12410_CR39
– volume: 12
  start-page: 1
  year: 2019
  ident: 12410_CR15
  publication-title: J Flood Risk Manag
  doi: 10.1111/jfr3.12521
– volume: 167
  start-page: 908
  year: 2017
  ident: 12410_CR31
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.07.205
– volume: 3
  start-page: 30
  year: 2011
  ident: 12410_CR97
  publication-title: Environ Eng
– volume: 54
  start-page: 261
  year: 2009
  ident: 12410_CR71
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.54.2.261
– volume: 514
  start-page: 85
  year: 2014
  ident: 12410_CR50
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.03.064
– volume: 9
  start-page: 542
  year: 2015
  ident: 12410_CR73
  publication-title: J Hydro-Environ Res
  doi: 10.1016/j.jher.2014.12.001
– volume: 349
  start-page: 31
  year: 2008
  ident: 12410_CR84
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.10.050
– volume: 25
  start-page: 80
  year: 2001
  ident: 12410_CR29
  publication-title: Prog Phys Geogr
  doi: 10.1177/030913330102500104
– ident: 12410_CR47
– volume: 23
  start-page: 665
  year: 1993
  ident: 12410_CR49
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– ident: 12410_CR88
  doi: 10.1007/978-981-15-1632-0_5
SSID ssj0020927
Score 2.5411513
Snippet Flood prediction has gained prominence world over due to the calamitous socio-economic impacts this hazard has and the anticipated increase of its incidence in...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25265
SubjectTerms Accuracy
Adaptive systems
Algorithms
Aquatic Pollution
Artificial intelligence
Artificial neural networks
Atmospheric Protection/Air Quality Control/Air Pollution
Back propagation
Back propagation networks
Bayesian analysis
Bayesian theory
Computer simulation
Conjugates
Earth and Environmental Science
Economic impact
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Flood control
Flood forecasting
Flood predictions
Floods
Fuzzy logic
Fuzzy systems
Inference
Mathematical models
Mean square errors
Neural networks
Performance evaluation
Performance measurement
prediction
Prediction models
prognosis
Regularization
Research Article
Root-mean-square errors
socioeconomics
Statistical analysis
Stream discharge
Stream flow
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELbK9sIF8VdYWpCRuLEW8W-8B4QAbVUhsaoQlXqL7NhGK5Vk6e4e2hMPwSvwYjwJHjvZFFXsKQdPpJG-Gc8kM_MNQq9ijDBlXUgSrCiICEqSqdOOMMtFTEhr5TUMOH-eq5Mz8elcnu-heT8LA22V_Z2YLmrX1vCP_A2TMfRzHfPtd8sfBLZGQXW1X6FhutUK7m2iGLuD9hkwY43Q_ofZ_PTL9hOsmOYlrlMhCOVCdGM0eZiOcgkNuZTEmAc9C_-Gqlv5563aaQpJx_fRvS6XxO8z-A_Qnm8eooPZMLoWDzvfXT1Cv0-HGQE8kHzjNmAwn8wkgRc3KDox8IK7xbfvqz8_f92QAQ7M9Egd5KsJDpvr6yucbtEJNo3Dxpkl3KNJtCX5fNHPFuJMH42jNjhA4zxeXkK9CNR5jM6OZ18_npBuSQOphZBrYhUTtTFKSk-llYVTaipDWQvNqdeWlkXJmLFMO1bWWrgiYqijTUAp2ksT-AEaNW3jnyLMLTOm1CEvsw9Wa6WC0Z4HakSEboxoj0dVdwzmsEjjohq4lwHDKmJYJQwrOkavt-8sM3_HTumjHuaq8-VVNVjeGL3cHkcvhNKKaXy7iTKiBKK4Uu6SkTFbi9_PKso8ySa0VYlzIWMywcdo0tvUoMD_9X22W99DdJeBPaf-zCM0Wl9u_POYQ63ti84x_gI72RrU
  priority: 102
  providerName: ProQuest
Title Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction
URI https://link.springer.com/article/10.1007/s11356-021-12410-1
https://www.ncbi.nlm.nih.gov/pubmed/33453033
https://www.proquest.com/docview/2532438606
https://www.proquest.com/docview/2478595756
https://www.proquest.com/docview/2574340766
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoe-GC-CsstCsjcWMtxf_e41JtW4GoKsRKyymyExutVLKrZvdATzxEX6EvxpMwdpJNUaESl_jgSTTSN2NPNDPfIPQW7giri0yS4ERGRFCSjEtTEua4gIC0UN7EBudPZ-p0Jj7M5bxtCqu7avcuJZlO6r7ZjXIZC2YpgTsp1hTsoD0Z6bzAimdssv3NysbNoNaxEIRyIdpWmb9_48_r6E6MeSc_mq6d48foURsv4kkD8BP0wFdP0f60b0-DzdY_62fo5rzvA8A9kTdeBhxNpGGLwItbNJw4cn-Xi2_f618_r2_JRJ7LtKQq8XqEw-bq6gdOJ-UI26rEtrSreFYm0SVp9hdd_yBuKKIxaINDLI7Hq8uYE4rqPEez4-mXo1PSDmIghRByTZxiorBWSempdDIrlRrLoAthOPXGUZ1pxqxjpmS6MKLMuFEGcI_pZi9t4Ptot1pW_iXC3DFrtQnNwPrgjFEqWON5oFYAdANEOzzyomUpj8MyLvKeXzlimAOGecIwpwP0bvvOquHouFf6oIM5b_21zpmEwBK0ztQAvdlug6fF9Imt_HIDMkJHMjgt75OREJHBP7ICmReNCW1V4lxICBj4AI06m-oV-Le-r_5P_DV6yKJ9p5rMA7S7vtz4Q4ib1m6IdvRcw9Mc0SHam5x8_TiF9f307PzzMLnQb7LVFf4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOcAF8SosFBgkOLEjknll9oAQKq229CEOrdRbmCQzaCVIlu6uUHviR_AXuPKj-CXYeWyKKvbWUw7jJI7ssT2x_RngBfoIl-SR5iFTEVfBaD4qbMFFJhUGpLnxlhqcDw7N-Fh9ONEna_C764WhssrOJtaGuqhy-kf-Wmh0_dJivP12-o3T1CjKrnYjNBq12PNn3_HINnuz-x7l-1KIne2jrTFvpwrwXCk955kRKnfOaO1jnemoMGakQ5IrK2NvsziJEiFcJmwhktyqIsKXWvwIyp167YLE516D60qKhAyB3VqWlIho1IyIHSnFY6lU26TTtOrFUlO5b8zRo1JFxL-O8FJ0eykzWzu8ndtwq41U2btGte7Ami_vwsZ23xiHi61lmN2DXx_7DgTWQ4izKjBSzgangk0uAIAyQh0vJp-_zv78-HmBhhA260tdnz4bsrA4Pz9jtY0eMlcWzBVuSla6Jq14sz7pOhdZA07NkBsWqCyfTU8pG0Xs3IfjKxHWBqyXVekfApOZcC6xQVI7rQ2ZtcYEZ70MsVMougHEnTzSvMVHpzEdX9Ie2ZlkmKIM01qGaTyAV8t7pg06yErqzU7MaWspZmmv1wN4vlzGPU6JG1f6aoE0KiEYukSvotEYC-Lp3CDNg0aFlixJqTSGKnIAw06negb-z--j1fw-gxvjo4P9dH_3cO8x3BSk23Ul6Casz08X_glGa_Psab1FGHy66j35F9PETz8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIiEuqPyUhhZYJDiRVe399wEhRBu1FKoeqJSbWdu7KBLEoU6E2hMPwSvwEjwOT8KMf-Kiitx6ymHH1kTzu56Zbwh5DjHCmTxSLGQyYjJoxZLCFoxnQkJCmmtvccD5w7E-OJXvxmq8Rn53szDYVtn5xNpRF2WO38h3uYLQLyzk27uhbYs42Ru9nn1juEEKK63dOo1GRY78-Xe4vlWvDvdA1i84H-1_fHvA2g0DLJdSzVmmucyd00r5WGUqKrROVDC5tCL2NotNZDh3GbcFN7mVRQQMWPhDWEf1ygUB771BbhohEmwnNOP-shclzbrYREoWCynbgZ1mbC8WClt_YwbRFbsj_g2KVzLdK1XaOviNNsidNmulbxo1u0vW_PQe2dzvh-TgsPUS1X3y66SfRqA9nDgtA0VFbTAr6OQSGChFBPJi8vlr9efHz0s0iLZZ_9S96tWQhsXFxTmt_fWQumlBXeFm6LFr0pI155NuipE2QNUUuKEBW_Tp7AwrU8jOA3J6LcLaJOvTcuq3CBUZd87YIHC01obMWq2Ds16E2EkQ3YDEnTzSvMVKx5UdX9Ie5RllmIIM01qGaTwgL5fPzBqkkJXUO52Y09ZrVGmv4wPybHkM9o5FHDf15QJopEFIOqNW0SjIC-GmroHmYaNCS5aEkArSFjEgw06negb-z--j1fw-JbfAGtP3h8dH2-Q2R9Wum0J3yPr8bOEfQ-I2z57UFkLJp-s2yb8DDFOu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+artificial+intelligence+paradigms%E2%80%94artificial+neural+networks%2C+fuzzy+logic%2C+and+adaptive+neuro-fuzzy+inference+system+for+flood+prediction&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Tabbussum%2C+Ruhhee&rft.au=Dar%2C+Abdul+Qayoom&rft.date=2021-05-01&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=28&rft.issue=20&rft.spage=25265&rft.epage=25282&rft_id=info:doi/10.1007%2Fs11356-021-12410-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_021_12410_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon