The Star Formation Efficiency during Reionization as Inferred from the Hubble Frontier Fields

A recent ultraviolet luminosity function (UVLF) analysis in the Hubble Frontier Fields, behind foreground lensing clusters, has helped solidify estimates of the faint-end of the z ∼ 5–9 UVLF at up to 5 mag fainter than in the field. These measurements provide valuable information regarding the role...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 961; no. 1; pp. 50 - 70
Main Authors Sipple, Jackson, Lidz, Adam
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.01.2024
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ad06a7

Cover

Abstract A recent ultraviolet luminosity function (UVLF) analysis in the Hubble Frontier Fields, behind foreground lensing clusters, has helped solidify estimates of the faint-end of the z ∼ 5–9 UVLF at up to 5 mag fainter than in the field. These measurements provide valuable information regarding the role of low-luminosity galaxies in reionizing the universe and can help in calibrating expectations for JWST observations. We fit a semiempirical model to the lensed and previous UVLF data from Hubble. This fit constrains the average star formation efficiency (SFE) during reionization, with the lensed UVLF measurements probing halo mass scales as small as M ∼ 2 × 10 9 M ⊙ . The implied trend of SFE with halo mass is broadly consistent with an extrapolation from previous inferences at M ≳ 10 10 M ⊙ , although the joint data prefer a shallower SFE. This preference, however, is partly subject to systematic uncertainties in the lensed measurements. Near z ∼ 6, we find that the SFE peaks at ∼20% between ∼10 11 and 10 12 M ⊙ . Our best-fit model is consistent with the Planck 2020 determinations of the electron scattering optical depth, and most current reionization history measurements, provided the escape fraction of ionizing photons is f esc ∼ 10%–20%. The joint UVLF accounts for nearly 80% of the ionizing photon budget at z ∼ 8. Finally, we show that recent JWST UVLF estimates at z ≳ 11 require strong departures from the redshift evolution suggested by the Hubble data.
AbstractList A recent ultraviolet luminosity function (UVLF) analysis in the Hubble Frontier Fields, behind foreground lensing clusters, has helped solidify estimates of the faint-end of the z ∼ 5–9 UVLF at up to 5 mag fainter than in the field. These measurements provide valuable information regarding the role of low-luminosity galaxies in reionizing the universe and can help in calibrating expectations for JWST observations. We fit a semiempirical model to the lensed and previous UVLF data from Hubble. This fit constrains the average star formation efficiency (SFE) during reionization, with the lensed UVLF measurements probing halo mass scales as small as M ∼ 2 × 10 ^9 M _⊙ . The implied trend of SFE with halo mass is broadly consistent with an extrapolation from previous inferences at M ≳ 10 ^10 M _⊙ , although the joint data prefer a shallower SFE. This preference, however, is partly subject to systematic uncertainties in the lensed measurements. Near z ∼ 6, we find that the SFE peaks at ∼20% between ∼10 ^11 and 10 ^12 M _⊙ . Our best-fit model is consistent with the Planck 2020 determinations of the electron scattering optical depth, and most current reionization history measurements, provided the escape fraction of ionizing photons is f _esc ∼ 10%–20%. The joint UVLF accounts for nearly 80% of the ionizing photon budget at z ∼ 8. Finally, we show that recent JWST UVLF estimates at z ≳ 11 require strong departures from the redshift evolution suggested by the Hubble data.
A recent ultraviolet luminosity function (UVLF) analysis in the Hubble Frontier Fields, behind foreground lensing clusters, has helped solidify estimates of the faint-end of the z ∼ 5–9 UVLF at up to 5 mag fainter than in the field. These measurements provide valuable information regarding the role of low-luminosity galaxies in reionizing the universe and can help in calibrating expectations for JWST observations. We fit a semiempirical model to the lensed and previous UVLF data from Hubble. This fit constrains the average star formation efficiency (SFE) during reionization, with the lensed UVLF measurements probing halo mass scales as small as M ∼ 2 × 109M⊙. The implied trend of SFE with halo mass is broadly consistent with an extrapolation from previous inferences at M ≳ 1010M⊙, although the joint data prefer a shallower SFE. This preference, however, is partly subject to systematic uncertainties in the lensed measurements. Near z ∼ 6, we find that the SFE peaks at ∼20% between ∼1011 and 1012M⊙. Our best-fit model is consistent with the Planck 2020 determinations of the electron scattering optical depth, and most current reionization history measurements, provided the escape fraction of ionizing photons is fesc ∼ 10%–20%. The joint UVLF accounts for nearly 80% of the ionizing photon budget at z ∼ 8. Finally, we show that recent JWST UVLF estimates at z ≳ 11 require strong departures from the redshift evolution suggested by the Hubble data.
A recent ultraviolet luminosity function (UVLF) analysis in the Hubble Frontier Fields, behind foreground lensing clusters, has helped solidify estimates of the faint-end of the z ∼ 5–9 UVLF at up to 5 mag fainter than in the field. These measurements provide valuable information regarding the role of low-luminosity galaxies in reionizing the universe and can help in calibrating expectations for JWST observations. We fit a semiempirical model to the lensed and previous UVLF data from Hubble. This fit constrains the average star formation efficiency (SFE) during reionization, with the lensed UVLF measurements probing halo mass scales as small as M ∼ 2 × 10 9 M ⊙ . The implied trend of SFE with halo mass is broadly consistent with an extrapolation from previous inferences at M ≳ 10 10 M ⊙ , although the joint data prefer a shallower SFE. This preference, however, is partly subject to systematic uncertainties in the lensed measurements. Near z ∼ 6, we find that the SFE peaks at ∼20% between ∼10 11 and 10 12 M ⊙ . Our best-fit model is consistent with the Planck 2020 determinations of the electron scattering optical depth, and most current reionization history measurements, provided the escape fraction of ionizing photons is f esc ∼ 10%–20%. The joint UVLF accounts for nearly 80% of the ionizing photon budget at z ∼ 8. Finally, we show that recent JWST UVLF estimates at z ≳ 11 require strong departures from the redshift evolution suggested by the Hubble data.
Author Sipple, Jackson
Lidz, Adam
Author_xml – sequence: 1
  givenname: Jackson
  surname: Sipple
  fullname: Sipple, Jackson
  organization: University of Pennsylvania Center for Particle Cosmology, Department of Physics and Astronomy, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Adam
  orcidid: 0000-0002-3950-9598
  surname: Lidz
  fullname: Lidz, Adam
  organization: University of Pennsylvania Center for Particle Cosmology, Department of Physics and Astronomy, Philadelphia, PA 19104, USA
BookMark eNp9kc1r3DAQxUVJIZu09xwF7bFuJOv7WEK2WQgU2gRyKWKsj1SL13Jl7SH96-uNQwqh7Ulo5r3fDG9O0NGQh4DQGSUfmebqnAqmG86EOgdPJKhXaPVcOkIrQghvJFN3x-hkmraHb2vMCn2_-RHwtwoFr3PZQU15wJcxJpfC4B6w35c03OOvYa6nX0sbJrwZYigleBxL3uE6I672XdcHvC55qCnMtBR6P71BryP0U3j79J6i2_XlzcVVc_3l8-bi03XjOBe16ZigndFaRke7KAU30IKnigEzVHaiE63WgnMWPBivW6UpZ5xGxwREyRw7RZuF6zNs7VjSDsqDzZDsYyGXewulJtcHK6WifJ6qSNDcdACcKcXbVhoIygQ-s94trLHkn_swVbvN-zLM69vWUKZIK4mYVWRRuZKnqYT4PJUSeziIPaRvD-nb5SCzRb6wuFQfI60FUv8_4_vFmPL4ZxkYt9ZIaqkVxI4-zrIPf5H9k_obqsqqXw
CitedBy_id crossref_primary_10_1051_0004_6361_202348727
crossref_primary_10_1093_mnras_stae2633
crossref_primary_10_1088_1475_7516_2024_07_078
crossref_primary_10_1093_mnras_staf340
crossref_primary_10_1093_mnrasl_slaf003
crossref_primary_10_3847_1538_4357_ad73d5
Cites_doi 10.1093/mnras/stad1095
10.1086/309179
10.3847/2041-8213/acd2d9
10.3847/1538-3881/abf83e
10.1093/mnras/stz866
10.1086/170520
10.1093/mnras/stad2497
10.1093/mnras/stac310
10.1088/0004-637X/793/2/115
10.1093/mnras/stz1493
10.1093/mnras/stac3347
10.1088/0004-637X/803/1/34
10.1109/JRPROC.1958.286741
10.1093/mnras/sty1024
10.1086/307523
10.3847/1538-4357/837/1/97
10.1093/mnras/stad1799
10.3847/1538-4357/aae77f
10.3847/1538-4357/835/2/113
10.1051/0004-6361/201833910
10.1093/mnras/stw980
10.1088/0034-4885/75/8/086901
10.1088/2041-8205/802/2/L19
10.1093/mnras/stab2696
10.3847/2041-8205/823/2/L40
10.1111/j.1365-2966.2012.20924.x
10.1086/106661
10.1038/s41550-023-01918-w
10.1051/0004-6361/202346159
10.1088/0067-0049/208/2/19
10.1038/nature03597
10.1109/MCSE.2007.55
10.3847/2041-8213/acade4
10.1088/0004-637X/799/1/32
10.3847/2515-5172/accbc2
10.1038/s41586-020-2649-2
10.3847/1538-4357/aa74e4
10.1088/0004-637X/813/1/54
10.1093/mnras/stz632
10.1038/nature25792
10.3847/2041-8213/ad0239
10.1016/j.aml.2017.05.005
10.1093/mnras/stad1014
10.1088/0004-637X/800/2/84
10.3847/1538-4357/aaa544
10.1093/mnras/stx2132
10.1038/s41550-022-01610-5
10.1038/s41586-023-06521-7
10.1093/mnras/183.3.341
10.1093/mnras/stac3578
10.1046/j.1365-8711.2003.06254.x
10.1093/mnras/stad1145
10.3847/1538-3881/aabc4f
10.1093/mnras/stad035
10.3847/2041-8213/ac9310
10.3847/2041-8213/acacfe
10.3847/1538-4357/ad05c0
10.3847/1538-4365/ac3dfc
10.1093/mnras/staa137
10.3847/1538-4357/ad0b7e
10.1007/s00159-022-00143-0
10.1086/306975
10.1016/S0370-1573(01)00019-9
10.1093/mnras/stac1549
10.1146/annurev-astro-081811-125615
10.1088/0004-637X/756/1/14
10.1086/190287
10.1093/mnras/stad2566
10.1051/0004-6361/201322068
10.3847/1538-4365/acaaa9
10.1086/670067
10.21105/joss.00024
10.1093/mnras/stv2469
10.1086/432259
10.3847/1538-4357/aab03f
10.1088/0004-637X/813/1/21
10.3847/1538-4357/aad6dc
10.1038/s41592-019-0686-2
10.3847/1538-4357/aa70a4
10.3847/1538-4357/ab7cc9
10.3847/2041-8213/acdef6
10.1093/mnras/staa1800
10.1093/mnras/stac3472
10.1103/PhysRevD.107.043502
10.1093/mnras/stu2449
10.1086/185015
10.1111/j.1365-2966.2004.08059.x
10.1088/0004-637X/768/1/71
10.1046/j.1365-8711.2002.04950.x
10.3847/0004-637X/818/1/89
10.1093/mnras/sty1820
10.3847/1538-4357/acaf50
10.1111/j.1365-2966.2009.15329.x
10.1038/s41586-023-05786-2
10.1093/mnrasl/sly125
10.1016/j.physrep.2006.08.002
10.1093/mnras/staa3150
10.1093/mnras/sty3260
10.3847/1538-4357/ad029e
10.1093/mnras/stad1557
10.3847/1538-4357/aab0a7
10.3847/1538-4357/ac618c
10.1086/523083
10.3847/1538-4357/ac7c74
10.1088/0004-637X/814/1/69
10.3847/2041-8213/ac927f
10.1103/PhysRevD.105.043518
10.1093/mnras/staa1748
10.1088/2041-8205/726/1/L7
10.3847/1538-4357/ac86d1
10.1038/s41550-023-01937-7
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ad06a7
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_6671444570e849baa437742269ae79e4
10_3847_1538_4357_ad06a7
apjad06a7
GrantInformation_xml – fundername: National Aeronautics and Space Administration (NASA)
  grantid: 80NSSC20K0497
  funderid: https://doi.org/10.13039/100000104
– fundername: Charles E. Kaufman Foundation (Kaufman Foundation)
  grantid: KA2022-129518
  funderid: https://doi.org/10.13039/100014147
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c445t-b351b9886fc1bf6549a2ad173a3916b5b52885443eda9d827814341fc35af63c3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 27 01:20:15 EDT 2025
Wed Aug 13 06:43:27 EDT 2025
Tue Jul 01 03:39:45 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Tue Aug 20 22:16:42 EDT 2024
Sun Aug 18 15:20:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-b351b9886fc1bf6549a2ad173a3916b5b52885443eda9d827814341fc35af63c3
Notes AAS47943
Galaxies and Cosmology
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3950-9598
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ad06a7
PQID 2913702605
PQPubID 4562441
PageCount 21
ParticipantIDs iop_journals_10_3847_1538_4357_ad06a7
crossref_primary_10_3847_1538_4357_ad06a7
proquest_journals_2913702605
doaj_primary_oai_doaj_org_article_6671444570e849baa437742269ae79e4
crossref_citationtrail_10_3847_1538_4357_ad06a7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Fujimoto (apjad06a7bib42) 2023b; 949
Trac (apjad06a7bib106) 2015; 813
Astropy Collaboration (apjad06a7bib4) 2018; 156
Bouwens (apjad06a7bib17) 2023a; 523
Yue (apjad06a7bib115) 2018; 868
Astropy Collaboration (apjad06a7bib3) 2022; 935
Zavala (apjad06a7bib117) 2023; 943
Field (apjad06a7bib38) 1958; 46
Astropy Collaboration (apjad06a7bib5) 2013; 558
Hinshaw (apjad06a7bib56) 2013; 208
Lewis (apjad06a7bib64) 2000; 538
Ferrara (apjad06a7bib37) 2022; 522
Vale (apjad06a7bib108) 2004; 353
HERA Collaboration (apjad06a7bib55) 2023; 945
Labbé (apjad06a7bib63) 2023; 616
Harikane (apjad06a7bib51) 2023a; 265
Oke (apjad06a7bib90) 1974; 27
McBride (apjad06a7bib80) 2009; 398
Springel (apjad06a7bib103) 2005; 435
Bera (apjad06a7bib13) 2023; 959
Chon (apjad06a7bib30) 2022; 514
Sun (apjad06a7bib105) 2016; 460
Arrabal Haro (apjad06a7bib2) 2023; 622
Bond (apjad06a7bib16) 1991; 379
Atek (apjad06a7bib6) 2015; 814
Bowman (apjad06a7bib26) 2018; 555
Behroozi (apjad06a7bib12) 2015; 799
Curtis-Lake (apjad06a7bib33) 2023; 7
Singh (apjad06a7bib101) 2022; 6
Harikane (apjad06a7bib49) 2024; 960
Finkelstein (apjad06a7bib39) 2023; 946
Meiksin (apjad06a7bib82) 2023; 7
Steinhardt (apjad06a7bib104) 2023; 951
Harikane (apjad06a7bib52) 2023b; 959
Donnan (apjad06a7bib36) 2022; 518
McGreer (apjad06a7bib81) 2015; 447
Hunter (apjad06a7bib57) 2007; 9
Robertson (apjad06a7bib95) 2013; 768
White (apjad06a7bib111) 1978; 183
Bouwens (apjad06a7bib19) 2022b; 940
Liu (apjad06a7bib66) 2022; 937
Shapiro (apjad06a7bib98) 1987; 321
Bouwens (apjad06a7bib21) 2015; 803
Bouwens (apjad06a7bib20) 2014; 793
Naidu (apjad06a7bib87) 2022
Inayoshi (apjad06a7bib59) 2022; 938
Madau (apjad06a7bib73) 2014; 52
Harris (apjad06a7bib53) 2020; 585
Virtanen (apjad06a7bib109) 2020; 17
Overzier (apjad06a7bib91) 2011; 726
Silk (apjad06a7bib100) 2011
Kuhlen (apjad06a7bib61) 2012; 423
Oesch (apjad06a7bib89) 2018; 855
Boylan-Kolchin (apjad06a7bib27) 2023; 7
Mason (apjad06a7bib78) 2023; 521
Mirocha (apjad06a7bib85) 2019; 483
Foreman-Mackey (apjad06a7bib40) 2016; 1
Yung (apjad06a7bib116) 2020; 496
Planck Collaboration (apjad06a7bib92) 2020; 641
Cooray (apjad06a7bib32) 2005; 627
Furlanetto (apjad06a7bib45) 2022; 511
Gaikwad (apjad06a7bib48) 2023; 525
Harikane (apjad06a7bib50) 2022; 259
Schive (apjad06a7bib97) 2016; 818
Loeb (apjad06a7bib68) 2013
Banks (apjad06a7bib8) 2017; 74
Dekel (apjad06a7bib35) 2023; 523
Furlanetto (apjad06a7bib47) 2017; 472
Pritchard (apjad06a7bib93) 2012; 75
Fujimoto (apjad06a7bib43) 2023a
Mirocha (apjad06a7bib86) 2023; 519
Mason (apjad06a7bib79) 2018; 856
Davies (apjad06a7bib34) 2018; 864
Atek (apjad06a7bib7) 2018; 479
Bunker (apjad06a7bib28) 2023; 677
Lewis (apjad06a7bib65) 2020; 496
Ishigaki (apjad06a7bib60) 2018; 854
Mason (apjad06a7bib77) 2019; 485
Sheth (apjad06a7bib99) 2002; 329
Lotz (apjad06a7bib69) 2017; 837
Yang (apjad06a7bib114) 2003; 339
Bouwens (apjad06a7bib23) 2017b; 843
Barlow (apjad06a7bib10) 2006
Hütsi (apjad06a7bib58) 2023; 107
Kulkarni (apjad06a7bib62) 2019; 488
Ma (apjad06a7bib71) 2018; 478
Hassan (apjad06a7bib54) 2023; 958
Sabti (apjad06a7bib96) 2022; 105
Mirocha (apjad06a7bib84) 2020; 499
Mashian (apjad06a7bib75) 2016; 455
Smit (apjad06a7bib102) 2012; 756
Barkana (apjad06a7bib9) 2001; 349
Livermore (apjad06a7bib67) 2017; 835
Umeda (apjad06a7bib107) 2023
Bouwens (apjad06a7bib18) 2022a; 931
Coe (apjad06a7bib31) 2015; 800
Foreman-Mackey (apjad06a7bib41) 2013; 125
Naidu (apjad06a7bib88) 2020; 892
Madau (apjad06a7bib74) 1999; 514
Lukic (apjad06a7bib70) 2007; 671
Vogelsberger (apjad06a7bib110) 2020; 492
Castellano (apjad06a7bib29) 2016; 823
Meurer (apjad06a7bib83) 1999; 521
Becker (apjad06a7bib11) 2021; 508
Robertson (apjad06a7bib94) 2015; 802
Furlanetto (apjad06a7bib46) 2023; 523
Bouwens (apjad06a7bib25) 2023b; 523
Yajima (apjad06a7bib113) 2023; 525
Furlanetto (apjad06a7bib44) 2006; 433
Bouwens (apjad06a7bib24) 2021; 162
Bhatawdekar (apjad06a7bib15) 2019; 486
Bouwens (apjad06a7bib22) 2017a; 843
Mason (apjad06a7bib76) 2015; 813
Madau (apjad06a7bib72) 2018; 480
Adams (apjad06a7bib1) 2023; 518
Bernal (apjad06a7bib14) 2022; 30
Wouthuysen (apjad06a7bib112) 1952; 57
References_xml – volume: 522
  start-page: 3986
  year: 2022
  ident: apjad06a7bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1095
– volume: 538
  start-page: 473
  year: 2000
  ident: apjad06a7bib64
  publication-title: ApJ
  doi: 10.1086/309179
– volume: 949
  start-page: L25
  year: 2023b
  ident: apjad06a7bib42
  publication-title: ApJL
  doi: 10.3847/2041-8213/acd2d9
– volume: 162
  start-page: 47
  year: 2021
  ident: apjad06a7bib24
  publication-title: AJ
  doi: 10.3847/1538-3881/abf83e
– year: 2022
  ident: apjad06a7bib87
– volume: 486
  start-page: 3805
  year: 2019
  ident: apjad06a7bib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stz866
– volume: 379
  start-page: 440
  year: 1991
  ident: apjad06a7bib16
  publication-title: ApJ
  doi: 10.1086/170520
– volume: 525
  start-page: 4832
  year: 2023
  ident: apjad06a7bib113
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2497
– volume: 511
  start-page: 3895
  year: 2022
  ident: apjad06a7bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stac310
– volume: 793
  start-page: 115
  year: 2014
  ident: apjad06a7bib20
  publication-title: ApJ
  doi: 10.1088/0004-637X/793/2/115
– volume: 488
  start-page: 1035
  year: 2019
  ident: apjad06a7bib62
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1493
– volume: 518
  start-page: 4755
  year: 2023
  ident: apjad06a7bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3347
– volume: 803
  start-page: 34
  year: 2015
  ident: apjad06a7bib21
  publication-title: ApJ
  doi: 10.1088/0004-637X/803/1/34
– volume: 46
  start-page: 240
  year: 1958
  ident: apjad06a7bib38
  publication-title: PIRE
  doi: 10.1109/JRPROC.1958.286741
– volume: 478
  start-page: 1694
  year: 2018
  ident: apjad06a7bib71
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1024
– volume: 521
  start-page: 64
  year: 1999
  ident: apjad06a7bib83
  publication-title: ApJ
  doi: 10.1086/307523
– volume: 837
  start-page: 97
  year: 2017
  ident: apjad06a7bib69
  publication-title: ApJ
  doi: 10.3847/1538-4357/837/1/97
– volume: 523
  start-page: 5274
  year: 2023
  ident: apjad06a7bib46
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1799
– volume: 868
  start-page: 115
  year: 2018
  ident: apjad06a7bib115
  publication-title: ApJ
  doi: 10.3847/1538-4357/aae77f
– volume: 835
  start-page: 113
  year: 2017
  ident: apjad06a7bib67
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/2/113
– volume: 641
  start-page: A6
  year: 2020
  ident: apjad06a7bib92
  publication-title: A&A
  doi: 10.1051/0004-6361/201833910
– volume: 460
  start-page: 417
  year: 2016
  ident: apjad06a7bib105
  publication-title: MNRAS
  doi: 10.1093/mnras/stw980
– volume: 75
  start-page: 086901
  year: 2012
  ident: apjad06a7bib93
  publication-title: RPPh
  doi: 10.1088/0034-4885/75/8/086901
– volume: 802
  start-page: L19
  year: 2015
  ident: apjad06a7bib94
  publication-title: ApJL
  doi: 10.1088/2041-8205/802/2/L19
– volume: 508
  start-page: 1853
  year: 2021
  ident: apjad06a7bib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2696
– volume: 823
  start-page: L40
  year: 2016
  ident: apjad06a7bib29
  publication-title: ApJL
  doi: 10.3847/2041-8205/823/2/L40
– volume: 423
  start-page: 862
  year: 2012
  ident: apjad06a7bib61
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20924.x
– volume: 57
  start-page: 31
  year: 1952
  ident: apjad06a7bib112
  publication-title: AJ
  doi: 10.1086/106661
– volume: 7
  start-page: 622
  year: 2023
  ident: apjad06a7bib33
  publication-title: NatAs
  doi: 10.1038/s41550-023-01918-w
– volume: 677
  start-page: A88
  year: 2023
  ident: apjad06a7bib28
  publication-title: A&A
  doi: 10.1051/0004-6361/202346159
– volume: 208
  start-page: 19
  year: 2013
  ident: apjad06a7bib56
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/2/19
– volume: 435
  start-page: 629
  year: 2005
  ident: apjad06a7bib103
  publication-title: Natur
  doi: 10.1038/nature03597
– volume: 9
  start-page: 90
  year: 2007
  ident: apjad06a7bib57
  publication-title: CSE
  doi: 10.1109/MCSE.2007.55
– volume: 946
  start-page: L13
  year: 2023
  ident: apjad06a7bib39
  publication-title: ApJL
  doi: 10.3847/2041-8213/acade4
– volume: 799
  start-page: 32
  year: 2015
  ident: apjad06a7bib12
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/1/32
– volume: 7
  start-page: 71
  year: 2023
  ident: apjad06a7bib82
  publication-title: RNAAS
  doi: 10.3847/2515-5172/accbc2
– volume: 585
  start-page: 357
  year: 2020
  ident: apjad06a7bib53
  publication-title: Natur
  doi: 10.1038/s41586-020-2649-2
– volume: 843
  start-page: 41
  year: 2017a
  ident: apjad06a7bib22
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa74e4
– volume: 813
  start-page: 54
  year: 2015
  ident: apjad06a7bib106
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/1/54
– volume: 485
  start-page: 3947
  year: 2019
  ident: apjad06a7bib77
  publication-title: MNRAS
  doi: 10.1093/mnras/stz632
– volume: 555
  start-page: 67
  year: 2018
  ident: apjad06a7bib26
  publication-title: Natur
  doi: 10.1038/nature25792
– year: 2023
  ident: apjad06a7bib107
– volume: 958
  start-page: L3
  year: 2023
  ident: apjad06a7bib54
  publication-title: ApJL
  doi: 10.3847/2041-8213/ad0239
– volume: 74
  start-page: 33
  year: 2017
  ident: apjad06a7bib8
  publication-title: ApMaL
  doi: 10.1016/j.aml.2017.05.005
– volume: 523
  start-page: 1009
  year: 2023a
  ident: apjad06a7bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1014
– volume: 800
  start-page: 84
  year: 2015
  ident: apjad06a7bib31
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/2/84
– volume: 854
  start-page: 73
  year: 2018
  ident: apjad06a7bib60
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa544
– volume: 472
  start-page: 1576
  year: 2017
  ident: apjad06a7bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2132
– volume: 6
  start-page: 607
  year: 2022
  ident: apjad06a7bib101
  publication-title: NatAs
  doi: 10.1038/s41550-022-01610-5
– volume: 622
  start-page: 707
  year: 2023
  ident: apjad06a7bib2
  publication-title: Natur
  doi: 10.1038/s41586-023-06521-7
– volume: 183
  start-page: 341
  year: 1978
  ident: apjad06a7bib111
  publication-title: MNRAS
  doi: 10.1093/mnras/183.3.341
– volume: 519
  start-page: 843
  year: 2023
  ident: apjad06a7bib86
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3578
– volume: 339
  start-page: 1057
  year: 2003
  ident: apjad06a7bib114
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06254.x
– year: 2013
  ident: apjad06a7bib68
– volume: 523
  start-page: 1036
  year: 2023b
  ident: apjad06a7bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1145
– volume: 156
  start-page: 123
  year: 2018
  ident: apjad06a7bib4
  publication-title: AJ
  doi: 10.3847/1538-3881/aabc4f
– volume: 521
  start-page: 497
  year: 2023
  ident: apjad06a7bib78
  publication-title: MNRAS
  doi: 10.1093/mnras/stad035
– volume: 938
  start-page: L10
  year: 2022
  ident: apjad06a7bib59
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac9310
– volume: 943
  start-page: L9
  year: 2023
  ident: apjad06a7bib117
  publication-title: ApJL
  doi: 10.3847/2041-8213/acacfe
– volume: 959
  start-page: 2
  year: 2023
  ident: apjad06a7bib13
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad05c0
– volume: 259
  start-page: 20
  year: 2022
  ident: apjad06a7bib50
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac3dfc
– volume: 492
  start-page: 5167
  year: 2020
  ident: apjad06a7bib110
  publication-title: MNRAS
  doi: 10.1093/mnras/staa137
– volume: 960
  start-page: 56
  year: 2024
  ident: apjad06a7bib49
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad0b7e
– volume: 30
  start-page: 5
  year: 2022
  ident: apjad06a7bib14
  publication-title: A&ARv
  doi: 10.1007/s00159-022-00143-0
– volume: 514
  start-page: 648
  year: 1999
  ident: apjad06a7bib74
  publication-title: ApJ
  doi: 10.1086/306975
– volume: 349
  start-page: 125
  year: 2001
  ident: apjad06a7bib9
  publication-title: PhR
  doi: 10.1016/S0370-1573(01)00019-9
– volume: 514
  start-page: 4639
  year: 2022
  ident: apjad06a7bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1549
– volume: 52
  start-page: 415
  year: 2014
  ident: apjad06a7bib73
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125615
– volume: 756
  start-page: 14
  year: 2012
  ident: apjad06a7bib102
  publication-title: ApJ
  doi: 10.1088/0004-637X/756/1/14
– volume: 27
  start-page: 21
  year: 1974
  ident: apjad06a7bib90
  publication-title: ApJS
  doi: 10.1086/190287
– volume: 525
  start-page: 4093
  year: 2023
  ident: apjad06a7bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2566
– volume: 558
  start-page: A33
  year: 2013
  ident: apjad06a7bib5
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 265
  start-page: 5
  year: 2023a
  ident: apjad06a7bib51
  publication-title: ApJS
  doi: 10.3847/1538-4365/acaaa9
– start-page: 56
  year: 2006
  ident: apjad06a7bib10
– volume: 125
  start-page: 306
  year: 2013
  ident: apjad06a7bib41
  publication-title: PASP
  doi: 10.1086/670067
– volume: 1
  start-page: 24
  year: 2016
  ident: apjad06a7bib40
  publication-title: JOSS
  doi: 10.21105/joss.00024
– volume: 455
  start-page: 2101
  year: 2016
  ident: apjad06a7bib75
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2469
– volume: 627
  start-page: L89
  year: 2005
  ident: apjad06a7bib32
  publication-title: ApJL
  doi: 10.1086/432259
– volume: 855
  start-page: 105
  year: 2018
  ident: apjad06a7bib89
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab03f
– volume: 813
  start-page: 21
  year: 2015
  ident: apjad06a7bib76
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/1/21
– volume: 864
  start-page: 142
  year: 2018
  ident: apjad06a7bib34
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad6dc
– start-page: 273
  year: 2011
  ident: apjad06a7bib100
– volume: 17
  start-page: 261
  year: 2020
  ident: apjad06a7bib109
  publication-title: NatMe
  doi: 10.1038/s41592-019-0686-2
– volume: 843
  start-page: 129
  year: 2017b
  ident: apjad06a7bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa70a4
– volume: 892
  start-page: 109
  year: 2020
  ident: apjad06a7bib88
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab7cc9
– volume: 951
  start-page: L40
  year: 2023
  ident: apjad06a7bib104
  publication-title: ApJL
  doi: 10.3847/2041-8213/acdef6
– volume: 496
  start-page: 4574
  year: 2020
  ident: apjad06a7bib116
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1800
– volume: 518
  start-page: 6011
  year: 2022
  ident: apjad06a7bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3472
– volume: 107
  start-page: 043502
  year: 2023
  ident: apjad06a7bib58
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.107.043502
– volume: 447
  start-page: 499
  year: 2015
  ident: apjad06a7bib81
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2449
– volume: 321
  start-page: L107
  year: 1987
  ident: apjad06a7bib98
  publication-title: ApJL
  doi: 10.1086/185015
– volume: 353
  start-page: 189
  year: 2004
  ident: apjad06a7bib108
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08059.x
– volume: 768
  start-page: 71
  year: 2013
  ident: apjad06a7bib95
  publication-title: ApJ
  doi: 10.1088/0004-637X/768/1/71
– volume: 329
  start-page: 61
  year: 2002
  ident: apjad06a7bib99
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.04950.x
– volume: 818
  start-page: 89
  year: 2016
  ident: apjad06a7bib97
  publication-title: ApJ
  doi: 10.3847/0004-637X/818/1/89
– volume: 479
  start-page: 5184
  year: 2018
  ident: apjad06a7bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1820
– volume: 945
  start-page: 124
  year: 2023
  ident: apjad06a7bib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/acaf50
– volume: 398
  start-page: 1858
  year: 2009
  ident: apjad06a7bib80
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15329.x
– volume: 616
  start-page: 266
  year: 2023
  ident: apjad06a7bib63
  publication-title: Natur
  doi: 10.1038/s41586-023-05786-2
– volume: 480
  start-page: L43
  year: 2018
  ident: apjad06a7bib72
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly125
– volume: 433
  start-page: 181
  year: 2006
  ident: apjad06a7bib44
  publication-title: PhR
  doi: 10.1016/j.physrep.2006.08.002
– volume: 499
  start-page: 4534
  year: 2020
  ident: apjad06a7bib84
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3150
– volume: 483
  start-page: 1980
  year: 2019
  ident: apjad06a7bib85
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3260
– year: 2023a
  ident: apjad06a7bib43
– volume: 959
  start-page: 39
  year: 2023b
  ident: apjad06a7bib52
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad029e
– volume: 523
  start-page: 3201
  year: 2023
  ident: apjad06a7bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1557
– volume: 856
  start-page: 2
  year: 2018
  ident: apjad06a7bib79
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab0a7
– volume: 931
  start-page: 81
  year: 2022a
  ident: apjad06a7bib18
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac618c
– volume: 671
  start-page: 1160
  year: 2007
  ident: apjad06a7bib70
  publication-title: ApJ
  doi: 10.1086/523083
– volume: 935
  start-page: 167
  year: 2022
  ident: apjad06a7bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7c74
– volume: 814
  start-page: 69
  year: 2015
  ident: apjad06a7bib6
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/1/69
– volume: 937
  start-page: L30
  year: 2022
  ident: apjad06a7bib66
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac927f
– volume: 105
  start-page: 043518
  year: 2022
  ident: apjad06a7bib96
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.105.043518
– volume: 496
  start-page: 4342
  year: 2020
  ident: apjad06a7bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1748
– volume: 726
  start-page: L7
  year: 2011
  ident: apjad06a7bib91
  publication-title: ApJL
  doi: 10.1088/2041-8205/726/1/L7
– volume: 940
  start-page: 55
  year: 2022b
  ident: apjad06a7bib19
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac86d1
– volume: 7
  start-page: 731
  year: 2023
  ident: apjad06a7bib27
  publication-title: NatAs
  doi: 10.1038/s41550-023-01937-7
SSID ssj0004299
Score 2.5267732
Snippet A recent ultraviolet luminosity function (UVLF) analysis in the Hubble Frontier Fields, behind foreground lensing clusters, has helped solidify estimates of...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Astronomical models
Astrophysics
Estimates
Galaxies
Galaxy dark matter halos
Gravitational lensing
Hubble Space Telescope
Ionization
James Webb Space Telescope
Luminosity
Luminosity function
Markov chain Monte Carlo
Model selection
Optical analysis
Optical thickness
Photons
Red shift
Reionization
Star & galaxy formation
Star formation
Stars & galaxies
Stellar feedback
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBajUNhldO1G0l_o0A56MLEty5KO3YjJdhhlrJBLEU-2DBtpYuLksP9-71l21lBoL7sZI9vi6Unv07O-7zF2JUGmstIQ-VrWUQbaR6BTgQNCdD2lqRQ3nbb4ns_us29zOX9S6ovOhAV54GA4qtaHmD-TKvY6Mw4gE4hYEDQY8Mr4Tgk0NvGwmRoYkbjKhp-SApffSTetERioCVRxDmovCHVa_Rhafq2aZwtyF2WKI_auh4f8NnTrPXvjl8dsdNtSwnr1-Id_4t11yEe0x-zwLlydsAcccI7Qcc2LgY_Ip50-BJEreaAj8h-e8q-Besmh5V-J77f2FSeaCUcwyGdb5xaeFyRsgCGTF3TErf3A7ovpzy-zqK-dEJVorE3khEyc0Tqvy8TVOe4CIYUqUQKIaeukk6nWpH3nKzCVTkn5CgNaXQoJdS5K8ZEdLFdLP2IcAQ7QYShjSny3Uq40IqtT3FhT9VxpxmwyGNOWvbA41bdYWNxgkPktmd-S-W0w_5jd7J5ogqjGC20_0_js2pEcdncDncT2TmJfc5Ixu8bRtf30bF_42MVeO2h-W5MnNrEytk1Vj9n54B__GqUmEYqk2eTp_-jrGXuLEyULaZ5zdrBZb_0FAp-Nu-x8_C-9E_ks
  priority: 102
  providerName: Directory of Open Access Journals
Title The Star Formation Efficiency during Reionization as Inferred from the Hubble Frontier Fields
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad06a7
https://www.proquest.com/docview/2913702605
https://doaj.org/article/6671444570e849baa437742269ae79e4
Volume 961
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIiQuPAqogbbaAyBxcBJ73-JUUK3AgVaIihxAq117fSglieLkAL-eGa-TqoAqxMVaWWOvPePdeXi_bwGeSy8LWRufxUY2mfAmZt4UHA1CcD1taCtuWm3xQU3OxfupnO7A6y0WZr7op_4hNhNRcFIhjW-Oc-moG6Po5fXI12Pl9S24zQ3mFYTeOz27AkUWto99Raa4nqZ_lH-9wzWf1FH3o6fB7v-YnzunU96HL5vHTWtNvg3XqzCsfv7G5Pif7_MA7vXBKDtOog9hJ872YP-4pfL4_PsP9pJ17VT9aPfgzllqPYKv-HkxDFSXrNygH9lJx0ZBUE6WwI_sY6RqbwJ6Mt-yd4QuXMaaEaiFYejJJusQLiMriUYBHTQraUFd-xjOy5NPbydZv1NDVgkhV1ngMg_WGNVUeWgU5py-8HWuuSdcb5BBFsYQ016sva1NQTxb6D6bikvfKF7xJ7A7m8_iPjAMpzwtvbK2wntrHSrLRVNgGk979Uo7gNHGVq7qacxpN41Lh-kM6dORPh3p0yV9DuDV9opFovC4QfYNmX8rR-Tb3Qk0nOsN55TSmIYKqcfRCBu8FxyDaIxjrY_aRjGAF2hr108G7Q2dHV6T84sLZ1XucifHblE3AzjYfH5XQoXNuSYiOPn0H7t5Bndx5IlUNzqA3dVyHQ8xklqFo64CcdSNGzye8s-_AHu1E7w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BEYhLC4WqKS34AEgcNumu7bV97GuVACoRolIuyNi73gOUJMomB_j1zKw3rQqoQuJmWbOvmbFn7PX3DcBL6WQmK-2SUMs6EU6HxOmMo0EIrqc0leKm0xbn-fBCvJ3ISVfntMXCzObd1N_HZiQKjiqk8c1xLh20YxSjvBq46jB3ajCv6rtwT2IP1W4YfRhfAyMz0-W_Ism5msT_lH-9y4241NL3Y7TBV_hjjm4DT7EFX9avHM-bfOuvlr5f_vyNzfE_vukRbHZJKTuK4o_hTphuw-5RQ9vks-8_2GvWtuMuSLMN98ex9QQ-o5sxTFgXrFijINlZy0pBkE4WQZDsY6Bd3wj4ZK5hI0IZLkLFCNzCMAVlw5X3l4EVRKeAgZoVdLCueQoXxdmnk2HSVWxISiHkMvFcpt5onddl6usc154uc1WquCN8r5deZloT416onKl0RnxbGEbrkktX57zkO7AxnU3DLjBMqxwdwTKmxHsr5UvDRZ3hcp5q9krTg8HaXrbs6MypqsalxWUN6dSSTi3p1Ead9uDN1RXzSOVxi-wxucCVHJFwtx1oPNsZz-a5wuWoQLcLWhjvnOCYTGM-a1xQJogevEJ7225SaG552MENOTf_ak2e2tTKQ4uO0IP9tQteC2Um5YoI4eTePz7mBTwYnxb2_ej83TN4iINRxK2kfdhYLlbhAJOrpX_eDqBflqYXNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Star+Formation+Efficiency+during+Reionization+as+Inferred+from+the+Hubble+Frontier+Fields&rft.jtitle=The+Astrophysical+journal&rft.au=Sipple%2C+Jackson&rft.au=Lidz%2C+Adam&rft.date=2024-01-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=961&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fad06a7&rft.externalDocID=apjad06a7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon