Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, compo...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 19; no. 11; pp. 59 - 66
Main Author 顾林波;蔡忆昔;施蕴曦;王静;濮晓宇;田晶;樊润林
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2017
Subjects
Online AccessGet full text
ISSN1009-0630
1009-0630
DOI10.1088/2058-6272/aa7f6e

Cover

Abstract To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10L min^-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma(NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10L min^-1 was more appropriate for the purification of particles.
AbstractList To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min−1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min−1 was more appropriate for the purification of particles.
To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10L min^-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma(NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10L min^-1 was more appropriate for the purification of particles.
Author 顾林波;蔡忆昔;施蕴曦;王静;濮晓宇;田晶;樊润林
AuthorAffiliation School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
Author_xml – sequence: 1
  fullname: 顾林波;蔡忆昔;施蕴曦;王静;濮晓宇;田晶;樊润林
BookMark eNp9kM9rwyAcxWV0sLbbfUfZaYdlVRNjchyl-wGFXbazmKitJdVM7WH762fWUsYYBcGv-D6P73sTMLLOKgCuMbrHqKpmBNEqKwkjMyGYLtUZGGOE6gyVORr9mi_AJIQNQrSoq3wM7EJr1UboNDRWGj_MyTmLa-W3ooN9J8JWQGdhL3w0badgMF8KShOiN80umvQlrISt2_YumJ93MpNGBdVBZVfGqiMbLsG5Fl1QV4d7Ct4fF2_z52z5-vQyf1hmbVHQmDFMmFJEkAITiZpa1LJtWUlxU2LBmjrHRGjVyBSXUsZkrmlNcEovhSY1kfkUoL1v610IXmnee7MV_pNjxIe--NAXH_ri-74SUv5BWhPFkCd6YbpT4N0eNK7nG7fzNiU7Jb_9R96HyHHNMU6HUpTzXuokvTmstHZ29WHs6hijZDmtGKtw_g3-X5s7
CODEN PSTHC3
CitedBy_id crossref_primary_10_1109_TSM_2018_2808173
crossref_primary_10_1007_s11090_018_9947_6
crossref_primary_10_1007_s11356_023_29047_x
crossref_primary_10_1007_s40201_020_00500_0
crossref_primary_10_1007_s11356_023_25880_2
crossref_primary_10_1088_2058_6272_ac1058
crossref_primary_10_1016_j_ces_2021_117371
crossref_primary_10_1016_j_chemosphere_2022_134787
crossref_primary_10_1016_j_jhazmat_2023_132685
crossref_primary_10_1088_2058_6272_abffaa
crossref_primary_10_1016_j_fuel_2023_130312
crossref_primary_10_1007_s42823_023_00675_0
crossref_primary_10_1088_2058_6272_ac1dfd
Cites_doi 10.1007/s11090-008-9121-7
10.1016/j.scitotenv.2013.11.041
10.1007/s11090-005-6817-9
10.7652/xjtuxb201609012
10.1016/j.fuel.2013.08.074
10.1109/TPS.2013.2270015
10.1109/TDEI.2004.1306726
10.1080/01919518808552391
10.3969/j.issn.1002-6819.2013.16.007
10.1109/TIA.2010.2071070
10.1007/s11090-016-9701-x
10.1109/TIA.2014.2358798
10.1016/j.tsf.2006.02.071
10.1016/j.combustflame.2013.03.013
10.13334/j.0258-8013.pcsee.2007.02.011
10.1016/j.atmosenv.2015.02.077
10.1016/j.fuel.2017.04.029
10.1016/j.cej.2015.04.086
10.1016/j.energy.2006.04.011
10.1016/j.scitotenv.2017.04.079
10.1016/j.apenergy.2014.02.031
10.1016/j.atmosenv.2012.01.028
10.1007/s12239-014-0091-x
10.1063/1.1346631
ContentType Journal Article
Copyright 2017 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing
Copyright_xml – notice: 2017 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1088/2058-6272/aa7f6e
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles
EISSN 1009-0630
EndPage 66
ExternalDocumentID 10_1088_2058_6272_aa7f6e
pstaa7f6e
673587781
GrantInformation_xml – fundername: Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
  grantid: PADA
– fundername: Major projects of natural science research in colleges and universities in Jiangsu Province
  grantid: No.16KJA470002
– fundername: National Natural Science Foundation of China
  grantid: No.51676089
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 02O
042
123
1JI
1WK
2B.
2C.
2RA
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
TCJ
TGP
W28
W92
~WA
-SA
-S~
AAXDM
AOAED
CAJEA
Q--
U1G
U5K
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
ARNYC
CITATION
ID FETCH-LOGICAL-c445t-7127ee2a2412d0b9a9dcc7651b61a7b9312afebd2725577d3f5921627daf292d3
IEDL.DBID IOP
ISSN 1009-0630
IngestDate Wed Oct 01 04:22:57 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Thu Jan 07 13:53:47 EST 2021
Wed Aug 21 03:41:32 EDT 2024
Wed Feb 14 09:56:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-7127ee2a2412d0b9a9dcc7651b61a7b9312afebd2725577d3f5921627daf292d3
Notes diesel engine, particulate matter, non-thermal plasma, gas source flow rate
To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10L min^-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma(NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10L min^-1 was more appropriate for the purification of particles.
Linbo GU,Yixi CAI,Yunxi SHI,Jing WANG,Xiaoyu PU,Jing TIAN,Runlin FAN(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China)
34-1187/TL
PST-2017-0135.R2
Institute of Plasma Physics
ORCID 0000-0002-6517-8104
PageCount 8
ParticipantIDs crossref_citationtrail_10_1088_2058_6272_aa7f6e
chongqing_primary_673587781
iop_journals_10_1088_2058_6272_aa7f6e
crossref_primary_10_1088_2058_6272_aa7f6e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Plasma science & technology
PublicationTitleAbbrev PST
PublicationTitleAlternate Plasma Science & Technology
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 23
24
25
27
Wei L S (9) 2016; 18
10
11
12
13
14
15
16
17
18
19
Yagi S (22) 1979; 12
1
2
3
4
5
6
7
8
20
Li B (26) 2013
21
References_xml – ident: 15
  doi: 10.1007/s11090-008-9121-7
– ident: 7
  doi: 10.1016/j.scitotenv.2013.11.041
– ident: 13
  doi: 10.1007/s11090-005-6817-9
– ident: 20
  doi: 10.7652/xjtuxb201609012
– ident: 5
  doi: 10.1016/j.fuel.2013.08.074
– ident: 12
  doi: 10.1109/TPS.2013.2270015
– ident: 21
  doi: 10.1109/TDEI.2004.1306726
– ident: 23
  doi: 10.1080/01919518808552391
– ident: 27
  doi: 10.3969/j.issn.1002-6819.2013.16.007
– ident: 16
  doi: 10.1109/TIA.2010.2071070
– ident: 19
  doi: 10.1007/s11090-016-9701-x
– ident: 10
  doi: 10.1109/TIA.2014.2358798
– ident: 17
  doi: 10.1016/j.tsf.2006.02.071
– volume: 12
  start-page: 1509
  issn: 0022-3727
  year: 1979
  ident: 22
  publication-title: J. Phys. D: Appl. Phys.
– ident: 2
  doi: 10.1016/j.combustflame.2013.03.013
– ident: 25
  doi: 10.13334/j.0258-8013.pcsee.2007.02.011
– ident: 4
  doi: 10.1016/j.atmosenv.2015.02.077
– ident: 1
  doi: 10.1016/j.fuel.2017.04.029
– ident: 11
  doi: 10.1016/j.cej.2015.04.086
– ident: 8
  doi: 10.1016/j.energy.2006.04.011
– ident: 24
  doi: 10.1016/j.scitotenv.2017.04.079
– year: 2013
  ident: 26
– ident: 6
  doi: 10.1016/j.apenergy.2014.02.031
– volume: 18
  start-page: 147
  issn: 1009-0630
  year: 2016
  ident: 9
  publication-title: Plasma Sci. Technol.
– ident: 3
  doi: 10.1016/j.atmosenv.2012.01.028
– ident: 18
  doi: 10.1007/s12239-014-0091-x
– ident: 14
  doi: 10.1063/1.1346631
SSID ssj0054983
Score 2.1873205
Snippet To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification...
To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was...
SourceID crossref
iop
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms diesel engine
gas source flow rate
non-thermal plasma
particulate matter
低温等离子体技术
成分
挥发性物质
柴油机
质量浓度
间接
非热等离子体
颗粒粒径分布
Title Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles
URI http://lib.cqvip.com/qk/84262X/201711/673587781.html
https://iopscience.iop.org/article/10.1088/2058-6272/aa7f6e
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1009-0630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054983
  issn: 1009-0630
  databaseCode: IOP
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9UwDLe2oUlc-BqIxwAFaRx2yNtLmjSpOCHENCHxcWDSDkhRvsoQW9ut3WV_PU6b97QhhqZJPfRgu4ndxnbzswOw49nCV8xqKqR1VPjCUYtem9boqrTXC2-rVO_8-Ut5cCg-HcmjNXi3qoVpu7z0z_F2ahQ8qTAD4jSm61LTkiu-Z62qy7gO9wqNeUWq3vv6bbkMY96jJ3R9-vtfFou8R_kvCamvwnHb_DxDb3HNP63jGK64m_2H8GM50All8nt-Mbi5v_yrh-MdZ_IIHuQwlLyfSB_DWmyewOYIB_X9FjRTU2PS1iTtaadVkTRtQ1O0eIp8Hcbcp5a0Deny00j_6zKSkNrw5hO0iG0CSYj1DAtLwhJkMZ6QODZBXPH2T-Fw_-P3Dwc0n8xAvRByoIpxFSO36P55WLgKDeq9KiVzJbPKVQXjto4u4NSkVCoUtaw4w5kGW_OKh-IZbOCo43MgXvigKmdlKazA8M9FDJE0cpU-CBXkDLZXtjHd1IEjgdGkVkqzGewtrWV8bmqeztY4MePmutYm6dgkHZtJxzPYXXEsxd1M-xZNZ_JX3f-H7s01uq4fDKswucILM8DCdKF-cUtZ23Cfp8hhLHd8CRvD-UV8hXHP4F6P7_cf3fz7uQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAX3oilPIwEBw7eXTt27BwRsGp5lB6o1JvxK4Bok0DSS38948S7oggQEtIecpiZtWcSzzea8QzAE8-WvmJWUyGto8IXjlr02rRGV6W9XnpbpfvO7_bL3UPx-kge5Tmn412YtstH_xwfp0bBkwpzQZzGcF1qWnLFF9aquoyLLtRbcFEWUqXZDXvvD9ZHMcY-eqqwTxmAsljmPOXvpKTeCp_b5tM39BjnfNQWruMnl7O6Bh_Xi50qTb7OTwc392e_9HH8j91ch6sZjpLnE_kNuBCbm3BpLAv1_S1opubGpK1Jym2n05E0bUMTajxBvg6x94klbUO6_I-k_3IWSUjtePMkLWKbQFLlei4PS8JS6WI8JnFshrjh7W_D4erVhxe7NE9ooF4IOVDFuIqRW4QBPCxdhYb1XpWSuZJZ5aqCcVtHF3B7UioVilpWnOFug615xUNxB7Zx1fEuEC98UJWzshRWIAx0EaGSRq7SB6GCnMHOxj6mmzpxpKI0qZXSbAaLtcWMz83N04yNYzMm2bU2Sc8m6dlMep7Bsw3HWtyfaZ-i-Uz-uvu_0D0-R9f1g2EVBln4w0iwMGjbe_8o6xFcPni5Mm_39t_swBWewMR4A_I-bA_fT-MDhEKDezi-7j8ABmYBMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+indirect+non-thermal+plasma+on+particle+size+distribution+and+composition+of+diesel+engine+particles&rft.jtitle=Plasma+science+%26+technology&rft.au=GU%2C+Linbo&rft.au=CAI%2C+Yixi&rft.au=SHI%2C+Yunxi&rft.au=WANG%2C+Jing&rft.date=2017-11-01&rft.pub=IOP+Publishing&rft.issn=1009-0630&rft.eissn=1009-0630&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1088%2F2058-6272%2Faa7f6e&rft.externalDocID=pstaa7f6e
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84262X%2F84262X.jpg