Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles
To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, compo...
Saved in:
Published in | Plasma science & technology Vol. 19; no. 11; pp. 59 - 66 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 1009-0630 |
DOI | 10.1088/2058-6272/aa7f6e |
Cover
Abstract | To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10L min^-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma(NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10L min^-1 was more appropriate for the purification of particles. |
---|---|
AbstractList | To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min−1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min−1 was more appropriate for the purification of particles. To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10L min^-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma(NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10L min^-1 was more appropriate for the purification of particles. |
Author | 顾林波;蔡忆昔;施蕴曦;王静;濮晓宇;田晶;樊润林 |
AuthorAffiliation | School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China |
Author_xml | – sequence: 1 fullname: 顾林波;蔡忆昔;施蕴曦;王静;濮晓宇;田晶;樊润林 |
BookMark | eNp9kM9rwyAcxWV0sLbbfUfZaYdlVRNjchyl-wGFXbazmKitJdVM7WH762fWUsYYBcGv-D6P73sTMLLOKgCuMbrHqKpmBNEqKwkjMyGYLtUZGGOE6gyVORr9mi_AJIQNQrSoq3wM7EJr1UboNDRWGj_MyTmLa-W3ooN9J8JWQGdhL3w0badgMF8KShOiN80umvQlrISt2_YumJ93MpNGBdVBZVfGqiMbLsG5Fl1QV4d7Ct4fF2_z52z5-vQyf1hmbVHQmDFMmFJEkAITiZpa1LJtWUlxU2LBmjrHRGjVyBSXUsZkrmlNcEovhSY1kfkUoL1v610IXmnee7MV_pNjxIe--NAXH_ri-74SUv5BWhPFkCd6YbpT4N0eNK7nG7fzNiU7Jb_9R96HyHHNMU6HUpTzXuokvTmstHZ29WHs6hijZDmtGKtw_g3-X5s7 |
CODEN | PSTHC3 |
CitedBy_id | crossref_primary_10_1109_TSM_2018_2808173 crossref_primary_10_1007_s11090_018_9947_6 crossref_primary_10_1007_s11356_023_29047_x crossref_primary_10_1007_s40201_020_00500_0 crossref_primary_10_1007_s11356_023_25880_2 crossref_primary_10_1088_2058_6272_ac1058 crossref_primary_10_1016_j_ces_2021_117371 crossref_primary_10_1016_j_chemosphere_2022_134787 crossref_primary_10_1016_j_jhazmat_2023_132685 crossref_primary_10_1088_2058_6272_abffaa crossref_primary_10_1016_j_fuel_2023_130312 crossref_primary_10_1007_s42823_023_00675_0 crossref_primary_10_1088_2058_6272_ac1dfd |
Cites_doi | 10.1007/s11090-008-9121-7 10.1016/j.scitotenv.2013.11.041 10.1007/s11090-005-6817-9 10.7652/xjtuxb201609012 10.1016/j.fuel.2013.08.074 10.1109/TPS.2013.2270015 10.1109/TDEI.2004.1306726 10.1080/01919518808552391 10.3969/j.issn.1002-6819.2013.16.007 10.1109/TIA.2010.2071070 10.1007/s11090-016-9701-x 10.1109/TIA.2014.2358798 10.1016/j.tsf.2006.02.071 10.1016/j.combustflame.2013.03.013 10.13334/j.0258-8013.pcsee.2007.02.011 10.1016/j.atmosenv.2015.02.077 10.1016/j.fuel.2017.04.029 10.1016/j.cej.2015.04.086 10.1016/j.energy.2006.04.011 10.1016/j.scitotenv.2017.04.079 10.1016/j.apenergy.2014.02.031 10.1016/j.atmosenv.2012.01.028 10.1007/s12239-014-0091-x 10.1063/1.1346631 |
ContentType | Journal Article |
Copyright | 2017 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing |
Copyright_xml | – notice: 2017 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
DOI | 10.1088/2058-6272/aa7f6e |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles |
EISSN | 1009-0630 |
EndPage | 66 |
ExternalDocumentID | 10_1088_2058_6272_aa7f6e pstaa7f6e 673587781 |
GrantInformation_xml | – fundername: Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions grantid: PADA – fundername: Major projects of natural science research in colleges and universities in Jiangsu Province grantid: No.16KJA470002 – fundername: National Natural Science Foundation of China grantid: No.51676089 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 02O 042 123 1JI 1WK 2B. 2C. 2RA 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q 92E 92I 92L 92Q 93N AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 TCJ TGP W28 W92 ~WA -SA -S~ AAXDM AOAED CAJEA Q-- U1G U5K AAYXX ACARI ADEQX AEINN AERVB AGQPQ ARNYC CITATION |
ID | FETCH-LOGICAL-c445t-7127ee2a2412d0b9a9dcc7651b61a7b9312afebd2725577d3f5921627daf292d3 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Wed Oct 01 04:22:57 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Thu Jan 07 13:53:47 EST 2021 Wed Aug 21 03:41:32 EDT 2024 Wed Feb 14 09:56:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-7127ee2a2412d0b9a9dcc7651b61a7b9312afebd2725577d3f5921627daf292d3 |
Notes | diesel engine, particulate matter, non-thermal plasma, gas source flow rate To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10L min^-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma(NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10L min^-1 was more appropriate for the purification of particles. Linbo GU,Yixi CAI,Yunxi SHI,Jing WANG,Xiaoyu PU,Jing TIAN,Runlin FAN(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China) 34-1187/TL PST-2017-0135.R2 Institute of Plasma Physics |
ORCID | 0000-0002-6517-8104 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1088_2058_6272_aa7f6e chongqing_primary_673587781 iop_journals_10_1088_2058_6272_aa7f6e crossref_primary_10_1088_2058_6272_aa7f6e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Plasma science & technology |
PublicationTitleAbbrev | PST |
PublicationTitleAlternate | Plasma Science & Technology |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 23 24 25 27 Wei L S (9) 2016; 18 10 11 12 13 14 15 16 17 18 19 Yagi S (22) 1979; 12 1 2 3 4 5 6 7 8 20 Li B (26) 2013 21 |
References_xml | – ident: 15 doi: 10.1007/s11090-008-9121-7 – ident: 7 doi: 10.1016/j.scitotenv.2013.11.041 – ident: 13 doi: 10.1007/s11090-005-6817-9 – ident: 20 doi: 10.7652/xjtuxb201609012 – ident: 5 doi: 10.1016/j.fuel.2013.08.074 – ident: 12 doi: 10.1109/TPS.2013.2270015 – ident: 21 doi: 10.1109/TDEI.2004.1306726 – ident: 23 doi: 10.1080/01919518808552391 – ident: 27 doi: 10.3969/j.issn.1002-6819.2013.16.007 – ident: 16 doi: 10.1109/TIA.2010.2071070 – ident: 19 doi: 10.1007/s11090-016-9701-x – ident: 10 doi: 10.1109/TIA.2014.2358798 – ident: 17 doi: 10.1016/j.tsf.2006.02.071 – volume: 12 start-page: 1509 issn: 0022-3727 year: 1979 ident: 22 publication-title: J. Phys. D: Appl. Phys. – ident: 2 doi: 10.1016/j.combustflame.2013.03.013 – ident: 25 doi: 10.13334/j.0258-8013.pcsee.2007.02.011 – ident: 4 doi: 10.1016/j.atmosenv.2015.02.077 – ident: 1 doi: 10.1016/j.fuel.2017.04.029 – ident: 11 doi: 10.1016/j.cej.2015.04.086 – ident: 8 doi: 10.1016/j.energy.2006.04.011 – ident: 24 doi: 10.1016/j.scitotenv.2017.04.079 – year: 2013 ident: 26 – ident: 6 doi: 10.1016/j.apenergy.2014.02.031 – volume: 18 start-page: 147 issn: 1009-0630 year: 2016 ident: 9 publication-title: Plasma Sci. Technol. – ident: 3 doi: 10.1016/j.atmosenv.2012.01.028 – ident: 18 doi: 10.1007/s12239-014-0091-x – ident: 14 doi: 10.1063/1.1346631 |
SSID | ssj0054983 |
Score | 2.1873205 |
Snippet | To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification... To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was... |
SourceID | crossref iop chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 59 |
SubjectTerms | diesel engine gas source flow rate non-thermal plasma particulate matter 低温等离子体技术 成分 挥发性物质 柴油机 质量浓度 间接 非热等离子体 颗粒粒径分布 |
Title | Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles |
URI | http://lib.cqvip.com/qk/84262X/201711/673587781.html https://iopscience.iop.org/article/10.1088/2058-6272/aa7f6e |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1009-0630 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054983 issn: 1009-0630 databaseCode: IOP dateStart: 19990101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9UwDLe2oUlc-BqIxwAFaRx2yNtLmjSpOCHENCHxcWDSDkhRvsoQW9ut3WV_PU6b97QhhqZJPfRgu4ndxnbzswOw49nCV8xqKqR1VPjCUYtem9boqrTXC2-rVO_8-Ut5cCg-HcmjNXi3qoVpu7z0z_F2ahQ8qTAD4jSm61LTkiu-Z62qy7gO9wqNeUWq3vv6bbkMY96jJ3R9-vtfFou8R_kvCamvwnHb_DxDb3HNP63jGK64m_2H8GM50All8nt-Mbi5v_yrh-MdZ_IIHuQwlLyfSB_DWmyewOYIB_X9FjRTU2PS1iTtaadVkTRtQ1O0eIp8Hcbcp5a0Deny00j_6zKSkNrw5hO0iG0CSYj1DAtLwhJkMZ6QODZBXPH2T-Fw_-P3Dwc0n8xAvRByoIpxFSO36P55WLgKDeq9KiVzJbPKVQXjto4u4NSkVCoUtaw4w5kGW_OKh-IZbOCo43MgXvigKmdlKazA8M9FDJE0cpU-CBXkDLZXtjHd1IEjgdGkVkqzGewtrWV8bmqeztY4MePmutYm6dgkHZtJxzPYXXEsxd1M-xZNZ_JX3f-H7s01uq4fDKswucILM8DCdKF-cUtZ23Cfp8hhLHd8CRvD-UV8hXHP4F6P7_cf3fz7uQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAX3oilPIwEBw7eXTt27BwRsGp5lB6o1JvxK4Bok0DSS38948S7oggQEtIecpiZtWcSzzea8QzAE8-WvmJWUyGto8IXjlr02rRGV6W9XnpbpfvO7_bL3UPx-kge5Tmn412YtstH_xwfp0bBkwpzQZzGcF1qWnLFF9aquoyLLtRbcFEWUqXZDXvvD9ZHMcY-eqqwTxmAsljmPOXvpKTeCp_b5tM39BjnfNQWruMnl7O6Bh_Xi50qTb7OTwc392e_9HH8j91ch6sZjpLnE_kNuBCbm3BpLAv1_S1opubGpK1Jym2n05E0bUMTajxBvg6x94klbUO6_I-k_3IWSUjtePMkLWKbQFLlei4PS8JS6WI8JnFshrjh7W_D4erVhxe7NE9ooF4IOVDFuIqRW4QBPCxdhYb1XpWSuZJZ5aqCcVtHF3B7UioVilpWnOFug615xUNxB7Zx1fEuEC98UJWzshRWIAx0EaGSRq7SB6GCnMHOxj6mmzpxpKI0qZXSbAaLtcWMz83N04yNYzMm2bU2Sc8m6dlMep7Bsw3HWtyfaZ-i-Uz-uvu_0D0-R9f1g2EVBln4w0iwMGjbe_8o6xFcPni5Mm_39t_swBWewMR4A_I-bA_fT-MDhEKDezi-7j8ABmYBMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+indirect+non-thermal+plasma+on+particle+size+distribution+and+composition+of+diesel+engine+particles&rft.jtitle=Plasma+science+%26+technology&rft.au=GU%2C+Linbo&rft.au=CAI%2C+Yixi&rft.au=SHI%2C+Yunxi&rft.au=WANG%2C+Jing&rft.date=2017-11-01&rft.pub=IOP+Publishing&rft.issn=1009-0630&rft.eissn=1009-0630&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1088%2F2058-6272%2Faa7f6e&rft.externalDocID=pstaa7f6e |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84262X%2F84262X.jpg |