Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales
Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different...
Saved in:
Published in | Applied and environmental microbiology Vol. 82; no. 17; pp. 5099 - 5115 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.09.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0099-2240 1098-5336 1098-5336 |
DOI | 10.1128/AEM.00591-16 |
Cover
Abstract | Rhizobia of the genus
Burkholderia
have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA,
recA
) and symbiosis (
nifH
,
nodA
,
nodC
) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of
Burkholderia
tuberum
STM678
T
and
B
.
phymatum
STM815
T
was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (
Mimosa
pudica
) and papilionoid (
Dipogon
lignosus
,
Indigofera
filifolia
,
Macroptilium
atropurpureum
, and
Podalyria
calyptrata
) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the
Burkholderia
-philous fynbos legumes (
D
.
lignosus
,
I
.
filifolia
, and
P
.
calyptrata
) nodulated only in their native soils, the invasive neotropical species
M
.
pudica
did not develop nodules in the African soils. The fynbos soil, notably rich in
Burkholderia
, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America.
IMPORTANCE
This study is the most comprehensive phylogenetic assessment of root-nodulating
Burkholderia
and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. |
---|---|
AbstractList | Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678T and B. phymatum STM815T was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D. lignosus, I. filifolia, and P. calyptrata) nodulated only in their native soils, the invasive neotropical species M. pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA ) and symbiosis ( nifH , nodA , nodC ) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678 T and B . phymatum STM815 T was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid ( Mimosa pudica ) and papilionoid ( Dipogon lignosus , Indigofera filifolia , Macroptilium atropurpureum , and Podalyria calyptrata ) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia -philous fynbos legumes ( D . lignosus , I . filifolia , and P . calyptrata ) nodulated only in their native soils, the invasive neotropical species M . pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia , seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America.UNLABELLEDRhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America.This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.IMPORTANCEThis study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678^sup T^ and B. phymatum STM815^sup T^ was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D. lignosus, I. filifolia, and P. calyptrata) nodulated only in their native soils, the invasive neotropical species M. pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. |
Author | Lemaire, Benny Rafudeen, Suhail Smets, Erik Honnay, Olivier Chimphango, Samson B. M. Stirton, Charles Chen, Wen-Ming James, Euan K. Sprent, Janet Muasya, A. Muthama |
Author_xml | – sequence: 1 givenname: Benny surname: Lemaire fullname: Lemaire, Benny organization: Department of Biological Sciences, University of Cape Town, Cape Town, South Africa, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium – sequence: 2 givenname: Samson B. M. surname: Chimphango fullname: Chimphango, Samson B. M. organization: Department of Biological Sciences, University of Cape Town, Cape Town, South Africa – sequence: 3 givenname: Charles surname: Stirton fullname: Stirton, Charles organization: Department of Biological Sciences, University of Cape Town, Cape Town, South Africa – sequence: 4 givenname: Suhail surname: Rafudeen fullname: Rafudeen, Suhail organization: Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa – sequence: 5 givenname: Olivier surname: Honnay fullname: Honnay, Olivier organization: Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium – sequence: 6 givenname: Erik surname: Smets fullname: Smets, Erik organization: Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium, Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands – sequence: 7 givenname: Wen-Ming surname: Chen fullname: Chen, Wen-Ming organization: Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung City, Taiwan – sequence: 8 givenname: Janet surname: Sprent fullname: Sprent, Janet organization: Division of Plant Sciences, University of Dundee at JHI, Dundee, United Kingdom – sequence: 9 givenname: Euan K. surname: James fullname: James, Euan K. organization: The James Hutton Institute, Invergowrie, Dundee, United Kingdom – sequence: 10 givenname: A. Muthama surname: Muasya fullname: Muasya, A. Muthama organization: Department of Biological Sciences, University of Cape Town, Cape Town, South Africa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27316955$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv3CAURlGVqJmk3XVdIXXTRT0BbIPpItJklLSRpg-p7Rox9sXD1AYX7Er598F5VE3URTew4NzDB_ceowPnHSD0ipIlpaw6XV18WhJSSppR_gwtKJFVVuY5P0ALQqTMGCvIETqOcU8IKQivnqMjJnLKZVku0P7c-hZ8G_Sws7Xu8Fc9jhBcxN7gDbRTD9ln30ydHq1r8fkUfu5810CwGsdhWL7HJvger0xI1Q5fXrutj3j0eO1dqgA3Jue3JIb4Ah0a3UV4eb-foB-XF9_XH7PNlw9X69Umq4uiHDPOGIdcgGgaVmpRGWlKzQUxXGsGtKmI1ltKCZWGAU-LBCY0kYLTigOh-Qk6u_MO07aHpk4Zgu7UEGyvw7Xy2qrHJ87uVOt_q0JWVXIkwdt7QfC_Joij6m2soeu0Az9FRSsmJCmEZP-BUsaY4Hy2vnmC7v0UXPqJmRJlLnMhEvX67_B_Uj90LAHsDqiDjzGAUbUdU3P8_BbbKUrUPBYqjYW6HQtF57vfPSl68P4TvwGBlbg1 |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1111_gfs_12522 crossref_primary_10_1016_j_syapm_2018_10_003 crossref_primary_10_3389_fmicb_2020_563389 crossref_primary_10_3390_ht7020015 crossref_primary_10_1111_nph_14474 crossref_primary_10_1016_j_apsoil_2024_105741 crossref_primary_10_3390_microorganisms9091842 crossref_primary_10_1016_j_sajb_2018_02_406 crossref_primary_10_1007_s10482_019_01269_5 crossref_primary_10_1097_MD_0000000000016749 crossref_primary_10_3390_metabo11070455 crossref_primary_10_1016_j_syapm_2022_126316 crossref_primary_10_3390_genes9080389 crossref_primary_10_1007_s00203_020_01843_w crossref_primary_10_3389_fevo_2018_00005 crossref_primary_10_3390_nitrogen4010010 crossref_primary_10_2989_10220119_2018_1522515 crossref_primary_10_3390_nitrogen1020008 crossref_primary_10_1016_j_sajb_2016_10_025 crossref_primary_10_3389_fpls_2021_699590 crossref_primary_10_3389_fmicb_2017_01527 crossref_primary_10_1128_jb_00422_24 crossref_primary_10_1007_s00203_021_02537_7 crossref_primary_10_1111_jam_14526 crossref_primary_10_1007_s11104_017_3521_5 crossref_primary_10_3390_ijms18040705 crossref_primary_10_1093_botlinnean_boac002 crossref_primary_10_3389_fmicb_2020_01600 crossref_primary_10_3389_fmicb_2017_02473 crossref_primary_10_3390_d12060254 crossref_primary_10_1016_j_syapm_2020_126151 crossref_primary_10_3390_genes9010002 crossref_primary_10_1093_femsle_fnab132 crossref_primary_10_1016_j_syapm_2020_126152 crossref_primary_10_3389_fmicb_2019_01195 crossref_primary_10_1016_j_syapm_2021_126207 crossref_primary_10_1007_s00203_019_01714_z crossref_primary_10_3390_genes8120389 crossref_primary_10_1007_s13199_024_01016_z crossref_primary_10_1016_j_syapm_2017_12_003 crossref_primary_10_1186_s40168_019_0727_1 crossref_primary_10_1038_nrmicro_2017_173 |
Cites_doi | 10.1099/00207713-52-3-1043 10.1099/00207713-51-6-2037 10.1128/AEM.02125-06 10.1007/s11104-013-1590-7 10.1093/bioinformatics/btg180 10.1126/science.1070710 10.1128/AEM.01541-09 10.1111/j.1471-8286.2005.01155.x 10.1111/jbi.12091 10.1016/j.syapm.2015.09.006 10.1089/dna.2009.0863 10.1099/ijsem.0.000639 10.5962/p.292256 10.1007/s00248-014-0503-5 10.1111/j.1469-8137.2006.01894.x 10.1007/s10530-006-0009-2 10.1093/molbev/msj030 10.1098/rspb.2005.3292 10.1111/j.1574-6941.2012.01310.x 10.1146/annurev.micro.56.012302.160634 10.1128/AEM.64.2.419-426.1998 10.1086/383541 10.1016/j.apsoil.2012.10.005 10.1111/j.1365-294X.2009.04458.x 10.1128/AEM.64.10.3989-3997.1998 10.1371/journal.pone.0068406 10.1186/gb-2006-7-9-116 10.1093/aob/mct112 10.1128/AEM.02886-09 10.1038/nature03073 10.1111/j.1469-8137.2010.03267.x 10.1111/j.1365-294X.2011.05368.x 10.1016/j.syapm.2015.09.003 10.1099/ijs.0.064931-0 10.1128/MMBR.64.1.180-201.2000 10.1038/nrmicro1341 10.1016/j.ympev.2011.12.020 10.1111/j.1574-6941.2012.01342.x 10.1099/ijs.0.048777-0 10.1078/07232020260517634 10.1146/annurev.micro.54.1.257 10.1016/j.ympev.2012.07.008 10.4056/sigs.4861021 10.1128/AEM.66.12.5448-5456.2000 10.1007/s00248-014-0427-0 10.1128/JB.173.2.697-703.1991 10.1371/journal.pone.0027935 10.1111/j.1469-8137.2005.01533.x 10.1111/j.1365-294X.2010.04804.x 10.1093/bioinformatics/14.9.817 10.1111/j.1365-2699.2010.02284.x 10.1111/j.1365-294X.2005.02721.x 10.1099/ijs.0.048751-0 10.1016/j.syapm.2010.11.015 10.1139/b91-196 10.1073/pnas.93.26.15305 10.1093/aob/mcm227 10.1093/nar/gkh340 10.1099/ijs.0.058602-0 10.1111/j.1574-6941.2011.01235.x 10.1146/annurev.ecolsys.39.110707.173423 10.1016/j.soilbio.2008.10.011 10.1890/04-1587 10.1046/j.1365-294X.2003.01754.x 10.1093/molbev/msh018 10.1128/AEM.71.11.7461-7471.2005 10.1007/978-1-4613-8375-8 10.1016/j.soilbio.2013.01.009 10.1016/j.ympev.2008.04.032 10.1007/s00248-011-9929-1 10.1128/AEM.71.11.7041-7052.2005 10.1038/nrmicro1236 10.1093/genetics/28.2.114 10.1094/MPMI-06-11-0172 10.1111/nph.13573 10.1371/journal.pone.0063478 10.1016/j.sajb.2013.06.011 10.1016/j.syapm.2014.08.002 10.1126/science.1153475 10.1093/femsec/fiu024 10.1038/nature07764 10.1128/JB.01756-12 10.1038/nature01931 10.1093/bioinformatics/btl446 |
ContentType | Journal Article |
Copyright | Copyright © 2016, American Society for Microbiology. All Rights Reserved. Copyright American Society for Microbiology Sep 2016 Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. – notice: Copyright American Society for Microbiology Sep 2016 – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1128/AEM.00591-16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database CrossRef MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
DocumentTitleAlternate | Biogeography of the Burkholderia-Legume Interaction |
EISSN | 1098-5336 |
EndPage | 5115 |
ExternalDocumentID | PMC4988186 4174042881 27316955 10_1128_AEM_00591_16 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH ADXHL AENEX AFFNX AFRAH AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ O9- OHT P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XJT YV5 ZCG ZGI ZXP ZY4 ~02 ~KM CGR CUY CVF ECM EIF NPM OK1 RHF UCJ Z5M 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c445t-6226e37e7dd25a78f9f5a670f6aa2e1d80aab11019f2e69f29e27a0976186e013 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 14:08:57 EDT 2025 Thu Sep 04 18:59:18 EDT 2025 Thu Sep 04 18:31:09 EDT 2025 Mon Jun 30 08:30:04 EDT 2025 Wed Feb 19 02:43:16 EST 2025 Tue Jul 01 02:20:06 EDT 2025 Thu Apr 24 23:00:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Copyright © 2016, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c445t-6226e37e7dd25a78f9f5a670f6aa2e1d80aab11019f2e69f29e27a0976186e013 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Citation Lemaire B, Chimphango SBM, Stirton C, Rafudeen S, Honnay O, Smets E, Chen W-M, Sprent J, James EK, Muasya AM. 2016. Biogeographical patterns of legume-nodulating Burkholderia spp.: from African fynbos to continental scales. Appl Environ Microbiol 82:5099–5115. doi:10.1128/AEM.00591-16. |
OpenAccessLink | https://aem.asm.org/content/aem/82/17/5099.full.pdf |
PMID | 27316955 |
PQID | 1817539377 |
PQPubID | 42251 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4988186 proquest_miscellaneous_1827904792 proquest_miscellaneous_1812227666 proquest_journals_1817539377 pubmed_primary_27316955 crossref_citationtrail_10_1128_AEM_00591_16 crossref_primary_10_1128_AEM_00591_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_75_2 e_1_3_3_77_2 e_1_3_3_79_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_90_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 Kobayashi H (e_1_3_3_71_2) 2008 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_86_2 e_1_3_3_88_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 Lewis GP (e_1_3_3_50_2) 2005 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 Vincent JM (e_1_3_3_39_2) 1970 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_85_2 Stirton CH (e_1_3_3_49_2) 2015; 33 e_1_3_3_60_2 e_1_3_3_87_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 Rodríguez-Echeverría S (e_1_3_3_78_2) 2010; 37 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_66_2 e_1_3_3_81_2 Ausubel FM (e_1_3_3_43_2) 1992 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 9758831 - Appl Environ Microbiol. 1998 Oct;64(10):3989-97 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 16313648 - New Phytol. 2005 Dec;168(3):661-75 26689612 - Syst Appl Microbiol. 2016 Feb;39(1):41-8 16269788 - Appl Environ Microbiol. 2005 Nov;71(11):7461-71 11018130 - Annu Rev Microbiol. 2000;54:257-88 22092487 - Mol Ecol. 2012 Jan;21(1):145-59 17247074 - Genetics. 1943 Mar;28(2):114-38 21830951 - Mol Plant Microbe Interact. 2011 Nov;24(11):1276-88 12955144 - Nature. 2003 Sep 4;425(6953):78-81 16519238 - Proc Biol Sci. 2006 Jan 7;273(1582):77-81 16269740 - Appl Environ Microbiol. 2005 Nov;71(11):7041-52 25199986 - Syst Appl Microbiol. 2014 Dec;37(8):613-21 16262857 - Mol Ecol. 2005 Nov;14(13):4033-50 23712450 - Ann Bot. 2013 Jul;112(1):179-96 23691052 - PLoS One. 2013 May 15;8(5):e63478 19219025 - Nature. 2009 Apr 9;458(7239):754-6 12004115 - Science. 2002 May 10;296(5570):1061-3 15592412 - Nature. 2004 Dec 9;432(7018):750-3 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 26410793 - Int J Syst Evol Microbiol. 2015 Dec;65(12 ):4716-23 21850446 - Microb Ecol. 2012 Feb;63(2):249-66 9918953 - Bioinformatics. 1998;14(9):817-8 16138101 - Nat Rev Microbiol. 2005 Sep;3(9):733-9 22230030 - Mol Phylogenet Evol. 2012 May;63(2):265-77 21306854 - Syst Appl Microbiol. 2011 Apr;34(2):96-104 12753212 - Mol Ecol. 2003 Apr;12(4):917-29 22093060 - FEMS Microbiol Ecol. 2012 Feb;79(2):487-503 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12 18497288 - Science. 2008 May 23;320(5879):1039-43 10704479 - Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201 22820204 - Bioinformatics. 2012 Oct 1;28(19):2537-9 17020593 - Genome Biol. 2006;7(9):116 25301497 - Microb Ecol. 2015 Apr;69(3):630-40 17176403 - New Phytol. 2007;173(1):168-80 24368690 - Int J Syst Evol Microbiol. 2014 Apr;64(Pt 4):1090-5 22842091 - Mol Phylogenet Evol. 2012 Nov;65(2):595-609 25197461 - Stand Genomic Sci. 2014 Mar 25;9(3):763-74 12583710 - Syst Appl Microbiol. 2002 Dec;25(4):507-12 26472229 - Syst Appl Microbiol. 2015 Dec;38(8):545-54 11097926 - Appl Environ Microbiol. 2000 Dec;66(12):5448-56 14660700 - Mol Biol Evol. 2004 Feb;21(2):255-65 20002602 - Mol Ecol. 2010 Jan;19(1):44-52 24505072 - Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):346-51 22381032 - FEMS Microbiol Ecol. 2012 Jun;80(3):747-50 20472732 - Appl Environ Microbiol. 2010 Jul;76(13):4587-91 22174755 - PLoS One. 2011;6(12):e27935 9464375 - Appl Environ Microbiol. 1998 Feb;64(2):419-26 24801964 - Microb Ecol. 2014 Oct;68(3):542-55 8986807 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15305-10 11760945 - Int J Syst Evol Microbiol. 2001 Nov;51(Pt 6):2037-48 22268711 - FEMS Microbiol Ecol. 2012 May;80(2):417-26 23710047 - Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):3950-7 23209196 - J Bacteriol. 2012 Dec;194(24):6927 23710046 - Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):3944-9 25241408 - Mol Ecol. 2010 Oct;19(19):4315-27 15232949 - Q Rev Biol. 2004 Jun;79(2):135-60 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 12054223 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):1043-7 26214613 - New Phytol. 2016 Jan;209(1):319-33 25764552 - FEMS Microbiol Ecol. 2015 Feb;91(2):1-17 1987160 - J Bacteriol. 1991 Jan;173(2):697-703 12142474 - Annu Rev Microbiol. 2002;56:457-87 17881339 - Ann Bot. 2007 Dec;100(7):1403-11 18539053 - Mol Phylogenet Evol. 2008 Sep;48(3):1131-44 17400786 - Appl Environ Microbiol. 2007 May;73(10):3254-64 20456044 - New Phytol. 2010 Jun;186(4):934-46 16221896 - Mol Biol Evol. 2006 Feb;23(2):254-67 23874611 - PLoS One. 2013 Jul 11;8(7):e68406 19485766 - DNA Cell Biol. 2009 Aug;28(8):361-70 |
References_xml | – ident: e_1_3_3_59_2 doi: 10.1099/00207713-52-3-1043 – ident: e_1_3_3_41_2 doi: 10.1099/00207713-51-6-2037 – ident: e_1_3_3_87_2 doi: 10.1128/AEM.02125-06 – ident: e_1_3_3_53_2 doi: 10.1007/s11104-013-1590-7 – ident: e_1_3_3_44_2 doi: 10.1093/bioinformatics/btg180 – ident: e_1_3_3_3_2 doi: 10.1126/science.1070710 – start-page: 117 volume-title: Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascadeNitrogen-fixing legume symbioses year: 2008 ident: e_1_3_3_71_2 – ident: e_1_3_3_35_2 doi: 10.1128/AEM.01541-09 – ident: e_1_3_3_48_2 doi: 10.1111/j.1471-8286.2005.01155.x – ident: e_1_3_3_79_2 doi: 10.1111/jbi.12091 – ident: e_1_3_3_33_2 doi: 10.1016/j.syapm.2015.09.006 – ident: e_1_3_3_74_2 doi: 10.1089/dna.2009.0863 – ident: e_1_3_3_21_2 doi: 10.1099/ijsem.0.000639 – volume: 33 start-page: 97 year: 2015 ident: e_1_3_3_49_2 article-title: Naturalised species of Psoralea (Fabaceae: Psoraleeae) in Australia publication-title: Muelleria doi: 10.5962/p.292256 – volume-title: A manual for the practical study of the root-nodule bacteria year: 1970 ident: e_1_3_3_39_2 – ident: e_1_3_3_89_2 doi: 10.1007/s00248-014-0503-5 – ident: e_1_3_3_18_2 doi: 10.1111/j.1469-8137.2006.01894.x – ident: e_1_3_3_16_2 doi: 10.1007/s10530-006-0009-2 – ident: e_1_3_3_37_2 doi: 10.1093/molbev/msj030 – volume-title: Legumes of the world year: 2005 ident: e_1_3_3_50_2 – ident: e_1_3_3_81_2 doi: 10.1098/rspb.2005.3292 – ident: e_1_3_3_17_2 doi: 10.1111/j.1574-6941.2012.01310.x – ident: e_1_3_3_57_2 doi: 10.1146/annurev.micro.56.012302.160634 – ident: e_1_3_3_42_2 doi: 10.1128/AEM.64.2.419-426.1998 – ident: e_1_3_3_80_2 doi: 10.1086/383541 – volume-title: Short protocols in molecular biology year: 1992 ident: e_1_3_3_43_2 – ident: e_1_3_3_77_2 doi: 10.1016/j.apsoil.2012.10.005 – ident: e_1_3_3_11_2 doi: 10.1111/j.1365-294X.2009.04458.x – ident: e_1_3_3_67_2 doi: 10.1128/AEM.64.10.3989-3997.1998 – ident: e_1_3_3_28_2 doi: 10.1371/journal.pone.0068406 – ident: e_1_3_3_60_2 doi: 10.1186/gb-2006-7-9-116 – ident: e_1_3_3_15_2 doi: 10.1093/aob/mct112 – ident: e_1_3_3_34_2 doi: 10.1128/AEM.02886-09 – ident: e_1_3_3_5_2 doi: 10.1038/nature03073 – ident: e_1_3_3_56_2 doi: 10.1111/j.1469-8137.2010.03267.x – ident: e_1_3_3_8_2 doi: 10.1111/j.1365-294X.2011.05368.x – ident: e_1_3_3_29_2 doi: 10.1016/j.syapm.2015.09.003 – ident: e_1_3_3_61_2 doi: 10.1099/ijs.0.064931-0 – ident: e_1_3_3_70_2 doi: 10.1128/MMBR.64.1.180-201.2000 – ident: e_1_3_3_23_2 doi: 10.1038/nrmicro1341 – ident: e_1_3_3_66_2 doi: 10.1016/j.ympev.2011.12.020 – ident: e_1_3_3_19_2 doi: 10.1111/j.1574-6941.2012.01342.x – ident: e_1_3_3_25_2 doi: 10.1099/ijs.0.048777-0 – ident: e_1_3_3_55_2 doi: 10.1078/07232020260517634 – ident: e_1_3_3_69_2 doi: 10.1146/annurev.micro.54.1.257 – ident: e_1_3_3_85_2 doi: 10.1016/j.ympev.2012.07.008 – ident: e_1_3_3_75_2 doi: 10.4056/sigs.4861021 – ident: e_1_3_3_4_2 doi: 10.1128/AEM.66.12.5448-5456.2000 – ident: e_1_3_3_20_2 doi: 10.1007/s00248-014-0427-0 – ident: e_1_3_3_40_2 doi: 10.1128/JB.173.2.697-703.1991 – ident: e_1_3_3_76_2 doi: 10.1371/journal.pone.0027935 – ident: e_1_3_3_14_2 doi: 10.1111/j.1469-8137.2005.01533.x – ident: e_1_3_3_2_2 doi: 10.1111/j.1365-294X.2010.04804.x – ident: e_1_3_3_45_2 doi: 10.1093/bioinformatics/14.9.817 – volume: 37 start-page: 1611 year: 2010 ident: e_1_3_3_78_2 article-title: Rhizobial hitchhikers from Down Under: invasional meltdown in a plant-bacteria mutualism? publication-title: J Biogeogr doi: 10.1111/j.1365-2699.2010.02284.x – ident: e_1_3_3_9_2 doi: 10.1111/j.1365-294X.2005.02721.x – ident: e_1_3_3_30_2 doi: 10.1099/ijs.0.048751-0 – ident: e_1_3_3_73_2 doi: 10.1016/j.syapm.2010.11.015 – ident: e_1_3_3_52_2 doi: 10.1139/b91-196 – ident: e_1_3_3_68_2 doi: 10.1073/pnas.93.26.15305 – ident: e_1_3_3_32_2 doi: 10.1093/aob/mcm227 – ident: e_1_3_3_36_2 doi: 10.1093/nar/gkh340 – ident: e_1_3_3_24_2 doi: 10.1099/ijs.0.058602-0 – ident: e_1_3_3_72_2 doi: 10.1111/j.1574-6941.2011.01235.x – ident: e_1_3_3_82_2 doi: 10.1146/annurev.ecolsys.39.110707.173423 – ident: e_1_3_3_31_2 doi: 10.1016/j.soilbio.2008.10.011 – ident: e_1_3_3_47_2 – ident: e_1_3_3_6_2 doi: 10.1890/04-1587 – ident: e_1_3_3_7_2 doi: 10.1046/j.1365-294X.2003.01754.x – ident: e_1_3_3_38_2 doi: 10.1093/molbev/msh018 – ident: e_1_3_3_51_2 doi: 10.1128/AEM.71.11.7461-7471.2005 – ident: e_1_3_3_54_2 doi: 10.1007/978-1-4613-8375-8 – ident: e_1_3_3_26_2 doi: 10.1016/j.soilbio.2013.01.009 – ident: e_1_3_3_86_2 doi: 10.1016/j.ympev.2008.04.032 – ident: e_1_3_3_22_2 doi: 10.1007/s00248-011-9929-1 – ident: e_1_3_3_88_2 doi: 10.1128/AEM.71.11.7041-7052.2005 – ident: e_1_3_3_58_2 doi: 10.1038/nrmicro1236 – ident: e_1_3_3_62_2 doi: 10.1093/genetics/28.2.114 – ident: e_1_3_3_13_2 doi: 10.1094/MPMI-06-11-0172 – ident: e_1_3_3_12_2 doi: 10.1111/nph.13573 – ident: e_1_3_3_63_2 doi: 10.1371/journal.pone.0063478 – ident: e_1_3_3_84_2 doi: 10.1016/j.sajb.2013.06.011 – ident: e_1_3_3_10_2 doi: 10.1016/j.syapm.2014.08.002 – ident: e_1_3_3_90_2 doi: 10.1126/science.1153475 – ident: e_1_3_3_27_2 doi: 10.1093/femsec/fiu024 – ident: e_1_3_3_65_2 doi: 10.1038/nature07764 – ident: e_1_3_3_64_2 doi: 10.1128/JB.01756-12 – ident: e_1_3_3_83_2 doi: 10.1038/nature01931 – ident: e_1_3_3_46_2 doi: 10.1093/bioinformatics/btl446 – reference: 22093060 - FEMS Microbiol Ecol. 2012 Feb;79(2):487-503 – reference: 16262857 - Mol Ecol. 2005 Nov;14(13):4033-50 – reference: 23874611 - PLoS One. 2013 Jul 11;8(7):e68406 – reference: 16519238 - Proc Biol Sci. 2006 Jan 7;273(1582):77-81 – reference: 22381032 - FEMS Microbiol Ecol. 2012 Jun;80(3):747-50 – reference: 22230030 - Mol Phylogenet Evol. 2012 May;63(2):265-77 – reference: 25197461 - Stand Genomic Sci. 2014 Mar 25;9(3):763-74 – reference: 23691052 - PLoS One. 2013 May 15;8(5):e63478 – reference: 26214613 - New Phytol. 2016 Jan;209(1):319-33 – reference: 21306854 - Syst Appl Microbiol. 2011 Apr;34(2):96-104 – reference: 15592412 - Nature. 2004 Dec 9;432(7018):750-3 – reference: 22174755 - PLoS One. 2011;6(12):e27935 – reference: 11097926 - Appl Environ Microbiol. 2000 Dec;66(12):5448-56 – reference: 14660700 - Mol Biol Evol. 2004 Feb;21(2):255-65 – reference: 25199986 - Syst Appl Microbiol. 2014 Dec;37(8):613-21 – reference: 19485766 - DNA Cell Biol. 2009 Aug;28(8):361-70 – reference: 25764552 - FEMS Microbiol Ecol. 2015 Feb;91(2):1-17 – reference: 23209196 - J Bacteriol. 2012 Dec;194(24):6927 – reference: 12142474 - Annu Rev Microbiol. 2002;56:457-87 – reference: 12753212 - Mol Ecol. 2003 Apr;12(4):917-29 – reference: 23710046 - Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):3944-9 – reference: 20002602 - Mol Ecol. 2010 Jan;19(1):44-52 – reference: 9464375 - Appl Environ Microbiol. 1998 Feb;64(2):419-26 – reference: 20472732 - Appl Environ Microbiol. 2010 Jul;76(13):4587-91 – reference: 8986807 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15305-10 – reference: 16269740 - Appl Environ Microbiol. 2005 Nov;71(11):7041-52 – reference: 16313648 - New Phytol. 2005 Dec;168(3):661-75 – reference: 17020593 - Genome Biol. 2006;7(9):116 – reference: 12004115 - Science. 2002 May 10;296(5570):1061-3 – reference: 26410793 - Int J Syst Evol Microbiol. 2015 Dec;65(12 ):4716-23 – reference: 1987160 - J Bacteriol. 1991 Jan;173(2):697-703 – reference: 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 – reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 – reference: 11760945 - Int J Syst Evol Microbiol. 2001 Nov;51(Pt 6):2037-48 – reference: 20456044 - New Phytol. 2010 Jun;186(4):934-46 – reference: 11018130 - Annu Rev Microbiol. 2000;54:257-88 – reference: 17176403 - New Phytol. 2007;173(1):168-80 – reference: 16269788 - Appl Environ Microbiol. 2005 Nov;71(11):7461-71 – reference: 12955144 - Nature. 2003 Sep 4;425(6953):78-81 – reference: 22842091 - Mol Phylogenet Evol. 2012 Nov;65(2):595-609 – reference: 16138101 - Nat Rev Microbiol. 2005 Sep;3(9):733-9 – reference: 17881339 - Ann Bot. 2007 Dec;100(7):1403-11 – reference: 21850446 - Microb Ecol. 2012 Feb;63(2):249-66 – reference: 23710047 - Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):3950-7 – reference: 12583710 - Syst Appl Microbiol. 2002 Dec;25(4):507-12 – reference: 22820204 - Bioinformatics. 2012 Oct 1;28(19):2537-9 – reference: 25301497 - Microb Ecol. 2015 Apr;69(3):630-40 – reference: 24505072 - Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):346-51 – reference: 12054223 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):1043-7 – reference: 9758831 - Appl Environ Microbiol. 1998 Oct;64(10):3989-97 – reference: 17247074 - Genetics. 1943 Mar;28(2):114-38 – reference: 18497288 - Science. 2008 May 23;320(5879):1039-43 – reference: 26689612 - Syst Appl Microbiol. 2016 Feb;39(1):41-8 – reference: 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12 – reference: 26472229 - Syst Appl Microbiol. 2015 Dec;38(8):545-54 – reference: 21830951 - Mol Plant Microbe Interact. 2011 Nov;24(11):1276-88 – reference: 9918953 - Bioinformatics. 1998;14(9):817-8 – reference: 22092487 - Mol Ecol. 2012 Jan;21(1):145-59 – reference: 18539053 - Mol Phylogenet Evol. 2008 Sep;48(3):1131-44 – reference: 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4 – reference: 19219025 - Nature. 2009 Apr 9;458(7239):754-6 – reference: 24801964 - Microb Ecol. 2014 Oct;68(3):542-55 – reference: 10704479 - Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201 – reference: 16221896 - Mol Biol Evol. 2006 Feb;23(2):254-67 – reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 – reference: 15232949 - Q Rev Biol. 2004 Jun;79(2):135-60 – reference: 25241408 - Mol Ecol. 2010 Oct;19(19):4315-27 – reference: 24368690 - Int J Syst Evol Microbiol. 2014 Apr;64(Pt 4):1090-5 – reference: 23712450 - Ann Bot. 2013 Jul;112(1):179-96 – reference: 22268711 - FEMS Microbiol Ecol. 2012 May;80(2):417-26 – reference: 17400786 - Appl Environ Microbiol. 2007 May;73(10):3254-64 |
SSID | ssj0004068 |
Score | 2.406986 |
Snippet | Rhizobia of the genus
Burkholderia
have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid... Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5099 |
SubjectTerms | Bacteria Biogeography Burkholderia Burkholderia - classification Burkholderia - genetics Burkholderia - isolation & purification Burkholderia - physiology Dipogon Distribution patterns Evolutionary and Genomic Microbiology Fabaceae - classification Fabaceae - microbiology Flora Fynbos Genetic diversity Gram-negative bacteria Host Specificity Indigofera Legumes Mimosa pudica Phylogeny Root Nodules, Plant - microbiology Soil sciences South Africa South America Symbiosis |
Title | Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27316955 https://www.proquest.com/docview/1817539377 https://www.proquest.com/docview/1812227666 https://www.proquest.com/docview/1827904792 https://pubmed.ncbi.nlm.nih.gov/PMC4988186 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1098-5336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004068 issn: 0099-2240 databaseCode: KQ8 dateStart: 19530101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1098-5336 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0004068 issn: 0099-2240 databaseCode: DIK dateStart: 19760101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1098-5336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004068 issn: 0099-2240 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1098-5336 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0004068 issn: 0099-2240 databaseCode: RPM dateStart: 19760101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5NAEN7UM0Z9MFp_VU-zJupLQ4Ut7IJv10ubi_aq5tqkbwTo0lY9qC08nH-Pf6gzLNBt7zSnL6SBDVDmY_abZWY-Ql6j9isPIDphgWkadjeODYhVuME8yxPINyKB9c6nI34ysT9MnWmj8UvLWsqzsBP9vLKu5H-sCvvArlgl-w-WrU8KO-A32Be2YGHYXsvGvWU6VyLmi-JZfy6aZarEtqGcg9sxRumsEOhK5u1evv6GH5vwztqb1aqDqwFFeYkSC0rag4skTIuWD9i0CvhnUSp5BqcuMw2rdrUldcVFd61SDgtRltvGTttcn_OgXAHvgVuv9x8vlgClIJmnamn6HMUQe5q-8XKd7eQEbL9JxflMKn95li-qLJFy7cLidXJW7Y89z0BSoWYj5YKxwymQUK77aJfpWBSaxwXC42mzN_BH5-qZgWG1w1H_tIP1tkocO95rwD365A8mw6E_7k_Hb1c_DNQmw2_4pVDLDXKTCc5RJ-PjF60nvcndqtcp_peqvIK57_TL7RKfS9HMflKuxnLG98m9MjyhRwprD0hDJk1ySwmWXjTJ7aqOfdMkd7VWlg_J1z0s0gqLNI3pJSxSHYsUsfieIhJpiUSqkEizlGpIpAqJj8hk0B8fnxiljocR2baTGRwovuwKKWYz5oBfiL3YCbgwYx4ETFoz1wyCEGio5cVMcth4konABKJsuVxCjPKYHCRpIp8SakG0AXMMnADmkUjI0DPtsGu6kWPzQMaiRdrVQ_ajssk9aq1894tgl7k-mMQvTOJbvEXe1KNXqrnLH8YdVvbyy9d_4wM1hlAf2D1c9FV9GJwzfnELEpnmxRisNeec_20MEx4KPbAWeaIgUN8MQ105z3FaROyAox6AzeF3jyTLRdEk3vZcbFb57BrXfU7ubF_OQ3KQrXP5Aqh2Fr4skP4bcqzX5w |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biogeographical+Patterns+of+Legume-Nodulating+Burkholderia+spp.%3A+from+African+Fynbos+to+Continental+Scales&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Lemaire%2C+Benny&rft.au=Chimphango%2C+Samson+BM&rft.au=Stirton%2C+Charles&rft.au=Rafudeen%2C+Suhail&rft.date=2016-09-01&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=82&rft.issue=17&rft.spage=5099&rft.epage=5115&rft_id=info:doi/10.1128%2FAEM.00591-16&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |