Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales

Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 82; no. 17; pp. 5099 - 5115
Main Authors Lemaire, Benny, Chimphango, Samson B. M., Stirton, Charles, Rafudeen, Suhail, Honnay, Olivier, Smets, Erik, Chen, Wen-Ming, Sprent, Janet, James, Euan K., Muasya, A. Muthama
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.09.2016
Subjects
Online AccessGet full text
ISSN0099-2240
1098-5336
1098-5336
DOI10.1128/AEM.00591-16

Cover

Abstract Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA ) and symbiosis ( nifH , nodA , nodC ) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678 T and B . phymatum STM815 T was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid ( Mimosa pudica ) and papilionoid ( Dipogon lignosus , Indigofera filifolia , Macroptilium atropurpureum , and Podalyria calyptrata ) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia -philous fynbos legumes ( D . lignosus , I . filifolia , and P . calyptrata ) nodulated only in their native soils, the invasive neotropical species M . pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia , seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
AbstractList Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678T and B. phymatum STM815T was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D. lignosus, I. filifolia, and P. calyptrata) nodulated only in their native soils, the invasive neotropical species M. pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA ) and symbiosis ( nifH , nodA , nodC ) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678 T and B . phymatum STM815 T was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid ( Mimosa pudica ) and papilionoid ( Dipogon lignosus , Indigofera filifolia , Macroptilium atropurpureum , and Podalyria calyptrata ) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia -philous fynbos legumes ( D . lignosus , I . filifolia , and P . calyptrata ) nodulated only in their native soils, the invasive neotropical species M . pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia , seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America.UNLABELLEDRhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America.This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.IMPORTANCEThis study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678^sup T^ and B. phymatum STM815^sup T^ was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D. lignosus, I. filifolia, and P. calyptrata) nodulated only in their native soils, the invasive neotropical species M. pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America.
Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
Author Lemaire, Benny
Rafudeen, Suhail
Smets, Erik
Honnay, Olivier
Chimphango, Samson B. M.
Stirton, Charles
Chen, Wen-Ming
James, Euan K.
Sprent, Janet
Muasya, A. Muthama
Author_xml – sequence: 1
  givenname: Benny
  surname: Lemaire
  fullname: Lemaire, Benny
  organization: Department of Biological Sciences, University of Cape Town, Cape Town, South Africa, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
– sequence: 2
  givenname: Samson B. M.
  surname: Chimphango
  fullname: Chimphango, Samson B. M.
  organization: Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
– sequence: 3
  givenname: Charles
  surname: Stirton
  fullname: Stirton, Charles
  organization: Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
– sequence: 4
  givenname: Suhail
  surname: Rafudeen
  fullname: Rafudeen, Suhail
  organization: Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
– sequence: 5
  givenname: Olivier
  surname: Honnay
  fullname: Honnay, Olivier
  organization: Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
– sequence: 6
  givenname: Erik
  surname: Smets
  fullname: Smets, Erik
  organization: Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium, Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands
– sequence: 7
  givenname: Wen-Ming
  surname: Chen
  fullname: Chen, Wen-Ming
  organization: Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung City, Taiwan
– sequence: 8
  givenname: Janet
  surname: Sprent
  fullname: Sprent, Janet
  organization: Division of Plant Sciences, University of Dundee at JHI, Dundee, United Kingdom
– sequence: 9
  givenname: Euan K.
  surname: James
  fullname: James, Euan K.
  organization: The James Hutton Institute, Invergowrie, Dundee, United Kingdom
– sequence: 10
  givenname: A. Muthama
  surname: Muasya
  fullname: Muasya, A. Muthama
  organization: Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27316955$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv3CAURlGVqJmk3XVdIXXTRT0BbIPpItJklLSRpg-p7Rox9sXD1AYX7Er598F5VE3URTew4NzDB_ceowPnHSD0ipIlpaw6XV18WhJSSppR_gwtKJFVVuY5P0ALQqTMGCvIETqOcU8IKQivnqMjJnLKZVku0P7c-hZ8G_Sws7Xu8Fc9jhBcxN7gDbRTD9ln30ydHq1r8fkUfu5810CwGsdhWL7HJvger0xI1Q5fXrutj3j0eO1dqgA3Jue3JIb4Ah0a3UV4eb-foB-XF9_XH7PNlw9X69Umq4uiHDPOGIdcgGgaVmpRGWlKzQUxXGsGtKmI1ltKCZWGAU-LBCY0kYLTigOh-Qk6u_MO07aHpk4Zgu7UEGyvw7Xy2qrHJ87uVOt_q0JWVXIkwdt7QfC_Joij6m2soeu0Az9FRSsmJCmEZP-BUsaY4Hy2vnmC7v0UXPqJmRJlLnMhEvX67_B_Uj90LAHsDqiDjzGAUbUdU3P8_BbbKUrUPBYqjYW6HQtF57vfPSl68P4TvwGBlbg1
CODEN AEMIDF
CitedBy_id crossref_primary_10_1111_gfs_12522
crossref_primary_10_1016_j_syapm_2018_10_003
crossref_primary_10_3389_fmicb_2020_563389
crossref_primary_10_3390_ht7020015
crossref_primary_10_1111_nph_14474
crossref_primary_10_1016_j_apsoil_2024_105741
crossref_primary_10_3390_microorganisms9091842
crossref_primary_10_1016_j_sajb_2018_02_406
crossref_primary_10_1007_s10482_019_01269_5
crossref_primary_10_1097_MD_0000000000016749
crossref_primary_10_3390_metabo11070455
crossref_primary_10_1016_j_syapm_2022_126316
crossref_primary_10_3390_genes9080389
crossref_primary_10_1007_s00203_020_01843_w
crossref_primary_10_3389_fevo_2018_00005
crossref_primary_10_3390_nitrogen4010010
crossref_primary_10_2989_10220119_2018_1522515
crossref_primary_10_3390_nitrogen1020008
crossref_primary_10_1016_j_sajb_2016_10_025
crossref_primary_10_3389_fpls_2021_699590
crossref_primary_10_3389_fmicb_2017_01527
crossref_primary_10_1128_jb_00422_24
crossref_primary_10_1007_s00203_021_02537_7
crossref_primary_10_1111_jam_14526
crossref_primary_10_1007_s11104_017_3521_5
crossref_primary_10_3390_ijms18040705
crossref_primary_10_1093_botlinnean_boac002
crossref_primary_10_3389_fmicb_2020_01600
crossref_primary_10_3389_fmicb_2017_02473
crossref_primary_10_3390_d12060254
crossref_primary_10_1016_j_syapm_2020_126151
crossref_primary_10_3390_genes9010002
crossref_primary_10_1093_femsle_fnab132
crossref_primary_10_1016_j_syapm_2020_126152
crossref_primary_10_3389_fmicb_2019_01195
crossref_primary_10_1016_j_syapm_2021_126207
crossref_primary_10_1007_s00203_019_01714_z
crossref_primary_10_3390_genes8120389
crossref_primary_10_1007_s13199_024_01016_z
crossref_primary_10_1016_j_syapm_2017_12_003
crossref_primary_10_1186_s40168_019_0727_1
crossref_primary_10_1038_nrmicro_2017_173
Cites_doi 10.1099/00207713-52-3-1043
10.1099/00207713-51-6-2037
10.1128/AEM.02125-06
10.1007/s11104-013-1590-7
10.1093/bioinformatics/btg180
10.1126/science.1070710
10.1128/AEM.01541-09
10.1111/j.1471-8286.2005.01155.x
10.1111/jbi.12091
10.1016/j.syapm.2015.09.006
10.1089/dna.2009.0863
10.1099/ijsem.0.000639
10.5962/p.292256
10.1007/s00248-014-0503-5
10.1111/j.1469-8137.2006.01894.x
10.1007/s10530-006-0009-2
10.1093/molbev/msj030
10.1098/rspb.2005.3292
10.1111/j.1574-6941.2012.01310.x
10.1146/annurev.micro.56.012302.160634
10.1128/AEM.64.2.419-426.1998
10.1086/383541
10.1016/j.apsoil.2012.10.005
10.1111/j.1365-294X.2009.04458.x
10.1128/AEM.64.10.3989-3997.1998
10.1371/journal.pone.0068406
10.1186/gb-2006-7-9-116
10.1093/aob/mct112
10.1128/AEM.02886-09
10.1038/nature03073
10.1111/j.1469-8137.2010.03267.x
10.1111/j.1365-294X.2011.05368.x
10.1016/j.syapm.2015.09.003
10.1099/ijs.0.064931-0
10.1128/MMBR.64.1.180-201.2000
10.1038/nrmicro1341
10.1016/j.ympev.2011.12.020
10.1111/j.1574-6941.2012.01342.x
10.1099/ijs.0.048777-0
10.1078/07232020260517634
10.1146/annurev.micro.54.1.257
10.1016/j.ympev.2012.07.008
10.4056/sigs.4861021
10.1128/AEM.66.12.5448-5456.2000
10.1007/s00248-014-0427-0
10.1128/JB.173.2.697-703.1991
10.1371/journal.pone.0027935
10.1111/j.1469-8137.2005.01533.x
10.1111/j.1365-294X.2010.04804.x
10.1093/bioinformatics/14.9.817
10.1111/j.1365-2699.2010.02284.x
10.1111/j.1365-294X.2005.02721.x
10.1099/ijs.0.048751-0
10.1016/j.syapm.2010.11.015
10.1139/b91-196
10.1073/pnas.93.26.15305
10.1093/aob/mcm227
10.1093/nar/gkh340
10.1099/ijs.0.058602-0
10.1111/j.1574-6941.2011.01235.x
10.1146/annurev.ecolsys.39.110707.173423
10.1016/j.soilbio.2008.10.011
10.1890/04-1587
10.1046/j.1365-294X.2003.01754.x
10.1093/molbev/msh018
10.1128/AEM.71.11.7461-7471.2005
10.1007/978-1-4613-8375-8
10.1016/j.soilbio.2013.01.009
10.1016/j.ympev.2008.04.032
10.1007/s00248-011-9929-1
10.1128/AEM.71.11.7041-7052.2005
10.1038/nrmicro1236
10.1093/genetics/28.2.114
10.1094/MPMI-06-11-0172
10.1111/nph.13573
10.1371/journal.pone.0063478
10.1016/j.sajb.2013.06.011
10.1016/j.syapm.2014.08.002
10.1126/science.1153475
10.1093/femsec/fiu024
10.1038/nature07764
10.1128/JB.01756-12
10.1038/nature01931
10.1093/bioinformatics/btl446
ContentType Journal Article
Copyright Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology Sep 2016
Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
Copyright_xml – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology Sep 2016
– notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/AEM.00591-16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
CrossRef

MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
DocumentTitleAlternate Biogeography of the Burkholderia-Legume Interaction
EISSN 1098-5336
EndPage 5115
ExternalDocumentID PMC4988186
4174042881
27316955
10_1128_AEM_00591_16
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
ADXHL
AENEX
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
O9-
OHT
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
OK1
RHF
UCJ
Z5M
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c445t-6226e37e7dd25a78f9f5a670f6aa2e1d80aab11019f2e69f29e27a0976186e013
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 14:08:57 EDT 2025
Thu Sep 04 18:59:18 EDT 2025
Thu Sep 04 18:31:09 EDT 2025
Mon Jun 30 08:30:04 EDT 2025
Wed Feb 19 02:43:16 EST 2025
Tue Jul 01 02:20:06 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Copyright © 2016, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-6226e37e7dd25a78f9f5a670f6aa2e1d80aab11019f2e69f29e27a0976186e013
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Citation Lemaire B, Chimphango SBM, Stirton C, Rafudeen S, Honnay O, Smets E, Chen W-M, Sprent J, James EK, Muasya AM. 2016. Biogeographical patterns of legume-nodulating Burkholderia spp.: from African fynbos to continental scales. Appl Environ Microbiol 82:5099–5115. doi:10.1128/AEM.00591-16.
OpenAccessLink https://aem.asm.org/content/aem/82/17/5099.full.pdf
PMID 27316955
PQID 1817539377
PQPubID 42251
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4988186
proquest_miscellaneous_1827904792
proquest_miscellaneous_1812227666
proquest_journals_1817539377
pubmed_primary_27316955
crossref_citationtrail_10_1128_AEM_00591_16
crossref_primary_10_1128_AEM_00591_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_75_2
e_1_3_3_77_2
e_1_3_3_79_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_90_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
Kobayashi H (e_1_3_3_71_2) 2008
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_86_2
e_1_3_3_88_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
Lewis GP (e_1_3_3_50_2) 2005
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_84_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
Vincent JM (e_1_3_3_39_2) 1970
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_85_2
Stirton CH (e_1_3_3_49_2) 2015; 33
e_1_3_3_60_2
e_1_3_3_87_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
Rodríguez-Echeverría S (e_1_3_3_78_2) 2010; 37
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_66_2
e_1_3_3_81_2
Ausubel FM (e_1_3_3_43_2) 1992
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
9758831 - Appl Environ Microbiol. 1998 Oct;64(10):3989-97
12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
16313648 - New Phytol. 2005 Dec;168(3):661-75
26689612 - Syst Appl Microbiol. 2016 Feb;39(1):41-8
16269788 - Appl Environ Microbiol. 2005 Nov;71(11):7461-71
11018130 - Annu Rev Microbiol. 2000;54:257-88
22092487 - Mol Ecol. 2012 Jan;21(1):145-59
17247074 - Genetics. 1943 Mar;28(2):114-38
21830951 - Mol Plant Microbe Interact. 2011 Nov;24(11):1276-88
12955144 - Nature. 2003 Sep 4;425(6953):78-81
16519238 - Proc Biol Sci. 2006 Jan 7;273(1582):77-81
16269740 - Appl Environ Microbiol. 2005 Nov;71(11):7041-52
25199986 - Syst Appl Microbiol. 2014 Dec;37(8):613-21
16262857 - Mol Ecol. 2005 Nov;14(13):4033-50
23712450 - Ann Bot. 2013 Jul;112(1):179-96
23691052 - PLoS One. 2013 May 15;8(5):e63478
19219025 - Nature. 2009 Apr 9;458(7239):754-6
12004115 - Science. 2002 May 10;296(5570):1061-3
15592412 - Nature. 2004 Dec 9;432(7018):750-3
16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
26410793 - Int J Syst Evol Microbiol. 2015 Dec;65(12 ):4716-23
21850446 - Microb Ecol. 2012 Feb;63(2):249-66
9918953 - Bioinformatics. 1998;14(9):817-8
16138101 - Nat Rev Microbiol. 2005 Sep;3(9):733-9
22230030 - Mol Phylogenet Evol. 2012 May;63(2):265-77
21306854 - Syst Appl Microbiol. 2011 Apr;34(2):96-104
12753212 - Mol Ecol. 2003 Apr;12(4):917-29
22093060 - FEMS Microbiol Ecol. 2012 Feb;79(2):487-503
16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12
18497288 - Science. 2008 May 23;320(5879):1039-43
10704479 - Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201
22820204 - Bioinformatics. 2012 Oct 1;28(19):2537-9
17020593 - Genome Biol. 2006;7(9):116
25301497 - Microb Ecol. 2015 Apr;69(3):630-40
17176403 - New Phytol. 2007;173(1):168-80
24368690 - Int J Syst Evol Microbiol. 2014 Apr;64(Pt 4):1090-5
22842091 - Mol Phylogenet Evol. 2012 Nov;65(2):595-609
25197461 - Stand Genomic Sci. 2014 Mar 25;9(3):763-74
12583710 - Syst Appl Microbiol. 2002 Dec;25(4):507-12
26472229 - Syst Appl Microbiol. 2015 Dec;38(8):545-54
11097926 - Appl Environ Microbiol. 2000 Dec;66(12):5448-56
14660700 - Mol Biol Evol. 2004 Feb;21(2):255-65
20002602 - Mol Ecol. 2010 Jan;19(1):44-52
24505072 - Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):346-51
22381032 - FEMS Microbiol Ecol. 2012 Jun;80(3):747-50
20472732 - Appl Environ Microbiol. 2010 Jul;76(13):4587-91
22174755 - PLoS One. 2011;6(12):e27935
9464375 - Appl Environ Microbiol. 1998 Feb;64(2):419-26
24801964 - Microb Ecol. 2014 Oct;68(3):542-55
8986807 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15305-10
11760945 - Int J Syst Evol Microbiol. 2001 Nov;51(Pt 6):2037-48
22268711 - FEMS Microbiol Ecol. 2012 May;80(2):417-26
23710047 - Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):3950-7
23209196 - J Bacteriol. 2012 Dec;194(24):6927
23710046 - Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):3944-9
25241408 - Mol Ecol. 2010 Oct;19(19):4315-27
15232949 - Q Rev Biol. 2004 Jun;79(2):135-60
19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
12054223 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):1043-7
26214613 - New Phytol. 2016 Jan;209(1):319-33
25764552 - FEMS Microbiol Ecol. 2015 Feb;91(2):1-17
1987160 - J Bacteriol. 1991 Jan;173(2):697-703
12142474 - Annu Rev Microbiol. 2002;56:457-87
17881339 - Ann Bot. 2007 Dec;100(7):1403-11
18539053 - Mol Phylogenet Evol. 2008 Sep;48(3):1131-44
17400786 - Appl Environ Microbiol. 2007 May;73(10):3254-64
20456044 - New Phytol. 2010 Jun;186(4):934-46
16221896 - Mol Biol Evol. 2006 Feb;23(2):254-67
23874611 - PLoS One. 2013 Jul 11;8(7):e68406
19485766 - DNA Cell Biol. 2009 Aug;28(8):361-70
References_xml – ident: e_1_3_3_59_2
  doi: 10.1099/00207713-52-3-1043
– ident: e_1_3_3_41_2
  doi: 10.1099/00207713-51-6-2037
– ident: e_1_3_3_87_2
  doi: 10.1128/AEM.02125-06
– ident: e_1_3_3_53_2
  doi: 10.1007/s11104-013-1590-7
– ident: e_1_3_3_44_2
  doi: 10.1093/bioinformatics/btg180
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1070710
– start-page: 117
  volume-title: Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascadeNitrogen-fixing legume symbioses
  year: 2008
  ident: e_1_3_3_71_2
– ident: e_1_3_3_35_2
  doi: 10.1128/AEM.01541-09
– ident: e_1_3_3_48_2
  doi: 10.1111/j.1471-8286.2005.01155.x
– ident: e_1_3_3_79_2
  doi: 10.1111/jbi.12091
– ident: e_1_3_3_33_2
  doi: 10.1016/j.syapm.2015.09.006
– ident: e_1_3_3_74_2
  doi: 10.1089/dna.2009.0863
– ident: e_1_3_3_21_2
  doi: 10.1099/ijsem.0.000639
– volume: 33
  start-page: 97
  year: 2015
  ident: e_1_3_3_49_2
  article-title: Naturalised species of Psoralea (Fabaceae: Psoraleeae) in Australia
  publication-title: Muelleria
  doi: 10.5962/p.292256
– volume-title: A manual for the practical study of the root-nodule bacteria
  year: 1970
  ident: e_1_3_3_39_2
– ident: e_1_3_3_89_2
  doi: 10.1007/s00248-014-0503-5
– ident: e_1_3_3_18_2
  doi: 10.1111/j.1469-8137.2006.01894.x
– ident: e_1_3_3_16_2
  doi: 10.1007/s10530-006-0009-2
– ident: e_1_3_3_37_2
  doi: 10.1093/molbev/msj030
– volume-title: Legumes of the world
  year: 2005
  ident: e_1_3_3_50_2
– ident: e_1_3_3_81_2
  doi: 10.1098/rspb.2005.3292
– ident: e_1_3_3_17_2
  doi: 10.1111/j.1574-6941.2012.01310.x
– ident: e_1_3_3_57_2
  doi: 10.1146/annurev.micro.56.012302.160634
– ident: e_1_3_3_42_2
  doi: 10.1128/AEM.64.2.419-426.1998
– ident: e_1_3_3_80_2
  doi: 10.1086/383541
– volume-title: Short protocols in molecular biology
  year: 1992
  ident: e_1_3_3_43_2
– ident: e_1_3_3_77_2
  doi: 10.1016/j.apsoil.2012.10.005
– ident: e_1_3_3_11_2
  doi: 10.1111/j.1365-294X.2009.04458.x
– ident: e_1_3_3_67_2
  doi: 10.1128/AEM.64.10.3989-3997.1998
– ident: e_1_3_3_28_2
  doi: 10.1371/journal.pone.0068406
– ident: e_1_3_3_60_2
  doi: 10.1186/gb-2006-7-9-116
– ident: e_1_3_3_15_2
  doi: 10.1093/aob/mct112
– ident: e_1_3_3_34_2
  doi: 10.1128/AEM.02886-09
– ident: e_1_3_3_5_2
  doi: 10.1038/nature03073
– ident: e_1_3_3_56_2
  doi: 10.1111/j.1469-8137.2010.03267.x
– ident: e_1_3_3_8_2
  doi: 10.1111/j.1365-294X.2011.05368.x
– ident: e_1_3_3_29_2
  doi: 10.1016/j.syapm.2015.09.003
– ident: e_1_3_3_61_2
  doi: 10.1099/ijs.0.064931-0
– ident: e_1_3_3_70_2
  doi: 10.1128/MMBR.64.1.180-201.2000
– ident: e_1_3_3_23_2
  doi: 10.1038/nrmicro1341
– ident: e_1_3_3_66_2
  doi: 10.1016/j.ympev.2011.12.020
– ident: e_1_3_3_19_2
  doi: 10.1111/j.1574-6941.2012.01342.x
– ident: e_1_3_3_25_2
  doi: 10.1099/ijs.0.048777-0
– ident: e_1_3_3_55_2
  doi: 10.1078/07232020260517634
– ident: e_1_3_3_69_2
  doi: 10.1146/annurev.micro.54.1.257
– ident: e_1_3_3_85_2
  doi: 10.1016/j.ympev.2012.07.008
– ident: e_1_3_3_75_2
  doi: 10.4056/sigs.4861021
– ident: e_1_3_3_4_2
  doi: 10.1128/AEM.66.12.5448-5456.2000
– ident: e_1_3_3_20_2
  doi: 10.1007/s00248-014-0427-0
– ident: e_1_3_3_40_2
  doi: 10.1128/JB.173.2.697-703.1991
– ident: e_1_3_3_76_2
  doi: 10.1371/journal.pone.0027935
– ident: e_1_3_3_14_2
  doi: 10.1111/j.1469-8137.2005.01533.x
– ident: e_1_3_3_2_2
  doi: 10.1111/j.1365-294X.2010.04804.x
– ident: e_1_3_3_45_2
  doi: 10.1093/bioinformatics/14.9.817
– volume: 37
  start-page: 1611
  year: 2010
  ident: e_1_3_3_78_2
  article-title: Rhizobial hitchhikers from Down Under: invasional meltdown in a plant-bacteria mutualism?
  publication-title: J Biogeogr
  doi: 10.1111/j.1365-2699.2010.02284.x
– ident: e_1_3_3_9_2
  doi: 10.1111/j.1365-294X.2005.02721.x
– ident: e_1_3_3_30_2
  doi: 10.1099/ijs.0.048751-0
– ident: e_1_3_3_73_2
  doi: 10.1016/j.syapm.2010.11.015
– ident: e_1_3_3_52_2
  doi: 10.1139/b91-196
– ident: e_1_3_3_68_2
  doi: 10.1073/pnas.93.26.15305
– ident: e_1_3_3_32_2
  doi: 10.1093/aob/mcm227
– ident: e_1_3_3_36_2
  doi: 10.1093/nar/gkh340
– ident: e_1_3_3_24_2
  doi: 10.1099/ijs.0.058602-0
– ident: e_1_3_3_72_2
  doi: 10.1111/j.1574-6941.2011.01235.x
– ident: e_1_3_3_82_2
  doi: 10.1146/annurev.ecolsys.39.110707.173423
– ident: e_1_3_3_31_2
  doi: 10.1016/j.soilbio.2008.10.011
– ident: e_1_3_3_47_2
– ident: e_1_3_3_6_2
  doi: 10.1890/04-1587
– ident: e_1_3_3_7_2
  doi: 10.1046/j.1365-294X.2003.01754.x
– ident: e_1_3_3_38_2
  doi: 10.1093/molbev/msh018
– ident: e_1_3_3_51_2
  doi: 10.1128/AEM.71.11.7461-7471.2005
– ident: e_1_3_3_54_2
  doi: 10.1007/978-1-4613-8375-8
– ident: e_1_3_3_26_2
  doi: 10.1016/j.soilbio.2013.01.009
– ident: e_1_3_3_86_2
  doi: 10.1016/j.ympev.2008.04.032
– ident: e_1_3_3_22_2
  doi: 10.1007/s00248-011-9929-1
– ident: e_1_3_3_88_2
  doi: 10.1128/AEM.71.11.7041-7052.2005
– ident: e_1_3_3_58_2
  doi: 10.1038/nrmicro1236
– ident: e_1_3_3_62_2
  doi: 10.1093/genetics/28.2.114
– ident: e_1_3_3_13_2
  doi: 10.1094/MPMI-06-11-0172
– ident: e_1_3_3_12_2
  doi: 10.1111/nph.13573
– ident: e_1_3_3_63_2
  doi: 10.1371/journal.pone.0063478
– ident: e_1_3_3_84_2
  doi: 10.1016/j.sajb.2013.06.011
– ident: e_1_3_3_10_2
  doi: 10.1016/j.syapm.2014.08.002
– ident: e_1_3_3_90_2
  doi: 10.1126/science.1153475
– ident: e_1_3_3_27_2
  doi: 10.1093/femsec/fiu024
– ident: e_1_3_3_65_2
  doi: 10.1038/nature07764
– ident: e_1_3_3_64_2
  doi: 10.1128/JB.01756-12
– ident: e_1_3_3_83_2
  doi: 10.1038/nature01931
– ident: e_1_3_3_46_2
  doi: 10.1093/bioinformatics/btl446
– reference: 22093060 - FEMS Microbiol Ecol. 2012 Feb;79(2):487-503
– reference: 16262857 - Mol Ecol. 2005 Nov;14(13):4033-50
– reference: 23874611 - PLoS One. 2013 Jul 11;8(7):e68406
– reference: 16519238 - Proc Biol Sci. 2006 Jan 7;273(1582):77-81
– reference: 22381032 - FEMS Microbiol Ecol. 2012 Jun;80(3):747-50
– reference: 22230030 - Mol Phylogenet Evol. 2012 May;63(2):265-77
– reference: 25197461 - Stand Genomic Sci. 2014 Mar 25;9(3):763-74
– reference: 23691052 - PLoS One. 2013 May 15;8(5):e63478
– reference: 26214613 - New Phytol. 2016 Jan;209(1):319-33
– reference: 21306854 - Syst Appl Microbiol. 2011 Apr;34(2):96-104
– reference: 15592412 - Nature. 2004 Dec 9;432(7018):750-3
– reference: 22174755 - PLoS One. 2011;6(12):e27935
– reference: 11097926 - Appl Environ Microbiol. 2000 Dec;66(12):5448-56
– reference: 14660700 - Mol Biol Evol. 2004 Feb;21(2):255-65
– reference: 25199986 - Syst Appl Microbiol. 2014 Dec;37(8):613-21
– reference: 19485766 - DNA Cell Biol. 2009 Aug;28(8):361-70
– reference: 25764552 - FEMS Microbiol Ecol. 2015 Feb;91(2):1-17
– reference: 23209196 - J Bacteriol. 2012 Dec;194(24):6927
– reference: 12142474 - Annu Rev Microbiol. 2002;56:457-87
– reference: 12753212 - Mol Ecol. 2003 Apr;12(4):917-29
– reference: 23710046 - Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):3944-9
– reference: 20002602 - Mol Ecol. 2010 Jan;19(1):44-52
– reference: 9464375 - Appl Environ Microbiol. 1998 Feb;64(2):419-26
– reference: 20472732 - Appl Environ Microbiol. 2010 Jul;76(13):4587-91
– reference: 8986807 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15305-10
– reference: 16269740 - Appl Environ Microbiol. 2005 Nov;71(11):7041-52
– reference: 16313648 - New Phytol. 2005 Dec;168(3):661-75
– reference: 17020593 - Genome Biol. 2006;7(9):116
– reference: 12004115 - Science. 2002 May 10;296(5570):1061-3
– reference: 26410793 - Int J Syst Evol Microbiol. 2015 Dec;65(12 ):4716-23
– reference: 1987160 - J Bacteriol. 1991 Jan;173(2):697-703
– reference: 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
– reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
– reference: 11760945 - Int J Syst Evol Microbiol. 2001 Nov;51(Pt 6):2037-48
– reference: 20456044 - New Phytol. 2010 Jun;186(4):934-46
– reference: 11018130 - Annu Rev Microbiol. 2000;54:257-88
– reference: 17176403 - New Phytol. 2007;173(1):168-80
– reference: 16269788 - Appl Environ Microbiol. 2005 Nov;71(11):7461-71
– reference: 12955144 - Nature. 2003 Sep 4;425(6953):78-81
– reference: 22842091 - Mol Phylogenet Evol. 2012 Nov;65(2):595-609
– reference: 16138101 - Nat Rev Microbiol. 2005 Sep;3(9):733-9
– reference: 17881339 - Ann Bot. 2007 Dec;100(7):1403-11
– reference: 21850446 - Microb Ecol. 2012 Feb;63(2):249-66
– reference: 23710047 - Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):3950-7
– reference: 12583710 - Syst Appl Microbiol. 2002 Dec;25(4):507-12
– reference: 22820204 - Bioinformatics. 2012 Oct 1;28(19):2537-9
– reference: 25301497 - Microb Ecol. 2015 Apr;69(3):630-40
– reference: 24505072 - Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):346-51
– reference: 12054223 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):1043-7
– reference: 9758831 - Appl Environ Microbiol. 1998 Oct;64(10):3989-97
– reference: 17247074 - Genetics. 1943 Mar;28(2):114-38
– reference: 18497288 - Science. 2008 May 23;320(5879):1039-43
– reference: 26689612 - Syst Appl Microbiol. 2016 Feb;39(1):41-8
– reference: 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12
– reference: 26472229 - Syst Appl Microbiol. 2015 Dec;38(8):545-54
– reference: 21830951 - Mol Plant Microbe Interact. 2011 Nov;24(11):1276-88
– reference: 9918953 - Bioinformatics. 1998;14(9):817-8
– reference: 22092487 - Mol Ecol. 2012 Jan;21(1):145-59
– reference: 18539053 - Mol Phylogenet Evol. 2008 Sep;48(3):1131-44
– reference: 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
– reference: 19219025 - Nature. 2009 Apr 9;458(7239):754-6
– reference: 24801964 - Microb Ecol. 2014 Oct;68(3):542-55
– reference: 10704479 - Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201
– reference: 16221896 - Mol Biol Evol. 2006 Feb;23(2):254-67
– reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
– reference: 15232949 - Q Rev Biol. 2004 Jun;79(2):135-60
– reference: 25241408 - Mol Ecol. 2010 Oct;19(19):4315-27
– reference: 24368690 - Int J Syst Evol Microbiol. 2014 Apr;64(Pt 4):1090-5
– reference: 23712450 - Ann Bot. 2013 Jul;112(1):179-96
– reference: 22268711 - FEMS Microbiol Ecol. 2012 May;80(2):417-26
– reference: 17400786 - Appl Environ Microbiol. 2007 May;73(10):3254-64
SSID ssj0004068
Score 2.406986
Snippet Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid...
Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5099
SubjectTerms Bacteria
Biogeography
Burkholderia
Burkholderia - classification
Burkholderia - genetics
Burkholderia - isolation & purification
Burkholderia - physiology
Dipogon
Distribution patterns
Evolutionary and Genomic Microbiology
Fabaceae - classification
Fabaceae - microbiology
Flora
Fynbos
Genetic diversity
Gram-negative bacteria
Host Specificity
Indigofera
Legumes
Mimosa pudica
Phylogeny
Root Nodules, Plant - microbiology
Soil sciences
South Africa
South America
Symbiosis
Title Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales
URI https://www.ncbi.nlm.nih.gov/pubmed/27316955
https://www.proquest.com/docview/1817539377
https://www.proquest.com/docview/1812227666
https://www.proquest.com/docview/1827904792
https://pubmed.ncbi.nlm.nih.gov/PMC4988186
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1098-5336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004068
  issn: 0099-2240
  databaseCode: KQ8
  dateStart: 19530101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1098-5336
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0004068
  issn: 0099-2240
  databaseCode: DIK
  dateStart: 19760101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1098-5336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004068
  issn: 0099-2240
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1098-5336
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0004068
  issn: 0099-2240
  databaseCode: RPM
  dateStart: 19760101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5NAEN7UM0Z9MFp_VU-zJupLQ4Ut7IJv10ubi_aq5tqkbwTo0lY9qC08nH-Pf6gzLNBt7zSnL6SBDVDmY_abZWY-Ql6j9isPIDphgWkadjeODYhVuME8yxPINyKB9c6nI34ysT9MnWmj8UvLWsqzsBP9vLKu5H-sCvvArlgl-w-WrU8KO-A32Be2YGHYXsvGvWU6VyLmi-JZfy6aZarEtqGcg9sxRumsEOhK5u1evv6GH5vwztqb1aqDqwFFeYkSC0rag4skTIuWD9i0CvhnUSp5BqcuMw2rdrUldcVFd61SDgtRltvGTttcn_OgXAHvgVuv9x8vlgClIJmnamn6HMUQe5q-8XKd7eQEbL9JxflMKn95li-qLJFy7cLidXJW7Y89z0BSoWYj5YKxwymQUK77aJfpWBSaxwXC42mzN_BH5-qZgWG1w1H_tIP1tkocO95rwD365A8mw6E_7k_Hb1c_DNQmw2_4pVDLDXKTCc5RJ-PjF60nvcndqtcp_peqvIK57_TL7RKfS9HMflKuxnLG98m9MjyhRwprD0hDJk1ySwmWXjTJ7aqOfdMkd7VWlg_J1z0s0gqLNI3pJSxSHYsUsfieIhJpiUSqkEizlGpIpAqJj8hk0B8fnxiljocR2baTGRwovuwKKWYz5oBfiL3YCbgwYx4ETFoz1wyCEGio5cVMcth4konABKJsuVxCjPKYHCRpIp8SakG0AXMMnADmkUjI0DPtsGu6kWPzQMaiRdrVQ_ajssk9aq1894tgl7k-mMQvTOJbvEXe1KNXqrnLH8YdVvbyy9d_4wM1hlAf2D1c9FV9GJwzfnELEpnmxRisNeec_20MEx4KPbAWeaIgUN8MQ105z3FaROyAox6AzeF3jyTLRdEk3vZcbFb57BrXfU7ubF_OQ3KQrXP5Aqh2Fr4skP4bcqzX5w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biogeographical+Patterns+of+Legume-Nodulating+Burkholderia+spp.%3A+from+African+Fynbos+to+Continental+Scales&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Lemaire%2C+Benny&rft.au=Chimphango%2C+Samson+BM&rft.au=Stirton%2C+Charles&rft.au=Rafudeen%2C+Suhail&rft.date=2016-09-01&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=82&rft.issue=17&rft.spage=5099&rft.epage=5115&rft_id=info:doi/10.1128%2FAEM.00591-16&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon