Transducer Placement Option of Lamb Wave SHM System for Hotspot Damage Monitoring

In this paper, we investigated transducer placement strategies for detecting cracks in primary aircraft structures using ultrasonic Structural Health Monitoring (SHM). The approach developed is for an expected damage location based on fracture mechanics, for example fatigue crack growth in a high st...

Full description

Saved in:
Bibliographic Details
Published inAerospace Vol. 5; no. 2; p. 39
Main Authors Ewald, Vincentius, Groves, Roger M., Benedictus, Rinze
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2018
Subjects
Online AccessGet full text
ISSN2226-4310
2226-4310
DOI10.3390/aerospace5020039

Cover

More Information
Summary:In this paper, we investigated transducer placement strategies for detecting cracks in primary aircraft structures using ultrasonic Structural Health Monitoring (SHM). The approach developed is for an expected damage location based on fracture mechanics, for example fatigue crack growth in a high stress location. To assess the performance of the developed approach, finite-element (FE) modelling of a damage-tolerant aluminum fuselage has been performed by introducing an artificial crack at a rivet hole into the structural FE model and assessing its influence on the Lamb wave propagation, compared to a baseline measurement simulation. The efficient practical sensor position was determined from the largest change in area that is covered by reflected and missing wave scatter using an additive color model. Blob detection algorithms were employed to determine the boundaries of this area and to calculate the blob centroid. To demonstrate that the technique can be generalized, the results from different crack lengths and from tilted crack are also presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace5020039