An Automated Machine Learning–Based Quantitative Multiparametric Approach for Mitral Regurgitation Severity Grading

Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes...

Full description

Saved in:
Bibliographic Details
Published inJACC. Cardiovascular imaging Vol. 18; no. 1; pp. 1 - 12
Main Authors Sadeghpour, Anita, Jiang, Zhubo, Hummel, Yoran M., Frost, Matthew, Lam, Carolyn S.P., Shah, Sanjiv J., Lund, Lars H., Stone, Gregg W., Swaminathan, Madhav, Weissman, Neil J., Asch, Federico M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2025
Subjects
Online AccessGet full text
ISSN1936-878X
1876-7591
1876-7591
DOI10.1016/j.jcmg.2024.06.011

Cover

Abstract Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes. The authors aimed to develop and validate a fully automated machine learning (ML)–based echocardiography workflow for grading MR severity. ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading. The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild). An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory. [Display omitted]
AbstractList Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes.BACKGROUNDConsidering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes.The authors aimed to develop and validate a fully automated machine learning (ML)-based echocardiography workflow for grading MR severity.OBJECTIVESThe authors aimed to develop and validate a fully automated machine learning (ML)-based echocardiography workflow for grading MR severity.ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading.METHODSML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading.The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild).RESULTSThe preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild).An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory.CONCLUSIONSAn automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory.
Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes. The authors aimed to develop and validate a fully automated machine learning (ML)–based echocardiography workflow for grading MR severity. ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading. The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild). An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory. [Display omitted]
Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes. The authors aimed to develop and validate a fully automated machine learning (ML)-based echocardiography workflow for grading MR severity. ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading. The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild). An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory.
Author Asch, Federico M.
Sadeghpour, Anita
Frost, Matthew
Lund, Lars H.
Hummel, Yoran M.
Shah, Sanjiv J.
Weissman, Neil J.
Jiang, Zhubo
Lam, Carolyn S.P.
Stone, Gregg W.
Swaminathan, Madhav
Author_xml – sequence: 1
  givenname: Anita
  surname: Sadeghpour
  fullname: Sadeghpour, Anita
  organization: MedStar Health Research Institute and Georgetown University, Washington, District of Columbia, USA
– sequence: 2
  givenname: Zhubo
  surname: Jiang
  fullname: Jiang, Zhubo
  organization: Us2.ai, Singapore, Singapore
– sequence: 3
  givenname: Yoran M.
  surname: Hummel
  fullname: Hummel, Yoran M.
  organization: Us2.ai, Singapore, Singapore
– sequence: 4
  givenname: Matthew
  surname: Frost
  fullname: Frost, Matthew
  organization: Us2.ai, Singapore, Singapore
– sequence: 5
  givenname: Carolyn S.P.
  surname: Lam
  fullname: Lam, Carolyn S.P.
  organization: National Heart Centre Singapore, Duke-National University of Singapore, Singapore
– sequence: 6
  givenname: Sanjiv J.
  surname: Shah
  fullname: Shah, Sanjiv J.
  organization: Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
– sequence: 7
  givenname: Lars H.
  surname: Lund
  fullname: Lund, Lars H.
  organization: Karolinska University Hospital, Stockholm, Sweden
– sequence: 8
  givenname: Gregg W.
  surname: Stone
  fullname: Stone, Gregg W.
  organization: The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 9
  givenname: Madhav
  surname: Swaminathan
  fullname: Swaminathan, Madhav
  organization: Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
– sequence: 10
  givenname: Neil J.
  surname: Weissman
  fullname: Weissman, Neil J.
  organization: MedStar Health Research Institute and Georgetown University, Washington, District of Columbia, USA
– sequence: 11
  givenname: Federico M.
  surname: Asch
  fullname: Asch, Federico M.
  email: federico.asch@medstar.net
  organization: MedStar Health Research Institute and Georgetown University, Washington, District of Columbia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39152959$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:160677482$$DView record from Swedish Publication Index
BookMark eNqFkctu1DAUhi1URC_wAixQlmwyOI7txIjNUEFBmhHiJrGzTp2TwdPESW1n0Oz6Dn1DngQPM3TRRVn5yP6-I_n_T8mRGxwS8rygs4IW8tV6tjb9asYo4zMqZ7QoHpGToq5kXglVHKVZlTKvq_rHMTkNYU2ppJJXT8hxqQrBlFAnZJq7bD7FoYeITbYE89M6zBYI3lm3-n1z-xZCevg8gYs2QrQbzJZTF-0IHnqM3ppsPo5-SGbWDj5b2uihy77gavKrv8bgsq-4QW_jNrvw0KS9T8njFrqAzw7nGfn-_t238w_54tPFx_P5Ijeci5izxpQVR8VLyhVKw2lbtsCgbCStDWMgjFFSNMooJgykTCpoG1nyugRFQZVnJN_vDb9wnC716G0PfqsHsPpwdZUm1HVNFRWJf7nn04euJwxR9zYY7DpwOExBl1RxyoVQLKEvDuh02WNzt_pftAlge8D4IQSP7R1SUL3rT6_1rj-9609TqVN_SarvSeaQYUrVdg-rb_YqpkA3Fr0OxqIz2FiPJupmsA_rr-_pprPOGuiucPs_-Q8gwMxu
CitedBy_id crossref_primary_10_1016_j_jcmg_2024_12_001
crossref_primary_10_1016_j_jcmg_2024_05_026
crossref_primary_10_1016_j_jcmg_2025_01_001
crossref_primary_10_1161_CIRCIMAGING_124_017788
Cites_doi 10.1016/j.echo.2022.04.005
10.1016/S2589-7500(21)00235-1
10.1016/S0140-6736(06)69208-8
10.1016/j.echo.2017.01.007
10.1016/j.echo.2022.09.017
10.1056/NEJMoa1009355
10.1038/s41569-021-00527-2
10.1161/CIRCULATIONAHA.119.041080
10.1016/j.jacc.2020.02.005
10.1016/j.echo.2022.07.004
10.1056/NEJMoa1806640
10.1016/j.jacc.2014.02.536
10.1136/heartjnl-2021-319725
10.1038/s41586-020-2145-8
10.1093/eurheartj/ehab395
10.1016/0735-1097(92)90113-2
10.1016/j.compbiomed.2016.03.026
10.1038/s41746-017-0013-1
10.3389/fcvm.2021.759675
10.1016/j.jcmg.2021.08.015
10.1016/j.jacc.2020.11.018
10.1016/j.jcin.2023.01.010
10.1016/S0140-6736(18)30473-2
10.1016/j.echo.2020.11.017
10.1001/jamacardio.2021.0185
10.1038/s41467-022-34245-1
10.1016/j.jcin.2022.09.005
10.1016/j.jacc.2018.12.054
10.1093/eurheartj/ehy531
ContentType Journal Article
Copyright 2025 American College of Cardiology Foundation
Copyright © 2025 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 American College of Cardiology Foundation
– notice: Copyright © 2025 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
DOI 10.1016/j.jcmg.2024.06.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1876-7591
EndPage 12
ExternalDocumentID oai_swepub_ki_se_880905
39152959
10_1016_j_jcmg_2024_06_011
S1936878X2400247X
Genre Validation Study
Multicenter Study
Journal Article
Observational Study
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
18M
1B1
1P~
1~.
4.4
457
4G.
53G
5GY
5VS
7-5
8P~
AAEDT
AAEDW
AAIKJ
AALRI
AAOAW
AAQFI
AAXUO
AAYWO
ABBQC
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACGFO
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEFWE
AEKER
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AGYEJ
AIGII
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BLXMC
CS3
DIK
E3Z
EBS
EFKBS
EFLBG
EJD
F5P
FDB
FEDTE
FNPLU
GBLVA
H13
HVGLF
HZ~
IXB
J1W
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OK1
OL0
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SEL
SES
SSZ
W8F
Z5R
~HD
0SF
6I.
AACTN
AAFTH
ABVKL
AFCTW
AFETI
AJOXV
AMFUW
NCXOZ
RIG
T5K
AAYXX
CITATION
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
ID FETCH-LOGICAL-c445t-2dc374e943049e6c40f3fa2a3d608c22a5cc965d9c925ca0167afd63483a90a93
IEDL.DBID .~1
ISSN 1936-878X
1876-7591
IngestDate Mon Oct 20 03:25:39 EDT 2025
Sat Sep 27 19:46:34 EDT 2025
Mon Jul 21 06:06:16 EDT 2025
Wed Oct 01 00:54:36 EDT 2025
Thu Apr 24 23:04:40 EDT 2025
Sat Jan 04 15:42:50 EST 2025
Tue Oct 14 19:28:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RAR
TTE
mitral regurgitation
MR
echocardiography
LVESV
LV
CWDD
PASP
machine learning
LVOT
ROI
VC
artificial intelligence
A4C
A2C
continuous wave Doppler density
LA
PLAX
LVEDV
ML
Language English
License Copyright © 2025 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-2dc374e943049e6c40f3fa2a3d608c22a5cc965d9c925ca0167afd63483a90a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 39152959
PQID 3094045592
PQPubID 23479
PageCount 12
ParticipantIDs swepub_primary_oai_swepub_ki_se_880905
proquest_miscellaneous_3094045592
pubmed_primary_39152959
crossref_primary_10_1016_j_jcmg_2024_06_011
crossref_citationtrail_10_1016_j_jcmg_2024_06_011
elsevier_sciencedirect_doi_10_1016_j_jcmg_2024_06_011
elsevier_clinicalkey_doi_10_1016_j_jcmg_2024_06_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-Jan
20250101
2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JACC. Cardiovascular imaging
PublicationTitleAlternate JACC Cardiovasc Imaging
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Iung, Delgado, Rosenhek (bib3) 2019; 140
Zoghbi, Adams, Bonow (bib7) 2017; 30
Nkomo, Gardin, Skelton, Gottdiener, Scott, Enriquez-Sarano (bib1) 2006; 368
Ouyang, He, Ghorbani (bib14) 2020; 580
Dabiri, Yao, Mahadevan (bib24) 2021; 8
Asch, Descamps, Sarwar (bib16) 2022; 35
Otto, Nishimura, Bonow (bib19) 2021; 77
Dey, Slomka, Leeson (bib10) 2019; 73
Tromp, Bauer, Claggett (bib13) 2022; 13
Rashmi, Bo, Wendy (bib25) 2022; 108
Moghaddasi, Nourian (bib27) 2016; 73
Madani, Arnaout, Mofrad, Arnaout (bib17) 2018; 1
Tseng, Lopez-Jimenez, Pellikka (bib22) 2022; 35
Lang, Addetia, Miyoshi (bib18) 2021; 34
Sermesant, Delingette, Cochet, Jaïs, Ayache (bib9) 2021; 18
Asch, Poilvert, Abraham (bib15) 2019; 12
Narang, Bae, Hong (bib11) 2021; 6
Yang, Chen, Lin (bib26) 2022; 15
Lim, Smith, Gillam (bib6) 2022; 15
Nishimura, Otto, Bonow (bib30) 2014; 63
Feldman, Foster, Glower (bib4) 2011; 364
Castello, Lenzen, Aguirre, Labovitz (bib23) 1992; 20
Bonow, O’Gara, Adams (bib2) 2020; 75
Tromp, Seekings, Hung (bib12) 2022; 4
Edwards, Feng, Iqbal (bib28) 2023; 36
Stone, Lindenfeld, Abraham (bib5) 2018; 379
Dziadzko, Clavel, Dziadzko (bib29) 2018; 391
Kar, Bardeleben, Rottbauer (bib8) 2023; 16
Vahanian, Beyersdorf, Praz (bib20) 2021; 43
Shah, Lam, Svedlund (bib21) 2018; 39
Zoghbi (10.1016/j.jcmg.2024.06.011_bib7) 2017; 30
Dabiri (10.1016/j.jcmg.2024.06.011_bib24) 2021; 8
Tromp (10.1016/j.jcmg.2024.06.011_bib13) 2022; 13
Madani (10.1016/j.jcmg.2024.06.011_bib17) 2018; 1
Lang (10.1016/j.jcmg.2024.06.011_bib18) 2021; 34
Dziadzko (10.1016/j.jcmg.2024.06.011_bib29) 2018; 391
Vahanian (10.1016/j.jcmg.2024.06.011_bib20) 2021; 43
Bonow (10.1016/j.jcmg.2024.06.011_bib2) 2020; 75
Yang (10.1016/j.jcmg.2024.06.011_bib26) 2022; 15
Tromp (10.1016/j.jcmg.2024.06.011_bib12) 2022; 4
Edwards (10.1016/j.jcmg.2024.06.011_bib28) 2023; 36
Castello (10.1016/j.jcmg.2024.06.011_bib23) 1992; 20
Nishimura (10.1016/j.jcmg.2024.06.011_bib30) 2014; 63
Nkomo (10.1016/j.jcmg.2024.06.011_bib1) 2006; 368
Asch (10.1016/j.jcmg.2024.06.011_bib16) 2022; 35
Tseng (10.1016/j.jcmg.2024.06.011_bib22) 2022; 35
Lim (10.1016/j.jcmg.2024.06.011_bib6) 2022; 15
Kar (10.1016/j.jcmg.2024.06.011_bib8) 2023; 16
Narang (10.1016/j.jcmg.2024.06.011_bib11) 2021; 6
Asch (10.1016/j.jcmg.2024.06.011_bib15) 2019; 12
Ouyang (10.1016/j.jcmg.2024.06.011_bib14) 2020; 580
Dey (10.1016/j.jcmg.2024.06.011_bib10) 2019; 73
Moghaddasi (10.1016/j.jcmg.2024.06.011_bib27) 2016; 73
Otto (10.1016/j.jcmg.2024.06.011_bib19) 2021; 77
Sermesant (10.1016/j.jcmg.2024.06.011_bib9) 2021; 18
Feldman (10.1016/j.jcmg.2024.06.011_bib4) 2011; 364
Shah (10.1016/j.jcmg.2024.06.011_bib21) 2018; 39
Rashmi (10.1016/j.jcmg.2024.06.011_bib25) 2022; 108
Stone (10.1016/j.jcmg.2024.06.011_bib5) 2018; 379
Iung (10.1016/j.jcmg.2024.06.011_bib3) 2019; 140
References_xml – volume: 379
  start-page: 2307
  year: 2018
  end-page: 2318
  ident: bib5
  article-title: Transcatheter mitral-valve repair in patients with heart failure
  publication-title: N Engl J Med
– volume: 20
  start-page: 433
  year: 1992
  end-page: 438
  ident: bib23
  article-title: Variability in the quantitation of mitral regurgitation by Doppler color flow mapping: comparison of transthoracic and transesophageal studies
  publication-title: J Am Coll Cardiol
– volume: 18
  start-page: 600
  year: 2021
  end-page: 609
  ident: bib9
  article-title: Applications of artificial intelligence in cardiovascular imaging
  publication-title: Nat Rev Cardiol
– volume: 140
  start-page: 1156
  year: 2019
  end-page: 1169
  ident: bib3
  article-title: Contemporary presentation and management of valvular heart disease
  publication-title: Circulation
– volume: 63
  start-page: e57
  year: 2014
  end-page: e185
  ident: bib30
  article-title: 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J Am Coll Cardiol
– volume: 1
  start-page: 6
  year: 2018
  ident: bib17
  article-title: Fast and accurate view classification of echocardiograms using deep learning
  publication-title: NPJ Digital Med
– volume: 8
  year: 2021
  ident: bib24
  article-title: Mitral valve atlas for artificial intelligence predictions of MitraClip intervention outcomes
  publication-title: Front Cardiovasc Med
– volume: 15
  start-page: 2523
  year: 2022
  end-page: 2536
  ident: bib6
  article-title: Randomized comparison of transcatheter edge-to-edge repair for degenerative mitral regurgitation in prohibitive surgical risk patients
  publication-title: JACC Cardiovasc Interv
– volume: 6
  start-page: 624
  year: 2021
  end-page: 632
  ident: bib11
  article-title: Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use
  publication-title: JAMA Cardiol
– volume: 4
  start-page: e46
  year: 2022
  end-page: e54
  ident: bib12
  article-title: Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study
  publication-title: Lancet Digit Health
– volume: 12
  year: 2019
  ident: bib15
  article-title: Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert
  publication-title: Circulation Cardiovas Imag
– volume: 34
  start-page: 443
  year: 2021
  end-page: 445
  ident: bib18
  article-title: Use of machine learning to improve echocardiographic image interpretation workflow: a disruptive paradigm change?
  publication-title: J Am Soc Echocardiogr
– volume: 13
  start-page: 6776
  year: 2022
  ident: bib13
  article-title: A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram
  publication-title: Nat Commun
– volume: 39
  start-page: 3439
  year: 2018
  end-page: 3450
  ident: bib21
  article-title: Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF
  publication-title: Eur Heart J
– volume: 36
  start-page: 96
  year: 2023
  end-page: 104.e4
  ident: bib28
  article-title: Machine learning for pediatric echocardiographic mitral regurgitation detection
  publication-title: J Am Soc Echocardiogr
– volume: 75
  start-page: 2236
  year: 2020
  end-page: 2270
  ident: bib2
  article-title: 2020 focused update of the 2017 ACC Expert Consensus Decision Pathway on the Management of Mitral Regurgitation
  publication-title: J Am Coll Cardiol
– volume: 30
  start-page: 303
  year: 2017
  end-page: 371
  ident: bib7
  article-title: Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance
  publication-title: J Am Soc Echocardiogr
– volume: 73
  start-page: 1317
  year: 2019
  end-page: 1335
  ident: bib10
  article-title: Artificial intelligence in cardiovascular imaging
  publication-title: J Am Coll Cardiol
– volume: 73
  start-page: 47
  year: 2016
  end-page: 55
  ident: bib27
  article-title: Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos
  publication-title: Comput Biol Med
– volume: 368
  start-page: 1005
  year: 2006
  end-page: 1011
  ident: bib1
  article-title: Burden of valvular heart diseases: a population-based study
  publication-title: Lancet
– volume: 364
  start-page: 1395
  year: 2011
  end-page: 1406
  ident: bib4
  article-title: Percutaneous repair or surgery for mitral regurgitation
  publication-title: N Engl J Med
– volume: 35
  start-page: 1226
  year: 2022
  end-page: 1237.e7
  ident: bib16
  article-title: Human versus artificial intelligence–based echocardiographic analysis as a predictor of outcomes: an analysis from the World Alliance Societies of Echocardiography COVID Study
  publication-title: J Am Soc Echocardiogr
– volume: 35
  start-page: 878
  year: 2022
  end-page: 882
  ident: bib22
  article-title: Future guidelines for artificial intelligence in echocardiography
  publication-title: J Am Soc Echocardiogr
– volume: 391
  start-page: 960
  year: 2018
  end-page: 969
  ident: bib29
  article-title: Outcome and undertreatment of mitral regurgitation: a community cohort study
  publication-title: Lancet
– volume: 43
  start-page: 561
  year: 2021
  end-page: 632
  ident: bib20
  article-title: 2021 ESC/EACTS Guidelines for the management of valvular heart disease: developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)
  publication-title: Eur Heart J
– volume: 108
  start-page: 1592
  year: 2022
  end-page: 1599
  ident: bib25
  article-title: Artificial intelligence for the echocardiographic assessment of valvular heart disease
  publication-title: Heart
– volume: 580
  start-page: 252
  year: 2020
  end-page: 256
  ident: bib14
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
– volume: 15
  start-page: 551
  year: 2022
  end-page: 563
  ident: bib26
  article-title: Automated analysis of doppler echocardiographic videos as a screening tool for valvular heart diseases
  publication-title: JACC Cardiovasc Imaging
– volume: 77
  start-page: e25
  year: 2021
  end-page: e197
  ident: bib19
  article-title: 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease
  publication-title: J Am Coll Cardiol
– volume: 16
  start-page: 589
  year: 2023
  end-page: 602
  ident: bib8
  article-title: Contemporary outcomes following transcatheter edge-to-edge repair
  publication-title: JACC Cardiovasc Interv
– volume: 35
  start-page: 878
  year: 2022
  ident: 10.1016/j.jcmg.2024.06.011_bib22
  article-title: Future guidelines for artificial intelligence in echocardiography
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2022.04.005
– volume: 4
  start-page: e46
  year: 2022
  ident: 10.1016/j.jcmg.2024.06.011_bib12
  article-title: Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00235-1
– volume: 368
  start-page: 1005
  year: 2006
  ident: 10.1016/j.jcmg.2024.06.011_bib1
  article-title: Burden of valvular heart diseases: a population-based study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69208-8
– volume: 12
  year: 2019
  ident: 10.1016/j.jcmg.2024.06.011_bib15
  article-title: Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert
  publication-title: Circulation Cardiovas Imag
– volume: 30
  start-page: 303
  year: 2017
  ident: 10.1016/j.jcmg.2024.06.011_bib7
  article-title: Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2017.01.007
– volume: 36
  start-page: 96
  year: 2023
  ident: 10.1016/j.jcmg.2024.06.011_bib28
  article-title: Machine learning for pediatric echocardiographic mitral regurgitation detection
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2022.09.017
– volume: 364
  start-page: 1395
  year: 2011
  ident: 10.1016/j.jcmg.2024.06.011_bib4
  article-title: Percutaneous repair or surgery for mitral regurgitation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1009355
– volume: 18
  start-page: 600
  year: 2021
  ident: 10.1016/j.jcmg.2024.06.011_bib9
  article-title: Applications of artificial intelligence in cardiovascular imaging
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-021-00527-2
– volume: 140
  start-page: 1156
  year: 2019
  ident: 10.1016/j.jcmg.2024.06.011_bib3
  article-title: Contemporary presentation and management of valvular heart disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.041080
– volume: 75
  start-page: 2236
  year: 2020
  ident: 10.1016/j.jcmg.2024.06.011_bib2
  article-title: 2020 focused update of the 2017 ACC Expert Consensus Decision Pathway on the Management of Mitral Regurgitation
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2020.02.005
– volume: 35
  start-page: 1226
  year: 2022
  ident: 10.1016/j.jcmg.2024.06.011_bib16
  article-title: Human versus artificial intelligence–based echocardiographic analysis as a predictor of outcomes: an analysis from the World Alliance Societies of Echocardiography COVID Study
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2022.07.004
– volume: 379
  start-page: 2307
  year: 2018
  ident: 10.1016/j.jcmg.2024.06.011_bib5
  article-title: Transcatheter mitral-valve repair in patients with heart failure
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1806640
– volume: 63
  start-page: e57
  year: 2014
  ident: 10.1016/j.jcmg.2024.06.011_bib30
  article-title: 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.02.536
– volume: 108
  start-page: 1592
  year: 2022
  ident: 10.1016/j.jcmg.2024.06.011_bib25
  article-title: Artificial intelligence for the echocardiographic assessment of valvular heart disease
  publication-title: Heart
  doi: 10.1136/heartjnl-2021-319725
– volume: 580
  start-page: 252
  year: 2020
  ident: 10.1016/j.jcmg.2024.06.011_bib14
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
– volume: 43
  start-page: 561
  year: 2021
  ident: 10.1016/j.jcmg.2024.06.011_bib20
  article-title: 2021 ESC/EACTS Guidelines for the management of valvular heart disease: developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehab395
– volume: 20
  start-page: 433
  year: 1992
  ident: 10.1016/j.jcmg.2024.06.011_bib23
  article-title: Variability in the quantitation of mitral regurgitation by Doppler color flow mapping: comparison of transthoracic and transesophageal studies
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(92)90113-2
– volume: 73
  start-page: 47
  year: 2016
  ident: 10.1016/j.jcmg.2024.06.011_bib27
  article-title: Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.03.026
– volume: 1
  start-page: 6
  year: 2018
  ident: 10.1016/j.jcmg.2024.06.011_bib17
  article-title: Fast and accurate view classification of echocardiograms using deep learning
  publication-title: NPJ Digital Med
  doi: 10.1038/s41746-017-0013-1
– volume: 8
  year: 2021
  ident: 10.1016/j.jcmg.2024.06.011_bib24
  article-title: Mitral valve atlas for artificial intelligence predictions of MitraClip intervention outcomes
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2021.759675
– volume: 15
  start-page: 551
  year: 2022
  ident: 10.1016/j.jcmg.2024.06.011_bib26
  article-title: Automated analysis of doppler echocardiographic videos as a screening tool for valvular heart diseases
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2021.08.015
– volume: 77
  start-page: e25
  year: 2021
  ident: 10.1016/j.jcmg.2024.06.011_bib19
  article-title: 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2020.11.018
– volume: 16
  start-page: 589
  year: 2023
  ident: 10.1016/j.jcmg.2024.06.011_bib8
  article-title: Contemporary outcomes following transcatheter edge-to-edge repair
  publication-title: JACC Cardiovasc Interv
  doi: 10.1016/j.jcin.2023.01.010
– volume: 391
  start-page: 960
  year: 2018
  ident: 10.1016/j.jcmg.2024.06.011_bib29
  article-title: Outcome and undertreatment of mitral regurgitation: a community cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30473-2
– volume: 34
  start-page: 443
  year: 2021
  ident: 10.1016/j.jcmg.2024.06.011_bib18
  article-title: Use of machine learning to improve echocardiographic image interpretation workflow: a disruptive paradigm change?
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2020.11.017
– volume: 6
  start-page: 624
  year: 2021
  ident: 10.1016/j.jcmg.2024.06.011_bib11
  article-title: Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2021.0185
– volume: 13
  start-page: 6776
  year: 2022
  ident: 10.1016/j.jcmg.2024.06.011_bib13
  article-title: A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34245-1
– volume: 15
  start-page: 2523
  year: 2022
  ident: 10.1016/j.jcmg.2024.06.011_bib6
  article-title: Randomized comparison of transcatheter edge-to-edge repair for degenerative mitral regurgitation in prohibitive surgical risk patients
  publication-title: JACC Cardiovasc Interv
  doi: 10.1016/j.jcin.2022.09.005
– volume: 73
  start-page: 1317
  year: 2019
  ident: 10.1016/j.jcmg.2024.06.011_bib10
  article-title: Artificial intelligence in cardiovascular imaging
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.12.054
– volume: 39
  start-page: 3439
  year: 2018
  ident: 10.1016/j.jcmg.2024.06.011_bib21
  article-title: Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehy531
SSID ssj0060647
Score 2.4766064
Snippet Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Aged
artificial intelligence
Automation
continuous wave Doppler density
echocardiography
Feasibility Studies
Female
Humans
Image Interpretation, Computer-Assisted
Machine Learning
Male
Middle Aged
mitral regurgitation
Mitral Valve - diagnostic imaging
Mitral Valve - physiopathology
Mitral Valve Insufficiency - diagnostic imaging
Mitral Valve Insufficiency - mortality
Mitral Valve Insufficiency - physiopathology
Predictive Value of Tests
Prognosis
Reproducibility of Results
Severity of Illness Index
Workflow
Title An Automated Machine Learning–Based Quantitative Multiparametric Approach for Mitral Regurgitation Severity Grading
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1936878X2400247X
https://dx.doi.org/10.1016/j.jcmg.2024.06.011
https://www.ncbi.nlm.nih.gov/pubmed/39152959
https://www.proquest.com/docview/3094045592
http://kipublications.ki.se/Default.aspx?queryparsed=id:160677482
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1876-7591
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060647
  issn: 1936-878X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1876-7591
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060647
  issn: 1936-878X
  databaseCode: .~1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1876-7591
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060647
  issn: 1936-878X
  databaseCode: AKRWK
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEA7LHsSL-HZ8EUG8SDuTZ3eO4-K6CCPoujC3kE6qh9l1e5bZ6evif_Af-ktMpdMNKq7gpWm6U1AklapKquorQl7WgoEOzhdGV66QGkRRGRcfwFQpVck5YER38VEfncgPS7XcIwdDLQymVWbd3-v0pK3zl2mezenFej09jq6HrspqiVmQXJZLrGCXJXYxeHM1pnloLKbsI8u6wNG5cKbP8Tr156t4RuQyYXgy9jfj9Kfz-RuyaLJGh7fJrexG0nnP6R2yB-1dcmORA-X3SDdv6bzbbaI_CoEuUsYk0Aymuvrx7fvbaL0C_dS5NlWZRZ1HUy0uQoGfY5ctT-cZbpxGv5Yu1nglQj_DqtuuMq43PYa4EaIbT99vUyr-fXJy-O7LwVGROywUXkq1K3jwopSAEOzSgPZy1ojGcSeCnlWec6e8N1oF4w1X3mHJgmuCFrISzsycEQ_Ifrtp4RGhdZxqb5iooWGSgajL6Gs2vq6DgNAYmBA2TK31mU3sgvHVDnlmpxaXw-JyWEy2Y2xCXo80Fz34xrWjxbBidigrjYrQRttwLZUaqX4RvH_SvRiEwsYdiWEW18Kmu7QCIQllPKnxCXnYS8vIPcLxc6PMhLzqxWf8gzDf-dNZfAMbFauZqcf_yd4TcpNjp-J0WfSU7O-2HTyL7tOufp72x0_Y1hpv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4lm2vIyEuKCw62fi41JRFmgqQVtpb5bjTFZbaLbabq6I_8A_5JfgSZxIgCgSlyhKPNLIHs-MPTPfEPK8EAx06XxidOYSqUEkmXHhAUylUqWcA0Z080M9O5Hv52q-Rfb6WhhMq4y6v9PprbaOX8ZxNsfny-X4KLgeOkuzOWZBcpnOr5CrUvEUT2Cvvg55HhqrKbvQsk5weKyc6ZK8Tv3ZIhwSuWxBPBn7m3X60_v8DVq0NUf7t8jN6EfSacfqbbIF9R1yLY-R8rukmdZ02mxWwSGFkuZtyiTQiKa6-PHt--tgvkr6sXF1W2YWlB5ti3ERC_wM22x5Oo144zQ4tjRf4p0I_QSLZr2IwN70CMJOCH48fbtuc_HvkZP9N8d7syS2WEi8lGqT8NKLVAJisEsD2stJJSrHnSj1JPOcO-W90ao03nDlHdYsuKrUQmbCmYkz4j7Zrlc1PCC0CFPtDRMFVEwyEEUanM3KF0UpoKwMjAjrp9b6yCa2wfhi-0SzU4vLYXE5LGbbMTYiLwea8w5949LRol8x29eVBk1og3G4lEoNVL9I3j_pnvVCYcOWxDiLq2HVXFiBmIQyHNX4iOx00jJwj3j83CgzIi868Rn-IM53_PQ5vIENmtVM1O5_sveUXJ8d5wf24N3hh4fkBse2xe3N0SOyvVk38Dj4UpviSbtXfgIRmB2S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automated+Machine+Learning-Based+Quantitative+Multiparametric+Approach+for+Mitral+Regurgitation+Severity+Grading&rft.jtitle=JACC.+Cardiovascular+imaging&rft.au=Sadeghpour%2C+A&rft.au=Jiang%2C+Z&rft.au=Hummel%2C+YM&rft.au=Frost%2C+M&rft.date=2025&rft.issn=1936-878X&rft.volume=18&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcmg.2024.06.011&rft.externalDocID=oai_swepub_ki_se_880905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-878X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-878X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-878X&client=summon