An Automated Machine Learning–Based Quantitative Multiparametric Approach for Mitral Regurgitation Severity Grading
Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes...
Saved in:
| Published in | JACC. Cardiovascular imaging Vol. 18; no. 1; pp. 1 - 12 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1936-878X 1876-7591 1876-7591 |
| DOI | 10.1016/j.jcmg.2024.06.011 |
Cover
| Abstract | Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes.
The authors aimed to develop and validate a fully automated machine learning (ML)–based echocardiography workflow for grading MR severity.
ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading.
The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild).
An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory.
[Display omitted] |
|---|---|
| AbstractList | Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes.BACKGROUNDConsidering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes.The authors aimed to develop and validate a fully automated machine learning (ML)-based echocardiography workflow for grading MR severity.OBJECTIVESThe authors aimed to develop and validate a fully automated machine learning (ML)-based echocardiography workflow for grading MR severity.ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading.METHODSML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading.The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild).RESULTSThe preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild).An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory.CONCLUSIONSAn automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory. Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes. The authors aimed to develop and validate a fully automated machine learning (ML)–based echocardiography workflow for grading MR severity. ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading. The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild). An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory. [Display omitted] Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes. The authors aimed to develop and validate a fully automated machine learning (ML)-based echocardiography workflow for grading MR severity. ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading. The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild). An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory. |
| Author | Asch, Federico M. Sadeghpour, Anita Frost, Matthew Lund, Lars H. Hummel, Yoran M. Shah, Sanjiv J. Weissman, Neil J. Jiang, Zhubo Lam, Carolyn S.P. Stone, Gregg W. Swaminathan, Madhav |
| Author_xml | – sequence: 1 givenname: Anita surname: Sadeghpour fullname: Sadeghpour, Anita organization: MedStar Health Research Institute and Georgetown University, Washington, District of Columbia, USA – sequence: 2 givenname: Zhubo surname: Jiang fullname: Jiang, Zhubo organization: Us2.ai, Singapore, Singapore – sequence: 3 givenname: Yoran M. surname: Hummel fullname: Hummel, Yoran M. organization: Us2.ai, Singapore, Singapore – sequence: 4 givenname: Matthew surname: Frost fullname: Frost, Matthew organization: Us2.ai, Singapore, Singapore – sequence: 5 givenname: Carolyn S.P. surname: Lam fullname: Lam, Carolyn S.P. organization: National Heart Centre Singapore, Duke-National University of Singapore, Singapore – sequence: 6 givenname: Sanjiv J. surname: Shah fullname: Shah, Sanjiv J. organization: Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA – sequence: 7 givenname: Lars H. surname: Lund fullname: Lund, Lars H. organization: Karolinska University Hospital, Stockholm, Sweden – sequence: 8 givenname: Gregg W. surname: Stone fullname: Stone, Gregg W. organization: The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA – sequence: 9 givenname: Madhav surname: Swaminathan fullname: Swaminathan, Madhav organization: Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA – sequence: 10 givenname: Neil J. surname: Weissman fullname: Weissman, Neil J. organization: MedStar Health Research Institute and Georgetown University, Washington, District of Columbia, USA – sequence: 11 givenname: Federico M. surname: Asch fullname: Asch, Federico M. email: federico.asch@medstar.net organization: MedStar Health Research Institute and Georgetown University, Washington, District of Columbia, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39152959$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:160677482$$DView record from Swedish Publication Index |
| BookMark | eNqFkctu1DAUhi1URC_wAixQlmwyOI7txIjNUEFBmhHiJrGzTp2TwdPESW1n0Oz6Dn1DngQPM3TRRVn5yP6-I_n_T8mRGxwS8rygs4IW8tV6tjb9asYo4zMqZ7QoHpGToq5kXglVHKVZlTKvq_rHMTkNYU2ppJJXT8hxqQrBlFAnZJq7bD7FoYeITbYE89M6zBYI3lm3-n1z-xZCevg8gYs2QrQbzJZTF-0IHnqM3ppsPo5-SGbWDj5b2uihy77gavKrv8bgsq-4QW_jNrvw0KS9T8njFrqAzw7nGfn-_t238w_54tPFx_P5Ijeci5izxpQVR8VLyhVKw2lbtsCgbCStDWMgjFFSNMooJgykTCpoG1nyugRFQZVnJN_vDb9wnC716G0PfqsHsPpwdZUm1HVNFRWJf7nn04euJwxR9zYY7DpwOExBl1RxyoVQLKEvDuh02WNzt_pftAlge8D4IQSP7R1SUL3rT6_1rj-9609TqVN_SarvSeaQYUrVdg-rb_YqpkA3Fr0OxqIz2FiPJupmsA_rr-_pprPOGuiucPs_-Q8gwMxu |
| CitedBy_id | crossref_primary_10_1016_j_jcmg_2024_12_001 crossref_primary_10_1016_j_jcmg_2024_05_026 crossref_primary_10_1016_j_jcmg_2025_01_001 crossref_primary_10_1161_CIRCIMAGING_124_017788 |
| Cites_doi | 10.1016/j.echo.2022.04.005 10.1016/S2589-7500(21)00235-1 10.1016/S0140-6736(06)69208-8 10.1016/j.echo.2017.01.007 10.1016/j.echo.2022.09.017 10.1056/NEJMoa1009355 10.1038/s41569-021-00527-2 10.1161/CIRCULATIONAHA.119.041080 10.1016/j.jacc.2020.02.005 10.1016/j.echo.2022.07.004 10.1056/NEJMoa1806640 10.1016/j.jacc.2014.02.536 10.1136/heartjnl-2021-319725 10.1038/s41586-020-2145-8 10.1093/eurheartj/ehab395 10.1016/0735-1097(92)90113-2 10.1016/j.compbiomed.2016.03.026 10.1038/s41746-017-0013-1 10.3389/fcvm.2021.759675 10.1016/j.jcmg.2021.08.015 10.1016/j.jacc.2020.11.018 10.1016/j.jcin.2023.01.010 10.1016/S0140-6736(18)30473-2 10.1016/j.echo.2020.11.017 10.1001/jamacardio.2021.0185 10.1038/s41467-022-34245-1 10.1016/j.jcin.2022.09.005 10.1016/j.jacc.2018.12.054 10.1093/eurheartj/ehy531 |
| ContentType | Journal Article |
| Copyright | 2025 American College of Cardiology Foundation Copyright © 2025 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2025 American College of Cardiology Foundation – notice: Copyright © 2025 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS |
| DOI | 10.1016/j.jcmg.2024.06.011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1876-7591 |
| EndPage | 12 |
| ExternalDocumentID | oai_swepub_ki_se_880905 39152959 10_1016_j_jcmg_2024_06_011 S1936878X2400247X |
| Genre | Validation Study Multicenter Study Journal Article Observational Study |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 18M 1B1 1P~ 1~. 4.4 457 4G. 53G 5GY 5VS 7-5 8P~ AAEDT AAEDW AAIKJ AALRI AAOAW AAQFI AAXUO AAYWO ABBQC ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACGFO ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEFWE AEKER AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AGYEJ AIGII AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BLXMC CS3 DIK E3Z EBS EFKBS EFLBG EJD F5P FDB FEDTE FNPLU GBLVA H13 HVGLF HZ~ IXB J1W M41 MO0 N9A O-L O9- OAUVE OA~ OK1 OL0 P-8 P-9 P2P PC. Q38 ROL RPZ SDF SEL SES SSZ W8F Z5R ~HD 0SF 6I. AACTN AAFTH ABVKL AFCTW AFETI AJOXV AMFUW NCXOZ RIG T5K AAYXX CITATION AGCQF CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS |
| ID | FETCH-LOGICAL-c445t-2dc374e943049e6c40f3fa2a3d608c22a5cc965d9c925ca0167afd63483a90a93 |
| IEDL.DBID | .~1 |
| ISSN | 1936-878X 1876-7591 |
| IngestDate | Mon Oct 20 03:25:39 EDT 2025 Sat Sep 27 19:46:34 EDT 2025 Mon Jul 21 06:06:16 EDT 2025 Wed Oct 01 00:54:36 EDT 2025 Thu Apr 24 23:04:40 EDT 2025 Sat Jan 04 15:42:50 EST 2025 Tue Oct 14 19:28:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | RAR TTE mitral regurgitation MR echocardiography LVESV LV CWDD PASP machine learning LVOT ROI VC artificial intelligence A4C A2C continuous wave Doppler density LA PLAX LVEDV ML |
| Language | English |
| License | Copyright © 2025 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c445t-2dc374e943049e6c40f3fa2a3d608c22a5cc965d9c925ca0167afd63483a90a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| PMID | 39152959 |
| PQID | 3094045592 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_880905 proquest_miscellaneous_3094045592 pubmed_primary_39152959 crossref_primary_10_1016_j_jcmg_2024_06_011 crossref_citationtrail_10_1016_j_jcmg_2024_06_011 elsevier_sciencedirect_doi_10_1016_j_jcmg_2024_06_011 elsevier_clinicalkey_doi_10_1016_j_jcmg_2024_06_011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 2025-Jan 20250101 2025 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | JACC. Cardiovascular imaging |
| PublicationTitleAlternate | JACC Cardiovasc Imaging |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Iung, Delgado, Rosenhek (bib3) 2019; 140 Zoghbi, Adams, Bonow (bib7) 2017; 30 Nkomo, Gardin, Skelton, Gottdiener, Scott, Enriquez-Sarano (bib1) 2006; 368 Ouyang, He, Ghorbani (bib14) 2020; 580 Dabiri, Yao, Mahadevan (bib24) 2021; 8 Asch, Descamps, Sarwar (bib16) 2022; 35 Otto, Nishimura, Bonow (bib19) 2021; 77 Dey, Slomka, Leeson (bib10) 2019; 73 Tromp, Bauer, Claggett (bib13) 2022; 13 Rashmi, Bo, Wendy (bib25) 2022; 108 Moghaddasi, Nourian (bib27) 2016; 73 Madani, Arnaout, Mofrad, Arnaout (bib17) 2018; 1 Tseng, Lopez-Jimenez, Pellikka (bib22) 2022; 35 Lang, Addetia, Miyoshi (bib18) 2021; 34 Sermesant, Delingette, Cochet, Jaïs, Ayache (bib9) 2021; 18 Asch, Poilvert, Abraham (bib15) 2019; 12 Narang, Bae, Hong (bib11) 2021; 6 Yang, Chen, Lin (bib26) 2022; 15 Lim, Smith, Gillam (bib6) 2022; 15 Nishimura, Otto, Bonow (bib30) 2014; 63 Feldman, Foster, Glower (bib4) 2011; 364 Castello, Lenzen, Aguirre, Labovitz (bib23) 1992; 20 Bonow, O’Gara, Adams (bib2) 2020; 75 Tromp, Seekings, Hung (bib12) 2022; 4 Edwards, Feng, Iqbal (bib28) 2023; 36 Stone, Lindenfeld, Abraham (bib5) 2018; 379 Dziadzko, Clavel, Dziadzko (bib29) 2018; 391 Kar, Bardeleben, Rottbauer (bib8) 2023; 16 Vahanian, Beyersdorf, Praz (bib20) 2021; 43 Shah, Lam, Svedlund (bib21) 2018; 39 Zoghbi (10.1016/j.jcmg.2024.06.011_bib7) 2017; 30 Dabiri (10.1016/j.jcmg.2024.06.011_bib24) 2021; 8 Tromp (10.1016/j.jcmg.2024.06.011_bib13) 2022; 13 Madani (10.1016/j.jcmg.2024.06.011_bib17) 2018; 1 Lang (10.1016/j.jcmg.2024.06.011_bib18) 2021; 34 Dziadzko (10.1016/j.jcmg.2024.06.011_bib29) 2018; 391 Vahanian (10.1016/j.jcmg.2024.06.011_bib20) 2021; 43 Bonow (10.1016/j.jcmg.2024.06.011_bib2) 2020; 75 Yang (10.1016/j.jcmg.2024.06.011_bib26) 2022; 15 Tromp (10.1016/j.jcmg.2024.06.011_bib12) 2022; 4 Edwards (10.1016/j.jcmg.2024.06.011_bib28) 2023; 36 Castello (10.1016/j.jcmg.2024.06.011_bib23) 1992; 20 Nishimura (10.1016/j.jcmg.2024.06.011_bib30) 2014; 63 Nkomo (10.1016/j.jcmg.2024.06.011_bib1) 2006; 368 Asch (10.1016/j.jcmg.2024.06.011_bib16) 2022; 35 Tseng (10.1016/j.jcmg.2024.06.011_bib22) 2022; 35 Lim (10.1016/j.jcmg.2024.06.011_bib6) 2022; 15 Kar (10.1016/j.jcmg.2024.06.011_bib8) 2023; 16 Narang (10.1016/j.jcmg.2024.06.011_bib11) 2021; 6 Asch (10.1016/j.jcmg.2024.06.011_bib15) 2019; 12 Ouyang (10.1016/j.jcmg.2024.06.011_bib14) 2020; 580 Dey (10.1016/j.jcmg.2024.06.011_bib10) 2019; 73 Moghaddasi (10.1016/j.jcmg.2024.06.011_bib27) 2016; 73 Otto (10.1016/j.jcmg.2024.06.011_bib19) 2021; 77 Sermesant (10.1016/j.jcmg.2024.06.011_bib9) 2021; 18 Feldman (10.1016/j.jcmg.2024.06.011_bib4) 2011; 364 Shah (10.1016/j.jcmg.2024.06.011_bib21) 2018; 39 Rashmi (10.1016/j.jcmg.2024.06.011_bib25) 2022; 108 Stone (10.1016/j.jcmg.2024.06.011_bib5) 2018; 379 Iung (10.1016/j.jcmg.2024.06.011_bib3) 2019; 140 |
| References_xml | – volume: 379 start-page: 2307 year: 2018 end-page: 2318 ident: bib5 article-title: Transcatheter mitral-valve repair in patients with heart failure publication-title: N Engl J Med – volume: 20 start-page: 433 year: 1992 end-page: 438 ident: bib23 article-title: Variability in the quantitation of mitral regurgitation by Doppler color flow mapping: comparison of transthoracic and transesophageal studies publication-title: J Am Coll Cardiol – volume: 18 start-page: 600 year: 2021 end-page: 609 ident: bib9 article-title: Applications of artificial intelligence in cardiovascular imaging publication-title: Nat Rev Cardiol – volume: 140 start-page: 1156 year: 2019 end-page: 1169 ident: bib3 article-title: Contemporary presentation and management of valvular heart disease publication-title: Circulation – volume: 63 start-page: e57 year: 2014 end-page: e185 ident: bib30 article-title: 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J Am Coll Cardiol – volume: 1 start-page: 6 year: 2018 ident: bib17 article-title: Fast and accurate view classification of echocardiograms using deep learning publication-title: NPJ Digital Med – volume: 8 year: 2021 ident: bib24 article-title: Mitral valve atlas for artificial intelligence predictions of MitraClip intervention outcomes publication-title: Front Cardiovasc Med – volume: 15 start-page: 2523 year: 2022 end-page: 2536 ident: bib6 article-title: Randomized comparison of transcatheter edge-to-edge repair for degenerative mitral regurgitation in prohibitive surgical risk patients publication-title: JACC Cardiovasc Interv – volume: 6 start-page: 624 year: 2021 end-page: 632 ident: bib11 article-title: Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use publication-title: JAMA Cardiol – volume: 4 start-page: e46 year: 2022 end-page: e54 ident: bib12 article-title: Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study publication-title: Lancet Digit Health – volume: 12 year: 2019 ident: bib15 article-title: Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert publication-title: Circulation Cardiovas Imag – volume: 34 start-page: 443 year: 2021 end-page: 445 ident: bib18 article-title: Use of machine learning to improve echocardiographic image interpretation workflow: a disruptive paradigm change? publication-title: J Am Soc Echocardiogr – volume: 13 start-page: 6776 year: 2022 ident: bib13 article-title: A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram publication-title: Nat Commun – volume: 39 start-page: 3439 year: 2018 end-page: 3450 ident: bib21 article-title: Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF publication-title: Eur Heart J – volume: 36 start-page: 96 year: 2023 end-page: 104.e4 ident: bib28 article-title: Machine learning for pediatric echocardiographic mitral regurgitation detection publication-title: J Am Soc Echocardiogr – volume: 75 start-page: 2236 year: 2020 end-page: 2270 ident: bib2 article-title: 2020 focused update of the 2017 ACC Expert Consensus Decision Pathway on the Management of Mitral Regurgitation publication-title: J Am Coll Cardiol – volume: 30 start-page: 303 year: 2017 end-page: 371 ident: bib7 article-title: Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance publication-title: J Am Soc Echocardiogr – volume: 73 start-page: 1317 year: 2019 end-page: 1335 ident: bib10 article-title: Artificial intelligence in cardiovascular imaging publication-title: J Am Coll Cardiol – volume: 73 start-page: 47 year: 2016 end-page: 55 ident: bib27 article-title: Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos publication-title: Comput Biol Med – volume: 368 start-page: 1005 year: 2006 end-page: 1011 ident: bib1 article-title: Burden of valvular heart diseases: a population-based study publication-title: Lancet – volume: 364 start-page: 1395 year: 2011 end-page: 1406 ident: bib4 article-title: Percutaneous repair or surgery for mitral regurgitation publication-title: N Engl J Med – volume: 35 start-page: 1226 year: 2022 end-page: 1237.e7 ident: bib16 article-title: Human versus artificial intelligence–based echocardiographic analysis as a predictor of outcomes: an analysis from the World Alliance Societies of Echocardiography COVID Study publication-title: J Am Soc Echocardiogr – volume: 35 start-page: 878 year: 2022 end-page: 882 ident: bib22 article-title: Future guidelines for artificial intelligence in echocardiography publication-title: J Am Soc Echocardiogr – volume: 391 start-page: 960 year: 2018 end-page: 969 ident: bib29 article-title: Outcome and undertreatment of mitral regurgitation: a community cohort study publication-title: Lancet – volume: 43 start-page: 561 year: 2021 end-page: 632 ident: bib20 article-title: 2021 ESC/EACTS Guidelines for the management of valvular heart disease: developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) publication-title: Eur Heart J – volume: 108 start-page: 1592 year: 2022 end-page: 1599 ident: bib25 article-title: Artificial intelligence for the echocardiographic assessment of valvular heart disease publication-title: Heart – volume: 580 start-page: 252 year: 2020 end-page: 256 ident: bib14 article-title: Video-based AI for beat-to-beat assessment of cardiac function publication-title: Nature – volume: 15 start-page: 551 year: 2022 end-page: 563 ident: bib26 article-title: Automated analysis of doppler echocardiographic videos as a screening tool for valvular heart diseases publication-title: JACC Cardiovasc Imaging – volume: 77 start-page: e25 year: 2021 end-page: e197 ident: bib19 article-title: 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease publication-title: J Am Coll Cardiol – volume: 16 start-page: 589 year: 2023 end-page: 602 ident: bib8 article-title: Contemporary outcomes following transcatheter edge-to-edge repair publication-title: JACC Cardiovasc Interv – volume: 35 start-page: 878 year: 2022 ident: 10.1016/j.jcmg.2024.06.011_bib22 article-title: Future guidelines for artificial intelligence in echocardiography publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2022.04.005 – volume: 4 start-page: e46 year: 2022 ident: 10.1016/j.jcmg.2024.06.011_bib12 article-title: Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(21)00235-1 – volume: 368 start-page: 1005 year: 2006 ident: 10.1016/j.jcmg.2024.06.011_bib1 article-title: Burden of valvular heart diseases: a population-based study publication-title: Lancet doi: 10.1016/S0140-6736(06)69208-8 – volume: 12 year: 2019 ident: 10.1016/j.jcmg.2024.06.011_bib15 article-title: Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert publication-title: Circulation Cardiovas Imag – volume: 30 start-page: 303 year: 2017 ident: 10.1016/j.jcmg.2024.06.011_bib7 article-title: Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2017.01.007 – volume: 36 start-page: 96 year: 2023 ident: 10.1016/j.jcmg.2024.06.011_bib28 article-title: Machine learning for pediatric echocardiographic mitral regurgitation detection publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2022.09.017 – volume: 364 start-page: 1395 year: 2011 ident: 10.1016/j.jcmg.2024.06.011_bib4 article-title: Percutaneous repair or surgery for mitral regurgitation publication-title: N Engl J Med doi: 10.1056/NEJMoa1009355 – volume: 18 start-page: 600 year: 2021 ident: 10.1016/j.jcmg.2024.06.011_bib9 article-title: Applications of artificial intelligence in cardiovascular imaging publication-title: Nat Rev Cardiol doi: 10.1038/s41569-021-00527-2 – volume: 140 start-page: 1156 year: 2019 ident: 10.1016/j.jcmg.2024.06.011_bib3 article-title: Contemporary presentation and management of valvular heart disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.041080 – volume: 75 start-page: 2236 year: 2020 ident: 10.1016/j.jcmg.2024.06.011_bib2 article-title: 2020 focused update of the 2017 ACC Expert Consensus Decision Pathway on the Management of Mitral Regurgitation publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.02.005 – volume: 35 start-page: 1226 year: 2022 ident: 10.1016/j.jcmg.2024.06.011_bib16 article-title: Human versus artificial intelligence–based echocardiographic analysis as a predictor of outcomes: an analysis from the World Alliance Societies of Echocardiography COVID Study publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2022.07.004 – volume: 379 start-page: 2307 year: 2018 ident: 10.1016/j.jcmg.2024.06.011_bib5 article-title: Transcatheter mitral-valve repair in patients with heart failure publication-title: N Engl J Med doi: 10.1056/NEJMoa1806640 – volume: 63 start-page: e57 year: 2014 ident: 10.1016/j.jcmg.2024.06.011_bib30 article-title: 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2014.02.536 – volume: 108 start-page: 1592 year: 2022 ident: 10.1016/j.jcmg.2024.06.011_bib25 article-title: Artificial intelligence for the echocardiographic assessment of valvular heart disease publication-title: Heart doi: 10.1136/heartjnl-2021-319725 – volume: 580 start-page: 252 year: 2020 ident: 10.1016/j.jcmg.2024.06.011_bib14 article-title: Video-based AI for beat-to-beat assessment of cardiac function publication-title: Nature doi: 10.1038/s41586-020-2145-8 – volume: 43 start-page: 561 year: 2021 ident: 10.1016/j.jcmg.2024.06.011_bib20 article-title: 2021 ESC/EACTS Guidelines for the management of valvular heart disease: developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) publication-title: Eur Heart J doi: 10.1093/eurheartj/ehab395 – volume: 20 start-page: 433 year: 1992 ident: 10.1016/j.jcmg.2024.06.011_bib23 article-title: Variability in the quantitation of mitral regurgitation by Doppler color flow mapping: comparison of transthoracic and transesophageal studies publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(92)90113-2 – volume: 73 start-page: 47 year: 2016 ident: 10.1016/j.jcmg.2024.06.011_bib27 article-title: Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.03.026 – volume: 1 start-page: 6 year: 2018 ident: 10.1016/j.jcmg.2024.06.011_bib17 article-title: Fast and accurate view classification of echocardiograms using deep learning publication-title: NPJ Digital Med doi: 10.1038/s41746-017-0013-1 – volume: 8 year: 2021 ident: 10.1016/j.jcmg.2024.06.011_bib24 article-title: Mitral valve atlas for artificial intelligence predictions of MitraClip intervention outcomes publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2021.759675 – volume: 15 start-page: 551 year: 2022 ident: 10.1016/j.jcmg.2024.06.011_bib26 article-title: Automated analysis of doppler echocardiographic videos as a screening tool for valvular heart diseases publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2021.08.015 – volume: 77 start-page: e25 year: 2021 ident: 10.1016/j.jcmg.2024.06.011_bib19 article-title: 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.11.018 – volume: 16 start-page: 589 year: 2023 ident: 10.1016/j.jcmg.2024.06.011_bib8 article-title: Contemporary outcomes following transcatheter edge-to-edge repair publication-title: JACC Cardiovasc Interv doi: 10.1016/j.jcin.2023.01.010 – volume: 391 start-page: 960 year: 2018 ident: 10.1016/j.jcmg.2024.06.011_bib29 article-title: Outcome and undertreatment of mitral regurgitation: a community cohort study publication-title: Lancet doi: 10.1016/S0140-6736(18)30473-2 – volume: 34 start-page: 443 year: 2021 ident: 10.1016/j.jcmg.2024.06.011_bib18 article-title: Use of machine learning to improve echocardiographic image interpretation workflow: a disruptive paradigm change? publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2020.11.017 – volume: 6 start-page: 624 year: 2021 ident: 10.1016/j.jcmg.2024.06.011_bib11 article-title: Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2021.0185 – volume: 13 start-page: 6776 year: 2022 ident: 10.1016/j.jcmg.2024.06.011_bib13 article-title: A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram publication-title: Nat Commun doi: 10.1038/s41467-022-34245-1 – volume: 15 start-page: 2523 year: 2022 ident: 10.1016/j.jcmg.2024.06.011_bib6 article-title: Randomized comparison of transcatheter edge-to-edge repair for degenerative mitral regurgitation in prohibitive surgical risk patients publication-title: JACC Cardiovasc Interv doi: 10.1016/j.jcin.2022.09.005 – volume: 73 start-page: 1317 year: 2019 ident: 10.1016/j.jcmg.2024.06.011_bib10 article-title: Artificial intelligence in cardiovascular imaging publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.12.054 – volume: 39 start-page: 3439 year: 2018 ident: 10.1016/j.jcmg.2024.06.011_bib21 article-title: Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF publication-title: Eur Heart J doi: 10.1093/eurheartj/ehy531 |
| SSID | ssj0060647 |
| Score | 2.4766064 |
| Snippet | Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen... |
| SourceID | swepub proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Aged artificial intelligence Automation continuous wave Doppler density echocardiography Feasibility Studies Female Humans Image Interpretation, Computer-Assisted Machine Learning Male Middle Aged mitral regurgitation Mitral Valve - diagnostic imaging Mitral Valve - physiopathology Mitral Valve Insufficiency - diagnostic imaging Mitral Valve Insufficiency - mortality Mitral Valve Insufficiency - physiopathology Predictive Value of Tests Prognosis Reproducibility of Results Severity of Illness Index Workflow |
| Title | An Automated Machine Learning–Based Quantitative Multiparametric Approach for Mitral Regurgitation Severity Grading |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1936878X2400247X https://dx.doi.org/10.1016/j.jcmg.2024.06.011 https://www.ncbi.nlm.nih.gov/pubmed/39152959 https://www.proquest.com/docview/3094045592 http://kipublications.ki.se/Default.aspx?queryparsed=id:160677482 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1876-7591 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060647 issn: 1936-878X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1876-7591 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060647 issn: 1936-878X databaseCode: .~1 dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1876-7591 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060647 issn: 1936-878X databaseCode: AKRWK dateStart: 20080101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEA7LHsSL-HZ8EUG8SDuTZ3eO4-K6CCPoujC3kE6qh9l1e5bZ6evif_Af-ktMpdMNKq7gpWm6U1AklapKquorQl7WgoEOzhdGV66QGkRRGRcfwFQpVck5YER38VEfncgPS7XcIwdDLQymVWbd3-v0pK3zl2mezenFej09jq6HrspqiVmQXJZLrGCXJXYxeHM1pnloLKbsI8u6wNG5cKbP8Tr156t4RuQyYXgy9jfj9Kfz-RuyaLJGh7fJrexG0nnP6R2yB-1dcmORA-X3SDdv6bzbbaI_CoEuUsYk0Aymuvrx7fvbaL0C_dS5NlWZRZ1HUy0uQoGfY5ctT-cZbpxGv5Yu1nglQj_DqtuuMq43PYa4EaIbT99vUyr-fXJy-O7LwVGROywUXkq1K3jwopSAEOzSgPZy1ojGcSeCnlWec6e8N1oF4w1X3mHJgmuCFrISzsycEQ_Ifrtp4RGhdZxqb5iooWGSgajL6Gs2vq6DgNAYmBA2TK31mU3sgvHVDnlmpxaXw-JyWEy2Y2xCXo80Fz34xrWjxbBidigrjYrQRttwLZUaqX4RvH_SvRiEwsYdiWEW18Kmu7QCIQllPKnxCXnYS8vIPcLxc6PMhLzqxWf8gzDf-dNZfAMbFauZqcf_yd4TcpNjp-J0WfSU7O-2HTyL7tOufp72x0_Y1hpv |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4lm2vIyEuKCw62fi41JRFmgqQVtpb5bjTFZbaLbabq6I_8A_5JfgSZxIgCgSlyhKPNLIHs-MPTPfEPK8EAx06XxidOYSqUEkmXHhAUylUqWcA0Z080M9O5Hv52q-Rfb6WhhMq4y6v9PprbaOX8ZxNsfny-X4KLgeOkuzOWZBcpnOr5CrUvEUT2Cvvg55HhqrKbvQsk5weKyc6ZK8Tv3ZIhwSuWxBPBn7m3X60_v8DVq0NUf7t8jN6EfSacfqbbIF9R1yLY-R8rukmdZ02mxWwSGFkuZtyiTQiKa6-PHt--tgvkr6sXF1W2YWlB5ti3ERC_wM22x5Oo144zQ4tjRf4p0I_QSLZr2IwN70CMJOCH48fbtuc_HvkZP9N8d7syS2WEi8lGqT8NKLVAJisEsD2stJJSrHnSj1JPOcO-W90ao03nDlHdYsuKrUQmbCmYkz4j7Zrlc1PCC0CFPtDRMFVEwyEEUanM3KF0UpoKwMjAjrp9b6yCa2wfhi-0SzU4vLYXE5LGbbMTYiLwea8w5949LRol8x29eVBk1og3G4lEoNVL9I3j_pnvVCYcOWxDiLq2HVXFiBmIQyHNX4iOx00jJwj3j83CgzIi868Rn-IM53_PQ5vIENmtVM1O5_sveUXJ8d5wf24N3hh4fkBse2xe3N0SOyvVk38Dj4UpviSbtXfgIRmB2S |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automated+Machine+Learning-Based+Quantitative+Multiparametric+Approach+for+Mitral+Regurgitation+Severity+Grading&rft.jtitle=JACC.+Cardiovascular+imaging&rft.au=Sadeghpour%2C+A&rft.au=Jiang%2C+Z&rft.au=Hummel%2C+YM&rft.au=Frost%2C+M&rft.date=2025&rft.issn=1936-878X&rft.volume=18&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcmg.2024.06.011&rft.externalDocID=oai_swepub_ki_se_880905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-878X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-878X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-878X&client=summon |