Towards chemically neutral carbon cleaning processes: plasma cleaning of Ni, Rh and Al reflective optical coatings and thin Al filters for free‐electron lasers and synchrotron beamline applications

The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective...

Full description

Saved in:
Bibliographic Details
Published inJournal of synchrotron radiation Vol. 25; no. 6; pp. 1642 - 1649
Main Authors Moreno Fernández, Harol, Zangrando, Marco, Sauthier, Guillaume, Goñi, Alejandro R., Carlino, Vincent, Pellegrin, Eric
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.11.2018
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1600-5775
0909-0495
1600-5775
DOI10.1107/S1600577518014017

Cover

Abstract The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X‐ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X‐ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high‐performance free‐electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N2/O2/H2 and N2/H2 feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X‐ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N2/H2 plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N2/O2/H2 plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N2/H2 plasma is demonstrated. A chemically neutral low‐pressure RF plasma cleaning technique for Ni, Rh and Al reflective coatings is presented. The successful carbon contamination cleaning of thin Al filters (100 nm thickness) for FEL and EUV applications is also demonstrated.
AbstractList The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X‐ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X‐ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high‐performance free‐electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N2/O2/H2 and N2/H2 feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X‐ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N2/H2 plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N2/O2/H2 plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N2/H2 plasma is demonstrated.
The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X-ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X-ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high-performance free-electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N2/O2/H2 and N2/H2 feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X-ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N2/H2 plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N2/O2/H2 plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N2/H2 plasma is demonstrated.The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X-ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X-ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high-performance free-electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N2/O2/H2 and N2/H2 feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X-ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N2/H2 plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N2/O2/H2 plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N2/H2 plasma is demonstrated.
The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X-ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X-ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high-performance free-electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N 2 /O 2 /H 2 and N 2 /H 2 feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X-ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N 2 /H 2 plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N 2 /O 2 /H 2 plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N 2 /H 2 plasma is demonstrated.
The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X‐ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X‐ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high‐performance free‐electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N2/O2/H2 and N2/H2 feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X‐ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N2/H2 plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N2/O2/H2 plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N2/H2 plasma is demonstrated. A chemically neutral low‐pressure RF plasma cleaning technique for Ni, Rh and Al reflective coatings is presented. The successful carbon contamination cleaning of thin Al filters (100 nm thickness) for FEL and EUV applications is also demonstrated.
The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X-ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X-ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high-performance free-electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N /O /H and N /H feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X-ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N /H plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N /O /H plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N /H plasma is demonstrated.
Author Sauthier, Guillaume
Carlino, Vincent
Zangrando, Marco
Goñi, Alejandro R.
Moreno Fernández, Harol
Pellegrin, Eric
Author_xml – sequence: 1
  givenname: Harol
  surname: Moreno Fernández
  fullname: Moreno Fernández, Harol
– sequence: 2
  givenname: Marco
  surname: Zangrando
  fullname: Zangrando, Marco
– sequence: 3
  givenname: Guillaume
  surname: Sauthier
  fullname: Sauthier, Guillaume
– sequence: 4
  givenname: Alejandro R.
  surname: Goñi
  fullname: Goñi, Alejandro R.
– sequence: 5
  givenname: Vincent
  surname: Carlino
  fullname: Carlino, Vincent
– sequence: 6
  givenname: Eric
  surname: Pellegrin
  fullname: Pellegrin, Eric
  email: epellegrin@cells.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30407173$$D View this record in MEDLINE/PubMed
BookMark eNqFkktuFDEQhi0URB5wADbIEhsWGbC77XabXRTxCIpAImGRleX2lBlHbrtjdxPNLkfgVtyDk-CeSQQKEqxsVX3_X3ZV7aOdEAMg9JSSl5QS8eqMNoRwIThtCWWEigdobw4t5tjOH_ddtJ_zJSG0EVX9CO3WhBFBRb2HfpzHa52WGZsV9M5o79c4wDQm7bHRqYsBGw86uPAVDykayBnyazx4nXv9OxUt_ugO8ecV1mGJjzxOYD2Y0X0DHIdxNsYm6rGweYOMKxdmzjo_QsrYxoRtAvh58x1mYSqFS405NeN5HcwqxU24A917FwDrYfDFeXQx5MfoodU-w5Pb8wB9efvm_Pj94vTTu5Pjo9OFYYw3CyoZNy3tZGVbJhquW9EaXRtrTcU6K3mnaSWYpNS0XLaWWaul5LZuJBPLhtcH6MXWtzTjaoI8qt5lA97rAHHKqqI1rWohWVXQ5_fQyzilUF63oagUpCGFenZLTV0PSzUk1-u0VncjKoDYAibFnEtflXHj5tNlSM4rStS8DOqvZShKek95Z_4vjdxqrp2H9f8F6sPZRXVxwglv6l9Sksk2
CitedBy_id crossref_primary_10_1016_j_apsusc_2020_148684
crossref_primary_10_1016_j_jclepro_2021_128285
crossref_primary_10_1016_j_vacuum_2025_114063
crossref_primary_10_1126_science_adn9181
crossref_primary_10_1016_j_physrep_2022_05_001
crossref_primary_10_1021_acsami_4c04841
crossref_primary_10_1002_pssa_201901042
Cites_doi 10.1006/jcat.1994.1322
10.1117/12.886970
10.1103/PhysRevB.61.14095
10.1016/j.jnucmat.2009.01.121
10.1107/S1600577513032402
10.1039/c1cp22284h
10.1017/S1431927608087710
10.1038/nphoton.2012.233
10.1021/acs.jpcc.6b05219
10.1016/j.apsusc.2015.11.117
10.1002/sia.740150109
10.1088/0029-5515/42/12/101
10.1088/2053-1591/1/3/035050
10.1016/j.jnucmat.2016.04.011
10.1039/c2cp22419d
10.1116/1.1524153
10.1038/s41598-018-19273-6
10.1016/j.vacuum.2011.04.004
10.1016/j.vacuum.2014.12.015
10.1016/0168-9002(92)90560-Q
ContentType Journal Article
Copyright International Union of Crystallography, 2018
Copyright Wiley Subscription Services, Inc. Nov 2018
Copyright_xml – notice: International Union of Crystallography, 2018
– notice: Copyright Wiley Subscription Services, Inc. Nov 2018
DBID AAYXX
CITATION
NPM
7U5
8FD
JQ2
K9.
L7M
7X8
DOI 10.1107/S1600577518014017
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1600-5775
EndPage 1649
ExternalDocumentID 30407173
10_1107_S1600577518014017
JSY2YI5056
Genre article
Journal Article
GrantInformation_xml – fundername: Generalitat de Catalunya, Departament d'Empresa i Coneixement
  grantid: Dossier No. 2014 DI 037
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
1Y6
24P
29L
2WC
31~
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8FI
8FJ
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFO
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFEBI
AFGKR
AFKRA
AFPKN
AFZJQ
AGQPQ
AGXDD
AHEFC
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HH5
HMCUK
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
K7-
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
OIG
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
PUEGO
Q.N
Q11
QB0
R.K
RCJ
RIWAO
RJQFR
ROL
RPM
RX1
SUPJJ
TUS
UB1
UKHRP
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIK
WIN
WOHZO
WQJ
WYISQ
XG1
ZZTAW
~IA
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7U5
8FD
JQ2
K9.
L7M
7X8
ID FETCH-LOGICAL-c4456-1945c81b92f84765a878ca3cffc24bf95ba1274911c8598f4ffa995f36947d653
IEDL.DBID DR2
ISSN 1600-5775
0909-0495
IngestDate Fri Sep 05 06:06:21 EDT 2025
Tue Oct 07 06:07:33 EDT 2025
Mon Mar 03 15:04:25 EST 2025
Wed Oct 01 02:24:48 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Thu Sep 25 07:35:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords carbon contamination
free-electron lasers (FELs)
plasma cleaning chemistry
FEL and synchrotron radiation beamline optics
inductively coupled plasma
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4456-1945c81b92f84765a878ca3cffc24bf95ba1274911c8598f4ffa995f36947d653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1648-0331
0000-0001-8860-3962
0000-0002-1193-3063
0000-0002-4362-9488
PMID 30407173
PQID 2131197060
PQPubID 1086380
PageCount 7
ParticipantIDs proquest_miscellaneous_2131237942
proquest_journals_2131197060
pubmed_primary_30407173
crossref_citationtrail_10_1107_S1600577518014017
crossref_primary_10_1107_S1600577518014017
wiley_primary_10_1107_S1600577518014017_JSY2YI5056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: United States
– name: Malden
PublicationTitle Journal of synchrotron radiation
PublicationTitleAlternate J Synchrotron Radiat
PublicationYear 2018
Publisher International Union of Crystallography
John Wiley & Sons, Inc
Publisher_xml – name: International Union of Crystallography
– name: John Wiley & Sons, Inc
References Biesinger (yi5056_bb2) 2012; 14
Graham (yi5056_bb9) 2002; 20
Pellegrin (yi5056_bb16) 2014; 21
Strein (yi5056_bb17) 2008; 14
Strohmeier (yi5056_bb18) 1990; 15
Moreno (yi5056_bb13) 2014; 1
Pellegrin (yi5056_bb15) 2013; 8777
Warburton (yi5056_bb21) 1992; 319
Yao-Leclerc (yi5056_bb22) 2011; 8077
González Cuxart (yi5056_bb4) 2016; 362
Thedsakhulwong (yi5056_bb19) 2008; 18
Ferreira (yi5056_bb8) 2009; 390-391
Tolia (yi5056_bb20) 1994; 150
Hopf (yi5056_bb10) 2002; 42
Latsunskyi (yi5056_bb12) 2015; 113
Zähr (yi5056_bb23) 2012; 86
Moreno Fernández (yi5056_bb14) 2018; 8
Drenik (yi5056_bb5) 2016; 475
Eggenstein (yi5056_bb6) 2001; 325
yi5056_bb1
Kibis (yi5056_bb11) 2016; 120
Carrasco (yi5056_bb3) 2011; 13
Ferrari (yi5056_bb7) 2000; 61
References_xml – volume: 18
  start-page: 137
  year: 2008
  ident: yi5056_bb19
  publication-title: J. Metals Mater. Miner.
– volume: 150
  start-page: 56
  year: 1994
  ident: yi5056_bb20
  publication-title: J. Catal.
  doi: 10.1006/jcat.1994.1322
– volume: 8777
  start-page: 8777O
  year: 2013
  ident: yi5056_bb15
  publication-title: Proc. SPIE
– volume: 8077
  start-page: 807712
  year: 2011
  ident: yi5056_bb22
  publication-title: Proc. SPIE
  doi: 10.1117/12.886970
– volume: 325
  start-page: 467
  year: 2001
  ident: yi5056_bb6
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 61
  start-page: 14095
  year: 2000
  ident: yi5056_bb7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.14095
– volume: 390-391
  start-page: 593
  year: 2009
  ident: yi5056_bb8
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2009.01.121
– volume: 21
  start-page: 300
  year: 2014
  ident: yi5056_bb16
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577513032402
– volume: 13
  start-page: 19561
  year: 2011
  ident: yi5056_bb3
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22284h
– volume: 14
  start-page: 818
  year: 2008
  ident: yi5056_bb17
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927608087710
– ident: yi5056_bb1
  doi: 10.1038/nphoton.2012.233
– volume: 120
  start-page: 19142
  year: 2016
  ident: yi5056_bb11
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05219
– volume: 362
  start-page: 448
  year: 2016
  ident: yi5056_bb4
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.117
– volume: 15
  start-page: 51
  year: 1990
  ident: yi5056_bb18
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740150109
– volume: 42
  start-page: L27
  year: 2002
  ident: yi5056_bb10
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/42/12/101
– volume: 1
  start-page: 035050
  year: 2014
  ident: yi5056_bb13
  publication-title: Mater. Res. Expr.
  doi: 10.1088/2053-1591/1/3/035050
– volume: 475
  start-page: 237
  year: 2016
  ident: yi5056_bb5
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2016.04.011
– volume: 14
  start-page: 2434
  year: 2012
  ident: yi5056_bb2
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp22419d
– volume: 20
  start-page: 2393
  year: 2002
  ident: yi5056_bb9
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.1524153
– volume: 8
  start-page: 1293
  year: 2018
  ident: yi5056_bb14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19273-6
– volume: 86
  start-page: 1216
  year: 2012
  ident: yi5056_bb23
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2011.04.004
– volume: 113
  start-page: 52
  year: 2015
  ident: yi5056_bb12
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2014.12.015
– volume: 319
  start-page: 240
  year: 1992
  ident: yi5056_bb21
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/0168-9002(92)90560-Q
SSID ssj0016723
Score 2.2650607
Snippet The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1642
SubjectTerms Aluminum
Angle of reflection
Carbon
carbon contamination
Cleaning
Coatings
Contamination
FEL and synchrotron radiation beamline optics
Foils
free‐electron lasers (FELs)
Gas plasmas
Inductively coupled plasma
Laser beams
Materials selection
Nickel
Nitrogen plasma
Optical coatings
Organic chemistry
Plasma
plasma cleaning chemistry
Raw materials
Rhodium
Surface analysis (chemical)
X ray spectra
Title Towards chemically neutral carbon cleaning processes: plasma cleaning of Ni, Rh and Al reflective optical coatings and thin Al filters for free‐electron lasers and synchrotron beamline applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600577518014017
https://www.ncbi.nlm.nih.gov/pubmed/30407173
https://www.proquest.com/docview/2131197060
https://www.proquest.com/docview/2131237942
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: ABDBF
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1600-5775
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016723
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqSiAuPMorUJCROCFSNonjxNyqiqpUag99SO0pGju2dsU2WW12D9tTfwL_iv_BL2HGeUBZCSS45BBPnNd4_I3H8w1jb9FJllpFIrQZHgTEMoTSZqFEdA_EOJ6U5CgeHcuDc3F4kV5ssL0-F6blhxgW3GhkeHtNAxx0V4XEx_VPI0mZlBQ28F4CZZRHifRu1clAIRXJzJd4I-GQpLvIJvbxYa2H23PTGuC8jV_9BLT_gJX9o7f7Tr7sLBd6x1z_xur4n-_2kN3vACrfbTXqEduw1Ra705asXG2xu0ddMB5P-t2jpnnMvp35zbcNNx39wHTFK7ukRRRuYK7rimNfQEswfNZmJtjmI58hcr-Cn02148eT9_xkzKEq-e6U4xeatgaZ1zO_6M5NDbRRu_Eii_GkIjk3oZh_wxGAcze39vvN1768D8d7UBOJN6vKjOe1P60tXNF34r9G8J-w8_1PZ3sHYVchIjRCEIGiEqlB4K1ih7OsTCHPcgOJcc7EQjuVaojQ7UaDbvJU5U44B0qlLpFKZKVMk6dss6or-5xxlYDTzmVghRFOSoAYco3gR5doo2AUsFGvG4Xp6NOpise08G7UKCvWflrA3g2XzFrukD8Jb_cKV3RmpCliIkNSRHAUsDdDMxoAiupAZetlKxMnaFbjgD1rFXW4WzLy_noSsNir298fozg8vYwvPxMufvEvF71k9xBS5m225jbbXMyX9hXCtoV-7cflD3pWNa0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6VIn4u_BQogQKLxAnhktjrtc2tAqq0NDm0qdSerPV6V4ma2lGcHMKJR-CteA-ehJld21AigQQXH7zj9d_s7Dczu98AvEInWWRJj3s6wgOXvvBkriNPILqXxDge5OQoDoaif8oPz8KzDfjQ7IVx_BBtwI1GhrXXNMApIO1GuU3sn_QEbaWkvIF1E6JrcJ0L9FcIGh23JFI9EdkibyTtkXid28RO3q51cXV2WoOcVxGsnYL274JuHt6tPLnYXS6yXfX5N17H_327e3CnxqhszynVfdjQxRbccFUrV1twc1Dn4_GkXUCqqgfwbWTX31ZM1QwE0xUr9JLiKEzJeVYWDPuSFIVhM7c5QVfv2AzB-6X82VQaNpy8YcdjJouc7U0ZfqKps8msnNm4O1OlpLXalRVZjCcFyZkJpf0rhhicmbnW3798bSr8MLwHNZF4tSrUeF7a05mWl_Sh2K9J_Idwuv9x9L7v1UUiPMU5cSgmPFSIvRPf4EQrQhlHsZKBMkb5PDNJmMkeet5o01UcJrHhxsgkCU0gEh7lIgwewWZRFvoxsCSQJjMmkporboSQ0pdxhvgny9FMyW4Huo1ypKpmUKdCHtPUelLdKF37aR143V4yc_QhfxLeaTQurS1JlfrEh5QQx1EHXrbNaAMosSMLXS6djB-gZfU7sO00tb1b0LUue9AB3-rb3x8jPTw5988PCBo_-ZeLXsCt_mhwlB4dDD89hduIMGO3eXMHNhfzpX6GKG6RPbeD9AfeBznO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VIiouBcpPFwoYiRMi7W7iOAm3imXVFrpC_ZHaU-Q4tnbFNok2u4flxCPwVrwHT8KMnSyUlUCCSw7xxPkbj7_xjL8BeIlOssiSHvd0hAcufeHJXEeeQHQviXE8yMlRPB6Kg3N-dBFerEG_3Qvj-CGWC240Mqy9pgGuq9y4UW4D-6c9QVspKW5g3YToBtzkYRJTYl__ZEki1RORLfJG0h6JN7FN7GRvpYvrs9MK5LyOYO0UNLgDun14l3nyaXc-y3bV5994Hf_37e7CZoNR2b5TqnuwpostuOWqVi62YOO4icfjSZtAqur78O3M5t_WTDUMBJMFK_Sc1lGYktOsLBj2JWkVhlVuc4Ku37AKwfuV_NlUGjYcv2YnIyaLnO1PGH6iibPJrKzsujtTpaRc7dqKzEbjguTMmML-NUMMzsxU6-9fvrYVfhjeg5pIvF4UajQt7elMyyv6UOzXIP4DOB-8O3t74DVFIjzFOXEoJjxUiL0T3-BEK0IZR7GSgTJG-TwzSZjJHnreaNNVjMphuDEySUITiIRHuQiDh7BelIXeBpYE0mTGRFJzxY0QUvoyzhD_ZDmaKdntQLdVjlQ1DOpUyGOSWk-qG6UrP60Dr5aXVI4-5E_CO63GpY0lqVOf-JAS4jjqwItlM9oACuzIQpdzJ-MHaFn9Djxymrq8W9C1LnvQAd_q298fIz06vfQvDwkaP_6Xi57Dxsf-IP1wOHz_BG4jwIzd3s0dWJ9N5_opgrhZ9syO0R805TlS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+chemically+neutral+carbon+cleaning+processes%3A+plasma+cleaning+of+Ni%2C+Rh+and+Al+reflective+optical+coatings+and+thin+Al+filters+for+free-electron+lasers+and+synchrotron+beamline+applications&rft.jtitle=Journal+of+synchrotron+radiation&rft.au=Moreno+Fern%C3%A1ndez%2C+Harol&rft.au=Zangrando%2C+Marco&rft.au=Sauthier%2C+Guillaume&rft.au=Go%C3%B1i%2C+Alejandro+R&rft.date=2018-11-01&rft.issn=1600-5775&rft.eissn=1600-5775&rft.volume=25&rft.issue=Pt+6&rft.spage=1642&rft_id=info:doi/10.1107%2FS1600577518014017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5775&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5775&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5775&client=summon