Efficient wildlife monitoring: Deep learning-based detection and counting of green turtles in coastal areas

Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automat...

Full description

Saved in:
Bibliographic Details
Published inEcological informatics Vol. 86; p. 103009
Main Authors Noguchi, Naoya, Nishizawa, Hideaki, Shimizu, Taro, Okuyama, Junichi, Kobayashi, Shohei, Tokuda, Kazuyuki, Tanaka, Hideyuki, Kondo, Satomi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2025
Elsevier
Subjects
Online AccessGet full text
ISSN1574-9541
DOI10.1016/j.ecoinf.2025.103009

Cover

Abstract Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automating the tracking of individuals across consecutive images and counting them along transect lines is necessary to apply drones to line-transect surveys. In this study, deep-learning-based You Look Only Once, Version 7 (YOLOv7) models were developed to automatically detect green turtles (Chelonia mydas) in Japanese coastal areas featuring coral reefs and seagrass beds. Drone footage yielded 103,296 annotated images of green turtles. The model was trained and validated using 78 % and 22 % of the images. The best model performances were 0.848, 0.853, and 0.922 for precision, recall, and mean average precision at the threshold of the intersection over union = 0.5, respectively. Then, the BoT-SORT object-tracking algorithm was implemented to track green turtles detected using the YOLOv7 model, and the counting of individuals was automated. When this automatic counting model was tested using eight drone footage clips, green turtles at the sea surface were successfully tracked and counted (n = 3/3); however, the performance in counting underwater green turtles was relatively poor (n = 27/59). The reduced performance might be attributable to accumulated errors in detecting green turtles while processing numerous images in the footage (approximately 60 fps). Nonetheless, relatively high precision was achieved by reducing false positives in complex coastal areas. The methods in this study should enhance the efficiency of long-term wildlife monitoring programs. •YOLOv7 models were developed to automatically detect green turtles in coastal areas.•Green turtles at the sea surface were successfully tracked and counted.•However, the performance in counting underwater green turtles was relatively poor.•High precision was achieved by reducing false positives in complex coastal areas.•The models would contribute to efficient long-term wildlife monitoring programs.
AbstractList Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automating the tracking of individuals across consecutive images and counting them along transect lines is necessary to apply drones to line-transect surveys. In this study, deep-learning-based You Look Only Once, Version 7 (YOLOv7) models were developed to automatically detect green turtles (Chelonia mydas) in Japanese coastal areas featuring coral reefs and seagrass beds. Drone footage yielded 103,296 annotated images of green turtles. The model was trained and validated using 78 % and 22 % of the images. The best model performances were 0.848, 0.853, and 0.922 for precision, recall, and mean average precision at the threshold of the intersection over union = 0.5, respectively. Then, the BoT-SORT object-tracking algorithm was implemented to track green turtles detected using the YOLOv7 model, and the counting of individuals was automated. When this automatic counting model was tested using eight drone footage clips, green turtles at the sea surface were successfully tracked and counted (n = 3/3); however, the performance in counting underwater green turtles was relatively poor (n = 27/59). The reduced performance might be attributable to accumulated errors in detecting green turtles while processing numerous images in the footage (approximately 60 fps). Nonetheless, relatively high precision was achieved by reducing false positives in complex coastal areas. The methods in this study should enhance the efficiency of long-term wildlife monitoring programs.
Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automating the tracking of individuals across consecutive images and counting them along transect lines is necessary to apply drones to line-transect surveys. In this study, deep-learning-based You Look Only Once, Version 7 (YOLOv7) models were developed to automatically detect green turtles (Chelonia mydas) in Japanese coastal areas featuring coral reefs and seagrass beds. Drone footage yielded 103,296 annotated images of green turtles. The model was trained and validated using 78 % and 22 % of the images. The best model performances were 0.848, 0.853, and 0.922 for precision, recall, and mean average precision at the threshold of the intersection over union = 0.5, respectively. Then, the BoT-SORT object-tracking algorithm was implemented to track green turtles detected using the YOLOv7 model, and the counting of individuals was automated. When this automatic counting model was tested using eight drone footage clips, green turtles at the sea surface were successfully tracked and counted (n = 3/3); however, the performance in counting underwater green turtles was relatively poor (n = 27/59). The reduced performance might be attributable to accumulated errors in detecting green turtles while processing numerous images in the footage (approximately 60 fps). Nonetheless, relatively high precision was achieved by reducing false positives in complex coastal areas. The methods in this study should enhance the efficiency of long-term wildlife monitoring programs. •YOLOv7 models were developed to automatically detect green turtles in coastal areas.•Green turtles at the sea surface were successfully tracked and counted.•However, the performance in counting underwater green turtles was relatively poor.•High precision was achieved by reducing false positives in complex coastal areas.•The models would contribute to efficient long-term wildlife monitoring programs.
Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automating the tracking of individuals across consecutive images and counting them along transect lines is necessary to apply drones to line-transect surveys. In this study, deep-learning-based You Look Only Once, Version 7 (YOLOv7) models were developed to automatically detect green turtles (Chelonia mydas) in Japanese coastal areas featuring coral reefs and seagrass beds. Drone footage yielded 103,296 annotated images of green turtles. The model was trained and validated using 78 % and 22 % of the images. The best model performances were 0.848, 0.853, and 0.922 for precision, recall, and mean average precision at the threshold of the intersection over union = 0.5, respectively. Then, the BoT-SORT object-tracking algorithm was implemented to track green turtles detected using the YOLOv7 model, and the counting of individuals was automated. When this automatic counting model was tested using eight drone footage clips, green turtles at the sea surface were successfully tracked and counted (n = 3/3); however, the performance in counting underwater green turtles was relatively poor (n = 27/59). The reduced performance might be attributable to accumulated errors in detecting green turtles while processing numerous images in the footage (approximately 60 fps). Nonetheless, relatively high precision was achieved by reducing false positives in complex coastal areas. The methods in this study should enhance the efficiency of long-term wildlife monitoring programs.
ArticleNumber 103009
Author Tanaka, Hideyuki
Nishizawa, Hideaki
Okuyama, Junichi
Kobayashi, Shohei
Shimizu, Taro
Kondo, Satomi
Noguchi, Naoya
Tokuda, Kazuyuki
Author_xml – sequence: 1
  givenname: Naoya
  surname: Noguchi
  fullname: Noguchi, Naoya
  organization: Graduate School of Informatics, Kyoto University, Japan
– sequence: 2
  givenname: Hideaki
  surname: Nishizawa
  fullname: Nishizawa, Hideaki
  email: nishizawa.hideaki.6s@kyoto-u.ac.jp
  organization: Graduate School of Informatics, Kyoto University, Japan
– sequence: 3
  givenname: Taro
  surname: Shimizu
  fullname: Shimizu, Taro
  organization: Graduate School of Informatics, Kyoto University, Japan
– sequence: 4
  givenname: Junichi
  surname: Okuyama
  fullname: Okuyama, Junichi
  organization: Subtropical Coastal Research Group, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Japan
– sequence: 5
  givenname: Shohei
  surname: Kobayashi
  fullname: Kobayashi, Shohei
  organization: Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Japan
– sequence: 6
  givenname: Kazuyuki
  surname: Tokuda
  fullname: Tokuda, Kazuyuki
  organization: Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Japan
– sequence: 7
  givenname: Hideyuki
  surname: Tanaka
  fullname: Tanaka, Hideyuki
  organization: Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Japan
– sequence: 8
  givenname: Satomi
  surname: Kondo
  fullname: Kondo, Satomi
  organization: Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Japan
BookMark eNp9kcGOFCEQhjmsiburb-CBo5ceoYGm8WBi1l3dZBMveibVdDFhZGAERuPby9jGo6eiqv76i9R3Q65STkjIK852nPHpzWGHLofkdyMbVS8JxswVueZKy8EoyZ-Tm1oPjEkxz-M1-XbvfXABU6M_Q1xj8EiPOYWWS0j7t_QD4olGhJJ6OixQcaUrNnQt5EQhrdTlc2q9SbOn-4KYaDuXFrHSkHoTaoNIoSDUF-SZh1jx5d94S74-3H-5-zQ8ff74ePf-aXBSyjasC2gjvAfOZ66VWfw8L16YiWvHvGBy6oqFaWMm5dQkl_7GeXbCgPaIWtySx813zXCwpxKOUH7ZDMH-KeSyt1BacBEtHyfu2SS9VquUAgCEY1p4A0Yxo3j3er15nUr-fsba7DFUhzFCwnyuVoyMjYapae5SuUldybUW9P9Wc2YvbOzBbmzshY3d2PSxd9sY9pP8CFhsvfBwuIbSz9z_HP5v8BsJVZ3N
Cites_doi 10.1016/j.tree.2014.05.004
10.3354/esr00601
10.1109/ACCESS.2019.2909992
10.1016/j.isprsjprs.2020.08.026
10.1111/jofo.12171
10.1016/j.ocecoaman.2019.03.008
10.1371/journal.pone.0284449
10.1007/s11042-022-13644-y
10.1111/2041-210X.13922
10.1016/S0169-5347(01)02205-4
10.1139/juvs-2015-0014
10.1007/s11263-006-9038-7
10.2744/CCB-1222.1
10.3354/esr00958
10.1071/WR20207
10.1007/s00227-022-04141-9
10.3354/esr01350
10.1371/journal.pone.0228524
10.3390/app13137787
10.1111/2041-210X.13026
10.1016/j.biocon.2021.109102
10.3354/esr00877
10.1016/j.isci.2024.109071
10.1111/1365-2435.12930
10.1371/journal.pone.0039979
10.1038/srep45127
10.1111/2041-210X.14123
10.1002/ece3.7518
10.1371/journal.pone.0054700
10.1371/journal.pone.0065783
10.3354/esr00930
10.1002/ecs2.4444
10.1111/2041-210X.13132
10.1007/s12237-019-00587-1
10.1007/s11045-016-0407-2
10.1111/brv.12001
10.3390/s19071651
10.1371/journal.pone.0079556
10.3390/app122211318
10.3389/fmars.2022.864694
10.1002/rse2.205
10.1139/juvs-2019-0002
10.1655/HERPETOLOGICA-D-11-00050.1
10.1111/2041-210X.12291
10.1007/s00227-022-04056-5
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ecoinf.2025.103009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
ExternalDocumentID oai_doaj_org_article_1261f064f75d443aaa3c073f9a950951
10_1016_j_ecoinf_2025_103009
S1574954125000184
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPCBC
SSA
SSH
SSJ
SSZ
T5K
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
M~E
~HD
7S9
L.6
ID FETCH-LOGICAL-c444t-dba793ffa1181759bf88bf39617c0f3046dbab079965c564bb07e88c39a7fee73
IEDL.DBID DOA
ISSN 1574-9541
IngestDate Wed Aug 27 00:37:47 EDT 2025
Fri Sep 05 15:03:50 EDT 2025
Wed Oct 01 06:32:15 EDT 2025
Sun May 04 07:42:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
CNN
Unmanned aerial vehicle
Coastal area
YOLOv7
png
Abundance estimation
Sea turtle
mAP
IoU
AP
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-dba793ffa1181759bf88bf39617c0f3046dbab079965c564bb07e88c39a7fee73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/1261f064f75d443aaa3c073f9a950951
PQID 3200290568
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_1261f064f75d443aaa3c073f9a950951
proquest_miscellaneous_3200290568
crossref_primary_10_1016_j_ecoinf_2025_103009
elsevier_sciencedirect_doi_10_1016_j_ecoinf_2025_103009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
20250501
2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Ecological informatics
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mpouziotas, Karvelis, Tsoulos, Stylios (bb0215) 2023; 13
Fourqurean, Manuel, Coates, Massey, Kenworthy (bb0130) 2019; 42
Dujon, Schofield (bb0105) 2019; 39
Meylan, Hardy, Gray, Meylan (bb0205) 2022; 169
Bjerge, Geissmann, Alison, Mann, Høye, Dyrmann, Karstoft (bb0035) 2023; 77
Seminoff, Eguchi, Carretta, Allen, Prosperi, Rangel, Gilpatrick, Forney, Peckham (bb0300) 2014; 24
Jiang, Wu (bb0175) 2024; 84
Zhang, Zhao, Fu, Luo, Shao, Zhang, Yu (bb0345) 2024; 81
Ma, Li, Bao, Roberts, Li, Zhang, Yang, Jiang (bb0195) 2024; 81
Aharon, Orfaig, Bobrovsky (bb0010) 2022
Peng, Wang, Liao, Shao, Sun, Yue, Ye (bb0240) 2020; 169
Brack, Kindel, Oliveira (bb0045) 2018; 9
Nath Tripathi, Ramachandran, Agarwal, Tripathi, Badola, Ainul Hussain (bb0220) 2024; XLVIII-1-2024
Chappidi, Sundaram (bb0055) 2024; 12
Desai, Patel, Patel, Shah, Raval, Ghosal (bb0085) 2022; 72
Hays, Schofield, Papazekou, Chatzimentor, Katsanevakis, Mazaris (bb0155) 2024; 27
Odzer, Brooks, Heithaus, Whitman (bb0225) 2022; 49
Bakana, Zhang, Twala (bb0020) 2024; 80
Christianen, Herman, Bouma, Lamers, van Katwijk, van der Heide, Mumby, Silliman, Engelhard, van de Kerk, Kiswara, van de Koppel (bb0060) 2014; 281
Moreni, Theau, Foucher (bb0210) 2023; 18
Feng, Jin (bb0125) 2024; 82
Kondo, Morimoto, Sato, Suganuma (bb0190) 2017; 16
Marques, Thomas, Martin, Mellinger, Ward, Moretti, Harris, Tyack (bb0200) 2013; 88
Gray, Fleishman, Klein, McKown, Bézy, Lohmann, Johnston (bb0145) 2019; 10
Agabiti, Tolve, Baldi, Zucchini, Tuccio, Restelli, Freggi, Luschi, Casale (bb0005) 2024; 54
Chabot, Francis (bb0050) 2016; 87
Hodgson, Kelly, Peel (bb0165) 2013; 8
Colefax, Kelaher, Walsh, Purcell, Pagendam, Cagnazzi, Butcher (bb0070) 2021; 257
Salmon, Mott, Bresette (bb0285) 2018; 37
Qing, Yu, Xu, Huang, Jin (bb0245) 2016; 27
Dell, Bender, Branson, Couzin, de Polavieja, Noldus, Pérez-Escudero, Perona, Straw, Wikelski, Brose (bb0080) 2014; 29
Wu, Jiang, Zhao, Liu, Zhu, Wang, Wang (bb0335) 2022; 12
Du, Li, Si, Xu, Niu (bb0100) 2024
Patterson, Koski, Pace, McLuckie, Bird (bb0235) 2015; 4
Schad, Fischer (bb0290) 2023; 14
Benson, Forney, Carretta, Dutton (bb0030) 2007; 105
Haucke, Kühl, Hoyer, Steinhage (bb0150) 2022; 68
Colefax, Butcher, Pagendam, Kelaher (bb0065) 2019; 174
Ragesh, Rajesh (bb0250) 2019; 7
Johanns, Haucke, Steinhage (bb0180) 2022; 70
Seymour, Dale, Hammill, Halpin, Johnston (bb0305) 2017; 7
Dujon, Ierodiaconou, Geeson, Arnould, Allan, Katselidis, Schofield (bb0110) 2021; 7
Diwan, Anirudh, Tembhume (bb0095) 2023; 82
Corcoran, Denman, Hamilton (bb0075) 2021; 11
Raghu, Zhang, Kleinberg, Bengio (bb0255) 2019; 32
Rayner (bb0260) 2024
Vermeulen, Lejeune, Lisein, Sawadogo, Bouché (bb0325) 2013; 8
Okuyama, Nakajima, Noda, Kimura, Kamihata, Kobayashi, Arai, Kagawa, Kawabata, Yamada (bb0230) 2013; 8
Bodla, Singh, Chellappa, Davis (bb0040) 2017
Dickson, Tugwell, Katselidis, Schofield (bb0090) 2022; 9
Hong, Han, Kim, Lee, Kim (bb0170) 2019; 19
Raza, Hong (bb0265) 2020; 11
Yoccoz, Nichols, Boulinier (bb0340) 2001; 16
Gavrila, Munder (bb0135) 2007; 7
Rees, Avens, Ballorain, Bevan, Broderick, Carthy, Christianen, Duclos, Heithaus, Johnston, Mangel, Paladino, Pendoley, Reina, Robinson, Ryan, Sykora-Bodie, Tilley, Varela, Whitman, Whittock, Wibbels, Godley (bb0275) 2018; 35
Wang, Bochkovskiy, Liao (bb0330) 2023; vol. 2023
Roy, Bhaduri, Kumar, Raj (bb0280) 2023; 75
Stokes, Mortimer, Laloë, Hays, Esteban (bb0320) 2023; 14
Benavides, Fodrie, Johnston (bb0025) 2020; 8
Kellner, Smith, Royle, Kéry, Belant, Chandler (bb0185) 2023; 14
Redmon, Divvala, Girshick, Farhadi (bb0270) 2016; vol. 2016
Goatley, Hoey, Bellwood (bb0140) 2012; 7
Dunstan, Robertson, Fitzpatrick, Pickford, Meager (bb0115) 2020; 15
Axford, Sohel, Vanderklift, Hodgson (bb0015) 2024; 83
He, Girshick, Dollár (bb0160) 2019
Eguchi, Seminoff, LeRoux, Prosperi, Dutton, Dutton (bb0120) 2012; 68
Schofield, Katselidis, Lilley, Reina, Hays (bb0295) 2017; 31
Staines, Smith, Madden Hof, Booth, Tibbetts, Hays (bb0310) 2022; 169
Stevenson, Borchers, Altwegg, Swift, Gillespie, Measey (bb0315) 2015; 6
Dunstan (10.1016/j.ecoinf.2025.103009_bb0115) 2020; 15
Christianen (10.1016/j.ecoinf.2025.103009_bb0060) 2014; 281
Ma (10.1016/j.ecoinf.2025.103009_bb0195) 2024; 81
Meylan (10.1016/j.ecoinf.2025.103009_bb0205) 2022; 169
Raza (10.1016/j.ecoinf.2025.103009_bb0265) 2020; 11
Colefax (10.1016/j.ecoinf.2025.103009_bb0070) 2021; 257
Schad (10.1016/j.ecoinf.2025.103009_bb0290) 2023; 14
Hodgson (10.1016/j.ecoinf.2025.103009_bb0165) 2013; 8
Benavides (10.1016/j.ecoinf.2025.103009_bb0025) 2020; 8
Mpouziotas (10.1016/j.ecoinf.2025.103009_bb0215) 2023; 13
Zhang (10.1016/j.ecoinf.2025.103009_bb0345) 2024; 81
Schofield (10.1016/j.ecoinf.2025.103009_bb0295) 2017; 31
Wu (10.1016/j.ecoinf.2025.103009_bb0335) 2022; 12
Bjerge (10.1016/j.ecoinf.2025.103009_bb0035) 2023; 77
Bakana (10.1016/j.ecoinf.2025.103009_bb0020) 2024; 80
Okuyama (10.1016/j.ecoinf.2025.103009_bb0230) 2013; 8
Raghu (10.1016/j.ecoinf.2025.103009_bb0255) 2019; 32
Nath Tripathi (10.1016/j.ecoinf.2025.103009_bb0220) 2024; XLVIII-1-2024
Marques (10.1016/j.ecoinf.2025.103009_bb0200) 2013; 88
Peng (10.1016/j.ecoinf.2025.103009_bb0240) 2020; 169
Benson (10.1016/j.ecoinf.2025.103009_bb0030) 2007; 105
Jiang (10.1016/j.ecoinf.2025.103009_bb0175) 2024; 84
Vermeulen (10.1016/j.ecoinf.2025.103009_bb0325) 2013; 8
Chappidi (10.1016/j.ecoinf.2025.103009_bb0055) 2024; 12
Kondo (10.1016/j.ecoinf.2025.103009_bb0190) 2017; 16
Qing (10.1016/j.ecoinf.2025.103009_bb0245) 2016; 27
Du (10.1016/j.ecoinf.2025.103009_bb0100) 2024
Dujon (10.1016/j.ecoinf.2025.103009_bb0105) 2019; 39
Gray (10.1016/j.ecoinf.2025.103009_bb0145) 2019; 10
Patterson (10.1016/j.ecoinf.2025.103009_bb0235) 2015; 4
Johanns (10.1016/j.ecoinf.2025.103009_bb0180) 2022; 70
He (10.1016/j.ecoinf.2025.103009_bb0160) 2019
Hong (10.1016/j.ecoinf.2025.103009_bb0170) 2019; 19
Agabiti (10.1016/j.ecoinf.2025.103009_bb0005) 2024; 54
Diwan (10.1016/j.ecoinf.2025.103009_bb0095) 2023; 82
Goatley (10.1016/j.ecoinf.2025.103009_bb0140) 2012; 7
Seminoff (10.1016/j.ecoinf.2025.103009_bb0300) 2014; 24
Chabot (10.1016/j.ecoinf.2025.103009_bb0050) 2016; 87
Moreni (10.1016/j.ecoinf.2025.103009_bb0210) 2023; 18
Axford (10.1016/j.ecoinf.2025.103009_bb0015) 2024; 83
Fourqurean (10.1016/j.ecoinf.2025.103009_bb0130) 2019; 42
Eguchi (10.1016/j.ecoinf.2025.103009_bb0120) 2012; 68
Ragesh (10.1016/j.ecoinf.2025.103009_bb0250) 2019; 7
Rayner (10.1016/j.ecoinf.2025.103009_bb0260) 2024
Roy (10.1016/j.ecoinf.2025.103009_bb0280) 2023; 75
Feng (10.1016/j.ecoinf.2025.103009_bb0125) 2024; 82
Seymour (10.1016/j.ecoinf.2025.103009_bb0305) 2017; 7
Staines (10.1016/j.ecoinf.2025.103009_bb0310) 2022; 169
Dell (10.1016/j.ecoinf.2025.103009_bb0080) 2014; 29
Dujon (10.1016/j.ecoinf.2025.103009_bb0110) 2021; 7
Stokes (10.1016/j.ecoinf.2025.103009_bb0320) 2023; 14
Haucke (10.1016/j.ecoinf.2025.103009_bb0150) 2022; 68
Stevenson (10.1016/j.ecoinf.2025.103009_bb0315) 2015; 6
Bodla (10.1016/j.ecoinf.2025.103009_bb0040) 2017
Gavrila (10.1016/j.ecoinf.2025.103009_bb0135) 2007; 7
Odzer (10.1016/j.ecoinf.2025.103009_bb0225) 2022; 49
Aharon (10.1016/j.ecoinf.2025.103009_bb0010) 2022
Redmon (10.1016/j.ecoinf.2025.103009_bb0270) 2016; vol. 2016
Wang (10.1016/j.ecoinf.2025.103009_bb0330) 2023; vol. 2023
Corcoran (10.1016/j.ecoinf.2025.103009_bb0075) 2021; 11
Dickson (10.1016/j.ecoinf.2025.103009_bb0090) 2022; 9
Rees (10.1016/j.ecoinf.2025.103009_bb0275) 2018; 35
Yoccoz (10.1016/j.ecoinf.2025.103009_bb0340) 2001; 16
Desai (10.1016/j.ecoinf.2025.103009_bb0085) 2022; 72
Kellner (10.1016/j.ecoinf.2025.103009_bb0185) 2023; 14
Colefax (10.1016/j.ecoinf.2025.103009_bb0065) 2019; 174
Brack (10.1016/j.ecoinf.2025.103009_bb0045) 2018; 9
Salmon (10.1016/j.ecoinf.2025.103009_bb0285) 2018; 37
Hays (10.1016/j.ecoinf.2025.103009_bb0155) 2024; 27
References_xml – volume: 6
  start-page: 38
  year: 2015
  end-page: 48
  ident: bb0315
  article-title: A general framework for animal density estimation from acoustic detections across a fixed microphone array
  publication-title: Methods Ecol. Evol.
– volume: XLVIII-1-2024
  year: 2024
  ident: bb0220
  article-title: UAV and deep learning: detection of selected riparian species along the Ganga River
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
– volume: 81
  year: 2024
  ident: bb0195
  article-title: UAV equipped with infrared imaging for Cervidae monitoring: improving detection accuracy by eliminating background information interference
  publication-title: Eco. Inform.
– volume: 80
  year: 2024
  ident: bb0020
  article-title: WildARe-YOLO: a lightweight and efficient wild animal recognition model
  publication-title: Eco. Inform.
– volume: 70
  year: 2022
  ident: bb0180
  article-title: Automated distance estimation for wildlife camera trapping
  publication-title: Eco. Inform.
– volume: 72
  year: 2022
  ident: bb0085
  article-title: Identification of free-ranging mugger crocodiles by applying deep learning methods on UAV imagery
  publication-title: Eco. Inform.
– volume: 82
  year: 2024
  ident: bb0125
  article-title: CEH-YOLO: a composite enhanced YOLO-based model for underwater object detection
  publication-title: Eco. Inform.
– volume: 83
  year: 2024
  ident: bb0015
  article-title: Collectively advancing deep learning for animal detection in drone imagery: successes, challenges, and research gaps
  publication-title: Eco. Inform.
– volume: 15
  year: 2020
  ident: bb0115
  article-title: Use of unmanned aerial vehicles (UAVs) for mark-resight nesting population estimation of adult female green sea turtles at Raine Island
  publication-title: PLoS One
– volume: 257
  year: 2021
  ident: bb0070
  article-title: Identifying optimal wavelengths to maximise the detection rates of marine fauna from aerial surveys
  publication-title: Biol. Conserv.
– volume: 82
  start-page: 9243
  year: 2023
  end-page: 9275
  ident: bb0095
  article-title: Object detection using YOLO: challenges, architectural successors, datasets and applications
  publication-title: Multimed. Tools Appl.
– start-page: 4917
  year: 2019
  end-page: 4926
  ident: bb0160
  article-title: Rethinking ImageNet pre-training
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
– volume: 14
  year: 2023
  ident: bb0320
  article-title: Synergistic use of UAV surveys, satellite tracking data, and mark-recapture to estimate abundance of elusive species
  publication-title: Ecosphere
– volume: 77
  year: 2023
  ident: bb0035
  article-title: Hierarchical classification of insects with multitask learning and anomaly detection
  publication-title: Eco. Inform.
– volume: 14
  start-page: 1864
  year: 2023
  end-page: 1872
  ident: bb0290
  article-title: Opportunities and risks in the use of drones for studying animal behaviour
  publication-title: Methods Ecol. Evol.
– year: 2024
  ident: bb0100
  article-title: End-to-End Underwater Video Enhancement: Dataset and Model
– volume: vol. 2016
  start-page: 779
  year: 2016
  end-page: 788
  ident: bb0270
  article-title: You only look once: unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 7
  year: 2012
  ident: bb0140
  article-title: The role of turtles as coral reef macroherbivores
  publication-title: PLoS One
– volume: 169
  start-page: 74
  year: 2022
  ident: bb0205
  article-title: A half-century of demographic changes in a green turtle (
  publication-title: Mar. Biol.
– volume: 169
  start-page: 152
  year: 2022
  ident: bb0310
  article-title: Operational sex ratio estimated from drone surveys for a species threatened by climate warming
  publication-title: Mar. Biol.
– volume: 7
  start-page: 341
  year: 2021
  end-page: 354
  ident: bb0110
  article-title: Machine learning to detect marine animals in UAV imagery: effect of morphology, spacing, behaviour and habitat
  publication-title: Remote Sens. Ecol. Conserv.
– volume: 84
  year: 2024
  ident: bb0175
  article-title: Enhanced Yolov8 network with extended Kalman filter for wildlife detection and tracking in complex environments
  publication-title: Eco. Inform.
– volume: 11
  start-page: 7
  year: 2020
  end-page: 16
  ident: bb0265
  article-title: Fast and accurate fish detection design with improved YOLO-v3 model and transfer learning
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 87
  start-page: 343
  year: 2016
  end-page: 359
  ident: bb0050
  article-title: Computer-automated bird detection and counts in high-resolution aerial images: a review
  publication-title: J. Field Ornithol.
– volume: 19
  start-page: 1651
  year: 2019
  ident: bb0170
  article-title: Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery
  publication-title: Sensors
– volume: 35
  start-page: 81
  year: 2018
  end-page: 100
  ident: bb0275
  article-title: The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions
  publication-title: Endanger. Species Res.
– volume: 24
  start-page: 207
  year: 2014
  end-page: 220
  ident: bb0300
  article-title: Loggerhead Sea turtle abundance at a foraging hotspot in the eastern Pacific Ocean: implications for at-sea conservation
  publication-title: Endanger. Species Res.
– volume: 68
  year: 2022
  ident: bb0150
  article-title: Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps
  publication-title: Eco. Inform.
– volume: 8
  year: 2013
  ident: bb0325
  article-title: Unmanned aerial survey of elephants
  publication-title: PLoS One
– volume: 27
  start-page: 909
  year: 2016
  end-page: 924
  ident: bb0245
  article-title: Underwater video dehazing based on spatial–temporal information fusion
  publication-title: Multidim. Syst. Sign. Process.
– volume: 105
  start-page: 337
  year: 2007
  end-page: 347
  ident: bb0030
  article-title: Abundance, distribution, and habitat of leatherback turtles (
  publication-title: Fish. Bull.
– year: 2024
  ident: bb0260
  article-title: Machine Learning of Large Scale Imagery for Wildlife Conservation
– volume: 88
  start-page: 287
  year: 2013
  end-page: 309
  ident: bb0200
  article-title: Estimating animal population density using passive acoustics
  publication-title: Biol. Rev.
– volume: 14
  start-page: 1408
  year: 2023
  end-page: 1415
  ident: bb0185
  article-title: The unmarked R package: twelve years of advances in occurrence and abundance modelling in ecology
  publication-title: Methods Ecol. Evol.
– volume: 12
  start-page: 11318
  year: 2022
  ident: bb0335
  article-title: Detection of
  publication-title: Appl. Sci.
– volume: 29
  start-page: 417
  year: 2014
  end-page: 428
  ident: bb0080
  article-title: Automated image-based tracking and its application in ecology
  publication-title: Trends Ecol. Evol.
– volume: 13
  start-page: 7787
  year: 2023
  ident: bb0215
  article-title: Automated wildlife bird detection from drone footage using computer vision techniques
  publication-title: Appl. Sci.
– volume: 8
  year: 2013
  ident: bb0230
  article-title: Ethogram of immature green turtles: behavioral strategies for somatic growth in large marine herbivores
  publication-title: PLoS One
– volume: vol. 2023
  start-page: 7464
  year: 2023
  end-page: 7475
  ident: bb0330
  article-title: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 32
  year: 2019
  ident: bb0255
  article-title: Transfusion: understanding transfer learning for medical imaging
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 75
  year: 2023
  ident: bb0280
  article-title: WilDect-YOLO: an efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection
  publication-title: Eco. Inform.
– volume: 49
  start-page: 79
  year: 2022
  end-page: 88
  ident: bb0225
  article-title: Effects of environmental factors on the detection of subsurface green turtles in aerial drone surveys
  publication-title: Wildl. Res.
– volume: 8
  year: 2013
  ident: bb0165
  article-title: Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study
  publication-title: PLoS One
– start-page: 5561
  year: 2017
  end-page: 5569
  ident: bb0040
  article-title: Soft-NMS—Improving object detection with one line of code
  publication-title: In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017
– volume: 16
  start-page: 83
  year: 2017
  end-page: 92
  ident: bb0190
  article-title: Factors affecting the long-term population dynamics of green turtles (
  publication-title: Chelonian Conserv. Biol.
– volume: 7
  start-page: 45127
  year: 2017
  ident: bb0305
  article-title: Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery
  publication-title: Sci. Rep.
– volume: 18
  year: 2023
  ident: bb0210
  article-title: Do you get what you see? Insights of using mAP to select architectures of pretrained neural networks for automated aerial animal detection
  publication-title: PLoS One
– volume: 10
  start-page: 345
  year: 2019
  end-page: 355
  ident: bb0145
  article-title: A convolutional neural network for detecting sea turtles in drone imagery
  publication-title: Methods Ecol. Evol.
– volume: 7
  start-page: 47864
  year: 2019
  end-page: 47890
  ident: bb0250
  article-title: Pedestrian detection in automotive safety: understanding state-of-the-art
  publication-title: IEEE Access
– volume: 37
  start-page: 301
  year: 2018
  end-page: 308
  ident: bb0285
  article-title: Biphasic allometric growth in juvenile green turtles
  publication-title: Endanger. Species Res.
– volume: 54
  start-page: 395
  year: 2024
  end-page: 408
  ident: bb0005
  article-title: Combining UAVs and multi-sensor dataloggers to estimate fine-scale sea turtle density at foraging areas: a case study in the Central Mediterranean
  publication-title: Endanger. Species Res.
– volume: 9
  year: 2022
  ident: bb0090
  article-title: Aerial drones reveal the dynamic structuring of sea turtle breeding aggregations and minimum survey effort required to capture climatic and sex-specific effects
  publication-title: Front. Mar. Sci.
– volume: 27
  year: 2024
  ident: bb0155
  article-title: A pulse check for trends in sea turtle numbers across the globe
  publication-title: iScience
– volume: 4
  start-page: 53
  year: 2015
  end-page: 69
  ident: bb0235
  article-title: Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador
  publication-title: J. Unmann. Veh. Syst.
– volume: 11
  start-page: 6649
  year: 2021
  end-page: 6656
  ident: bb0075
  article-title: Evaluating new technology for biodiversity monitoring: are drone surveys biased?
  publication-title: Ecol. Evol.
– volume: 81
  year: 2024
  ident: bb0345
  article-title: A reliable unmanned aerial vehicle multi-target tracking system with global motion compensation for monitoring
  publication-title: Eco. Inform.
– volume: 12
  start-page: 375
  year: 2024
  end-page: 382
  ident: bb0055
  article-title: Enhanced animal detection in complex outdoor environments using modified Yolo V7
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– volume: 7
  start-page: 41
  year: 2007
  end-page: 59
  ident: bb0135
  article-title: Multi-cue pedestrian detection and tracking from a moving vehicle
  publication-title: Int. J. Comput. Vis.
– volume: 16
  start-page: 446
  year: 2001
  end-page: 453
  ident: bb0340
  article-title: Monitoring of biological diversity in space and time
  publication-title: Trends Ecol. Evol.
– volume: 8
  start-page: 44
  year: 2020
  end-page: 56
  ident: bb0025
  article-title: Shark detection probability from aerial drone surveys within a temperate estuary
  publication-title: J. Unmann. Veh. Syst.
– volume: 9
  start-page: 1864
  year: 2018
  end-page: 1873
  ident: bb0045
  article-title: Detection errors in wildlife abundance estimates from unmanned aerial systems (UAS) surveys: synthesis, solutions, and challenges
  publication-title: Methods Ecol. Evol.
– volume: 39
  start-page: 91
  year: 2019
  end-page: 104
  ident: bb0105
  article-title: Importance of machine learning for enhancing ecological studies using information-rich imagery
  publication-title: Endanger. Species Res.
– year: 2022
  ident: bb0010
  article-title: BoT-SORT: robust associations multi-pedestrian tracking
– volume: 174
  start-page: 108
  year: 2019
  end-page: 115
  ident: bb0065
  article-title: Reliability of marine faunal detections in drone-based monitoring
  publication-title: Ocean Coast. Manag.
– volume: 169
  start-page: 364
  year: 2020
  end-page: 376
  ident: bb0240
  article-title: Wild animal survey using UAS imagery and deep learning: modified faster R-CNN for kiang detection in Tibetan plateau
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 31
  start-page: 2310
  year: 2017
  end-page: 2319
  ident: bb0295
  article-title: Detecting elusive aspects of wildlife ecology using drones: new insights on the mating dynamics and operational sex ratios of sea turtles
  publication-title: Funct. Ecol.
– volume: 68
  start-page: 76
  year: 2012
  end-page: 87
  ident: bb0120
  article-title: Morphology and growth rates of the green sea turtle (
  publication-title: Herpetologica
– volume: 42
  start-page: 1524
  year: 2019
  end-page: 1540
  ident: bb0130
  article-title: Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle
  publication-title: Estuar. Coasts
– volume: 281
  year: 2014
  ident: bb0060
  article-title: Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas
  publication-title: Proc. Roy. Soc. B
– volume: vol. 2023
  start-page: 7464
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0330
  article-title: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
– volume: 29
  start-page: 417
  year: 2014
  ident: 10.1016/j.ecoinf.2025.103009_bb0080
  article-title: Automated image-based tracking and its application in ecology
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2014.05.004
– volume: 24
  start-page: 207
  year: 2014
  ident: 10.1016/j.ecoinf.2025.103009_bb0300
  article-title: Loggerhead Sea turtle abundance at a foraging hotspot in the eastern Pacific Ocean: implications for at-sea conservation
  publication-title: Endanger. Species Res.
  doi: 10.3354/esr00601
– volume: 7
  start-page: 47864
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103009_bb0250
  article-title: Pedestrian detection in automotive safety: understanding state-of-the-art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909992
– volume: 83
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0015
  article-title: Collectively advancing deep learning for animal detection in drone imagery: successes, challenges, and research gaps
  publication-title: Eco. Inform.
– volume: 82
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0125
  article-title: CEH-YOLO: a composite enhanced YOLO-based model for underwater object detection
  publication-title: Eco. Inform.
– volume: 169
  start-page: 364
  year: 2020
  ident: 10.1016/j.ecoinf.2025.103009_bb0240
  article-title: Wild animal survey using UAS imagery and deep learning: modified faster R-CNN for kiang detection in Tibetan plateau
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.08.026
– volume: 87
  start-page: 343
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103009_bb0050
  article-title: Computer-automated bird detection and counts in high-resolution aerial images: a review
  publication-title: J. Field Ornithol.
  doi: 10.1111/jofo.12171
– volume: 174
  start-page: 108
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103009_bb0065
  article-title: Reliability of marine faunal detections in drone-based monitoring
  publication-title: Ocean Coast. Manag.
  doi: 10.1016/j.ocecoaman.2019.03.008
– volume: 18
  issue: 4
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0210
  article-title: Do you get what you see? Insights of using mAP to select architectures of pretrained neural networks for automated aerial animal detection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0284449
– volume: 80
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0020
  article-title: WildARe-YOLO: a lightweight and efficient wild animal recognition model
  publication-title: Eco. Inform.
– volume: 82
  start-page: 9243
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0095
  article-title: Object detection using YOLO: challenges, architectural successors, datasets and applications
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13644-y
– year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0260
– volume: 14
  start-page: 1864
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0290
  article-title: Opportunities and risks in the use of drones for studying animal behaviour
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13922
– volume: vol. 2016
  start-page: 779
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103009_bb0270
  article-title: You only look once: unified, real-time object detection
– volume: 16
  start-page: 446
  year: 2001
  ident: 10.1016/j.ecoinf.2025.103009_bb0340
  article-title: Monitoring of biological diversity in space and time
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(01)02205-4
– volume: 4
  start-page: 53
  year: 2015
  ident: 10.1016/j.ecoinf.2025.103009_bb0235
  article-title: Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador
  publication-title: J. Unmann. Veh. Syst.
  doi: 10.1139/juvs-2015-0014
– volume: 77
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0035
  article-title: Hierarchical classification of insects with multitask learning and anomaly detection
  publication-title: Eco. Inform.
– volume: 32
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103009_bb0255
  article-title: Transfusion: understanding transfer learning for medical imaging
  publication-title: Adv. Neural Inf. Proces. Syst.
– start-page: 5561
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103009_bb0040
  article-title: Soft-NMS—Improving object detection with one line of code
– volume: XLVIII-1-2024
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0220
  article-title: UAV and deep learning: detection of selected riparian species along the Ganga River
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
– volume: 7
  start-page: 41
  year: 2007
  ident: 10.1016/j.ecoinf.2025.103009_bb0135
  article-title: Multi-cue pedestrian detection and tracking from a moving vehicle
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-9038-7
– volume: 16
  start-page: 83
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103009_bb0190
  article-title: Factors affecting the long-term population dynamics of green turtles (Chelonia mydas) in Ogasawara, Japan: influence of natural and artificial production of hatchlings and harvest pressure
  publication-title: Chelonian Conserv. Biol.
  doi: 10.2744/CCB-1222.1
– volume: 39
  start-page: 91
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103009_bb0105
  article-title: Importance of machine learning for enhancing ecological studies using information-rich imagery
  publication-title: Endanger. Species Res.
  doi: 10.3354/esr00958
– volume: 49
  start-page: 79
  issue: 1
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0225
  article-title: Effects of environmental factors on the detection of subsurface green turtles in aerial drone surveys
  publication-title: Wildl. Res.
  doi: 10.1071/WR20207
– volume: 169
  start-page: 152
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0310
  article-title: Operational sex ratio estimated from drone surveys for a species threatened by climate warming
  publication-title: Mar. Biol.
  doi: 10.1007/s00227-022-04141-9
– volume: 54
  start-page: 395
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0005
  article-title: Combining UAVs and multi-sensor dataloggers to estimate fine-scale sea turtle density at foraging areas: a case study in the Central Mediterranean
  publication-title: Endanger. Species Res.
  doi: 10.3354/esr01350
– volume: 15
  issue: 6
  year: 2020
  ident: 10.1016/j.ecoinf.2025.103009_bb0115
  article-title: Use of unmanned aerial vehicles (UAVs) for mark-resight nesting population estimation of adult female green sea turtles at Raine Island
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0228524
– volume: 13
  start-page: 7787
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0215
  article-title: Automated wildlife bird detection from drone footage using computer vision techniques
  publication-title: Appl. Sci.
  doi: 10.3390/app13137787
– volume: 72
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0085
  article-title: Identification of free-ranging mugger crocodiles by applying deep learning methods on UAV imagery
  publication-title: Eco. Inform.
– volume: 9
  start-page: 1864
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103009_bb0045
  article-title: Detection errors in wildlife abundance estimates from unmanned aerial systems (UAS) surveys: synthesis, solutions, and challenges
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13026
– volume: 257
  year: 2021
  ident: 10.1016/j.ecoinf.2025.103009_bb0070
  article-title: Identifying optimal wavelengths to maximise the detection rates of marine fauna from aerial surveys
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2021.109102
– volume: 35
  start-page: 81
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103009_bb0275
  article-title: The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions
  publication-title: Endanger. Species Res.
  doi: 10.3354/esr00877
– volume: 81
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0345
  article-title: A reliable unmanned aerial vehicle multi-target tracking system with global motion compensation for monitoring Procapra przewalskii
  publication-title: Eco. Inform.
– volume: 27
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0155
  article-title: A pulse check for trends in sea turtle numbers across the globe
  publication-title: iScience
  doi: 10.1016/j.isci.2024.109071
– volume: 11
  start-page: 7
  issue: 2
  year: 2020
  ident: 10.1016/j.ecoinf.2025.103009_bb0265
  article-title: Fast and accurate fish detection design with improved YOLO-v3 model and transfer learning
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 31
  start-page: 2310
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103009_bb0295
  article-title: Detecting elusive aspects of wildlife ecology using drones: new insights on the mating dynamics and operational sex ratios of sea turtles
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12930
– volume: 7
  issue: 6
  year: 2012
  ident: 10.1016/j.ecoinf.2025.103009_bb0140
  article-title: The role of turtles as coral reef macroherbivores
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039979
– volume: 7
  start-page: 45127
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103009_bb0305
  article-title: Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery
  publication-title: Sci. Rep.
  doi: 10.1038/srep45127
– volume: 14
  start-page: 1408
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0185
  article-title: The unmarked R package: twelve years of advances in occurrence and abundance modelling in ecology
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.14123
– volume: 11
  start-page: 6649
  year: 2021
  ident: 10.1016/j.ecoinf.2025.103009_bb0075
  article-title: Evaluating new technology for biodiversity monitoring: are drone surveys biased?
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.7518
– volume: 81
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0195
  article-title: UAV equipped with infrared imaging for Cervidae monitoring: improving detection accuracy by eliminating background information interference
  publication-title: Eco. Inform.
– volume: 12
  start-page: 375
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0055
  article-title: Enhanced animal detection in complex outdoor environments using modified Yolo V7
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– volume: 84
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0175
  article-title: Enhanced Yolov8 network with extended Kalman filter for wildlife detection and tracking in complex environments
  publication-title: Eco. Inform.
– volume: 68
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0150
  article-title: Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps
  publication-title: Eco. Inform.
– volume: 8
  issue: 2
  year: 2013
  ident: 10.1016/j.ecoinf.2025.103009_bb0325
  article-title: Unmanned aerial survey of elephants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054700
– volume: 8
  issue: 6
  year: 2013
  ident: 10.1016/j.ecoinf.2025.103009_bb0230
  article-title: Ethogram of immature green turtles: behavioral strategies for somatic growth in large marine herbivores
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065783
– volume: 37
  start-page: 301
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103009_bb0285
  article-title: Biphasic allometric growth in juvenile green turtles Chelonia mydas
  publication-title: Endanger. Species Res.
  doi: 10.3354/esr00930
– volume: 14
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0320
  article-title: Synergistic use of UAV surveys, satellite tracking data, and mark-recapture to estimate abundance of elusive species
  publication-title: Ecosphere
  doi: 10.1002/ecs2.4444
– volume: 10
  start-page: 345
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103009_bb0145
  article-title: A convolutional neural network for detecting sea turtles in drone imagery
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13132
– volume: 42
  start-page: 1524
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103009_bb0130
  article-title: Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle Chelonia mydas
  publication-title: Estuar. Coasts
  doi: 10.1007/s12237-019-00587-1
– volume: 27
  start-page: 909
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103009_bb0245
  article-title: Underwater video dehazing based on spatial–temporal information fusion
  publication-title: Multidim. Syst. Sign. Process.
  doi: 10.1007/s11045-016-0407-2
– volume: 281
  year: 2014
  ident: 10.1016/j.ecoinf.2025.103009_bb0060
  article-title: Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas
  publication-title: Proc. Roy. Soc. B
– volume: 88
  start-page: 287
  year: 2013
  ident: 10.1016/j.ecoinf.2025.103009_bb0200
  article-title: Estimating animal population density using passive acoustics
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12001
– volume: 19
  start-page: 1651
  issue: 7
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103009_bb0170
  article-title: Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery
  publication-title: Sensors
  doi: 10.3390/s19071651
– year: 2024
  ident: 10.1016/j.ecoinf.2025.103009_bb0100
– volume: 8
  issue: 11
  year: 2013
  ident: 10.1016/j.ecoinf.2025.103009_bb0165
  article-title: Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079556
– volume: 12
  start-page: 11318
  issue: 22
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0335
  article-title: Detection of Camellia oleifera fruit in complex scenes by using YOLOv7 and data augmentation
  publication-title: Appl. Sci.
  doi: 10.3390/app122211318
– volume: 9
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0090
  article-title: Aerial drones reveal the dynamic structuring of sea turtle breeding aggregations and minimum survey effort required to capture climatic and sex-specific effects
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2022.864694
– volume: 70
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0180
  article-title: Automated distance estimation for wildlife camera trapping
  publication-title: Eco. Inform.
– volume: 75
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103009_bb0280
  article-title: WilDect-YOLO: an efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection
  publication-title: Eco. Inform.
– volume: 7
  start-page: 341
  year: 2021
  ident: 10.1016/j.ecoinf.2025.103009_bb0110
  article-title: Machine learning to detect marine animals in UAV imagery: effect of morphology, spacing, behaviour and habitat
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.205
– volume: 8
  start-page: 44
  year: 2020
  ident: 10.1016/j.ecoinf.2025.103009_bb0025
  article-title: Shark detection probability from aerial drone surveys within a temperate estuary
  publication-title: J. Unmann. Veh. Syst.
  doi: 10.1139/juvs-2019-0002
– volume: 68
  start-page: 76
  year: 2012
  ident: 10.1016/j.ecoinf.2025.103009_bb0120
  article-title: Morphology and growth rates of the green sea turtle (Chelonia mydas) in a northern-most temperate foraging ground
  publication-title: Herpetologica
  doi: 10.1655/HERPETOLOGICA-D-11-00050.1
– volume: 6
  start-page: 38
  year: 2015
  ident: 10.1016/j.ecoinf.2025.103009_bb0315
  article-title: A general framework for animal density estimation from acoustic detections across a fixed microphone array
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12291
– start-page: 4917
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103009_bb0160
  article-title: Rethinking ImageNet pre-training
– year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0010
– volume: 105
  start-page: 337
  year: 2007
  ident: 10.1016/j.ecoinf.2025.103009_bb0030
  article-title: Abundance, distribution, and habitat of leatherback turtles (Dermochelys coriacea) off California, 1990−2003
  publication-title: Fish. Bull.
– volume: 169
  start-page: 74
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103009_bb0205
  article-title: A half-century of demographic changes in a green turtle (Chelonia mydas) foraging aggregation during an era of seagrass decline
  publication-title: Mar. Biol.
  doi: 10.1007/s00227-022-04056-5
SSID ssj0043882
Score 2.3883424
Snippet Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 103009
SubjectTerms Abundance estimation
algorithms
automatic detection
Chelonia mydas
Coastal area
corals
Deep learning
Sea turtle
seagrasses
Unmanned aerial vehicle
wildlife
YOLOv7
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQElIvqEARWx5ypV7dTdbjdcKNxyKE1F5aJG7WJLZXaWl2BcuBC7-dGSdBwKVSb4ljOdGMPfNN_M1YiK8lej2pvVUTH4MCzFBRGFSqSMqvvY8wnXK-8_cf08truLoxN2vibMiFYVplb_s7m56sdd8y7qU5XjbN-GduLKF7IA_NQKXgmqBc_Yvm9LenF5oH6CIdGMWdFfce0ucSx4siPNIjRYkTw9nnGdMSX7mnVMX_jZd6Z6-TE7r4KDZ79ChPug_cEmuh3RYbs1R5-nFH_JmlghDkRyRBYH_bxCD_pkXLf--O5XkIS9mfEzFX7MC89GGV2FitxNbL4egIuYhyzpQcSS6JptO9bFp6iIQlbyUykf2TuL6Y_Tq7VP1pCqoGgJXyFdJajBE51dSasopFUUVdEoSps8gbpNSjyiwFQKY2U6joOhRFrUu0MQSrd8V6u2jDnpAmeLA-83mBOcQM0ASIIQ8EDhAM6JFQgxDdsiua4QY22W_XCd2x0F0n9JE4ZUm_9OWS16lhcTd3vc5dTrFeJAAVrfEAGhF1TfYpllgaxokjYQc9uTcziIZq_vH6L4NaHS0u3jHBNiwe7p1mCktJGLH4_N-j74sPfNeRJA_E-uruIRwSkFlVR2mmPgMdqfFb
  priority: 102
  providerName: Elsevier
Title Efficient wildlife monitoring: Deep learning-based detection and counting of green turtles in coastal areas
URI https://dx.doi.org/10.1016/j.ecoinf.2025.103009
https://www.proquest.com/docview/3200290568
https://doaj.org/article/1261f064f75d443aaa3c073f9a950951
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1574-9541
  databaseCode: DOA
  dateStart: 20240101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1574-9541
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1574-9541
  databaseCode: .~1
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1574-9541
  databaseCode: ACRLP
  dateStart: 20240301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1574-9541
  databaseCode: AIKHN
  dateStart: 20240301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1574-9541
  databaseCode: M~E
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1574-9541
  databaseCode: AKRWK
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKKyQuiE-xfKyMxNVtsh6vY26FbrUtoicq9WZNYrtaWrIV3R648NuZsRNUeumFW5RYcTRj-72Jn2eE-OAw6FkXrJqFFBVghYrCIKcSOb8LIcF8zuedv57Ml6dwfGbObpX6Yk1YSQ9cDLdXE8VPhJvJmgCgEVF3NCyTQ2eYHvDqSzA2BlNlDQbd5DJRtbGgnIF6PDSXlV0U15H3KDacGT5zXrEY8RYo5dz9_2DTnVU6Q8_hE_F44Ixyv3zrU7EV-2fi4SLnm_71XFwschoIQg9JxDdcrlKUP_JU5X92H-VBjFdyqA5xrhi2ggxxkzVYvcQ-yLFghFwnec5CHElARIPoWq56eojEIC8lsnz9hTg9XHz7vFRDDQXVAcBGhRZpBqaEfMDUGtempmmTdkRcuirxtii1aCtLYY_pzBxauo5N02mHNsVo9Uux3a_7-EpIEwPYUIW6wRpSBWgipFhHogQIBvREqNGI_qqkyvCjhuy7L0b3bHRfjD4Rn9jSf9tyout8g9zvB_f7-9w_EXb0kx84Q-EC9KrVPd2_H93qaUrxPgn2cX1z7TULVxwxw-b1__jEN-IRd1tUkm_F9ubnTXxHTGbTTsWD3d_1VOzsH31ZnkzzEP4D3qTx2Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKKwQXVL7EQgtG4mptsh6vE25t2WpL273QSr1Zk9hepZTsqt0e-PfMOAmiXJC4JY7jRDP2zJvkzViITyV6Pam9VRMfgwLMUFEYVKpIyq-9jzCdcr7z-WI6v4SvV-ZqSxwNuTBMq-xtf2fTk7XuW8a9NMfrphl_y40ldA_koRmoFPBI7ACd0mTfOTg5nS8Ggwy6SHtGcX_FNwwZdInmRUEeqZICxYnhBPSMmYl_eKhUyP-Bo_rLZCc_dLwrnvUAUh507_hcbIX2hXg8S8Wnf74U32epJgS5Ekko2N80Mcgfad3yB7zP8ksIa9lvFbFU7MO89GGTCFmtxNbLYfcIuYpyyawcSV6JZtSdbFq6iAQnbyQyl_2VuDyeXRzNVb-hgqoBYKN8hbQcY0TONrWmrGJRVFGXhGLqLPI_UupRZZZiIFObKVR0HIqi1iXaGILVr8V2u2rDGyFN8GB95vMCc4gZoAkQQx4IHyBpQY-EGoTo1l3dDDcQyq5dJ3THQned0EfikCX9uy9XvU4Nq9ul69Xucgr3ImGoaI0H0IioazJRscTSMFQcCTvoyT2YRDRU84_HfxzU6mh98U8TbMPq_s5pZrGUBBOLt_89-gfxZH5xfubOThan78RTvtJxJvfE9ub2PuwTrtlU7_t5-wvyNfWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+wildlife+monitoring%3A+Deep+learning-based+detection+and+counting+of+green+turtles+in+coastal+areas&rft.jtitle=Ecological+informatics&rft.au=Noguchi%2C+Naoya&rft.au=Nishizawa%2C+Hideaki&rft.au=Shimizu%2C+Taro&rft.au=Okuyama%2C+Junichi&rft.date=2025-05-01&rft.issn=1574-9541&rft.volume=86+p.103009-&rft_id=info:doi/10.1016%2Fj.ecoinf.2025.103009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon