Efficient wildlife monitoring: Deep learning-based detection and counting of green turtles in coastal areas
Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automat...
Saved in:
Published in | Ecological informatics Vol. 86; p. 103009 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1574-9541 |
DOI | 10.1016/j.ecoinf.2025.103009 |
Cover
Abstract | Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automating the tracking of individuals across consecutive images and counting them along transect lines is necessary to apply drones to line-transect surveys. In this study, deep-learning-based You Look Only Once, Version 7 (YOLOv7) models were developed to automatically detect green turtles (Chelonia mydas) in Japanese coastal areas featuring coral reefs and seagrass beds. Drone footage yielded 103,296 annotated images of green turtles. The model was trained and validated using 78 % and 22 % of the images. The best model performances were 0.848, 0.853, and 0.922 for precision, recall, and mean average precision at the threshold of the intersection over union = 0.5, respectively. Then, the BoT-SORT object-tracking algorithm was implemented to track green turtles detected using the YOLOv7 model, and the counting of individuals was automated. When this automatic counting model was tested using eight drone footage clips, green turtles at the sea surface were successfully tracked and counted (n = 3/3); however, the performance in counting underwater green turtles was relatively poor (n = 27/59). The reduced performance might be attributable to accumulated errors in detecting green turtles while processing numerous images in the footage (approximately 60 fps). Nonetheless, relatively high precision was achieved by reducing false positives in complex coastal areas. The methods in this study should enhance the efficiency of long-term wildlife monitoring programs.
•YOLOv7 models were developed to automatically detect green turtles in coastal areas.•Green turtles at the sea surface were successfully tracked and counted.•However, the performance in counting underwater green turtles was relatively poor.•High precision was achieved by reducing false positives in complex coastal areas.•The models would contribute to efficient long-term wildlife monitoring programs. |
---|---|
AbstractList | Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automating the tracking of individuals across consecutive images and counting them along transect lines is necessary to apply drones to line-transect surveys. In this study, deep-learning-based You Look Only Once, Version 7 (YOLOv7) models were developed to automatically detect green turtles (Chelonia mydas) in Japanese coastal areas featuring coral reefs and seagrass beds. Drone footage yielded 103,296 annotated images of green turtles. The model was trained and validated using 78 % and 22 % of the images. The best model performances were 0.848, 0.853, and 0.922 for precision, recall, and mean average precision at the threshold of the intersection over union = 0.5, respectively. Then, the BoT-SORT object-tracking algorithm was implemented to track green turtles detected using the YOLOv7 model, and the counting of individuals was automated. When this automatic counting model was tested using eight drone footage clips, green turtles at the sea surface were successfully tracked and counted (n = 3/3); however, the performance in counting underwater green turtles was relatively poor (n = 27/59). The reduced performance might be attributable to accumulated errors in detecting green turtles while processing numerous images in the footage (approximately 60 fps). Nonetheless, relatively high precision was achieved by reducing false positives in complex coastal areas. The methods in this study should enhance the efficiency of long-term wildlife monitoring programs. Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automating the tracking of individuals across consecutive images and counting them along transect lines is necessary to apply drones to line-transect surveys. In this study, deep-learning-based You Look Only Once, Version 7 (YOLOv7) models were developed to automatically detect green turtles (Chelonia mydas) in Japanese coastal areas featuring coral reefs and seagrass beds. Drone footage yielded 103,296 annotated images of green turtles. The model was trained and validated using 78 % and 22 % of the images. The best model performances were 0.848, 0.853, and 0.922 for precision, recall, and mean average precision at the threshold of the intersection over union = 0.5, respectively. Then, the BoT-SORT object-tracking algorithm was implemented to track green turtles detected using the YOLOv7 model, and the counting of individuals was automated. When this automatic counting model was tested using eight drone footage clips, green turtles at the sea surface were successfully tracked and counted (n = 3/3); however, the performance in counting underwater green turtles was relatively poor (n = 27/59). The reduced performance might be attributable to accumulated errors in detecting green turtles while processing numerous images in the footage (approximately 60 fps). Nonetheless, relatively high precision was achieved by reducing false positives in complex coastal areas. The methods in this study should enhance the efficiency of long-term wildlife monitoring programs. •YOLOv7 models were developed to automatically detect green turtles in coastal areas.•Green turtles at the sea surface were successfully tracked and counted.•However, the performance in counting underwater green turtles was relatively poor.•High precision was achieved by reducing false positives in complex coastal areas.•The models would contribute to efficient long-term wildlife monitoring programs. Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient abundance estimation. However, accurately detecting animals remains challenging, especially in complex field environments. Moreover, automating the tracking of individuals across consecutive images and counting them along transect lines is necessary to apply drones to line-transect surveys. In this study, deep-learning-based You Look Only Once, Version 7 (YOLOv7) models were developed to automatically detect green turtles (Chelonia mydas) in Japanese coastal areas featuring coral reefs and seagrass beds. Drone footage yielded 103,296 annotated images of green turtles. The model was trained and validated using 78 % and 22 % of the images. The best model performances were 0.848, 0.853, and 0.922 for precision, recall, and mean average precision at the threshold of the intersection over union = 0.5, respectively. Then, the BoT-SORT object-tracking algorithm was implemented to track green turtles detected using the YOLOv7 model, and the counting of individuals was automated. When this automatic counting model was tested using eight drone footage clips, green turtles at the sea surface were successfully tracked and counted (n = 3/3); however, the performance in counting underwater green turtles was relatively poor (n = 27/59). The reduced performance might be attributable to accumulated errors in detecting green turtles while processing numerous images in the footage (approximately 60 fps). Nonetheless, relatively high precision was achieved by reducing false positives in complex coastal areas. The methods in this study should enhance the efficiency of long-term wildlife monitoring programs. |
ArticleNumber | 103009 |
Author | Tanaka, Hideyuki Nishizawa, Hideaki Okuyama, Junichi Kobayashi, Shohei Shimizu, Taro Kondo, Satomi Noguchi, Naoya Tokuda, Kazuyuki |
Author_xml | – sequence: 1 givenname: Naoya surname: Noguchi fullname: Noguchi, Naoya organization: Graduate School of Informatics, Kyoto University, Japan – sequence: 2 givenname: Hideaki surname: Nishizawa fullname: Nishizawa, Hideaki email: nishizawa.hideaki.6s@kyoto-u.ac.jp organization: Graduate School of Informatics, Kyoto University, Japan – sequence: 3 givenname: Taro surname: Shimizu fullname: Shimizu, Taro organization: Graduate School of Informatics, Kyoto University, Japan – sequence: 4 givenname: Junichi surname: Okuyama fullname: Okuyama, Junichi organization: Subtropical Coastal Research Group, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Japan – sequence: 5 givenname: Shohei surname: Kobayashi fullname: Kobayashi, Shohei organization: Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Japan – sequence: 6 givenname: Kazuyuki surname: Tokuda fullname: Tokuda, Kazuyuki organization: Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Japan – sequence: 7 givenname: Hideyuki surname: Tanaka fullname: Tanaka, Hideyuki organization: Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Japan – sequence: 8 givenname: Satomi surname: Kondo fullname: Kondo, Satomi organization: Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Japan |
BookMark | eNp9kcGOFCEQhjmsiburb-CBo5ceoYGm8WBi1l3dZBMveibVdDFhZGAERuPby9jGo6eiqv76i9R3Q65STkjIK852nPHpzWGHLofkdyMbVS8JxswVueZKy8EoyZ-Tm1oPjEkxz-M1-XbvfXABU6M_Q1xj8EiPOYWWS0j7t_QD4olGhJJ6OixQcaUrNnQt5EQhrdTlc2q9SbOn-4KYaDuXFrHSkHoTaoNIoSDUF-SZh1jx5d94S74-3H-5-zQ8ff74ePf-aXBSyjasC2gjvAfOZ66VWfw8L16YiWvHvGBy6oqFaWMm5dQkl_7GeXbCgPaIWtySx813zXCwpxKOUH7ZDMH-KeSyt1BacBEtHyfu2SS9VquUAgCEY1p4A0Yxo3j3er15nUr-fsba7DFUhzFCwnyuVoyMjYapae5SuUldybUW9P9Wc2YvbOzBbmzshY3d2PSxd9sY9pP8CFhsvfBwuIbSz9z_HP5v8BsJVZ3N |
Cites_doi | 10.1016/j.tree.2014.05.004 10.3354/esr00601 10.1109/ACCESS.2019.2909992 10.1016/j.isprsjprs.2020.08.026 10.1111/jofo.12171 10.1016/j.ocecoaman.2019.03.008 10.1371/journal.pone.0284449 10.1007/s11042-022-13644-y 10.1111/2041-210X.13922 10.1016/S0169-5347(01)02205-4 10.1139/juvs-2015-0014 10.1007/s11263-006-9038-7 10.2744/CCB-1222.1 10.3354/esr00958 10.1071/WR20207 10.1007/s00227-022-04141-9 10.3354/esr01350 10.1371/journal.pone.0228524 10.3390/app13137787 10.1111/2041-210X.13026 10.1016/j.biocon.2021.109102 10.3354/esr00877 10.1016/j.isci.2024.109071 10.1111/1365-2435.12930 10.1371/journal.pone.0039979 10.1038/srep45127 10.1111/2041-210X.14123 10.1002/ece3.7518 10.1371/journal.pone.0054700 10.1371/journal.pone.0065783 10.3354/esr00930 10.1002/ecs2.4444 10.1111/2041-210X.13132 10.1007/s12237-019-00587-1 10.1007/s11045-016-0407-2 10.1111/brv.12001 10.3390/s19071651 10.1371/journal.pone.0079556 10.3390/app122211318 10.3389/fmars.2022.864694 10.1002/rse2.205 10.1139/juvs-2019-0002 10.1655/HERPETOLOGICA-D-11-00050.1 10.1111/2041-210X.12291 10.1007/s00227-022-04056-5 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecoinf.2025.103009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
ExternalDocumentID | oai_doaj_org_article_1261f064f75d443aaa3c073f9a950951 10_1016_j_ecoinf_2025_103009 S1574954125000184 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A N~3 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPCBC SSA SSH SSJ SSZ T5K ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG M~E ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c444t-dba793ffa1181759bf88bf39617c0f3046dbab079965c564bb07e88c39a7fee73 |
IEDL.DBID | DOA |
ISSN | 1574-9541 |
IngestDate | Wed Aug 27 00:37:47 EDT 2025 Fri Sep 05 15:03:50 EDT 2025 Wed Oct 01 06:32:15 EDT 2025 Sun May 04 07:42:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning CNN Unmanned aerial vehicle Coastal area YOLOv7 png Abundance estimation Sea turtle mAP IoU AP |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-dba793ffa1181759bf88bf39617c0f3046dbab079965c564bb07e88c39a7fee73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/1261f064f75d443aaa3c073f9a950951 |
PQID | 3200290568 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1261f064f75d443aaa3c073f9a950951 proquest_miscellaneous_3200290568 crossref_primary_10_1016_j_ecoinf_2025_103009 elsevier_sciencedirect_doi_10_1016_j_ecoinf_2025_103009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 20250501 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Ecological informatics |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mpouziotas, Karvelis, Tsoulos, Stylios (bb0215) 2023; 13 Fourqurean, Manuel, Coates, Massey, Kenworthy (bb0130) 2019; 42 Dujon, Schofield (bb0105) 2019; 39 Meylan, Hardy, Gray, Meylan (bb0205) 2022; 169 Bjerge, Geissmann, Alison, Mann, Høye, Dyrmann, Karstoft (bb0035) 2023; 77 Seminoff, Eguchi, Carretta, Allen, Prosperi, Rangel, Gilpatrick, Forney, Peckham (bb0300) 2014; 24 Jiang, Wu (bb0175) 2024; 84 Zhang, Zhao, Fu, Luo, Shao, Zhang, Yu (bb0345) 2024; 81 Ma, Li, Bao, Roberts, Li, Zhang, Yang, Jiang (bb0195) 2024; 81 Aharon, Orfaig, Bobrovsky (bb0010) 2022 Peng, Wang, Liao, Shao, Sun, Yue, Ye (bb0240) 2020; 169 Brack, Kindel, Oliveira (bb0045) 2018; 9 Nath Tripathi, Ramachandran, Agarwal, Tripathi, Badola, Ainul Hussain (bb0220) 2024; XLVIII-1-2024 Chappidi, Sundaram (bb0055) 2024; 12 Desai, Patel, Patel, Shah, Raval, Ghosal (bb0085) 2022; 72 Hays, Schofield, Papazekou, Chatzimentor, Katsanevakis, Mazaris (bb0155) 2024; 27 Odzer, Brooks, Heithaus, Whitman (bb0225) 2022; 49 Bakana, Zhang, Twala (bb0020) 2024; 80 Christianen, Herman, Bouma, Lamers, van Katwijk, van der Heide, Mumby, Silliman, Engelhard, van de Kerk, Kiswara, van de Koppel (bb0060) 2014; 281 Moreni, Theau, Foucher (bb0210) 2023; 18 Feng, Jin (bb0125) 2024; 82 Kondo, Morimoto, Sato, Suganuma (bb0190) 2017; 16 Marques, Thomas, Martin, Mellinger, Ward, Moretti, Harris, Tyack (bb0200) 2013; 88 Gray, Fleishman, Klein, McKown, Bézy, Lohmann, Johnston (bb0145) 2019; 10 Agabiti, Tolve, Baldi, Zucchini, Tuccio, Restelli, Freggi, Luschi, Casale (bb0005) 2024; 54 Chabot, Francis (bb0050) 2016; 87 Hodgson, Kelly, Peel (bb0165) 2013; 8 Colefax, Kelaher, Walsh, Purcell, Pagendam, Cagnazzi, Butcher (bb0070) 2021; 257 Salmon, Mott, Bresette (bb0285) 2018; 37 Qing, Yu, Xu, Huang, Jin (bb0245) 2016; 27 Dell, Bender, Branson, Couzin, de Polavieja, Noldus, Pérez-Escudero, Perona, Straw, Wikelski, Brose (bb0080) 2014; 29 Wu, Jiang, Zhao, Liu, Zhu, Wang, Wang (bb0335) 2022; 12 Du, Li, Si, Xu, Niu (bb0100) 2024 Patterson, Koski, Pace, McLuckie, Bird (bb0235) 2015; 4 Schad, Fischer (bb0290) 2023; 14 Benson, Forney, Carretta, Dutton (bb0030) 2007; 105 Haucke, Kühl, Hoyer, Steinhage (bb0150) 2022; 68 Colefax, Butcher, Pagendam, Kelaher (bb0065) 2019; 174 Ragesh, Rajesh (bb0250) 2019; 7 Johanns, Haucke, Steinhage (bb0180) 2022; 70 Seymour, Dale, Hammill, Halpin, Johnston (bb0305) 2017; 7 Dujon, Ierodiaconou, Geeson, Arnould, Allan, Katselidis, Schofield (bb0110) 2021; 7 Diwan, Anirudh, Tembhume (bb0095) 2023; 82 Corcoran, Denman, Hamilton (bb0075) 2021; 11 Raghu, Zhang, Kleinberg, Bengio (bb0255) 2019; 32 Rayner (bb0260) 2024 Vermeulen, Lejeune, Lisein, Sawadogo, Bouché (bb0325) 2013; 8 Okuyama, Nakajima, Noda, Kimura, Kamihata, Kobayashi, Arai, Kagawa, Kawabata, Yamada (bb0230) 2013; 8 Bodla, Singh, Chellappa, Davis (bb0040) 2017 Dickson, Tugwell, Katselidis, Schofield (bb0090) 2022; 9 Hong, Han, Kim, Lee, Kim (bb0170) 2019; 19 Raza, Hong (bb0265) 2020; 11 Yoccoz, Nichols, Boulinier (bb0340) 2001; 16 Gavrila, Munder (bb0135) 2007; 7 Rees, Avens, Ballorain, Bevan, Broderick, Carthy, Christianen, Duclos, Heithaus, Johnston, Mangel, Paladino, Pendoley, Reina, Robinson, Ryan, Sykora-Bodie, Tilley, Varela, Whitman, Whittock, Wibbels, Godley (bb0275) 2018; 35 Wang, Bochkovskiy, Liao (bb0330) 2023; vol. 2023 Roy, Bhaduri, Kumar, Raj (bb0280) 2023; 75 Stokes, Mortimer, Laloë, Hays, Esteban (bb0320) 2023; 14 Benavides, Fodrie, Johnston (bb0025) 2020; 8 Kellner, Smith, Royle, Kéry, Belant, Chandler (bb0185) 2023; 14 Redmon, Divvala, Girshick, Farhadi (bb0270) 2016; vol. 2016 Goatley, Hoey, Bellwood (bb0140) 2012; 7 Dunstan, Robertson, Fitzpatrick, Pickford, Meager (bb0115) 2020; 15 Axford, Sohel, Vanderklift, Hodgson (bb0015) 2024; 83 He, Girshick, Dollár (bb0160) 2019 Eguchi, Seminoff, LeRoux, Prosperi, Dutton, Dutton (bb0120) 2012; 68 Schofield, Katselidis, Lilley, Reina, Hays (bb0295) 2017; 31 Staines, Smith, Madden Hof, Booth, Tibbetts, Hays (bb0310) 2022; 169 Stevenson, Borchers, Altwegg, Swift, Gillespie, Measey (bb0315) 2015; 6 Dunstan (10.1016/j.ecoinf.2025.103009_bb0115) 2020; 15 Christianen (10.1016/j.ecoinf.2025.103009_bb0060) 2014; 281 Ma (10.1016/j.ecoinf.2025.103009_bb0195) 2024; 81 Meylan (10.1016/j.ecoinf.2025.103009_bb0205) 2022; 169 Raza (10.1016/j.ecoinf.2025.103009_bb0265) 2020; 11 Colefax (10.1016/j.ecoinf.2025.103009_bb0070) 2021; 257 Schad (10.1016/j.ecoinf.2025.103009_bb0290) 2023; 14 Hodgson (10.1016/j.ecoinf.2025.103009_bb0165) 2013; 8 Benavides (10.1016/j.ecoinf.2025.103009_bb0025) 2020; 8 Mpouziotas (10.1016/j.ecoinf.2025.103009_bb0215) 2023; 13 Zhang (10.1016/j.ecoinf.2025.103009_bb0345) 2024; 81 Schofield (10.1016/j.ecoinf.2025.103009_bb0295) 2017; 31 Wu (10.1016/j.ecoinf.2025.103009_bb0335) 2022; 12 Bjerge (10.1016/j.ecoinf.2025.103009_bb0035) 2023; 77 Bakana (10.1016/j.ecoinf.2025.103009_bb0020) 2024; 80 Okuyama (10.1016/j.ecoinf.2025.103009_bb0230) 2013; 8 Raghu (10.1016/j.ecoinf.2025.103009_bb0255) 2019; 32 Nath Tripathi (10.1016/j.ecoinf.2025.103009_bb0220) 2024; XLVIII-1-2024 Marques (10.1016/j.ecoinf.2025.103009_bb0200) 2013; 88 Peng (10.1016/j.ecoinf.2025.103009_bb0240) 2020; 169 Benson (10.1016/j.ecoinf.2025.103009_bb0030) 2007; 105 Jiang (10.1016/j.ecoinf.2025.103009_bb0175) 2024; 84 Vermeulen (10.1016/j.ecoinf.2025.103009_bb0325) 2013; 8 Chappidi (10.1016/j.ecoinf.2025.103009_bb0055) 2024; 12 Kondo (10.1016/j.ecoinf.2025.103009_bb0190) 2017; 16 Qing (10.1016/j.ecoinf.2025.103009_bb0245) 2016; 27 Du (10.1016/j.ecoinf.2025.103009_bb0100) 2024 Dujon (10.1016/j.ecoinf.2025.103009_bb0105) 2019; 39 Gray (10.1016/j.ecoinf.2025.103009_bb0145) 2019; 10 Patterson (10.1016/j.ecoinf.2025.103009_bb0235) 2015; 4 Johanns (10.1016/j.ecoinf.2025.103009_bb0180) 2022; 70 He (10.1016/j.ecoinf.2025.103009_bb0160) 2019 Hong (10.1016/j.ecoinf.2025.103009_bb0170) 2019; 19 Agabiti (10.1016/j.ecoinf.2025.103009_bb0005) 2024; 54 Diwan (10.1016/j.ecoinf.2025.103009_bb0095) 2023; 82 Goatley (10.1016/j.ecoinf.2025.103009_bb0140) 2012; 7 Seminoff (10.1016/j.ecoinf.2025.103009_bb0300) 2014; 24 Chabot (10.1016/j.ecoinf.2025.103009_bb0050) 2016; 87 Moreni (10.1016/j.ecoinf.2025.103009_bb0210) 2023; 18 Axford (10.1016/j.ecoinf.2025.103009_bb0015) 2024; 83 Fourqurean (10.1016/j.ecoinf.2025.103009_bb0130) 2019; 42 Eguchi (10.1016/j.ecoinf.2025.103009_bb0120) 2012; 68 Ragesh (10.1016/j.ecoinf.2025.103009_bb0250) 2019; 7 Rayner (10.1016/j.ecoinf.2025.103009_bb0260) 2024 Roy (10.1016/j.ecoinf.2025.103009_bb0280) 2023; 75 Feng (10.1016/j.ecoinf.2025.103009_bb0125) 2024; 82 Seymour (10.1016/j.ecoinf.2025.103009_bb0305) 2017; 7 Staines (10.1016/j.ecoinf.2025.103009_bb0310) 2022; 169 Dell (10.1016/j.ecoinf.2025.103009_bb0080) 2014; 29 Dujon (10.1016/j.ecoinf.2025.103009_bb0110) 2021; 7 Stokes (10.1016/j.ecoinf.2025.103009_bb0320) 2023; 14 Haucke (10.1016/j.ecoinf.2025.103009_bb0150) 2022; 68 Stevenson (10.1016/j.ecoinf.2025.103009_bb0315) 2015; 6 Bodla (10.1016/j.ecoinf.2025.103009_bb0040) 2017 Gavrila (10.1016/j.ecoinf.2025.103009_bb0135) 2007; 7 Odzer (10.1016/j.ecoinf.2025.103009_bb0225) 2022; 49 Aharon (10.1016/j.ecoinf.2025.103009_bb0010) 2022 Redmon (10.1016/j.ecoinf.2025.103009_bb0270) 2016; vol. 2016 Wang (10.1016/j.ecoinf.2025.103009_bb0330) 2023; vol. 2023 Corcoran (10.1016/j.ecoinf.2025.103009_bb0075) 2021; 11 Dickson (10.1016/j.ecoinf.2025.103009_bb0090) 2022; 9 Rees (10.1016/j.ecoinf.2025.103009_bb0275) 2018; 35 Yoccoz (10.1016/j.ecoinf.2025.103009_bb0340) 2001; 16 Desai (10.1016/j.ecoinf.2025.103009_bb0085) 2022; 72 Kellner (10.1016/j.ecoinf.2025.103009_bb0185) 2023; 14 Colefax (10.1016/j.ecoinf.2025.103009_bb0065) 2019; 174 Brack (10.1016/j.ecoinf.2025.103009_bb0045) 2018; 9 Salmon (10.1016/j.ecoinf.2025.103009_bb0285) 2018; 37 Hays (10.1016/j.ecoinf.2025.103009_bb0155) 2024; 27 |
References_xml | – volume: 6 start-page: 38 year: 2015 end-page: 48 ident: bb0315 article-title: A general framework for animal density estimation from acoustic detections across a fixed microphone array publication-title: Methods Ecol. Evol. – volume: XLVIII-1-2024 year: 2024 ident: bb0220 article-title: UAV and deep learning: detection of selected riparian species along the Ganga River publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. – volume: 81 year: 2024 ident: bb0195 article-title: UAV equipped with infrared imaging for Cervidae monitoring: improving detection accuracy by eliminating background information interference publication-title: Eco. Inform. – volume: 80 year: 2024 ident: bb0020 article-title: WildARe-YOLO: a lightweight and efficient wild animal recognition model publication-title: Eco. Inform. – volume: 70 year: 2022 ident: bb0180 article-title: Automated distance estimation for wildlife camera trapping publication-title: Eco. Inform. – volume: 72 year: 2022 ident: bb0085 article-title: Identification of free-ranging mugger crocodiles by applying deep learning methods on UAV imagery publication-title: Eco. Inform. – volume: 82 year: 2024 ident: bb0125 article-title: CEH-YOLO: a composite enhanced YOLO-based model for underwater object detection publication-title: Eco. Inform. – volume: 83 year: 2024 ident: bb0015 article-title: Collectively advancing deep learning for animal detection in drone imagery: successes, challenges, and research gaps publication-title: Eco. Inform. – volume: 15 year: 2020 ident: bb0115 article-title: Use of unmanned aerial vehicles (UAVs) for mark-resight nesting population estimation of adult female green sea turtles at Raine Island publication-title: PLoS One – volume: 257 year: 2021 ident: bb0070 article-title: Identifying optimal wavelengths to maximise the detection rates of marine fauna from aerial surveys publication-title: Biol. Conserv. – volume: 82 start-page: 9243 year: 2023 end-page: 9275 ident: bb0095 article-title: Object detection using YOLO: challenges, architectural successors, datasets and applications publication-title: Multimed. Tools Appl. – start-page: 4917 year: 2019 end-page: 4926 ident: bb0160 article-title: Rethinking ImageNet pre-training publication-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) – volume: 14 year: 2023 ident: bb0320 article-title: Synergistic use of UAV surveys, satellite tracking data, and mark-recapture to estimate abundance of elusive species publication-title: Ecosphere – volume: 77 year: 2023 ident: bb0035 article-title: Hierarchical classification of insects with multitask learning and anomaly detection publication-title: Eco. Inform. – volume: 14 start-page: 1864 year: 2023 end-page: 1872 ident: bb0290 article-title: Opportunities and risks in the use of drones for studying animal behaviour publication-title: Methods Ecol. Evol. – year: 2024 ident: bb0100 article-title: End-to-End Underwater Video Enhancement: Dataset and Model – volume: vol. 2016 start-page: 779 year: 2016 end-page: 788 ident: bb0270 article-title: You only look once: unified, real-time object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 7 year: 2012 ident: bb0140 article-title: The role of turtles as coral reef macroherbivores publication-title: PLoS One – volume: 169 start-page: 74 year: 2022 ident: bb0205 article-title: A half-century of demographic changes in a green turtle ( publication-title: Mar. Biol. – volume: 169 start-page: 152 year: 2022 ident: bb0310 article-title: Operational sex ratio estimated from drone surveys for a species threatened by climate warming publication-title: Mar. Biol. – volume: 7 start-page: 341 year: 2021 end-page: 354 ident: bb0110 article-title: Machine learning to detect marine animals in UAV imagery: effect of morphology, spacing, behaviour and habitat publication-title: Remote Sens. Ecol. Conserv. – volume: 84 year: 2024 ident: bb0175 article-title: Enhanced Yolov8 network with extended Kalman filter for wildlife detection and tracking in complex environments publication-title: Eco. Inform. – volume: 11 start-page: 7 year: 2020 end-page: 16 ident: bb0265 article-title: Fast and accurate fish detection design with improved YOLO-v3 model and transfer learning publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 87 start-page: 343 year: 2016 end-page: 359 ident: bb0050 article-title: Computer-automated bird detection and counts in high-resolution aerial images: a review publication-title: J. Field Ornithol. – volume: 19 start-page: 1651 year: 2019 ident: bb0170 article-title: Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery publication-title: Sensors – volume: 35 start-page: 81 year: 2018 end-page: 100 ident: bb0275 article-title: The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions publication-title: Endanger. Species Res. – volume: 24 start-page: 207 year: 2014 end-page: 220 ident: bb0300 article-title: Loggerhead Sea turtle abundance at a foraging hotspot in the eastern Pacific Ocean: implications for at-sea conservation publication-title: Endanger. Species Res. – volume: 68 year: 2022 ident: bb0150 article-title: Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps publication-title: Eco. Inform. – volume: 8 year: 2013 ident: bb0325 article-title: Unmanned aerial survey of elephants publication-title: PLoS One – volume: 27 start-page: 909 year: 2016 end-page: 924 ident: bb0245 article-title: Underwater video dehazing based on spatial–temporal information fusion publication-title: Multidim. Syst. Sign. Process. – volume: 105 start-page: 337 year: 2007 end-page: 347 ident: bb0030 article-title: Abundance, distribution, and habitat of leatherback turtles ( publication-title: Fish. Bull. – year: 2024 ident: bb0260 article-title: Machine Learning of Large Scale Imagery for Wildlife Conservation – volume: 88 start-page: 287 year: 2013 end-page: 309 ident: bb0200 article-title: Estimating animal population density using passive acoustics publication-title: Biol. Rev. – volume: 14 start-page: 1408 year: 2023 end-page: 1415 ident: bb0185 article-title: The unmarked R package: twelve years of advances in occurrence and abundance modelling in ecology publication-title: Methods Ecol. Evol. – volume: 12 start-page: 11318 year: 2022 ident: bb0335 article-title: Detection of publication-title: Appl. Sci. – volume: 29 start-page: 417 year: 2014 end-page: 428 ident: bb0080 article-title: Automated image-based tracking and its application in ecology publication-title: Trends Ecol. Evol. – volume: 13 start-page: 7787 year: 2023 ident: bb0215 article-title: Automated wildlife bird detection from drone footage using computer vision techniques publication-title: Appl. Sci. – volume: 8 year: 2013 ident: bb0230 article-title: Ethogram of immature green turtles: behavioral strategies for somatic growth in large marine herbivores publication-title: PLoS One – volume: vol. 2023 start-page: 7464 year: 2023 end-page: 7475 ident: bb0330 article-title: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 32 year: 2019 ident: bb0255 article-title: Transfusion: understanding transfer learning for medical imaging publication-title: Adv. Neural Inf. Proces. Syst. – volume: 75 year: 2023 ident: bb0280 article-title: WilDect-YOLO: an efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection publication-title: Eco. Inform. – volume: 49 start-page: 79 year: 2022 end-page: 88 ident: bb0225 article-title: Effects of environmental factors on the detection of subsurface green turtles in aerial drone surveys publication-title: Wildl. Res. – volume: 8 year: 2013 ident: bb0165 article-title: Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study publication-title: PLoS One – start-page: 5561 year: 2017 end-page: 5569 ident: bb0040 article-title: Soft-NMS—Improving object detection with one line of code publication-title: In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017 – volume: 16 start-page: 83 year: 2017 end-page: 92 ident: bb0190 article-title: Factors affecting the long-term population dynamics of green turtles ( publication-title: Chelonian Conserv. Biol. – volume: 7 start-page: 45127 year: 2017 ident: bb0305 article-title: Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery publication-title: Sci. Rep. – volume: 18 year: 2023 ident: bb0210 article-title: Do you get what you see? Insights of using mAP to select architectures of pretrained neural networks for automated aerial animal detection publication-title: PLoS One – volume: 10 start-page: 345 year: 2019 end-page: 355 ident: bb0145 article-title: A convolutional neural network for detecting sea turtles in drone imagery publication-title: Methods Ecol. Evol. – volume: 7 start-page: 47864 year: 2019 end-page: 47890 ident: bb0250 article-title: Pedestrian detection in automotive safety: understanding state-of-the-art publication-title: IEEE Access – volume: 37 start-page: 301 year: 2018 end-page: 308 ident: bb0285 article-title: Biphasic allometric growth in juvenile green turtles publication-title: Endanger. Species Res. – volume: 54 start-page: 395 year: 2024 end-page: 408 ident: bb0005 article-title: Combining UAVs and multi-sensor dataloggers to estimate fine-scale sea turtle density at foraging areas: a case study in the Central Mediterranean publication-title: Endanger. Species Res. – volume: 9 year: 2022 ident: bb0090 article-title: Aerial drones reveal the dynamic structuring of sea turtle breeding aggregations and minimum survey effort required to capture climatic and sex-specific effects publication-title: Front. Mar. Sci. – volume: 27 year: 2024 ident: bb0155 article-title: A pulse check for trends in sea turtle numbers across the globe publication-title: iScience – volume: 4 start-page: 53 year: 2015 end-page: 69 ident: bb0235 article-title: Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador publication-title: J. Unmann. Veh. Syst. – volume: 11 start-page: 6649 year: 2021 end-page: 6656 ident: bb0075 article-title: Evaluating new technology for biodiversity monitoring: are drone surveys biased? publication-title: Ecol. Evol. – volume: 81 year: 2024 ident: bb0345 article-title: A reliable unmanned aerial vehicle multi-target tracking system with global motion compensation for monitoring publication-title: Eco. Inform. – volume: 12 start-page: 375 year: 2024 end-page: 382 ident: bb0055 article-title: Enhanced animal detection in complex outdoor environments using modified Yolo V7 publication-title: Int. J. Intell. Syst. Appl. Eng. – volume: 7 start-page: 41 year: 2007 end-page: 59 ident: bb0135 article-title: Multi-cue pedestrian detection and tracking from a moving vehicle publication-title: Int. J. Comput. Vis. – volume: 16 start-page: 446 year: 2001 end-page: 453 ident: bb0340 article-title: Monitoring of biological diversity in space and time publication-title: Trends Ecol. Evol. – volume: 8 start-page: 44 year: 2020 end-page: 56 ident: bb0025 article-title: Shark detection probability from aerial drone surveys within a temperate estuary publication-title: J. Unmann. Veh. Syst. – volume: 9 start-page: 1864 year: 2018 end-page: 1873 ident: bb0045 article-title: Detection errors in wildlife abundance estimates from unmanned aerial systems (UAS) surveys: synthesis, solutions, and challenges publication-title: Methods Ecol. Evol. – volume: 39 start-page: 91 year: 2019 end-page: 104 ident: bb0105 article-title: Importance of machine learning for enhancing ecological studies using information-rich imagery publication-title: Endanger. Species Res. – year: 2022 ident: bb0010 article-title: BoT-SORT: robust associations multi-pedestrian tracking – volume: 174 start-page: 108 year: 2019 end-page: 115 ident: bb0065 article-title: Reliability of marine faunal detections in drone-based monitoring publication-title: Ocean Coast. Manag. – volume: 169 start-page: 364 year: 2020 end-page: 376 ident: bb0240 article-title: Wild animal survey using UAS imagery and deep learning: modified faster R-CNN for kiang detection in Tibetan plateau publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 31 start-page: 2310 year: 2017 end-page: 2319 ident: bb0295 article-title: Detecting elusive aspects of wildlife ecology using drones: new insights on the mating dynamics and operational sex ratios of sea turtles publication-title: Funct. Ecol. – volume: 68 start-page: 76 year: 2012 end-page: 87 ident: bb0120 article-title: Morphology and growth rates of the green sea turtle ( publication-title: Herpetologica – volume: 42 start-page: 1524 year: 2019 end-page: 1540 ident: bb0130 article-title: Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle publication-title: Estuar. Coasts – volume: 281 year: 2014 ident: bb0060 article-title: Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas publication-title: Proc. Roy. Soc. B – volume: vol. 2023 start-page: 7464 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0330 article-title: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors – volume: 29 start-page: 417 year: 2014 ident: 10.1016/j.ecoinf.2025.103009_bb0080 article-title: Automated image-based tracking and its application in ecology publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2014.05.004 – volume: 24 start-page: 207 year: 2014 ident: 10.1016/j.ecoinf.2025.103009_bb0300 article-title: Loggerhead Sea turtle abundance at a foraging hotspot in the eastern Pacific Ocean: implications for at-sea conservation publication-title: Endanger. Species Res. doi: 10.3354/esr00601 – volume: 7 start-page: 47864 year: 2019 ident: 10.1016/j.ecoinf.2025.103009_bb0250 article-title: Pedestrian detection in automotive safety: understanding state-of-the-art publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909992 – volume: 83 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0015 article-title: Collectively advancing deep learning for animal detection in drone imagery: successes, challenges, and research gaps publication-title: Eco. Inform. – volume: 82 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0125 article-title: CEH-YOLO: a composite enhanced YOLO-based model for underwater object detection publication-title: Eco. Inform. – volume: 169 start-page: 364 year: 2020 ident: 10.1016/j.ecoinf.2025.103009_bb0240 article-title: Wild animal survey using UAS imagery and deep learning: modified faster R-CNN for kiang detection in Tibetan plateau publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.08.026 – volume: 87 start-page: 343 year: 2016 ident: 10.1016/j.ecoinf.2025.103009_bb0050 article-title: Computer-automated bird detection and counts in high-resolution aerial images: a review publication-title: J. Field Ornithol. doi: 10.1111/jofo.12171 – volume: 174 start-page: 108 year: 2019 ident: 10.1016/j.ecoinf.2025.103009_bb0065 article-title: Reliability of marine faunal detections in drone-based monitoring publication-title: Ocean Coast. Manag. doi: 10.1016/j.ocecoaman.2019.03.008 – volume: 18 issue: 4 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0210 article-title: Do you get what you see? Insights of using mAP to select architectures of pretrained neural networks for automated aerial animal detection publication-title: PLoS One doi: 10.1371/journal.pone.0284449 – volume: 80 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0020 article-title: WildARe-YOLO: a lightweight and efficient wild animal recognition model publication-title: Eco. Inform. – volume: 82 start-page: 9243 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0095 article-title: Object detection using YOLO: challenges, architectural successors, datasets and applications publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13644-y – year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0260 – volume: 14 start-page: 1864 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0290 article-title: Opportunities and risks in the use of drones for studying animal behaviour publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13922 – volume: vol. 2016 start-page: 779 year: 2016 ident: 10.1016/j.ecoinf.2025.103009_bb0270 article-title: You only look once: unified, real-time object detection – volume: 16 start-page: 446 year: 2001 ident: 10.1016/j.ecoinf.2025.103009_bb0340 article-title: Monitoring of biological diversity in space and time publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(01)02205-4 – volume: 4 start-page: 53 year: 2015 ident: 10.1016/j.ecoinf.2025.103009_bb0235 article-title: Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador publication-title: J. Unmann. Veh. Syst. doi: 10.1139/juvs-2015-0014 – volume: 77 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0035 article-title: Hierarchical classification of insects with multitask learning and anomaly detection publication-title: Eco. Inform. – volume: 32 year: 2019 ident: 10.1016/j.ecoinf.2025.103009_bb0255 article-title: Transfusion: understanding transfer learning for medical imaging publication-title: Adv. Neural Inf. Proces. Syst. – start-page: 5561 year: 2017 ident: 10.1016/j.ecoinf.2025.103009_bb0040 article-title: Soft-NMS—Improving object detection with one line of code – volume: XLVIII-1-2024 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0220 article-title: UAV and deep learning: detection of selected riparian species along the Ganga River publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. – volume: 7 start-page: 41 year: 2007 ident: 10.1016/j.ecoinf.2025.103009_bb0135 article-title: Multi-cue pedestrian detection and tracking from a moving vehicle publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-006-9038-7 – volume: 16 start-page: 83 year: 2017 ident: 10.1016/j.ecoinf.2025.103009_bb0190 article-title: Factors affecting the long-term population dynamics of green turtles (Chelonia mydas) in Ogasawara, Japan: influence of natural and artificial production of hatchlings and harvest pressure publication-title: Chelonian Conserv. Biol. doi: 10.2744/CCB-1222.1 – volume: 39 start-page: 91 year: 2019 ident: 10.1016/j.ecoinf.2025.103009_bb0105 article-title: Importance of machine learning for enhancing ecological studies using information-rich imagery publication-title: Endanger. Species Res. doi: 10.3354/esr00958 – volume: 49 start-page: 79 issue: 1 year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0225 article-title: Effects of environmental factors on the detection of subsurface green turtles in aerial drone surveys publication-title: Wildl. Res. doi: 10.1071/WR20207 – volume: 169 start-page: 152 year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0310 article-title: Operational sex ratio estimated from drone surveys for a species threatened by climate warming publication-title: Mar. Biol. doi: 10.1007/s00227-022-04141-9 – volume: 54 start-page: 395 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0005 article-title: Combining UAVs and multi-sensor dataloggers to estimate fine-scale sea turtle density at foraging areas: a case study in the Central Mediterranean publication-title: Endanger. Species Res. doi: 10.3354/esr01350 – volume: 15 issue: 6 year: 2020 ident: 10.1016/j.ecoinf.2025.103009_bb0115 article-title: Use of unmanned aerial vehicles (UAVs) for mark-resight nesting population estimation of adult female green sea turtles at Raine Island publication-title: PLoS One doi: 10.1371/journal.pone.0228524 – volume: 13 start-page: 7787 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0215 article-title: Automated wildlife bird detection from drone footage using computer vision techniques publication-title: Appl. Sci. doi: 10.3390/app13137787 – volume: 72 year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0085 article-title: Identification of free-ranging mugger crocodiles by applying deep learning methods on UAV imagery publication-title: Eco. Inform. – volume: 9 start-page: 1864 year: 2018 ident: 10.1016/j.ecoinf.2025.103009_bb0045 article-title: Detection errors in wildlife abundance estimates from unmanned aerial systems (UAS) surveys: synthesis, solutions, and challenges publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13026 – volume: 257 year: 2021 ident: 10.1016/j.ecoinf.2025.103009_bb0070 article-title: Identifying optimal wavelengths to maximise the detection rates of marine fauna from aerial surveys publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2021.109102 – volume: 35 start-page: 81 year: 2018 ident: 10.1016/j.ecoinf.2025.103009_bb0275 article-title: The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions publication-title: Endanger. Species Res. doi: 10.3354/esr00877 – volume: 81 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0345 article-title: A reliable unmanned aerial vehicle multi-target tracking system with global motion compensation for monitoring Procapra przewalskii publication-title: Eco. Inform. – volume: 27 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0155 article-title: A pulse check for trends in sea turtle numbers across the globe publication-title: iScience doi: 10.1016/j.isci.2024.109071 – volume: 11 start-page: 7 issue: 2 year: 2020 ident: 10.1016/j.ecoinf.2025.103009_bb0265 article-title: Fast and accurate fish detection design with improved YOLO-v3 model and transfer learning publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 31 start-page: 2310 year: 2017 ident: 10.1016/j.ecoinf.2025.103009_bb0295 article-title: Detecting elusive aspects of wildlife ecology using drones: new insights on the mating dynamics and operational sex ratios of sea turtles publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12930 – volume: 7 issue: 6 year: 2012 ident: 10.1016/j.ecoinf.2025.103009_bb0140 article-title: The role of turtles as coral reef macroherbivores publication-title: PLoS One doi: 10.1371/journal.pone.0039979 – volume: 7 start-page: 45127 year: 2017 ident: 10.1016/j.ecoinf.2025.103009_bb0305 article-title: Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery publication-title: Sci. Rep. doi: 10.1038/srep45127 – volume: 14 start-page: 1408 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0185 article-title: The unmarked R package: twelve years of advances in occurrence and abundance modelling in ecology publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.14123 – volume: 11 start-page: 6649 year: 2021 ident: 10.1016/j.ecoinf.2025.103009_bb0075 article-title: Evaluating new technology for biodiversity monitoring: are drone surveys biased? publication-title: Ecol. Evol. doi: 10.1002/ece3.7518 – volume: 81 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0195 article-title: UAV equipped with infrared imaging for Cervidae monitoring: improving detection accuracy by eliminating background information interference publication-title: Eco. Inform. – volume: 12 start-page: 375 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0055 article-title: Enhanced animal detection in complex outdoor environments using modified Yolo V7 publication-title: Int. J. Intell. Syst. Appl. Eng. – volume: 84 year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0175 article-title: Enhanced Yolov8 network with extended Kalman filter for wildlife detection and tracking in complex environments publication-title: Eco. Inform. – volume: 68 year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0150 article-title: Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps publication-title: Eco. Inform. – volume: 8 issue: 2 year: 2013 ident: 10.1016/j.ecoinf.2025.103009_bb0325 article-title: Unmanned aerial survey of elephants publication-title: PLoS One doi: 10.1371/journal.pone.0054700 – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.ecoinf.2025.103009_bb0230 article-title: Ethogram of immature green turtles: behavioral strategies for somatic growth in large marine herbivores publication-title: PLoS One doi: 10.1371/journal.pone.0065783 – volume: 37 start-page: 301 year: 2018 ident: 10.1016/j.ecoinf.2025.103009_bb0285 article-title: Biphasic allometric growth in juvenile green turtles Chelonia mydas publication-title: Endanger. Species Res. doi: 10.3354/esr00930 – volume: 14 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0320 article-title: Synergistic use of UAV surveys, satellite tracking data, and mark-recapture to estimate abundance of elusive species publication-title: Ecosphere doi: 10.1002/ecs2.4444 – volume: 10 start-page: 345 year: 2019 ident: 10.1016/j.ecoinf.2025.103009_bb0145 article-title: A convolutional neural network for detecting sea turtles in drone imagery publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13132 – volume: 42 start-page: 1524 year: 2019 ident: 10.1016/j.ecoinf.2025.103009_bb0130 article-title: Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle Chelonia mydas publication-title: Estuar. Coasts doi: 10.1007/s12237-019-00587-1 – volume: 27 start-page: 909 year: 2016 ident: 10.1016/j.ecoinf.2025.103009_bb0245 article-title: Underwater video dehazing based on spatial–temporal information fusion publication-title: Multidim. Syst. Sign. Process. doi: 10.1007/s11045-016-0407-2 – volume: 281 year: 2014 ident: 10.1016/j.ecoinf.2025.103009_bb0060 article-title: Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas publication-title: Proc. Roy. Soc. B – volume: 88 start-page: 287 year: 2013 ident: 10.1016/j.ecoinf.2025.103009_bb0200 article-title: Estimating animal population density using passive acoustics publication-title: Biol. Rev. doi: 10.1111/brv.12001 – volume: 19 start-page: 1651 issue: 7 year: 2019 ident: 10.1016/j.ecoinf.2025.103009_bb0170 article-title: Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery publication-title: Sensors doi: 10.3390/s19071651 – year: 2024 ident: 10.1016/j.ecoinf.2025.103009_bb0100 – volume: 8 issue: 11 year: 2013 ident: 10.1016/j.ecoinf.2025.103009_bb0165 article-title: Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study publication-title: PLoS One doi: 10.1371/journal.pone.0079556 – volume: 12 start-page: 11318 issue: 22 year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0335 article-title: Detection of Camellia oleifera fruit in complex scenes by using YOLOv7 and data augmentation publication-title: Appl. Sci. doi: 10.3390/app122211318 – volume: 9 year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0090 article-title: Aerial drones reveal the dynamic structuring of sea turtle breeding aggregations and minimum survey effort required to capture climatic and sex-specific effects publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2022.864694 – volume: 70 year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0180 article-title: Automated distance estimation for wildlife camera trapping publication-title: Eco. Inform. – volume: 75 year: 2023 ident: 10.1016/j.ecoinf.2025.103009_bb0280 article-title: WilDect-YOLO: an efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection publication-title: Eco. Inform. – volume: 7 start-page: 341 year: 2021 ident: 10.1016/j.ecoinf.2025.103009_bb0110 article-title: Machine learning to detect marine animals in UAV imagery: effect of morphology, spacing, behaviour and habitat publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.205 – volume: 8 start-page: 44 year: 2020 ident: 10.1016/j.ecoinf.2025.103009_bb0025 article-title: Shark detection probability from aerial drone surveys within a temperate estuary publication-title: J. Unmann. Veh. Syst. doi: 10.1139/juvs-2019-0002 – volume: 68 start-page: 76 year: 2012 ident: 10.1016/j.ecoinf.2025.103009_bb0120 article-title: Morphology and growth rates of the green sea turtle (Chelonia mydas) in a northern-most temperate foraging ground publication-title: Herpetologica doi: 10.1655/HERPETOLOGICA-D-11-00050.1 – volume: 6 start-page: 38 year: 2015 ident: 10.1016/j.ecoinf.2025.103009_bb0315 article-title: A general framework for animal density estimation from acoustic detections across a fixed microphone array publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12291 – start-page: 4917 year: 2019 ident: 10.1016/j.ecoinf.2025.103009_bb0160 article-title: Rethinking ImageNet pre-training – year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0010 – volume: 105 start-page: 337 year: 2007 ident: 10.1016/j.ecoinf.2025.103009_bb0030 article-title: Abundance, distribution, and habitat of leatherback turtles (Dermochelys coriacea) off California, 1990−2003 publication-title: Fish. Bull. – volume: 169 start-page: 74 year: 2022 ident: 10.1016/j.ecoinf.2025.103009_bb0205 article-title: A half-century of demographic changes in a green turtle (Chelonia mydas) foraging aggregation during an era of seagrass decline publication-title: Mar. Biol. doi: 10.1007/s00227-022-04056-5 |
SSID | ssj0043882 |
Score | 2.3883424 |
Snippet | Drones have recently been used to assess wildlife populations and their abundance. The automatic detection of target animals in drone footage enables efficient... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 103009 |
SubjectTerms | Abundance estimation algorithms automatic detection Chelonia mydas Coastal area corals Deep learning Sea turtle seagrasses Unmanned aerial vehicle wildlife YOLOv7 |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQElIvqEARWx5ypV7dTdbjdcKNxyKE1F5aJG7WJLZXaWl2BcuBC7-dGSdBwKVSb4ljOdGMPfNN_M1YiK8lej2pvVUTH4MCzFBRGFSqSMqvvY8wnXK-8_cf08truLoxN2vibMiFYVplb_s7m56sdd8y7qU5XjbN-GduLKF7IA_NQKXgmqBc_Yvm9LenF5oH6CIdGMWdFfce0ucSx4siPNIjRYkTw9nnGdMSX7mnVMX_jZd6Z6-TE7r4KDZ79ChPug_cEmuh3RYbs1R5-nFH_JmlghDkRyRBYH_bxCD_pkXLf--O5XkIS9mfEzFX7MC89GGV2FitxNbL4egIuYhyzpQcSS6JptO9bFp6iIQlbyUykf2TuL6Y_Tq7VP1pCqoGgJXyFdJajBE51dSasopFUUVdEoSps8gbpNSjyiwFQKY2U6joOhRFrUu0MQSrd8V6u2jDnpAmeLA-83mBOcQM0ASIIQ8EDhAM6JFQgxDdsiua4QY22W_XCd2x0F0n9JE4ZUm_9OWS16lhcTd3vc5dTrFeJAAVrfEAGhF1TfYpllgaxokjYQc9uTcziIZq_vH6L4NaHS0u3jHBNiwe7p1mCktJGLH4_N-j74sPfNeRJA_E-uruIRwSkFlVR2mmPgMdqfFb priority: 102 providerName: Elsevier |
Title | Efficient wildlife monitoring: Deep learning-based detection and counting of green turtles in coastal areas |
URI | https://dx.doi.org/10.1016/j.ecoinf.2025.103009 https://www.proquest.com/docview/3200290568 https://doaj.org/article/1261f064f75d443aaa3c073f9a950951 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1574-9541 databaseCode: DOA dateStart: 20240101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0043882 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1574-9541 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0043882 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1574-9541 databaseCode: .~1 dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0043882 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1574-9541 databaseCode: ACRLP dateStart: 20240301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0043882 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1574-9541 databaseCode: AIKHN dateStart: 20240301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0043882 providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1574-9541 databaseCode: M~E dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssj0043882 providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1574-9541 databaseCode: AKRWK dateStart: 20060101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043882 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKKyQuiE-xfKyMxNVtsh6vY26FbrUtoicq9WZNYrtaWrIV3R648NuZsRNUeumFW5RYcTRj-72Jn2eE-OAw6FkXrJqFFBVghYrCIKcSOb8LIcF8zuedv57Ml6dwfGbObpX6Yk1YSQ9cDLdXE8VPhJvJmgCgEVF3NCyTQ2eYHvDqSzA2BlNlDQbd5DJRtbGgnIF6PDSXlV0U15H3KDacGT5zXrEY8RYo5dz9_2DTnVU6Q8_hE_F44Ixyv3zrU7EV-2fi4SLnm_71XFwschoIQg9JxDdcrlKUP_JU5X92H-VBjFdyqA5xrhi2ggxxkzVYvcQ-yLFghFwnec5CHElARIPoWq56eojEIC8lsnz9hTg9XHz7vFRDDQXVAcBGhRZpBqaEfMDUGtempmmTdkRcuirxtii1aCtLYY_pzBxauo5N02mHNsVo9Uux3a_7-EpIEwPYUIW6wRpSBWgipFhHogQIBvREqNGI_qqkyvCjhuy7L0b3bHRfjD4Rn9jSf9tyout8g9zvB_f7-9w_EXb0kx84Q-EC9KrVPd2_H93qaUrxPgn2cX1z7TULVxwxw-b1__jEN-IRd1tUkm_F9ubnTXxHTGbTTsWD3d_1VOzsH31ZnkzzEP4D3qTx2Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKKwQXVL7EQgtG4mptsh6vE25t2WpL273QSr1Zk9hepZTsqt0e-PfMOAmiXJC4JY7jRDP2zJvkzViITyV6Pam9VRMfgwLMUFEYVKpIyq-9jzCdcr7z-WI6v4SvV-ZqSxwNuTBMq-xtf2fTk7XuW8a9NMfrphl_y40ldA_koRmoFPBI7ACd0mTfOTg5nS8Ggwy6SHtGcX_FNwwZdInmRUEeqZICxYnhBPSMmYl_eKhUyP-Bo_rLZCc_dLwrnvUAUh507_hcbIX2hXg8S8Wnf74U32epJgS5Ekko2N80Mcgfad3yB7zP8ksIa9lvFbFU7MO89GGTCFmtxNbLYfcIuYpyyawcSV6JZtSdbFq6iAQnbyQyl_2VuDyeXRzNVb-hgqoBYKN8hbQcY0TONrWmrGJRVFGXhGLqLPI_UupRZZZiIFObKVR0HIqi1iXaGILVr8V2u2rDGyFN8GB95vMCc4gZoAkQQx4IHyBpQY-EGoTo1l3dDDcQyq5dJ3THQned0EfikCX9uy9XvU4Nq9ul69Xucgr3ImGoaI0H0IioazJRscTSMFQcCTvoyT2YRDRU84_HfxzU6mh98U8TbMPq_s5pZrGUBBOLt_89-gfxZH5xfubOThan78RTvtJxJvfE9ub2PuwTrtlU7_t5-wvyNfWU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+wildlife+monitoring%3A+Deep+learning-based+detection+and+counting+of+green+turtles+in+coastal+areas&rft.jtitle=Ecological+informatics&rft.au=Noguchi%2C+Naoya&rft.au=Nishizawa%2C+Hideaki&rft.au=Shimizu%2C+Taro&rft.au=Okuyama%2C+Junichi&rft.date=2025-05-01&rft.issn=1574-9541&rft.volume=86+p.103009-&rft_id=info:doi/10.1016%2Fj.ecoinf.2025.103009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon |