Longitudinal Prediction of Infant Diffusion MRI Data via Graph Convolutional Adversarial Networks
Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 38; no. 12; pp. 2717 - 2725 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2019.2911203 |
Cover
Abstract | Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data. |
---|---|
AbstractList | Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data. Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data.Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data. Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in longitudinal prediction of infant brain diffusion MRI data. |
Author | Shen, Dinggang Chen, Geng Lin, Weili Yap, Pew-Thian Kim, Jaeil Hong, Yoonmi |
Author_xml | – sequence: 1 givenname: Yoonmi orcidid: 0000-0003-2416-8249 surname: Hong fullname: Hong, Yoonmi email: yoonmi_hong@med.unc.edu organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 2 givenname: Jaeil orcidid: 0000-0002-9799-1773 surname: Kim fullname: Kim, Jaeil organization: School of Computer Science and Engineering, Kyungpook National University, Daegu, South Korea – sequence: 3 givenname: Geng orcidid: 0000-0001-8350-6581 surname: Chen fullname: Chen, Geng organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 4 givenname: Weili surname: Lin fullname: Lin, Weili organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 5 givenname: Pew-Thian orcidid: 0000-0003-1489-2102 surname: Yap fullname: Yap, Pew-Thian email: ptyap@med.unc.edu organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 6 givenname: Dinggang orcidid: 0000-0002-7934-5698 surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30990424$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9rFDEcxYNU7LZ6FwQZ8OJl1vyYzE4uQtlqXdiqSAVv4TuZb9rU2WSbzKz435tht0V78JSQfN7j8d4JOfLBIyEvGZ0zRtW7q8vVnFOm5lwxxql4QmZMyqbksvpxRGaUL5qS0pofk5OUbilllaTqGTkWVCla8WpGYB38tRvGznnoi68RO2cGF3wRbLHyFvxQnDtrxzS9XX5bFecwQLFzUFxE2N4Uy-B3oR8nSdafdTuMCaLL9884_ArxZ3pOnlroE744nKfk-8cPV8tP5frLxWp5ti5NVVVD2XGAlndGKIYNVMbUhmMjrK1wYbq24YZRAQYkmpYJtUCpRG0aZdFyamwrTsn7ve92bDfYGfRDhF5vo9tA_K0DOP3vj3c3-jrsdK2EZDXLBm8PBjHcjZgGvXHJYN-DxzAmzTnLhfIFkxl98wi9DWPMDWRKcN40GZuo138neohy334G6j1gYkgpotXGDTB1mQO6XjOqp5l1nllPM-vDzFlIHwnvvf8jebWXOER8wJtasZpK8Qe1D7R2 |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_neunet_2020_01_007 crossref_primary_10_1145_3503043 crossref_primary_10_1109_TMI_2020_2971730 crossref_primary_10_1016_j_ymeth_2021_06_008 crossref_primary_10_1155_2022_4438251 crossref_primary_10_1016_j_media_2025_103541 crossref_primary_10_1016_j_media_2024_103261 crossref_primary_10_1007_s00521_023_08508_x crossref_primary_10_1155_2021_4645544 crossref_primary_10_1016_j_media_2019_06_010 crossref_primary_10_1016_j_mlwa_2022_100401 crossref_primary_10_1162_netn_a_00171 crossref_primary_10_1016_j_media_2023_102742 crossref_primary_10_1109_TMI_2022_3225083 crossref_primary_10_1162_imag_a_00215 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_3390_s21144758 |
Cites_doi | 10.1007/978-3-642-23629-7_80 10.1109/CVPR.2017.613 10.1109/TMI.2011.2142189 10.2214/ajr.182.2.1820367 10.1109/TCYB.2018.2797905 10.1038/srep37847 10.1109/ICCV.2017.244 10.1109/CVPR.2016.90 10.1109/CVPR.2017.632 10.1109/CVPR.2016.89 10.1007/978-3-319-66182-7_6 10.1109/TBME.2018.2814538 10.1007/978-3-319-28194-0_24 10.1109/TPAMI.2007.1115 10.1109/TMI.2017.2708987 10.1016/j.neuroimage.2018.03.042 10.1002/hbm.23555 10.1109/JSTSP.2017.2726981 10.1007/978-3-319-66182-7_72 10.1109/CVPR.2015.7298965 10.1093/cercor/bhs265 10.1109/MSP.2017.2693418 10.1176/appi.ajp.2010.09101492 10.1016/j.acha.2010.04.005 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2019.2911203 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2725 |
ExternalDocumentID | PMC6935161 30990424 10_1109_TMI_2019_2911203 8691605 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: NS093842; MH117943; EB006733; EB009634; AG041721; MH100217 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB022880 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIMH NIH HHS grantid: R01 MH117943 – fundername: NINDS NIH HHS grantid: R01 NS093842 – fundername: NIA NIH HHS grantid: R01 AG041721 – fundername: NIMH NIH HHS grantid: R01 MH100217 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c444t-d2aab2dc391e8a4cc6c2e83ff4e7cdb82c103aca5ecb1397e5936c89fef20cfb3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 13:49:39 EDT 2025 Sat Sep 27 22:57:44 EDT 2025 Mon Jun 30 03:38:20 EDT 2025 Thu Apr 03 07:07:09 EDT 2025 Tue Jul 01 03:16:02 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Wed Aug 27 02:30:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-d2aab2dc391e8a4cc6c2e83ff4e7cdb82c103aca5ecb1397e5936c89fef20cfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9799-1773 0000-0003-2416-8249 0000-0003-1489-2102 0000-0001-8350-6581 0000-0002-7934-5698 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6935161 |
PMID | 30990424 |
PQID | 2322887275 |
PQPubID | 85460 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TMI_2019_2911203 pubmed_primary_30990424 crossref_citationtrail_10_1109_TMI_2019_2911203 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6935161 proquest_journals_2322887275 ieee_primary_8691605 proquest_miscellaneous_2210272715 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref36 defferrard (ref11) 2016 ref31 ref30 ref32 luo (ref22) 2016 ref2 ref1 ref17 ronneberger (ref24) 2015 ref38 ref16 fan (ref29) 2018 ref18 henaff (ref10) 2015 goodfellow (ref13) 2014 yu (ref23) 2015 radford (ref14) 2015 ref26 ref25 ref20 ghazi (ref19) 2018 ref21 he (ref28) 2016 denton (ref15) 2015 ref27 çiçek (ref33) 2016 ref8 ref7 ref4 ref3 levie (ref37) 2017 ref6 kumar (ref39) 2010 ref5 bruna (ref9) 2013 |
References_xml | – ident: ref4 doi: 10.1007/978-3-642-23629-7_80 – ident: ref7 doi: 10.1109/CVPR.2017.613 – start-page: 1189 year: 2010 ident: ref39 article-title: Self-paced learning for latent variable models publication-title: Proc Adv Neural Inf Process Syst – start-page: 424 year: 2016 ident: ref33 article-title: $3^{D}$ U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref35 doi: 10.1109/TMI.2011.2142189 – ident: ref34 doi: 10.2214/ajr.182.2.1820367 – start-page: 2672 year: 2014 ident: ref13 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref30 doi: 10.1109/TCYB.2018.2797905 – year: 2015 ident: ref14 publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR – year: 2018 ident: ref19 publication-title: Robust training of recurrent neural networks to handle missing data for disease progression modeling – ident: ref32 doi: 10.1038/srep37847 – ident: ref17 doi: 10.1109/ICCV.2017.244 – ident: ref27 doi: 10.1109/CVPR.2016.90 – ident: ref16 doi: 10.1109/CVPR.2017.632 – year: 2015 ident: ref10 publication-title: Deep convolutional networks on graph-structured data – ident: ref38 doi: 10.1109/CVPR.2016.89 – ident: ref31 doi: 10.1007/978-3-319-66182-7_6 – ident: ref8 doi: 10.1109/TBME.2018.2814538 – year: 2013 ident: ref9 publication-title: Spectral networks and locally connected networks on graphs – start-page: 1486 year: 2015 ident: ref15 article-title: Deep generative image models using a laplacian pyramid of adversarial networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref5 doi: 10.1007/978-3-319-28194-0_24 – start-page: 234 year: 2015 ident: ref24 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – year: 2015 ident: ref23 publication-title: Multi-scale context aggregation by dilated convolutions – start-page: 3844 year: 2016 ident: ref11 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref37 publication-title: Cayleynets Graph convolutional neural networks with complex rational spectral filters – ident: ref25 doi: 10.1109/TPAMI.2007.1115 – ident: ref18 doi: 10.1109/TMI.2017.2708987 – ident: ref3 doi: 10.1016/j.neuroimage.2018.03.042 – start-page: 4898 year: 2016 ident: ref22 article-title: Understanding the effective receptive field in deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1002/hbm.23555 – ident: ref36 doi: 10.1109/JSTSP.2017.2726981 – ident: ref21 doi: 10.1007/978-3-319-66182-7_72 – start-page: 630 year: 2016 ident: ref28 article-title: Identity mappings in deep residual networks publication-title: Proc Eur Conf Comput Vis – ident: ref26 doi: 10.1109/CVPR.2015.7298965 – year: 2018 ident: ref29 publication-title: Birnet Brain image registration using dual-supervised fully convolutional networks – ident: ref2 doi: 10.1093/cercor/bhs265 – ident: ref12 doi: 10.1109/MSP.2017.2693418 – ident: ref1 doi: 10.1176/appi.ajp.2010.09101492 – ident: ref20 doi: 10.1016/j.acha.2010.04.005 |
SSID | ssj0014509 |
Score | 2.434507 |
Snippet | Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2717 |
SubjectTerms | adversarial learning Artificial neural networks Chebyshev approximation Convolution Correlation analysis Diffusion diffusion MRI Diffusion waves early brain development Generators Graph CNN Harnesses Laplace equations longitudinal prediction Longitudinal studies Loss measurement Magnetic resonance imaging Mapping Missing data Multiscale analysis Neural networks Training |
Title | Longitudinal Prediction of Infant Diffusion MRI Data via Graph Convolutional Adversarial Networks |
URI | https://ieeexplore.ieee.org/document/8691605 https://www.ncbi.nlm.nih.gov/pubmed/30990424 https://www.proquest.com/docview/2322887275 https://www.proquest.com/docview/2210272715 https://pubmed.ncbi.nlm.nih.gov/PMC6935161 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeCwUZiQsS2c2OnYePqKV0EakQaqXeIntsqytQgrpJD_x6PHmpW1WIWySPE1vfTDz2jL9h7L2ycY5qKQICPoskKoh0aiAS4MJGDGxikc4hi9P05Fx-vUgudtjH6S6Mc65LPnNzeuxi-bbGlo7KFnkanBkiLL2XZaq_qzVFDGTSp3MAMcbGKYwhyVgtzooV5XCpOQTLhphK5wiKB0mQW6tRV17lLk_zdsLkjRXo-DErxrH3iSc_521j5vjnFq3j_07uCXs0uKL8U687T9mOq_bYwxsEhXvsfjGE3veZ_lZTaaPWUhkt_v2KGghUXnu-qnwAiB-tvW_p9I0XP1b8SDeaX681_0Kc2Pywrq4HNaePUh3ojSbt56d9JvrmGTs__nx2eBIN9RkilFI2kQWtDVgUaulyLRFTBJcL76XL0JoccBkLjTpxaMjRdFQ9EHPlnYcYvRHP2W5VV-4l42GTKFKH1mNwFwyA0aED2iwzUidJqmZsMeJU4kBeTjU0fpXdJiZWZQC5JJDLAeQZ-zD1-N0Td_xDdp_wmOQGKGbsYFSFcrDsTRk8UAg_ZshC87upOdgkBVp05eo2yNA-Oogsg8yLXnOmd4-aN2PZlk5NAsT3vd1SrS873u9UiSQ46K_uHu1r9oDm1KfaHLDd5qp1b4LD1Ji3naX8BdP_Edg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ-LjgY-NQWGAkXhBIm3qOB9-RBujhaZCqJP2FtlnW1SgBK3JHvjr8SVptE4T4i2Sz4mt31189p1_B_BOmjBDOY08Ai4NBEoeqETzIOLWb8S4iQ3SOWS-TGbn4stFfLEHH4a7MNbaNvnMjumxjeWbChs6KptkiXdmiLD0Tux3FWl3W2uIGYi4S-jgxBkbJnwblAzlZJXPKYtLjrm3bR5S8ZyIIkKCi531qC2wcpuveTNl8toadPYI8u3ou9STn-Om1mP8c4PY8X-n9xge9s4o-9hpzxPYs-UBPLhGUXgAd_M--H4IalFRcaPGUCEt9u2SGghWVjk2L52HiJ2unWvo_I3l3-fsVNWKXa0V-0ys2OykKq96RaePUiXojSL9Z8suF33zFM7PPq1OZkFfoSFAIUQdGK6U5gYjObWZEogJcptFzgmbotEZx2kYKVSxRU2upqX6gZhJZx0P0enoCPbLqrTPgXlAo8SicegdBs25Vr4DmjTVQsVxIkcw2eJUYE9fTlU0fhXtNiaUhQe5IJCLHuQRvB96_O6oO_4he0h4DHI9FCM43qpC0dv2pvA-KPe_Zp765rdDs7dKCrWo0laNl6GdtBeZeplnneYM795q3gjSHZ0aBIjxe7elXP9omb8TGcXeRX9x-2jfwL3ZKl8Ui_ny60u4T_PrEm-OYb--bOwr7z7V-nVrNX8BUU4VKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+Prediction+of+Infant+Diffusion+MRI+Data+via+Graph+Convolutional+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Hong%2C+Yoonmi&rft.au=Kim%2C+Jaeil&rft.au=Chen%2C+Geng&rft.au=Lin%2C+Weili&rft.date=2019-12-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=38&rft.issue=12&rft.spage=2717&rft.epage=2725&rft_id=info:doi/10.1109%2FTMI.2019.2911203&rft_id=info%3Apmid%2F30990424&rft.externalDocID=PMC6935161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |