Longitudinal Prediction of Infant Diffusion MRI Data via Graph Convolutional Adversarial Networks

Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 38; no. 12; pp. 2717 - 2725
Main Authors Hong, Yoonmi, Kim, Jaeil, Chen, Geng, Lin, Weili, Yap, Pew-Thian, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2019.2911203

Cover

Abstract Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data.
AbstractList Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data.
Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data.Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data.
Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in longitudinal prediction of infant brain diffusion MRI data.
Author Shen, Dinggang
Chen, Geng
Lin, Weili
Yap, Pew-Thian
Kim, Jaeil
Hong, Yoonmi
Author_xml – sequence: 1
  givenname: Yoonmi
  orcidid: 0000-0003-2416-8249
  surname: Hong
  fullname: Hong, Yoonmi
  email: yoonmi_hong@med.unc.edu
  organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 2
  givenname: Jaeil
  orcidid: 0000-0002-9799-1773
  surname: Kim
  fullname: Kim, Jaeil
  organization: School of Computer Science and Engineering, Kyungpook National University, Daegu, South Korea
– sequence: 3
  givenname: Geng
  orcidid: 0000-0001-8350-6581
  surname: Chen
  fullname: Chen, Geng
  organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 4
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
  organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 5
  givenname: Pew-Thian
  orcidid: 0000-0003-1489-2102
  surname: Yap
  fullname: Yap, Pew-Thian
  email: ptyap@med.unc.edu
  organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 6
  givenname: Dinggang
  orcidid: 0000-0002-7934-5698
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30990424$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEcxYNU7LZ6FwQZ8OJl1vyYzE4uQtlqXdiqSAVv4TuZb9rU2WSbzKz435tht0V78JSQfN7j8d4JOfLBIyEvGZ0zRtW7q8vVnFOm5lwxxql4QmZMyqbksvpxRGaUL5qS0pofk5OUbilllaTqGTkWVCla8WpGYB38tRvGznnoi68RO2cGF3wRbLHyFvxQnDtrxzS9XX5bFecwQLFzUFxE2N4Uy-B3oR8nSdafdTuMCaLL9884_ArxZ3pOnlroE744nKfk-8cPV8tP5frLxWp5ti5NVVVD2XGAlndGKIYNVMbUhmMjrK1wYbq24YZRAQYkmpYJtUCpRG0aZdFyamwrTsn7ve92bDfYGfRDhF5vo9tA_K0DOP3vj3c3-jrsdK2EZDXLBm8PBjHcjZgGvXHJYN-DxzAmzTnLhfIFkxl98wi9DWPMDWRKcN40GZuo138neohy334G6j1gYkgpotXGDTB1mQO6XjOqp5l1nllPM-vDzFlIHwnvvf8jebWXOER8wJtasZpK8Qe1D7R2
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_neunet_2020_01_007
crossref_primary_10_1145_3503043
crossref_primary_10_1109_TMI_2020_2971730
crossref_primary_10_1016_j_ymeth_2021_06_008
crossref_primary_10_1155_2022_4438251
crossref_primary_10_1016_j_media_2025_103541
crossref_primary_10_1016_j_media_2024_103261
crossref_primary_10_1007_s00521_023_08508_x
crossref_primary_10_1155_2021_4645544
crossref_primary_10_1016_j_media_2019_06_010
crossref_primary_10_1016_j_mlwa_2022_100401
crossref_primary_10_1162_netn_a_00171
crossref_primary_10_1016_j_media_2023_102742
crossref_primary_10_1109_TMI_2022_3225083
crossref_primary_10_1162_imag_a_00215
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_3390_s21144758
Cites_doi 10.1007/978-3-642-23629-7_80
10.1109/CVPR.2017.613
10.1109/TMI.2011.2142189
10.2214/ajr.182.2.1820367
10.1109/TCYB.2018.2797905
10.1038/srep37847
10.1109/ICCV.2017.244
10.1109/CVPR.2016.90
10.1109/CVPR.2017.632
10.1109/CVPR.2016.89
10.1007/978-3-319-66182-7_6
10.1109/TBME.2018.2814538
10.1007/978-3-319-28194-0_24
10.1109/TPAMI.2007.1115
10.1109/TMI.2017.2708987
10.1016/j.neuroimage.2018.03.042
10.1002/hbm.23555
10.1109/JSTSP.2017.2726981
10.1007/978-3-319-66182-7_72
10.1109/CVPR.2015.7298965
10.1093/cercor/bhs265
10.1109/MSP.2017.2693418
10.1176/appi.ajp.2010.09101492
10.1016/j.acha.2010.04.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2019.2911203
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2725
ExternalDocumentID PMC6935161
30990424
10_1109_TMI_2019_2911203
8691605
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: NS093842; MH117943; EB006733; EB009634; AG041721; MH100217
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB022880
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIMH NIH HHS
  grantid: R01 MH117943
– fundername: NINDS NIH HHS
  grantid: R01 NS093842
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c444t-d2aab2dc391e8a4cc6c2e83ff4e7cdb82c103aca5ecb1397e5936c89fef20cfb3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 13:49:39 EDT 2025
Sat Sep 27 22:57:44 EDT 2025
Mon Jun 30 03:38:20 EDT 2025
Thu Apr 03 07:07:09 EDT 2025
Tue Jul 01 03:16:02 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Wed Aug 27 02:30:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-d2aab2dc391e8a4cc6c2e83ff4e7cdb82c103aca5ecb1397e5936c89fef20cfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9799-1773
0000-0003-2416-8249
0000-0003-1489-2102
0000-0001-8350-6581
0000-0002-7934-5698
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6935161
PMID 30990424
PQID 2322887275
PQPubID 85460
PageCount 9
ParticipantIDs crossref_primary_10_1109_TMI_2019_2911203
pubmed_primary_30990424
crossref_citationtrail_10_1109_TMI_2019_2911203
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6935161
proquest_journals_2322887275
ieee_primary_8691605
proquest_miscellaneous_2210272715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref36
defferrard (ref11) 2016
ref31
ref30
ref32
luo (ref22) 2016
ref2
ref1
ref17
ronneberger (ref24) 2015
ref38
ref16
fan (ref29) 2018
ref18
henaff (ref10) 2015
goodfellow (ref13) 2014
yu (ref23) 2015
radford (ref14) 2015
ref26
ref25
ref20
ghazi (ref19) 2018
ref21
he (ref28) 2016
denton (ref15) 2015
ref27
çiçek (ref33) 2016
ref8
ref7
ref4
ref3
levie (ref37) 2017
ref6
kumar (ref39) 2010
ref5
bruna (ref9) 2013
References_xml – ident: ref4
  doi: 10.1007/978-3-642-23629-7_80
– ident: ref7
  doi: 10.1109/CVPR.2017.613
– start-page: 1189
  year: 2010
  ident: ref39
  article-title: Self-paced learning for latent variable models
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 424
  year: 2016
  ident: ref33
  article-title: $3^{D}$ U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref35
  doi: 10.1109/TMI.2011.2142189
– ident: ref34
  doi: 10.2214/ajr.182.2.1820367
– start-page: 2672
  year: 2014
  ident: ref13
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/TCYB.2018.2797905
– year: 2015
  ident: ref14
  publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR
– year: 2018
  ident: ref19
  publication-title: Robust training of recurrent neural networks to handle missing data for disease progression modeling
– ident: ref32
  doi: 10.1038/srep37847
– ident: ref17
  doi: 10.1109/ICCV.2017.244
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– ident: ref16
  doi: 10.1109/CVPR.2017.632
– year: 2015
  ident: ref10
  publication-title: Deep convolutional networks on graph-structured data
– ident: ref38
  doi: 10.1109/CVPR.2016.89
– ident: ref31
  doi: 10.1007/978-3-319-66182-7_6
– ident: ref8
  doi: 10.1109/TBME.2018.2814538
– year: 2013
  ident: ref9
  publication-title: Spectral networks and locally connected networks on graphs
– start-page: 1486
  year: 2015
  ident: ref15
  article-title: Deep generative image models using a laplacian pyramid of adversarial networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1007/978-3-319-28194-0_24
– start-page: 234
  year: 2015
  ident: ref24
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– year: 2015
  ident: ref23
  publication-title: Multi-scale context aggregation by dilated convolutions
– start-page: 3844
  year: 2016
  ident: ref11
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref37
  publication-title: Cayleynets Graph convolutional neural networks with complex rational spectral filters
– ident: ref25
  doi: 10.1109/TPAMI.2007.1115
– ident: ref18
  doi: 10.1109/TMI.2017.2708987
– ident: ref3
  doi: 10.1016/j.neuroimage.2018.03.042
– start-page: 4898
  year: 2016
  ident: ref22
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1002/hbm.23555
– ident: ref36
  doi: 10.1109/JSTSP.2017.2726981
– ident: ref21
  doi: 10.1007/978-3-319-66182-7_72
– start-page: 630
  year: 2016
  ident: ref28
  article-title: Identity mappings in deep residual networks
  publication-title: Proc Eur Conf Comput Vis
– ident: ref26
  doi: 10.1109/CVPR.2015.7298965
– year: 2018
  ident: ref29
  publication-title: Birnet Brain image registration using dual-supervised fully convolutional networks
– ident: ref2
  doi: 10.1093/cercor/bhs265
– ident: ref12
  doi: 10.1109/MSP.2017.2693418
– ident: ref1
  doi: 10.1176/appi.ajp.2010.09101492
– ident: ref20
  doi: 10.1016/j.acha.2010.04.005
SSID ssj0014509
Score 2.434507
Snippet Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2717
SubjectTerms adversarial learning
Artificial neural networks
Chebyshev approximation
Convolution
Correlation analysis
Diffusion
diffusion MRI
Diffusion waves
early brain development
Generators
Graph CNN
Harnesses
Laplace equations
longitudinal prediction
Longitudinal studies
Loss measurement
Magnetic resonance imaging
Mapping
Missing data
Multiscale analysis
Neural networks
Training
Title Longitudinal Prediction of Infant Diffusion MRI Data via Graph Convolutional Adversarial Networks
URI https://ieeexplore.ieee.org/document/8691605
https://www.ncbi.nlm.nih.gov/pubmed/30990424
https://www.proquest.com/docview/2322887275
https://www.proquest.com/docview/2210272715
https://pubmed.ncbi.nlm.nih.gov/PMC6935161
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeCwUZiQsS2c2OnYePqKV0EakQaqXeIntsqytQgrpJD_x6PHmpW1WIWySPE1vfTDz2jL9h7L2ycY5qKQICPoskKoh0aiAS4MJGDGxikc4hi9P05Fx-vUgudtjH6S6Mc65LPnNzeuxi-bbGlo7KFnkanBkiLL2XZaq_qzVFDGTSp3MAMcbGKYwhyVgtzooV5XCpOQTLhphK5wiKB0mQW6tRV17lLk_zdsLkjRXo-DErxrH3iSc_521j5vjnFq3j_07uCXs0uKL8U687T9mOq_bYwxsEhXvsfjGE3veZ_lZTaaPWUhkt_v2KGghUXnu-qnwAiB-tvW_p9I0XP1b8SDeaX681_0Kc2Pywrq4HNaePUh3ojSbt56d9JvrmGTs__nx2eBIN9RkilFI2kQWtDVgUaulyLRFTBJcL76XL0JoccBkLjTpxaMjRdFQ9EHPlnYcYvRHP2W5VV-4l42GTKFKH1mNwFwyA0aED2iwzUidJqmZsMeJU4kBeTjU0fpXdJiZWZQC5JJDLAeQZ-zD1-N0Td_xDdp_wmOQGKGbsYFSFcrDsTRk8UAg_ZshC87upOdgkBVp05eo2yNA-Oogsg8yLXnOmd4-aN2PZlk5NAsT3vd1SrS873u9UiSQ46K_uHu1r9oDm1KfaHLDd5qp1b4LD1Ji3naX8BdP_Edg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ-LjgY-NQWGAkXhBIm3qOB9-RBujhaZCqJP2FtlnW1SgBK3JHvjr8SVptE4T4i2Sz4mt31189p1_B_BOmjBDOY08Ai4NBEoeqETzIOLWb8S4iQ3SOWS-TGbn4stFfLEHH4a7MNbaNvnMjumxjeWbChs6KptkiXdmiLD0Tux3FWl3W2uIGYi4S-jgxBkbJnwblAzlZJXPKYtLjrm3bR5S8ZyIIkKCi531qC2wcpuveTNl8toadPYI8u3ou9STn-Om1mP8c4PY8X-n9xge9s4o-9hpzxPYs-UBPLhGUXgAd_M--H4IalFRcaPGUCEt9u2SGghWVjk2L52HiJ2unWvo_I3l3-fsVNWKXa0V-0ys2OykKq96RaePUiXojSL9Z8suF33zFM7PPq1OZkFfoSFAIUQdGK6U5gYjObWZEogJcptFzgmbotEZx2kYKVSxRU2upqX6gZhJZx0P0enoCPbLqrTPgXlAo8SicegdBs25Vr4DmjTVQsVxIkcw2eJUYE9fTlU0fhXtNiaUhQe5IJCLHuQRvB96_O6oO_4he0h4DHI9FCM43qpC0dv2pvA-KPe_Zp765rdDs7dKCrWo0laNl6GdtBeZeplnneYM795q3gjSHZ0aBIjxe7elXP9omb8TGcXeRX9x-2jfwL3ZKl8Ui_ny60u4T_PrEm-OYb--bOwr7z7V-nVrNX8BUU4VKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+Prediction+of+Infant+Diffusion+MRI+Data+via+Graph+Convolutional+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Hong%2C+Yoonmi&rft.au=Kim%2C+Jaeil&rft.au=Chen%2C+Geng&rft.au=Lin%2C+Weili&rft.date=2019-12-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=38&rft.issue=12&rft.spage=2717&rft.epage=2725&rft_id=info:doi/10.1109%2FTMI.2019.2911203&rft_id=info%3Apmid%2F30990424&rft.externalDocID=PMC6935161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon