A spatially adaptive multi-resolution generative algorithm: Application to simulating flood wave propagation

We propose a statistical model suitable for large spatio-temporal data sets exhibiting complex patterns such as simulated by physics-based hydraulic models over high resolution (HR) 2D meshes. Although necessary for impact studies such as urban flood hazard assessment, their long computation times l...

Full description

Saved in:
Bibliographic Details
Published inWeather and climate extremes Vol. 41; p. 100580
Main Authors Carreau, Julie, Naveau, Philippe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2212-0947
2212-0947
DOI10.1016/j.wace.2023.100580

Cover

Abstract We propose a statistical model suitable for large spatio-temporal data sets exhibiting complex patterns such as simulated by physics-based hydraulic models over high resolution (HR) 2D meshes. Although necessary for impact studies such as urban flood hazard assessment, their long computation times limit their applicability leading to the development of statistical models that may emulate them quickly. Our model draws from the strengths of multi-resolution analysis and relies on an extension of the lifting scheme, a flexible implementation of discrete wavelet transforms, for spatio-temporal data. The extended lifting scheme exploits the idea that dominant spatial features, that may be identified with clustering, remain present through time. An easily interpretable non-parametric representation can be derived from the lifting scheme by combining a smoothed version of the data (obtained by simple averaging) with details (given by local regression residuals). A generative algorithm is built by introducing the information provided by a low resolution model, whose computation times are orders of magnitude smaller, yielding a downscaling model. This downscaling model assumes that sufficiently representative HR spatial patterns can be inferred from the training set. Our model is applied to a 2D dam break experiment using a synthetic urban configuration and to a field-scale test case simulating the propagation of a dike break flood wave into a Sacramento urban area. A comparison, carried out with spatial interpolation schemes and with a variant of our model based on principal component analysis, shows that the spatio-temporal lifting scheme based model is better at reproducing extreme events.
AbstractList We propose a statistical model suitable for large spatio-temporal data sets exhibiting complex patterns such as simulated by physics-based hydraulic models over high resolution (HR) 2D meshes. Although necessary for impact studies such as urban flood hazard assessment, their long computation times limit their applicability leading to the development of statistical models that may emulate them quickly. Our model draws from the strengths of multi-resolution analysis and relies on an extension of the lifting scheme, a flexible implementation of discrete wavelet transforms, for spatio-temporal data. The extended lifting scheme exploits the idea that dominant spatial features, that may be identified with clustering, remain present through time. An easily interpretable non-parametric representation can be derived from the lifting scheme by combining a smoothed version of the data (obtained by simple averaging) with details (given by local regression residuals). A generative algorithm is built by introducing the information provided by a low resolution model, whose computation times are orders of magnitude smaller, yielding a downscaling model. This downscaling model assumes that sufficiently representative HR spatial patterns can be inferred from the training set. Our model is applied to a 2D dam break experiment using a synthetic urban configuration and to a field-scale test case simulating the propagation of a dike break flood wave into a Sacramento urban area. A comparison, carried out with spatial interpolation schemes and with a variant of our model based on principal component analysis, shows that the spatio-temporal lifting scheme based model is better at reproducing extreme events.
ArticleNumber 100580
Author Carreau, Julie
Naveau, Philippe
Author_xml – sequence: 1
  givenname: Julie
  orcidid: 0000-0002-0935-9138
  surname: Carreau
  fullname: Carreau, Julie
  email: julie.carreau@polymtl.ca
  organization: Department of Mathematics and Applied Engineering, Polytechnique Montreal, Montreal, Canada
– sequence: 2
  givenname: Philippe
  surname: Naveau
  fullname: Naveau, Philippe
  organization: Laboratoire des Sciences du Climat et de l’Environnement, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
BackLink https://hal.science/hal-04157565$$DView record in HAL
BookMark eNqNkc1u3CAUhVGUSknTvEBX3nbhKWBs7KqbUdQ0kUbqJnt0zY_DiDEWMDOaty9jV1WSRZQVcDjncPXxGV2OftQIfSV4RTBpvm9XR5B6RTGtsoDrFl-ga0oJLXHH-OWL_RW6jXGLMSa8q-qWXSO3LuIEyYJzpwIUTMkedLHbu2TLoKN3-2T9WAx61AHmO3CDDzY9734U62lyVsLsSL6INufyaRwK47xXxRGyfwp-gmE2fUGfDLiob_-tN-jp_tfT3UO5-fP78W69KSVjLJVSS95I0vQUuAFDmOStwszQuuOMK9kDVYYy3RFmKmNa2jY9a1TFGJG8bqsb9LjUKg9bMQW7g3ASHqyYBR8GASFZ6bTQLcWqp4pLKllNWQ-dwoAb0pFK0R7nrmrp2o8TnI4Z0_9CgsUZv9iKM35xxi8W_Dn1bUk9g3s1wMN6I84aZqTmdVMfSPa2i1cGH2PQRkibZlwpgHXvP0PfRD80288lpPMPHKwOIkqrR6mVDVqmzMi-F_8LxznCrA
CitedBy_id crossref_primary_10_1016_j_energy_2023_129350
crossref_primary_10_2166_wcc_2024_706
crossref_primary_10_1080_17538947_2024_2323180
crossref_primary_10_1007_s10462_024_10764_9
crossref_primary_10_1016_j_jenvman_2025_124238
Cites_doi 10.1007/s00382-020-05558-y
10.2166/nh.2020.165
10.1016/j.advwatres.2020.103821
10.1007/BF02476026
10.1137/S0036141095289051
10.1007/s00382-017-3580-6
10.1016/j.advwatres.2017.02.009
10.1016/j.spasta.2018.08.006
10.5194/hess-22-3175-2018
10.1002/2017WR020758
10.1109/QoMEX.2012.6263880
10.1098/rsta.2020.0093
10.1029/2021GL094737
10.18637/jss.v027.i05
10.1016/j.advwatres.2019.02.007
10.1029/2022WR032248
10.1007/s00382-021-05869-8
10.5194/egusphere-egu21-8844
10.1175/JCLI-D-14-00059.1
10.1007/978-1-84882-312-9
10.1016/j.jhydrol.2021.126373
10.1111/rssc.12542
10.1007/s00382-015-2647-5
ContentType Journal Article
Copyright 2023 The Authors
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Authors
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOA
DOI 10.1016/j.wace.2023.100580
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2212-0947
ExternalDocumentID oai_doaj_org_article_e820db2d7c2c4524ba9d0a061913d2b0
10.1016/j.wace.2023.100580
oai:HAL:hal-04157565v1
10_1016_j_wace_2023_100580
S2212094723000336
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEKER
AEXQZ
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FNPLU
GBLVA
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
Q38
RIG
ROL
SDF
SSZ
AAFWJ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
~HD
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c444t-cec76c16b2a7faf14c78d04f259747dcba2df24e914f3ff8286b46d3441c7583
IEDL.DBID DOA
ISSN 2212-0947
IngestDate Fri Oct 03 12:52:21 EDT 2025
Sun Oct 26 03:49:52 EDT 2025
Tue Oct 14 20:28:52 EDT 2025
Wed Oct 01 02:51:21 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 25 20:56:26 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spatial pattern types
Spatial partitioning
Urban flood hazard
Spatio-temporal lifting scheme
Feed-forward neural network
Extreme water depths and discharges
High resolution 2D meshes
Language English
License This is an open access article under the CC BY-NC-ND license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-cec76c16b2a7faf14c78d04f259747dcba2df24e914f3ff8286b46d3441c7583
ORCID 0000-0002-0935-9138
OpenAccessLink https://doaj.org/article/e820db2d7c2c4524ba9d0a061913d2b0
ParticipantIDs doaj_primary_oai_doaj_org_article_e820db2d7c2c4524ba9d0a061913d2b0
unpaywall_primary_10_1016_j_wace_2023_100580
hal_primary_oai_HAL_hal_04157565v1
crossref_citationtrail_10_1016_j_wace_2023_100580
crossref_primary_10_1016_j_wace_2023_100580
elsevier_sciencedirect_doi_10_1016_j_wace_2023_100580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
2023-09
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Weather and climate extremes
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Vrac, Friederichs (b30) 2015; 28
Daubechies (b7) 1992
Rezvov, V., Krinitskiy, M., Gavrikov, A., Gulev, S., 2021. Comparison of AI-Based Approaches for Statistical Downscaling of Surface Wind Fields in the North Atlantic. In: VI International Conference Information Technologies and High-Performance Computing. ITHPC-2021, p. September.
Venables, Ripley (b28) 2002
Sweldens (b27) 1998; 29
Zheng, N., Xue, J., 2009. Statistical Learning and Pattern Analysis for Image and Video Processing, first ed. In: Advances in Computer Vision and Pattern Recognition, Springer London.
Kashinath, Mustafa, Albert, Wu, Jiang, Esmaeilzadeh, Azizzadenesheli, Wang, Chattopadhyay, Singh, Manepalli, Chirila, Yu, Walters, White, Xiao, Tchelepi, Marcus, Anandkumar, Hassanzadeh, Prabhat (b16) 2021; 379
Park, Oh (b24) 2022; 71
Ayar, Vrac, Bastin, Carreau, Déqué, Gallardo (b1) 2016; 46
Korhonen, J., You, J., 2012. Peak signal-to-noise ratio revisited: Is simple beautiful?. In: 2012 Fourth International Workshop on Quality of Multimedia Experience. pp. 37–38.
Hayfield, Racine (b13) 2008; 27
Cannon (b4) 2018; 50
Kumar, Maheswaran, Agarwal, Sivakumar (b19) 2021; 599
Carreau, Guinot (b5) 2021; 147
Dong, Shi, Xu (b9) 2008
Caillaud, Somot, Alias (b3) 2021; 56
Guinot, Sanders, Schubert (b12) 2017; 103
Carreau, Naveau, Neppel (b6) 2017; 53
Jensen, La Cour-Harbo (b14) 2001
Kaaniche, Pesquet, Benazza-Benyahia, Pesquet-Popescu (b15) 2010
Daubechies, Sweldens (b8) 1998; 4
Sanders, Schubert (b26) 2019; 126
Nourani, Farshbaf, Adarsh (b22) 2020; 51
Nychka, Hammerling, Krock, Wiens (b23) 2018; 28
Wu, Teufel, Sushama, Belair, Sun (b31) 2021; 48
François, Thao, Vrac (b11) 2021; 57
Mallat (b20) 1999
Montero, Fernàndez-Avilés, Mateu (b21) 2015
Bishop (b2) 2006
(b17) 1990
Fraehr, Wang, Wu, Nathan (b10) 2022
Vrac (b29) 2018; 22
Ayar (10.1016/j.wace.2023.100580_b1) 2016; 46
Carreau (10.1016/j.wace.2023.100580_b6) 2017; 53
Daubechies (10.1016/j.wace.2023.100580_b7) 1992
Dong (10.1016/j.wace.2023.100580_b9) 2008
Wu (10.1016/j.wace.2023.100580_b31) 2021; 48
Sanders (10.1016/j.wace.2023.100580_b26) 2019; 126
Bishop (10.1016/j.wace.2023.100580_b2) 2006
Venables (10.1016/j.wace.2023.100580_b28) 2002
10.1016/j.wace.2023.100580_b25
Vrac (10.1016/j.wace.2023.100580_b29) 2018; 22
Montero (10.1016/j.wace.2023.100580_b21) 2015
Kumar (10.1016/j.wace.2023.100580_b19) 2021; 599
Jensen (10.1016/j.wace.2023.100580_b14) 2001
François (10.1016/j.wace.2023.100580_b11) 2021; 57
Guinot (10.1016/j.wace.2023.100580_b12) 2017; 103
Cannon (10.1016/j.wace.2023.100580_b4) 2018; 50
Hayfield (10.1016/j.wace.2023.100580_b13) 2008; 27
Kaaniche (10.1016/j.wace.2023.100580_b15) 2010
(10.1016/j.wace.2023.100580_b17) 1990
Daubechies (10.1016/j.wace.2023.100580_b8) 1998; 4
Nychka (10.1016/j.wace.2023.100580_b23) 2018; 28
Fraehr (10.1016/j.wace.2023.100580_b10) 2022
10.1016/j.wace.2023.100580_b18
Mallat (10.1016/j.wace.2023.100580_b20) 1999
Park (10.1016/j.wace.2023.100580_b24) 2022; 71
10.1016/j.wace.2023.100580_b32
Nourani (10.1016/j.wace.2023.100580_b22) 2020; 51
Sweldens (10.1016/j.wace.2023.100580_b27) 1998; 29
Vrac (10.1016/j.wace.2023.100580_b30) 2015; 28
Kashinath (10.1016/j.wace.2023.100580_b16) 2021; 379
Caillaud (10.1016/j.wace.2023.100580_b3) 2021; 56
Carreau (10.1016/j.wace.2023.100580_b5) 2021; 147
References_xml – volume: 51
  start-page: 456
  year: 2020
  end-page: 469
  ident: b22
  article-title: Spatial downscaling of radar-derived rainfall field by two-dimensional wavelet transform
  publication-title: Hydrol. Res.
– volume: 56
  start-page: 1717
  year: 2021
  end-page: 1752
  ident: b3
  article-title: Modelling Mediterranean heavy precipitation events at climate scale: An object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model
  publication-title: Clim. Dynam.
– volume: 28
  start-page: 218
  year: 2015
  end-page: 237
  ident: b30
  article-title: Multivariable - intervariable, spatial and temporal - bias correction
  publication-title: J. Clim.
– volume: 53
  start-page: 4407
  year: 2017
  end-page: 4426
  ident: b6
  article-title: Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation
  publication-title: Water Resour. Res.
– year: 2015
  ident: b21
  article-title: Spatial and Spatio-Temporal Geostatistical Modeling and Kriging
– year: 2022
  ident: b10
  article-title: Upskilling low-fidelity hydrodynamic models of flood inundation through spatial analysis and Gaussian process learning
  publication-title: Water Resour. Res.
– year: 2006
  ident: b2
  publication-title: Pattern Recognition and Machine Learning
– reference: Zheng, N., Xue, J., 2009. Statistical Learning and Pattern Analysis for Image and Video Processing, first ed. In: Advances in Computer Vision and Pattern Recognition, Springer London.
– volume: 126
  start-page: 79
  year: 2019
  end-page: 95
  ident: b26
  article-title: PRIMo: Parallel raster inundation model
  publication-title: Adv. Water Resour.
– volume: 57
  start-page: 3323
  year: 2021
  end-page: 3353
  ident: b11
  article-title: Adjusting spatial dependence of climate model outputs with cycle-consistent adversarial networks
  publication-title: Clim. Dynam.
– volume: 46
  start-page: 1301
  year: 2016
  end-page: 1329
  ident: b1
  article-title: Intercomparison of statistical and dynamical downscaling models under the EURO-and MED-CORDEX initiative framework: Present climate evaluations
  publication-title: Clim. Dynam.
– year: 1992
  ident: b7
  article-title: Ten Lectures on Wavelets
– volume: 22
  start-page: 3175
  year: 2018
  end-page: 3196
  ident: b29
  article-title: Multivariate bias adjustment of high-dimensional climate simulations: The rank resampling for distributions and dependences (R
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 4
  start-page: 247
  year: 1998
  end-page: 269
  ident: b8
  article-title: Factoring wavelet transforms into lifting steps
  publication-title: J. Fourier Anal. Appl.
– volume: 379
  year: 2021
  ident: b16
  article-title: Physics-informed machine learning: Case studies for weather and climate modelling
  publication-title: Phil. Trans. R. Soc. A
– start-page: 1298
  year: 2010
  end-page: 1301
  ident: b15
  article-title: Two-dimensional non separable adaptive lifting scheme for still and stereo image coding
  publication-title: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 28
  start-page: 21
  year: 2018
  end-page: 38
  ident: b23
  article-title: Modeling and emulation of nonstationary Gaussian fields
  publication-title: Spat. Stat.
– reference: Rezvov, V., Krinitskiy, M., Gavrikov, A., Gulev, S., 2021. Comparison of AI-Based Approaches for Statistical Downscaling of Surface Wind Fields in the North Atlantic. In: VI International Conference Information Technologies and High-Performance Computing. ITHPC-2021, p. September.
– volume: 71
  start-page: 467
  year: 2022
  end-page: 490
  ident: b24
  article-title: Lifting scheme for streamflow data in river networks
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– volume: 48
  year: 2021
  ident: b31
  article-title: Deep learning-based super-resolution climate simulator-emulator framework for urban heat studies
  publication-title: Geophys. Res. Lett.
– start-page: 1392
  year: 2008
  end-page: 1395
  ident: b9
  article-title: Signal-adapted directional lifting scheme for image compression
  publication-title: 2008 IEEE International Symposium on Circuits and Systems
– year: 2002
  ident: b28
  article-title: Modern Applied Statistics with S
– volume: 599
  year: 2021
  ident: b19
  article-title: Intercomparison of downscaling methods for daily precipitation with emphasis on wavelet-based hybrid models
  publication-title: J. Hydrol.
– volume: 147
  year: 2021
  ident: b5
  article-title: A PCA spatial pattern based artificial neural network downscaling model for urban flood hazard assessment
  publication-title: Adv. Water Resour.
– year: 2001
  ident: b14
  article-title: Ripples in Mathematics : The Discrete Wavelet Transform
– start-page: I
  year: 1999
  end-page: XXIV, 1–637
  ident: b20
  article-title: A Wavelet Tour of Signal Processing
– volume: 29
  start-page: 511
  year: 1998
  end-page: 546
  ident: b27
  article-title: The lifting scheme: A construction of second generation wavelets
  publication-title: SIAM J. Math. Anal.
– reference: Korhonen, J., You, J., 2012. Peak signal-to-noise ratio revisited: Is simple beautiful?. In: 2012 Fourth International Workshop on Quality of Multimedia Experience. pp. 37–38.
– volume: 27
  start-page: 1
  year: 2008
  end-page: 32
  ident: b13
  article-title: Nonparametric econometrics: The np package
  publication-title: J. Stat. Softw.
– year: 1990
  ident: b17
  publication-title: Finding Groups in Data: An Introduction to Cluster Analysis
– volume: 50
  start-page: 31
  year: 2018
  end-page: 49
  ident: b4
  article-title: Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables
  publication-title: Clim. Dynam.
– volume: 103
  start-page: 16
  year: 2017
  end-page: 31
  ident: b12
  article-title: Dual integral porosity shallow water model for urban flood modelling
  publication-title: Adv. Water Resour.
– volume: 56
  start-page: 1717
  year: 2021
  ident: 10.1016/j.wace.2023.100580_b3
  article-title: Modelling Mediterranean heavy precipitation events at climate scale: An object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model
  publication-title: Clim. Dynam.
  doi: 10.1007/s00382-020-05558-y
– volume: 51
  start-page: 456
  issue: 3
  year: 2020
  ident: 10.1016/j.wace.2023.100580_b22
  article-title: Spatial downscaling of radar-derived rainfall field by two-dimensional wavelet transform
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2020.165
– volume: 147
  year: 2021
  ident: 10.1016/j.wace.2023.100580_b5
  article-title: A PCA spatial pattern based artificial neural network downscaling model for urban flood hazard assessment
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103821
– volume: 4
  start-page: 247
  issue: 3
  year: 1998
  ident: 10.1016/j.wace.2023.100580_b8
  article-title: Factoring wavelet transforms into lifting steps
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/BF02476026
– start-page: 1392
  year: 2008
  ident: 10.1016/j.wace.2023.100580_b9
  article-title: Signal-adapted directional lifting scheme for image compression
– volume: 29
  start-page: 511
  issue: 2
  year: 1998
  ident: 10.1016/j.wace.2023.100580_b27
  article-title: The lifting scheme: A construction of second generation wavelets
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141095289051
– volume: 50
  start-page: 31
  issue: 1–2
  year: 2018
  ident: 10.1016/j.wace.2023.100580_b4
  article-title: Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables
  publication-title: Clim. Dynam.
  doi: 10.1007/s00382-017-3580-6
– volume: 103
  start-page: 16
  year: 2017
  ident: 10.1016/j.wace.2023.100580_b12
  article-title: Dual integral porosity shallow water model for urban flood modelling
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.02.009
– volume: 28
  start-page: 21
  year: 2018
  ident: 10.1016/j.wace.2023.100580_b23
  article-title: Modeling and emulation of nonstationary Gaussian fields
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2018.08.006
– volume: 22
  start-page: 3175
  issue: 6
  year: 2018
  ident: 10.1016/j.wace.2023.100580_b29
  article-title: Multivariate bias adjustment of high-dimensional climate simulations: The rank resampling for distributions and dependences (R2D2) bias correction
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-3175-2018
– volume: 53
  start-page: 4407
  issue: 5
  year: 2017
  ident: 10.1016/j.wace.2023.100580_b6
  article-title: Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR020758
– year: 2015
  ident: 10.1016/j.wace.2023.100580_b21
– start-page: 1298
  year: 2010
  ident: 10.1016/j.wace.2023.100580_b15
  article-title: Two-dimensional non separable adaptive lifting scheme for still and stereo image coding
– ident: 10.1016/j.wace.2023.100580_b18
  doi: 10.1109/QoMEX.2012.6263880
– volume: 379
  issue: 2194
  year: 2021
  ident: 10.1016/j.wace.2023.100580_b16
  article-title: Physics-informed machine learning: Case studies for weather and climate modelling
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0093
– volume: 48
  issue: 19
  year: 2021
  ident: 10.1016/j.wace.2023.100580_b31
  article-title: Deep learning-based super-resolution climate simulator-emulator framework for urban heat studies
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL094737
– year: 2002
  ident: 10.1016/j.wace.2023.100580_b28
– year: 2006
  ident: 10.1016/j.wace.2023.100580_b2
– volume: 27
  start-page: 1
  issue: 5
  year: 2008
  ident: 10.1016/j.wace.2023.100580_b13
  article-title: Nonparametric econometrics: The np package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v027.i05
– volume: 126
  start-page: 79
  year: 2019
  ident: 10.1016/j.wace.2023.100580_b26
  article-title: PRIMo: Parallel raster inundation model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.02.007
– year: 2022
  ident: 10.1016/j.wace.2023.100580_b10
  article-title: Upskilling low-fidelity hydrodynamic models of flood inundation through spatial analysis and Gaussian process learning
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR032248
– year: 2001
  ident: 10.1016/j.wace.2023.100580_b14
– start-page: I
  year: 1999
  ident: 10.1016/j.wace.2023.100580_b20
– volume: 57
  start-page: 3323
  year: 2021
  ident: 10.1016/j.wace.2023.100580_b11
  article-title: Adjusting spatial dependence of climate model outputs with cycle-consistent adversarial networks
  publication-title: Clim. Dynam.
  doi: 10.1007/s00382-021-05869-8
– year: 1990
  ident: 10.1016/j.wace.2023.100580_b17
– ident: 10.1016/j.wace.2023.100580_b25
  doi: 10.5194/egusphere-egu21-8844
– volume: 28
  start-page: 218
  issue: 1
  year: 2015
  ident: 10.1016/j.wace.2023.100580_b30
  article-title: Multivariable - intervariable, spatial and temporal - bias correction
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-14-00059.1
– ident: 10.1016/j.wace.2023.100580_b32
  doi: 10.1007/978-1-84882-312-9
– volume: 599
  year: 2021
  ident: 10.1016/j.wace.2023.100580_b19
  article-title: Intercomparison of downscaling methods for daily precipitation with emphasis on wavelet-based hybrid models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126373
– volume: 71
  start-page: 467
  issue: 2
  year: 2022
  ident: 10.1016/j.wace.2023.100580_b24
  article-title: Lifting scheme for streamflow data in river networks
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
  doi: 10.1111/rssc.12542
– year: 1992
  ident: 10.1016/j.wace.2023.100580_b7
– volume: 46
  start-page: 1301
  issue: 3–4
  year: 2016
  ident: 10.1016/j.wace.2023.100580_b1
  article-title: Intercomparison of statistical and dynamical downscaling models under the EURO-and MED-CORDEX initiative framework: Present climate evaluations
  publication-title: Clim. Dynam.
  doi: 10.1007/s00382-015-2647-5
SSID ssj0001793584
Score 2.2952564
Snippet We propose a statistical model suitable for large spatio-temporal data sets exhibiting complex patterns such as simulated by physics-based hydraulic models...
SourceID doaj
unpaywall
hal
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100580
SubjectTerms Extreme water depths and discharges
Feed-forward neural network
High resolution 2D meshes
Sciences of the Universe
Spatial partitioning
Spatial pattern types
Spatio-temporal lifting scheme
Urban flood hazard
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGLnBBIECUAbImbhA1cRw75dZNmwoCLgypN8s_u6AsrbqMav897zlut14mxDHOy6-Xl-fP8efvEfLBaomwmGVOeJFxUznIg7zOvBVFqMtgZPyn-_2HmP3iX-fV_ICcbtfCIK0y5f4hp8dsnVrGyZvjVdOMfzKG6z65BBCNFclQdrvkNZZv-DI_ufvPInGmDyeX0T7DA9LamYHmtdEW1TJZiXyBCtUh7_VPUcZ_r5t6dIl8ycc33UrfbnTb3uuMzp-RpwlF0ulwo8_Jge9ekHZKr5EfDfa3VDu9wkxGI2Mwg0F1ijG6iELTcZ9uF8t1019efabTu4ls2i_pdXMV63p1CxqQ2k43Guwh20L-iUYvycX52cXpLEvFFDLLOe8z660UthCGaRl0KLiVtct5YHFE4azRzAXG_aTgoQwBV5cbLlwJcMnCmKJ8RQ67ZedfEyqY01Ln3DusOZ9LDQikrgEWllbnXoQRKbYeVDYJjWO9i1ZtGWW_FXpdodfV4PUR-bg7ZjXIbDxofYIvZmeJEtmxYbleqBQjygO2cYY5aZnlFeNGT1yuAb5MitIxAyeptq9V7UUcnKp58OLHEAN7155NvylsQ7kDCQj5TzEin3Yh8g8P9OY_7-WIPMGtgfP2lhz26xv_DkBSb97Hr-AvjaENuw
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegO3DiG1E0kIUQF8iUOI6dcgsTU4XYxGGTxsnyZ1fI0qpNV42_nvectFCEpnGM8-zE9rP9e_bz7xHyxmqJsJglTniRcFM4mAd5mXgrslDmwci4p3t8IsZn_PN5cd7T5OBdmJ3z--iHtdYW6SxZjgf6RQnm-Z4oAHcPyN7ZydfqG0aPY-hfMOKyvxXz74w7K08k6N9ZgO5eoCfkvVUz19drXdd_LDNHD7p4RcvITojeJT8OVq05sD__4m68XQ0ekvs92qRVpx6PyB3fPCbDYwDKs0XcT6dv6WE9BdQan56QuqJL9LGGP7um2uk5zoY0eh0mYJj3ekonkaw6vtP1ZLaYtheXH2j1-zCctjO6nF7G2GDNhAZ0j6drDfJQM5jDotBTcnr06fRwnPQBGRLLOW8T660UNhOGaRl0yLiVpUt5YNEqcdZo5gLjfpTxkIeAN9QNFy4HyGXBLsmfkUEza_xzQgVzWuqUe4dx61OpAcWUJUDL3OrUizAk2aavlO3JyjFmRq02XmnfFTarwmZVXbMOybttnnlH1XGj9EdUga0k0mzHBOg71Y9a5QEfOcOctMzygnGjRy7VAIFGWe6YgUKKjQKpHrF0SASKmt748degbTvfHldfFKYhZYIElH2VDcn7rTLeokIv_k98nwzaxcq_BEjVmlf9WPoFrQgdqw
  priority: 102
  providerName: Unpaywall
Title A spatially adaptive multi-resolution generative algorithm: Application to simulating flood wave propagation
URI https://dx.doi.org/10.1016/j.wace.2023.100580
https://hal.science/hal-04157565
https://doi.org/10.1016/j.wace.2023.100580
https://doaj.org/article/e820db2d7c2c4524ba9d0a061913d2b0
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2212-0947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793584
  issn: 2212-0947
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2212-0947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793584
  issn: 2212-0947
  databaseCode: KQ8
  dateStart: 20130901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2212-0947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793584
  issn: 2212-0947
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2212-0947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793584
  issn: 2212-0947
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 2212-0947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793584
  issn: 2212-0947
  databaseCode: IXB
  dateStart: 20130901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2212-0947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793584
  issn: 2212-0947
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2212-0947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793584
  issn: 2212-0947
  databaseCode: AKRWK
  dateStart: 20130901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAFlZcwj2qFEBewsNfrXZubW1EFSiuEWhFO1j7TVK4TpW6j_ntm1k5IL4UDl0jerNexZ7Lzze7nbwh5a5REWMxiK5yIuc4tzIO8iJ0RqS8yr2VY0z08EqMT_nWcjzdKfSEnrJcH7h_cRwchympmpWGG54xrVdpEQRQq08wyHbL1pCg3kqmwuiJxfw-3lBlD7kHJ5fDGTE_uWiqDGpksQ5ZAjpqQG1EpiPffCE53T5Elef-ynavrpWqajRC0v00eDtiRVv1vfkTuuPYxiQ4B9s4WYXWcvqN7zRQwaDh6QpqKXiBjGsa6psqqOc5tNHAIY0izB6-jkyA9Hb5TzWS2mHan559o9Wdrm3YzejE9D5W-2gn1SHanSwX9Yf6FGSl0ekqO9z8f743iobxCbDjnXWyckcKkQjMlvfIpN7KwCfcs5BjWaMWsZ9yVKfeZ9_i-uebCZgCgDGQZ2TOy1c5a95xQwaySKuHOYhX6RCrAJEUBQDEzKnHCRyRdPd3aDNLjWAGjqVccs7MaLVKjRereIhF5vz5n3gtv3Np7F4227omi2aEBXKkeXKn-mytFJF-ZvB7wR48rYKjprRd_A_5x49qj6luNbSiAIAEzX6UR-bB2n3-4oRf_44Zekgc4ZE-Je0W2usWlew0YqtM75F518OPnwU7428Dnl_EutJ0cfa9-_QbTshuI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELeAPbCXaWib1n1hTXvboiaOY6d7KwhUWOFlndQ3y_FHCQppVcIq_vvdOWmhLwjt1Tk7yfly_jn-3R0h34yWCItZZIUTES8yC36Q55EzIvF56gsZ_uleXIrRH34-zaY75HgdC4O0ys73tz49eOuupd9ps78oy_5vxjDuk0sA0ViRTOySFzwDdIJRfNOjhx8tEo_68HQZO0TYowueaXleK20wXSZLkTCQYXrIRwtUyOO_tU7tXiFhcv-uXuj7la6qR6vR6WvyqoORdNg-6QHZcfUbUg3pLRKkQf6eaqsX6MpooAxGsKvujIzOQqbpcE1Xs_mybK5uftLhw0k2beb0trwJhb3qGfXIbacrDfLgbsEBBaG3ZHJ6MjkeRV01hchwzpvIOCOFSUTBtPTaJ9zI3Mbcs7ClsKbQzHrG3SDhPvUew8sLLmwKeMnApiJ9R_bqee3eEyqY1VLH3FksOh9LDRAkz0HzqdGxE75HkrUGlekyjWPBi0qtKWXXCrWuUOuq1XqPfN_0WbR5Np6UPsKJ2UhijuzQMF_OVGckygG4sQWz0jDDM8YLPbCxBvwySFLLChgkW0-r2jI5GKp88uZfwQa27j0ajhW2Yb4DCRD5b9IjPzYm8owX-vCfz3JI9keTi7Ean13--khe4pWWAPeJ7DXLO_cZEFNTfAlfxD8wpxDh
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegO3DiG1E0kIUQF8iUOI6dcgsTU4XYxGGTxsnyZ1fI0qpNV42_nvectFCEpnGM8-zE9rP9e_bz7xHyxmqJsJglTniRcFM4mAd5mXgrslDmwci4p3t8IsZn_PN5cd7T5OBdmJ3z--iHtdYW6SxZjgf6RQnm-Z4oAHcPyN7ZydfqG0aPY-hfMOKyvxXz74w7K08k6N9ZgO5eoCfkvVUz19drXdd_LDNHD7p4RcvITojeJT8OVq05sD__4m68XQ0ekvs92qRVpx6PyB3fPCbDYwDKs0XcT6dv6WE9BdQan56QuqJL9LGGP7um2uk5zoY0eh0mYJj3ekonkaw6vtP1ZLaYtheXH2j1-zCctjO6nF7G2GDNhAZ0j6drDfJQM5jDotBTcnr06fRwnPQBGRLLOW8T660UNhOGaRl0yLiVpUt5YNEqcdZo5gLjfpTxkIeAN9QNFy4HyGXBLsmfkUEza_xzQgVzWuqUe4dx61OpAcWUJUDL3OrUizAk2aavlO3JyjFmRq02XmnfFTarwmZVXbMOybttnnlH1XGj9EdUga0k0mzHBOg71Y9a5QEfOcOctMzygnGjRy7VAIFGWe6YgUKKjQKpHrF0SASKmt748degbTvfHldfFKYhZYIElH2VDcn7rTLeokIv_k98nwzaxcq_BEjVmlf9WPoFrQgdqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spatially+adaptive+multi-resolution+generative+algorithm%3A+Application+to+simulating+flood+wave+propagation&rft.jtitle=Weather+and+climate+extremes&rft.au=Julie+Carreau&rft.au=Philippe+Naveau&rft.date=2023-09-01&rft.pub=Elsevier&rft.issn=2212-0947&rft.eissn=2212-0947&rft.volume=41&rft.spage=100580&rft_id=info:doi/10.1016%2Fj.wace.2023.100580&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e820db2d7c2c4524ba9d0a061913d2b0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-0947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-0947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-0947&client=summon