pSITE Vectors for Stable Integration or Transient Expression of Autofluorescent Protein Fusions in Plants: Probing Nicotiana benthamiana-Virus Interactions

Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integrati...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 20; no. 7; pp. 740 - 750
Main Authors Chakrabarty, R, Banerjee, R, Chung, S.M, Farman, M, Citovsky, V, Hogenhout, S.A, Tzfira, T, Goodin, M
Format Journal Article
LanguageEnglish
Published St Paul, MN APS Press 01.07.2007
The American Phytopathological Society
Subjects
Online AccessGet full text
ISSN0894-0282
1943-7706
DOI10.1094/MPMI-20-7-0740

Cover

Abstract Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virusinfected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.
AbstractList Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virus-infected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.
Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virus-infected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virus-infected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.
Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virusinfected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.
Author Citovsky, V
Chakrabarty, R
Tzfira, T
Goodin, M
Hogenhout, S.A
Banerjee, R
Chung, S.M
Farman, M
Author_xml – sequence: 1
  fullname: Chakrabarty, R
– sequence: 2
  fullname: Banerjee, R
– sequence: 3
  fullname: Chung, S.M
– sequence: 4
  fullname: Farman, M
– sequence: 5
  fullname: Citovsky, V
– sequence: 6
  fullname: Hogenhout, S.A
– sequence: 7
  fullname: Tzfira, T
– sequence: 8
  fullname: Goodin, M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18841759$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17601162$$D View this record in MEDLINE/PubMed
BookMark eNqFksFuEzEQhleoiKaFK0fYC9y22F577eVWVSms1EKkpL1aY8cOrjbr1PZK8Cy8LN4kUAkJcbFHM98_M5qZs-Jk8IMpitcYXWDU0g-3i9uuIqjiFeIUPStmuKV1xTlqTooZEi2tEBHktDiL8QEh3DaMvShOMW8Qxg2ZFT93y241L--NTj7E0vpQLhOo3pTdkMwmQHJ-KLN3FWCIzgypnH_fBRPj3m_LyzF5248-u_QUXQSfjBvK63EiYpnNRQ9Dih-nkHLDpvzitE8OBihVVnyD7WRX9y6McV81gJ6qxpfFcwt9NK-O_3lxdz1fXX2ubr5-6q4ubypNKU35FRZEI4jBDGHFKDe0NlrUChuDyLqpmTY1QS00RmELlgvF1hYJsBh029TnRXfIu_bwIHfBbSH8kB6c3Dt82EgIyeneSIZUYzkwoYiiTY2UJowAAduuDauRzrneH3Ltgn8cTUxy6_Jg-jwC48co82IYJrT5L0g5I60gLINvjuCotmb9p7_fO8zAuyMAUUNv86K0i0-cEBRz1mbu4sDp4GMMxj4hSE7HJKdjkgRJLqdjygL6l0C7tD-IFMD1_5a9PcgseAmbkHu5WxKEa4QEwZTT-her3djJ
CODEN MPMIEL
CitedBy_id crossref_primary_10_1126_sciadv_adp6436
crossref_primary_10_15252_embj_2022111885
crossref_primary_10_3389_fpls_2016_01638
crossref_primary_10_3390_ijms232415778
crossref_primary_10_1111_mpp_12160
crossref_primary_10_3389_fpls_2022_952246
crossref_primary_10_1105_tpc_111_085829
crossref_primary_10_1371_journal_pone_0030947
crossref_primary_10_1002_pld3_495
crossref_primary_10_3390_cells9040978
crossref_primary_10_1094_PHYTO_05_24_0162_R
crossref_primary_10_1186_s13007_017_0270_7
crossref_primary_10_1016_j_jinsphys_2015_03_009
crossref_primary_10_1038_s42003_024_06624_5
crossref_primary_10_1099_jgv_0_000771
crossref_primary_10_1007_s00299_013_1490_6
crossref_primary_10_3389_fmicb_2017_00612
crossref_primary_10_1016_j_envexpbot_2022_104873
crossref_primary_10_1016_j_virusres_2018_10_005
crossref_primary_10_1016_j_ymeth_2008_06_007
crossref_primary_10_3390_ijms160716216
crossref_primary_10_1073_pnas_2214703119
crossref_primary_10_1186_1471_2121_10_51
crossref_primary_10_1094_MPMI_00_00_1015_REV_testissue
crossref_primary_10_1094_PDIS_04_14_0405_RE
crossref_primary_10_3389_fgene_2020_600378
crossref_primary_10_1104_pp_107_106062
crossref_primary_10_1371_journal_pone_0062494
crossref_primary_10_1128_jvi_00993_24
crossref_primary_10_1128_JVI_02305_13
crossref_primary_10_1002_pld3_249
crossref_primary_10_1093_plphys_kiac332
crossref_primary_10_1186_s12896_016_0302_9
crossref_primary_10_1038_nchembio_1357
crossref_primary_10_1186_s12870_024_04732_2
crossref_primary_10_1038_s41598_020_70713_8
crossref_primary_10_1094_MPMI_09_13_0287_FI
crossref_primary_10_3390_ijms242216473
crossref_primary_10_1128_JVI_00973_12
crossref_primary_10_1093_jxb_eru147
crossref_primary_10_1104_pp_107_106104
crossref_primary_10_1016_j_plantsci_2015_05_011
crossref_primary_10_1007_s12038_016_9658_1
crossref_primary_10_1134_S1022795412090098
crossref_primary_10_1042_BJ20100372
crossref_primary_10_1146_annurev_phyto_080417_050141
crossref_primary_10_1038_srep30251
crossref_primary_10_1094_MPMI_07_23_0103_FI
crossref_primary_10_1111_j_1365_313X_2009_04109_x
crossref_primary_10_1126_science_1211592
crossref_primary_10_3389_fpls_2021_802758
crossref_primary_10_1016_j_molp_2015_12_009
crossref_primary_10_1038_srep17117
crossref_primary_10_1002_pld3_234
crossref_primary_10_1371_journal_pone_0118973
crossref_primary_10_1016_j_virusres_2008_02_003
crossref_primary_10_1111_pbi_14144
crossref_primary_10_1111_jipb_13399
crossref_primary_10_1074_jbc_M114_616920
crossref_primary_10_1016_j_plaphy_2024_108784
crossref_primary_10_1038_srep28743
crossref_primary_10_1093_pcp_pcad165
crossref_primary_10_1111_mpp_12793
crossref_primary_10_3389_fpls_2016_01964
crossref_primary_10_1111_nph_18764
crossref_primary_10_1094_PHYTO_12_16_0448_R
crossref_primary_10_5423_PPJ_OA_11_2011_0226
crossref_primary_10_1089_omi_2012_0074
crossref_primary_10_1074_mcp_M115_053124
crossref_primary_10_1094_MPMI_05_14_0144_TA
crossref_primary_10_1099_jgv_0_001051
crossref_primary_10_1016_j_virusres_2016_08_008
crossref_primary_10_1094_MPMI_02_14_0035_R
crossref_primary_10_1093_mp_sss042
crossref_primary_10_1104_pp_107_106641
crossref_primary_10_3389_fpls_2016_00004
crossref_primary_10_1186_1746_4811_7_16
crossref_primary_10_3389_fpls_2016_01057
crossref_primary_10_1093_jxb_ery083
crossref_primary_10_1094_MPMI_06_16_0107_R
crossref_primary_10_1111_tpj_15380
crossref_primary_10_1094_MPMI_04_18_0097_R
crossref_primary_10_1111_j_1365_313X_2009_03850_x
crossref_primary_10_1111_j_1469_8137_2011_03643_x
crossref_primary_10_1111_nph_13582
crossref_primary_10_1105_tpc_108_061879
crossref_primary_10_1007_s00299_024_03304_w
crossref_primary_10_1016_j_virol_2015_01_009
crossref_primary_10_1094_MPMI_21_8_1015
crossref_primary_10_3389_fpls_2017_01924
crossref_primary_10_1002_pld3_181
crossref_primary_10_1016_j_virol_2010_03_013
crossref_primary_10_1016_j_virol_2014_11_017
crossref_primary_10_1016_j_virol_2014_07_031
crossref_primary_10_1016_j_virol_2013_05_028
crossref_primary_10_4161_psb_28714
crossref_primary_10_1111_febs_12656
crossref_primary_10_1111_j_1365_313X_2008_03471_x
crossref_primary_10_1371_journal_pone_0125168
crossref_primary_10_1016_j_cj_2024_12_013
crossref_primary_10_1016_j_ijbiomac_2025_140466
crossref_primary_10_1093_jxb_erz023
crossref_primary_10_1007_s00425_011_1443_7
crossref_primary_10_3389_fpls_2020_584011
crossref_primary_10_1007_s00705_013_1964_4
crossref_primary_10_1111_jipb_13727
crossref_primary_10_3390_v16050676
crossref_primary_10_1016_j_virol_2014_12_042
crossref_primary_10_1016_j_ymgme_2012_04_018
crossref_primary_10_1105_tpc_113_111179
crossref_primary_10_1111_j_1469_8137_2011_03740_x
crossref_primary_10_1099_vir_0_038034_0
crossref_primary_10_1099_vir_0_042515_0
crossref_primary_10_1104_pp_107_111724
crossref_primary_10_1111_tpj_70084
crossref_primary_10_1111_ppl_14456
crossref_primary_10_1016_j_plaphy_2023_107854
crossref_primary_10_3389_fpls_2014_00584
crossref_primary_10_1007_s11240_019_01626_2
crossref_primary_10_1016_j_virol_2020_10_003
crossref_primary_10_1111_tpj_15572
crossref_primary_10_1104_pp_113_229054
crossref_primary_10_1016_j_bbagrm_2019_194432
crossref_primary_10_1016_j_plantsci_2016_11_004
crossref_primary_10_3390_v15020541
crossref_primary_10_1111_mpp_12862
crossref_primary_10_1186_s12870_019_1883_y
crossref_primary_10_1007_s11103_022_01275_8
crossref_primary_10_1016_j_ymgme_2012_08_010
crossref_primary_10_1128_JVI_00018_12
crossref_primary_10_1186_s12864_015_1990_6
crossref_primary_10_1016_j_virusres_2015_05_001
crossref_primary_10_1016_j_plantsci_2022_111297
crossref_primary_10_1111_pce_12278
crossref_primary_10_1002_pld3_158
crossref_primary_10_1111_ppl_12448
crossref_primary_10_1186_1746_4811_7_42
crossref_primary_10_1016_j_virol_2015_05_001
crossref_primary_10_1094_PHYTO_07_23_0256_KC
crossref_primary_10_1042_BCJ20160593
crossref_primary_10_1007_s11033_010_0100_8
crossref_primary_10_1371_journal_pone_0098988
crossref_primary_10_1016_j_virol_2018_06_019
crossref_primary_10_1186_1471_2229_12_195
crossref_primary_10_1093_pcp_pcy133
crossref_primary_10_1128_JVI_03390_12
crossref_primary_10_1042_BCJ20230026
crossref_primary_10_1111_j_1467_7652_2011_00658_x
crossref_primary_10_1111_tpj_16552
crossref_primary_10_1371_journal_ppat_1009125
crossref_primary_10_1094_MPMI_04_10_0097
crossref_primary_10_1007_s11103_021_01135_x
crossref_primary_10_1128_JVI_02028_18
crossref_primary_10_1007_s00425_010_1104_2
crossref_primary_10_1104_pp_107_113001
crossref_primary_10_1094_MPMI_00_00_1015_REV_test
crossref_primary_10_1371_journal_pone_0087592
crossref_primary_10_1093_nar_gkz122
crossref_primary_10_1016_j_mocell_2024_100158
crossref_primary_10_1016_j_virol_2008_12_044
crossref_primary_10_1094_MPMI_09_24_0108_R
crossref_primary_10_1128_JVI_00699_19
crossref_primary_10_3389_fpls_2022_886965
crossref_primary_10_1016_j_virol_2012_02_005
crossref_primary_10_1186_s12870_016_0897_y
crossref_primary_10_3390_ijms23147577
crossref_primary_10_1371_journal_pone_0070243
Cites_doi 10.1093/jxb/erl201
10.1105/tpc.13.3.495
10.1016/j.tplants.2005.06.001
10.1126/science.227.4691.1229
10.1094/MPMI-19-1394
10.1101/gr.143000
10.1094/MPMI-19-0350
10.1093/emboj/17.22.6739
10.1094/MPMI-19-0758
10.1111/j.1365-313X.2005.02617.x
10.1046/j.1365-313X.2002.01360.x
10.1094/MPMI-19-0033
10.1023/A:1016052416053
10.1046/j.0960-7412.2002.01252.x
10.1073/pnas.94.6.2122
10.1016/0042-6822(87)90476-4
10.1094/MPMI-19-0099
10.1094/MPMI.2003.16.4.289
10.1016/0042-6822(90)90289-4
10.1016/0042-6822(87)90190-5
10.1128/JVI.79.9.5304-5314.2005
10.1093/jxb/erl229
10.1111/j.1399-3054.1962.tb08052.x
10.1099/vir.0.81043-0
10.1091/mbc.e04-09-0791
10.1101/gad.1375006
10.1186/gb-2003-4-12-240
10.1094/MPMI.2002.15.8.826
10.1016/j.jmb.2006.08.017
10.1007/s00425-006-0428-4
10.1128/JVI.75.19.9393-9406.2001
10.1093/nar/13.21.7881
10.1016/j.virol.2005.04.025
10.1073/pnas.97.7.3718
10.1099/vir.0.82698-0
10.1111/j.1365-313X.2007.03029.x
10.1016/S0021-9258(19)61499-7
10.1074/jbc.M604431200
10.1104/pp.104.040139
10.1101/gr.2576704
10.1073/pnas.94.11.5679
10.1007/s11103-006-9065-3
10.1016/S0076-6879(00)28419-X
10.1094/MPMI-19-1207
10.1104/pp.106.078881
10.1094/MPMI-19-0768
10.1038/nrmicro1597
10.1104/pp.104.042176
10.1105/tpc.10.6.937
10.1094/MPMI-19-0904
10.1128/JVI.00953-06
10.1046/j.1365-313x.1998.00304.x
10.1016/j.virusres.2006.07.007
10.1007/s11103-005-0340-5
10.1007/s11103-006-9087-x
10.1104/pp.105.075499
10.1104/pp.103.027979
10.1094/MPMI-18-0703
10.1104/pp.104.046086
10.1094/MPMI-19-0854
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOA
DOI 10.1094/MPMI-20-7-0740
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 750
ExternalDocumentID oai_doaj_org_article_50b6f7a58b2b4630bc252a2af9de530c
17601162
18841759
10_1094_MPMI_20_7_0740
US201300821474
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29M
2WC
53G
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
D1J
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M1P
M7P
MVM
OK1
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
YCJ
~KM
AAYXX
CITATION
PHGZM
IQODW
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c444t-c48fa8682e1501b547e43ec83b1ee02d635ce3209a6eb1faf78b5df08af1ac963
IEDL.DBID DOA
ISSN 0894-0282
IngestDate Wed Aug 27 01:29:29 EDT 2025
Fri Sep 05 14:19:26 EDT 2025
Thu Sep 04 23:51:30 EDT 2025
Mon Jul 21 05:47:51 EDT 2025
Mon Jul 21 09:16:31 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Tue Jul 01 00:38:37 EDT 2025
Thu Apr 03 09:45:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords High throughput screening
Chromatin
Recombination
Nicotiana benthamiana
SYNV
Cell fusion
Agrobacterium
Actin
Dicotyledones
Angiospermae
nucleolus
Bacteria
Transgenic plant
Solanaceae
Infected cell
Fusion protein
Vector
Hybrid gene
Gram negative bacteria
agroinfiltration
Gene expression
transformation
Plasmid
Virus
confocal microscopy
Green fluorescent protein
Proteomics
Spermatophyta
Cyan fluorescent protein
Rhizobiaceae
Experimental plant
Endoplasmic reticulum
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-c48fa8682e1501b547e43ec83b1ee02d635ce3209a6eb1faf78b5df08af1ac963
Notes http://dx.doi.org/10.1094/MPMI-20-7-0740
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/50b6f7a58b2b4630bc252a2af9de530c
PMID 17601162
PQID 47529825
PQPubID 24069
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_50b6f7a58b2b4630bc252a2af9de530c
proquest_miscellaneous_70651246
proquest_miscellaneous_47529825
pubmed_primary_17601162
pascalfrancis_primary_18841759
crossref_primary_10_1094_MPMI_20_7_0740
crossref_citationtrail_10_1094_MPMI_20_7_0740
fao_agris_US201300821474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationPlace St Paul, MN
PublicationPlace_xml – name: St Paul, MN
– name: United States
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2007
Publisher APS Press
The American Phytopathological Society
Publisher_xml – name: APS Press
– name: The American Phytopathological Society
References p_49
p_45
p_46
p_47
p_48
p_41
p_42
p_44
p_40
p_38
p_39
p_2
p_1
p_4
p_34
p_35
p_6
p_36
p_5
p_37
p_8
p_7
p_30
p_31
p_32
p_33
p_27
p_28
Quacquarelli A. (p_43) 1975; 14
p_29
p_23
p_24
p_25
p_26
Barneche F. (p_3) 2000; 275
Christie S. R. (p_9) 1978; 62
p_63
p_20
p_64
p_21
p_22
p_60
p_61
p_62
p_16
p_17
p_18
p_19
p_12
p_56
p_13
p_57
p_14
p_58
p_15
p_59
p_52
p_53
p_10
p_54
p_11
p_55
p_50
p_51
References_xml – ident: p_15
  doi: 10.1093/jxb/erl201
– ident: p_4
  doi: 10.1105/tpc.13.3.495
– ident: p_10
  doi: 10.1016/j.tplants.2005.06.001
– ident: p_29
  doi: 10.1126/science.227.4691.1229
– ident: p_48
  doi: 10.1094/MPMI-19-1394
– ident: p_24
  doi: 10.1101/gr.143000
– ident: p_30
  doi: 10.1094/MPMI-19-0350
– ident: p_5
  doi: 10.1093/emboj/17.22.6739
– ident: p_56
  doi: 10.1094/MPMI-19-0758
– ident: p_16
  doi: 10.1111/j.1365-313X.2005.02617.x
– ident: p_20
  doi: 10.1046/j.1365-313X.2002.01360.x
– ident: p_7
  doi: 10.1094/MPMI-19-0033
– ident: p_17
  doi: 10.1023/A:1016052416053
– ident: p_46
  doi: 10.1046/j.0960-7412.2002.01252.x
– ident: p_25
  doi: 10.1073/pnas.94.6.2122
– ident: p_64
  doi: 10.1016/0042-6822(87)90476-4
– ident: p_1
  doi: 10.1094/MPMI-19-0099
– ident: p_62
  doi: 10.1094/MPMI.2003.16.4.289
– ident: p_27
  doi: 10.1016/0042-6822(90)90289-4
– ident: p_26
  doi: 10.1016/0042-6822(87)90190-5
– ident: p_53
  doi: 10.1128/JVI.79.9.5304-5314.2005
– ident: p_59
  doi: 10.1093/jxb/erl229
– ident: p_40
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– ident: p_47
  doi: 10.1099/vir.0.81043-0
– ident: p_51
– ident: p_42
  doi: 10.1091/mbc.e04-09-0791
– ident: p_58
  doi: 10.1101/gad.1375006
– ident: p_49
  doi: 10.1186/gb-2003-4-12-240
– ident: p_23
– ident: p_31
  doi: 10.1094/MPMI.2002.15.8.826
– ident: p_11
  doi: 10.1016/j.jmb.2006.08.017
– ident: p_36
  doi: 10.1007/s00425-006-0428-4
– ident: p_19
  doi: 10.1128/JVI.75.19.9393-9406.2001
– ident: p_12
  doi: 10.1093/nar/13.21.7881
– ident: p_41
  doi: 10.1016/j.virol.2005.04.025
– volume: 62
  start-page: 20
  year: 1978
  ident: p_9
  publication-title: Plant Dis. Rep.
– ident: p_14
  doi: 10.1073/pnas.97.7.3718
– ident: p_22
  doi: 10.1099/vir.0.82698-0
– ident: p_33
  doi: 10.1111/j.1365-313X.2007.03029.x
– volume: 275
  start-page: 27212
  year: 2000
  ident: p_3
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)61499-7
– ident: p_44
  doi: 10.1074/jbc.M604431200
– ident: p_52
  doi: 10.1104/pp.104.040139
– ident: p_61
  doi: 10.1101/gr.2576704
– ident: p_38
  doi: 10.1073/pnas.94.11.5679
– ident: p_8
  doi: 10.1007/s11103-006-9065-3
– ident: p_57
  doi: 10.1016/S0076-6879(00)28419-X
– ident: p_60
  doi: 10.1094/MPMI-19-1207
– ident: p_37
  doi: 10.1104/pp.106.078881
– ident: p_50
  doi: 10.1094/MPMI-19-0768
– ident: p_28
  doi: 10.1038/nrmicro1597
– ident: p_18
  doi: 10.1104/pp.104.042176
– ident: p_45
  doi: 10.1105/tpc.10.6.937
– volume: 14
  start-page: 36
  year: 1975
  ident: p_43
  publication-title: Phytopathol. Mediterr.
– ident: p_2
  doi: 10.1094/MPMI-19-0904
– ident: p_6
  doi: 10.1128/JVI.00953-06
– ident: p_34
  doi: 10.1046/j.1365-313x.1998.00304.x
– ident: p_35
  doi: 10.1016/j.virusres.2006.07.007
– ident: p_54
  doi: 10.1007/s11103-005-0340-5
– ident: p_39
  doi: 10.1007/s11103-006-9087-x
– ident: p_63
  doi: 10.1104/pp.105.075499
– ident: p_13
  doi: 10.1104/pp.103.027979
– ident: p_21
  doi: 10.1094/MPMI-18-0703
– ident: p_55
  doi: 10.1104/pp.104.046086
– ident: p_32
  doi: 10.1094/MPMI-19-0854
SSID ssj0019655
Score 2.323349
Snippet Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to...
SourceID doaj
proquest
pubmed
pascalfrancis
crossref
fao
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 740
SubjectTerms Agrobacterium
agroinfiltration
Bacterial plant pathogens
Biological and medical sciences
Blotting, Western
confocal microscopy
Fluorescence Recovery After Photobleaching
Fundamental and applied biological sciences. Psychology
Gene Expression
genetic markers
Genetic Vectors
Genetic Vectors - genetics
genetics
Green Fluorescent Proteins
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
growth & development
infection
Luminescent Proteins
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
metabolism
Microscopy, Confocal
new methods
Nicotiana - genetics
Nicotiana - metabolism
Nicotiana - virology
Nicotiana benthamiana
nucleolus
Phytopathology. Animal pests. Plant and forest protection
Plant Leaves
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Leaves - virology
plant viruses
Plants, Genetically Modified
plasmid vectors
plasmids
proteomics
recombinant fusion proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Red Fluorescent Protein
reporter genes
SYNV
Tobacco
transformation
transgenic plants
viral fusion proteins
virology
Viruses
Viruses - growth & development
Title pSITE Vectors for Stable Integration or Transient Expression of Autofluorescent Protein Fusions in Plants: Probing Nicotiana benthamiana-Virus Interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/17601162
https://www.proquest.com/docview/47529825
https://www.proquest.com/docview/70651246
https://doaj.org/article/50b6f7a58b2b4630bc252a2af9de530c
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQ4ICiPhsfiAxKnqLbjJA63BXXVBS2qVLbqzbITu1RakioPCX4Lf5aZOLsthxUXLlHknexmM2PPNzPON4S8Qw5zyaSPS-OrWFouY5M5OIjMFSUEDOWYzFl9zU7X8vNlenmn1RfuCQv0wOHBHafMZj43qbLCyixhthSpMML4onJpwkpcfVnBtsHUVD8osrHfKVNIfAtRxY6uUR6vzlZLsI0YM3SY8rjjjkbWfnAy3jS4R9J08Jh86G-xH4COjmjxmDyaECSdhzt_Qu65-pA8nF-1E4uGOyT3Q4fJX0_J75tzWJvoxZib7yggVArw0m4cXU48EaAXCqOjz8J3I-nJz2lvLIx7Oh_6xm-Gpg20T_QMeR2ua7oYUKKjcIp9j_ruA34EYfYVRePCdcNQC1d8Nz_wPL64bodu_NU2vEvRPSPrxcm3T6fx1I8hLqWUPRyVNypTwgGK5DaVuZOJK1ViuXNMVIBdSpeANkDblnvjc2XTyjNlPDclzPTn5KBuandEqKsMuE9hC0BjkvPCKguXOFgMvFKc-YjEW7XociIrx54ZGx2K5lKjGrVgOteoxoi838nfBJqOvZIfUcs7KaTXHgfA6PRkdPpfRheRI7ARbUC1nV6fCyz_ApbiMpcRmf1lOLe3o5QErFZE5O3WkjRMZazPmNo1Q6dlnooCIvb9EliTBkCWReRFMMHbb8e9TTwTL__H33tFHmxT2Iy_Jgd9O7g3gL16O4NptvwyGyfbHzBWK94
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pSITE+vectors+for+stable+integration+or+transient+expression+of+autofluorescent+protein+fusions+in+plants+%3A+Probing+Nicotiana+benthamiana-virus+interactions&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=CHAKRABARTY%2C+Romit&rft.au=BANERJEE%2C+Rituparna&rft.au=CHUNG%2C+Sang-Min&rft.au=FARMAN%2C+Mark&rft.date=2007-07-01&rft.pub=APS+Press&rft.issn=0894-0282&rft.volume=20&rft.issue=7&rft.spage=740&rft.epage=750&rft_id=info:doi/10.1094%2FMPMI-20-7-0740&rft.externalDBID=n%2Fa&rft.externalDocID=18841759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon