Multi-Modal Imaging Genetics Data Fusion via a Hypergraph-Based Manifold Regularization: Application to Schizophrenia Study
Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract fe...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 41; no. 9; pp. 2263 - 2272 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2022.3161828 |
Cover
Abstract | Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions. |
---|---|
AbstractList | Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions.Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions. Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions. |
Author | Zhang, Haowei Bai, Yuntong Xiao, Li Zhang, Yipu Calhoun, Vince D. Wang, Yu-Ping |
Author_xml | – sequence: 1 givenname: Yipu orcidid: 0000-0003-3326-2093 surname: Zhang fullname: Zhang, Yipu email: zyipu@chd.edu.cn organization: School of Electronics and Control Engineering, Chang'an University, Xi'an, China – sequence: 2 givenname: Haowei surname: Zhang fullname: Zhang, Haowei email: 2019332003@chd.edu.cn organization: School of Electronics and Control Engineering, Chang'an University, Xi'an, China – sequence: 3 givenname: Li orcidid: 0000-0001-7108-8378 surname: Xiao fullname: Xiao, Li email: xiaoli11@ustc.edu.cn organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Yuntong orcidid: 0000-0002-8916-3679 surname: Bai fullname: Bai, Yuntong email: ybai1@tulane.edu organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA – sequence: 5 givenname: Vince D. orcidid: 0000-0001-9058-0747 surname: Calhoun fullname: Calhoun, Vince D. email: vcalhoun@gsu.edu organization: Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA – sequence: 6 givenname: Yu-Ping orcidid: 0000-0001-9340-5864 surname: Wang fullname: Wang, Yu-Ping email: wyp@tulane.edu organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35320094$$D View this record in MEDLINE/PubMed |
BookMark | eNptksFv0zAUxi00xLrBHQkJWeLCJeXFcRKbA9IYbKu0Con1wM16SZzWU2qH2Bnq-Ofx1lKg4mRZ_n2fvvf5nZAj66wm5GUK0zQF-W4xn00ZMDbN0iIVTDwhkzTPRcJy_u2ITICVIgEo2DE58f4WIOU5yGfkOMszBiD5hPycj10wydw12NHZGpfGLumltjqY2tNPGJBejN44S-8MUqRXm14PywH7VfIRvW7oHK1pXdfQr3o5djiYewwRf0_P-r4z9eOFBkdv6pW5d_1q0DYa3YSx2TwnT1vsvH6xO0_J4uLz4vwquf5yOTs_u05qznlIUOeNzMqyLGRaYqWBZQgtz1nRAq-gBCyg4k0soKmwLSQXZQ0CayGySsg8OyXp1na0PW5-YNepfjBrHDYqBfXQowprox56VLseo-bDVtOP1Vo3tbZhwD86h0b9-2LNSi3dnZJFNChlNHi7Mxjc91H7oNbG17rr0Go3esUKzoQEIbOIvjlAb9042NiIYiWICMocIvX670T7KL-_MgLFFqgH5_2gW1Wb8Fh_DGi6_axxZw5nhQPhYT3_kbzaSozWeo_LkscNK7JfgNbLdQ |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1109_JBHI_2023_3337661 crossref_primary_10_1109_TMI_2024_3419041 crossref_primary_10_1109_TCBB_2023_3335369 crossref_primary_10_1007_s11760_023_02760_3 crossref_primary_10_15212_RADSCI_2023_0008 crossref_primary_10_1109_TMI_2024_3412399 crossref_primary_10_1093_schbul_sbae110 crossref_primary_10_1016_j_displa_2024_102699 crossref_primary_10_1016_j_engappai_2023_107782 crossref_primary_10_1109_JBHI_2024_3383885 crossref_primary_10_1016_j_inffus_2024_102733 crossref_primary_10_1080_03772063_2025_2469644 crossref_primary_10_1109_JBHI_2022_3220545 crossref_primary_10_1080_0952813X_2024_2328234 crossref_primary_10_1016_j_compbiomed_2024_108051 |
Cites_doi | 10.1038/nmeth.2810 10.1016/j.inffus.2019.08.005 10.1038/s41398-020-0832-8 10.1109/TGRS.2013.2255297 10.1093/bioinformatics/btw485 10.1109/TCBB.2020.2999397 10.1016/j.compmedimag.2019.101663 10.1016/j.neuroimage.2018.04.052 10.1016/j.eurpsy.2018.02.003 10.1109/JBHI.2018.2872581 10.1186/1471-2164-14-293 10.12659/msm.922426 10.1109/JPROC.2015.2461601 10.1006/nimg.2001.0978 10.1006/nimg.2002.1180 10.1109/TCBB.2019.2899568 10.1038/npp.2012.125 10.1016/j.euroneuro.2012.06.009 10.1038/mp.2011.170 10.1016/j.neuroimage.2010.09.073 10.7551/mitpress/7503.003.0205 10.1111/j.1467-9868.2005.00503.x 10.1007/s00521-013-1369-z 10.1038/s41537-021-00151-6 10.1007/s12561-012-9056-7 10.1109/TCBB.2019.2947428 10.2174/1573400510666140319234658 10.1162/neco_a_01273 10.1109/TMI.2019.2957097 10.1109/TIP.2012.2199502 10.1002/hbm.25013 10.1371/journal.pone.0068910 10.1007/s12021-013-9184-3 10.1093/schbul/sbt080 10.1109/TKDE.2018.2872063 10.1109/JPROC.2015.2460697 10.1111/j.2517-6161.1996.tb02080.x 10.1002/hbm.22642 10.25046/aj020390 10.1093/nar/gks1055 10.1016/j.media.2020.101953 10.1016/j.neuroimage.2017.10.022 10.1109/TMI.2019.2958256 10.1016/j.schres.2012.02.023 10.1080/01621459.2015.1034319 10.1016/j.bbr.2015.01.022 10.1109/TBME.2017.2771483 10.1038/msb4100180 10.1198/jcgs.2010.09208 10.1109/JBHI.2020.3019421 10.1016/j.media.2013.10.010 10.2307/1390712 10.1109/TBME.2021.3077875 10.1016/j.jneumeth.2011.10.031 10.1109/TBME.2015.2466616 10.3389/fninf.2014.00029 10.1109/TBME.2019.2921207 10.1111/j.1467-9868.2005.00532.x 10.1109/TMI.2021.3057635 10.1111/rssb.12033 10.1093/schbul/sbz060 10.1016/j.bpsc.2015.12.005 10.1111/biom.12035 10.1093/biostatistics/kxm045 10.1109/TII.2011.2172452 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
DOI | 10.1109/TMI.2022.3161828 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2272 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:9661879 PMC9661879 35320094 10_1109_TMI_2022_3161828 9740146 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NSF grantid: 1539067 funderid: 10.13039/100000001 – fundername: NIH grantid: P20GM109068; R56 MH124925; R01 MH104680; R01MH107354; R01MH103220; R01 REB020407 funderid: 10.13039/100000002 – fundername: NIGMS NIH HHS grantid: R01 GM109068 – fundername: NIMH NIH HHS grantid: R56 MH124925 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIBIB NIH HHS grantid: R01 EB006841 – fundername: NIGMS NIH HHS grantid: P20 GM103472 – fundername: NIMH NIH HHS grantid: R01 MH103220 – fundername: NIMH NIH HHS grantid: R01 MH104680 – fundername: NIMHD NIH HHS grantid: U54 MD007595 – fundername: NIMH NIH HHS grantid: R01 MH107354 – fundername: NIA NIH HHS grantid: U19 AG055373 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c444t-ae5d937776917abe023a0f4526f04b070a60b4d618dbaf69487c08ac883b8953 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Wed Aug 20 00:08:23 EDT 2025 Tue Sep 30 17:12:53 EDT 2025 Sat Sep 27 19:54:29 EDT 2025 Sun Jun 29 15:38:41 EDT 2025 Mon Jul 21 06:07:43 EDT 2025 Wed Oct 01 03:55:32 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Wed Aug 27 02:29:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-ae5d937776917abe023a0f4526f04b070a60b4d618dbaf69487c08ac883b8953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7108-8378 0000-0001-9058-0747 0000-0003-3326-2093 0000-0002-8916-3679 0000-0001-9340-5864 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9661879 |
PMID | 35320094 |
PQID | 2708642950 |
PQPubID | 85460 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9661879 crossref_citationtrail_10_1109_TMI_2022_3161828 crossref_primary_10_1109_TMI_2022_3161828 proquest_journals_2708642950 unpaywall_primary_10_1109_tmi_2022_3161828 proquest_miscellaneous_2642890893 pubmed_primary_35320094 ieee_primary_9740146 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 Evgeniou (ref36) ref58 ref53 ref52 ref11 ref55 ref10 Mueller (ref47) 2018; 369314 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref32 ref2 ref1 ref39 ref38 ref24 Ann (ref50) 2012; 4 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Sa (ref33) ref60 ref62 ref61 |
References_xml | – ident: ref37 doi: 10.1038/nmeth.2810 – ident: ref34 doi: 10.1016/j.inffus.2019.08.005 – ident: ref59 doi: 10.1038/s41398-020-0832-8 – ident: ref29 doi: 10.1109/TGRS.2013.2255297 – ident: ref43 doi: 10.1093/bioinformatics/btw485 – ident: ref44 doi: 10.1109/TCBB.2020.2999397 – ident: ref32 doi: 10.1016/j.compmedimag.2019.101663 – ident: ref19 doi: 10.1016/j.neuroimage.2018.04.052 – ident: ref62 doi: 10.1016/j.eurpsy.2018.02.003 – ident: ref18 doi: 10.1109/JBHI.2018.2872581 – ident: ref40 doi: 10.1186/1471-2164-14-293 – ident: ref48 doi: 10.12659/msm.922426 – ident: ref3 doi: 10.1109/JPROC.2015.2461601 – ident: ref39 doi: 10.1006/nimg.2001.0978 – ident: ref55 doi: 10.1006/nimg.2002.1180 – ident: ref45 doi: 10.1109/TCBB.2019.2899568 – start-page: 20 volume-title: Proc. ICML Workshop Learn. Multiple Views ident: ref33 article-title: Spectral clustering with two views – ident: ref60 doi: 10.1038/npp.2012.125 – ident: ref52 doi: 10.1016/j.euroneuro.2012.06.009 – ident: ref46 doi: 10.1038/mp.2011.170 – ident: ref7 doi: 10.1016/j.neuroimage.2010.09.073 – ident: ref31 doi: 10.7551/mitpress/7503.003.0205 – ident: ref11 doi: 10.1111/j.1467-9868.2005.00503.x – ident: ref68 doi: 10.1007/s00521-013-1369-z – ident: ref58 doi: 10.1038/s41537-021-00151-6 – volume: 4 start-page: 70 issue: 2 year: 2012 ident: ref50 article-title: Psychiatric disorders, mitochondrial dysfunction, and somatotypes publication-title: Ros Vestn Perinatol Pediat – ident: ref15 doi: 10.1007/s12561-012-9056-7 – ident: ref22 doi: 10.1109/TCBB.2019.2947428 – ident: ref49 doi: 10.2174/1573400510666140319234658 – ident: ref8 doi: 10.1162/neco_a_01273 – ident: ref30 doi: 10.1109/TMI.2019.2957097 – ident: ref63 doi: 10.1109/TIP.2012.2199502 – ident: ref2 doi: 10.1002/hbm.25013 – ident: ref56 doi: 10.1371/journal.pone.0068910 – ident: ref28 doi: 10.1007/s12021-013-9184-3 – ident: ref41 doi: 10.1093/schbul/sbt080 – ident: ref4 doi: 10.1109/TKDE.2018.2872063 – ident: ref1 doi: 10.1109/JPROC.2015.2460697 – ident: ref9 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref20 doi: 10.1002/hbm.22642 – ident: ref38 doi: 10.25046/aj020390 – ident: ref57 doi: 10.1093/nar/gks1055 – ident: ref24 doi: 10.1016/j.media.2020.101953 – ident: ref53 doi: 10.1016/j.neuroimage.2017.10.022 – volume: 369314 year: 2018 ident: ref47 article-title: Glycosylation enzyme mRNA expression in dorsolateral prefrontal cortex of elderly patients with schizophrenia: Evidence for dysregulation of multiple glycosylation pathways publication-title: bioRxiv – ident: ref23 doi: 10.1109/TMI.2019.2958256 – ident: ref51 doi: 10.1016/j.schres.2012.02.023 – ident: ref66 doi: 10.1080/01621459.2015.1034319 – ident: ref54 doi: 10.1016/j.bbr.2015.01.022 – ident: ref35 doi: 10.1109/TBME.2017.2771483 – ident: ref14 doi: 10.1038/msb4100180 – ident: ref13 doi: 10.1198/jcgs.2010.09208 – ident: ref26 doi: 10.1109/JBHI.2020.3019421 – ident: ref42 doi: 10.1016/j.media.2013.10.010 – ident: ref10 doi: 10.2307/1390712 – ident: ref64 doi: 10.1109/TBME.2021.3077875 – ident: ref6 doi: 10.1016/j.jneumeth.2011.10.031 – ident: ref21 doi: 10.1109/TBME.2015.2466616 – ident: ref17 doi: 10.3389/fninf.2014.00029 – ident: ref27 doi: 10.1109/TBME.2019.2921207 – ident: ref12 doi: 10.1111/j.1467-9868.2005.00532.x – ident: ref25 doi: 10.1109/TMI.2021.3057635 – ident: ref67 doi: 10.1111/rssb.12033 – ident: ref61 doi: 10.1093/schbul/sbz060 – ident: ref5 doi: 10.1016/j.bpsc.2015.12.005 – ident: ref16 doi: 10.1111/biom.12035 – start-page: 19 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref36 article-title: Multi-task feature learning – ident: ref65 doi: 10.1093/biostatistics/kxm045 – ident: ref69 doi: 10.1109/TII.2011.2172452 |
SSID | ssj0014509 |
Score | 2.510984 |
Snippet | Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2263 |
SubjectTerms | Algorithms Brain Brain - diagnostic imaging Data integration Data models Environmental factors Feature extraction Genetics Graph theory Humans Hypergraph Imaging information fusion Imaging genetics Magnetic Resonance Imaging - methods Manifolds Medical imaging Mental disorders Modal data multi-modal data Multimodal Imaging - methods Multitasking Neuroimaging Regularization Risk factors Schizophrenia Schizophrenia - diagnostic imaging Schizophrenia - genetics schizophrenia classification |
Title | Multi-Modal Imaging Genetics Data Fusion via a Hypergraph-Based Manifold Regularization: Application to Schizophrenia Study |
URI | https://ieeexplore.ieee.org/document/9740146 https://www.ncbi.nlm.nih.gov/pubmed/35320094 https://www.proquest.com/docview/2708642950 https://www.proquest.com/docview/2642890893 https://pubmed.ncbi.nlm.nih.gov/PMC9661879 https://www.ncbi.nlm.nih.gov/pmc/articles/9661879 |
UnpaywallVersion | submittedVersion |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEC0lObAcWBIWQ0CNxAWEZzp2e2luYRlNkMwBBik3qzfDiIkdBRsU-HmqvDFDIsTNksuWyl3dXc9V_R7AU8zwjYh16CemKHwRmNjXJohwMYysTYzUgSGgmL2P55_Eu-PoeAtejGdhnHNt85mb0GVby7eVaehX2VSSfJyIt2E7SWR3VmusGIioa-cIiDGWx8FQkuRyusiOEAgGAeLTGNNpkugLSQ-BS7GxG7XyKpdlmhcbJq825ak6_6FWq7XdaHYTssGPrgnl66Sp9cT8_Ivi8X8dvQU3-rSUHXZxdBu2XLkL19fICnfhStaX4ffgV3ts188qi88cnbRCR4wIrInzmb1RtWKzhn7Dse9LxRSbI9g9a6mx_Ve4a1qWqXJZVCvLPrjP1AfbHwZ9yQ7_1NNZXbGP6y2BjHoez-_AYvZ28Xru9yoOvhFC1L5ykcUcKEliRIZKO0wSFC9I2bzgQuOKo2KuhcWRsVoVsUQEZXiqTJqGOpVReBd2yqp094GFBlcjbYNI4_cxyqbSKUxvtTywkTooEg-mw2Dmpmc4J6GNVd4iHS5zjIScIiHvI8GDZ-MTpx27xz9s92igRrt-jDzYH-Il76f_tzxIECniTh9xD56Mt3HiUjVGla5q0IaQH1VdQw_udeE1vnsITw-SjcAbDYgUfPNOufzSkoMjfCUBeQ-ejyF6wbX6ZLnh2oPLXXsI18iq66jbh536rHGPMAWr9eN27v0GwCYrsg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEC2FIBE4sCQshgCNxAWEZxy72wu3sIxmIM4BBik3qzfDiIkdBRsU-HmqvDFDIsTNkrstleu5u56r-hXAU4zwNQ9V4EY6z13u69BV2he4GApjIp0oXxNRTA_D6Sf-7kgcbcCL4SyMtbYpPrMjumxy-abUNf0qGyfUPo6Hl-CyQFYRtae1hpwBF21Bh0-asV7o90lJLxnP0xlSQd9HhhpiQE1N-gLqiOAlfG0_ahqsXBRrni-Z3KqLE3n2Qy6XK_vR5AakvSVtGcrXUV2pkf75l8jj_5p6E653gSnbb5F0CzZssQ3XVuQKt-FK2iXid-BXc3DXTUuDc2bHTasjRhLWpPrM3shKsklNP-LY94Vkkk2R7p424tjuK9w3DUtlscjLpWEf7GeqhO2Og75k-38y6qwq2cfVokBGVY9nt2E-eTt_PXW7Pg6u5pxXrrTCYBQURSFyQ6kshgnSy6m3ee5xhWuODD3FDXrGKJmHCbpWe7HUcRyoOBHBHdgsysLeAxZoXI-U8YXC96OliRMrMcBVyZ4Rci-PHBj3zsx0p3FOrTaWWcN1vCRDJGSEhKxDggPPhhknrb7HP8bukKOGcZ2PHNjt8ZJ1C8C3zI-QK-JeLzwHngy38dOlfIwsbFnjGOJ-lHcNHLjbwmt4dg9PB6I14A0DSBZ8_U6x-NLIgyOBpRbyDjwfIHrOtOp4sWba_YtNewxb03l6kB3MDt8_gKs0o62v24XN6rS2DzEgq9Sj5jv8DZXGLwM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Imaging+Genetics+Data+Fusion+via+a+Hypergraph-Based+Manifold+Regularization%3A+Application+to+Schizophrenia+Study&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhang%2C+Yipu&rft.au=Zhang%2C+Haowei&rft.au=Xiao%2C+Li&rft.au=Bai%2C+Yuntong&rft.date=2022-09-01&rft.eissn=1558-254X&rft.volume=41&rft.issue=9&rft.spage=2263&rft_id=info:doi/10.1109%2FTMI.2022.3161828&rft_id=info%3Apmid%2F35320094&rft.externalDocID=35320094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |