Multi-Modal Imaging Genetics Data Fusion via a Hypergraph-Based Manifold Regularization: Application to Schizophrenia Study

Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract fe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 9; pp. 2263 - 2272
Main Authors Zhang, Yipu, Zhang, Haowei, Xiao, Li, Bai, Yuntong, Calhoun, Vince D., Wang, Yu-Ping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2022.3161828

Cover

Abstract Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions.
AbstractList Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions.Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions.
Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions.
Author Zhang, Haowei
Bai, Yuntong
Xiao, Li
Zhang, Yipu
Calhoun, Vince D.
Wang, Yu-Ping
Author_xml – sequence: 1
  givenname: Yipu
  orcidid: 0000-0003-3326-2093
  surname: Zhang
  fullname: Zhang, Yipu
  email: zyipu@chd.edu.cn
  organization: School of Electronics and Control Engineering, Chang'an University, Xi'an, China
– sequence: 2
  givenname: Haowei
  surname: Zhang
  fullname: Zhang, Haowei
  email: 2019332003@chd.edu.cn
  organization: School of Electronics and Control Engineering, Chang'an University, Xi'an, China
– sequence: 3
  givenname: Li
  orcidid: 0000-0001-7108-8378
  surname: Xiao
  fullname: Xiao, Li
  email: xiaoli11@ustc.edu.cn
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Yuntong
  orcidid: 0000-0002-8916-3679
  surname: Bai
  fullname: Bai, Yuntong
  email: ybai1@tulane.edu
  organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
– sequence: 5
  givenname: Vince D.
  orcidid: 0000-0001-9058-0747
  surname: Calhoun
  fullname: Calhoun, Vince D.
  email: vcalhoun@gsu.edu
  organization: Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
– sequence: 6
  givenname: Yu-Ping
  orcidid: 0000-0001-9340-5864
  surname: Wang
  fullname: Wang, Yu-Ping
  email: wyp@tulane.edu
  organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35320094$$D View this record in MEDLINE/PubMed
BookMark eNptksFv0zAUxi00xLrBHQkJWeLCJeXFcRKbA9IYbKu0Con1wM16SZzWU2qH2Bnq-Ofx1lKg4mRZ_n2fvvf5nZAj66wm5GUK0zQF-W4xn00ZMDbN0iIVTDwhkzTPRcJy_u2ITICVIgEo2DE58f4WIOU5yGfkOMszBiD5hPycj10wydw12NHZGpfGLumltjqY2tNPGJBejN44S-8MUqRXm14PywH7VfIRvW7oHK1pXdfQr3o5djiYewwRf0_P-r4z9eOFBkdv6pW5d_1q0DYa3YSx2TwnT1vsvH6xO0_J4uLz4vwquf5yOTs_u05qznlIUOeNzMqyLGRaYqWBZQgtz1nRAq-gBCyg4k0soKmwLSQXZQ0CayGySsg8OyXp1na0PW5-YNepfjBrHDYqBfXQowprox56VLseo-bDVtOP1Vo3tbZhwD86h0b9-2LNSi3dnZJFNChlNHi7Mxjc91H7oNbG17rr0Go3esUKzoQEIbOIvjlAb9042NiIYiWICMocIvX670T7KL-_MgLFFqgH5_2gW1Wb8Fh_DGi6_axxZw5nhQPhYT3_kbzaSozWeo_LkscNK7JfgNbLdQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_JBHI_2023_3337661
crossref_primary_10_1109_TMI_2024_3419041
crossref_primary_10_1109_TCBB_2023_3335369
crossref_primary_10_1007_s11760_023_02760_3
crossref_primary_10_15212_RADSCI_2023_0008
crossref_primary_10_1109_TMI_2024_3412399
crossref_primary_10_1093_schbul_sbae110
crossref_primary_10_1016_j_displa_2024_102699
crossref_primary_10_1016_j_engappai_2023_107782
crossref_primary_10_1109_JBHI_2024_3383885
crossref_primary_10_1016_j_inffus_2024_102733
crossref_primary_10_1080_03772063_2025_2469644
crossref_primary_10_1109_JBHI_2022_3220545
crossref_primary_10_1080_0952813X_2024_2328234
crossref_primary_10_1016_j_compbiomed_2024_108051
Cites_doi 10.1038/nmeth.2810
10.1016/j.inffus.2019.08.005
10.1038/s41398-020-0832-8
10.1109/TGRS.2013.2255297
10.1093/bioinformatics/btw485
10.1109/TCBB.2020.2999397
10.1016/j.compmedimag.2019.101663
10.1016/j.neuroimage.2018.04.052
10.1016/j.eurpsy.2018.02.003
10.1109/JBHI.2018.2872581
10.1186/1471-2164-14-293
10.12659/msm.922426
10.1109/JPROC.2015.2461601
10.1006/nimg.2001.0978
10.1006/nimg.2002.1180
10.1109/TCBB.2019.2899568
10.1038/npp.2012.125
10.1016/j.euroneuro.2012.06.009
10.1038/mp.2011.170
10.1016/j.neuroimage.2010.09.073
10.7551/mitpress/7503.003.0205
10.1111/j.1467-9868.2005.00503.x
10.1007/s00521-013-1369-z
10.1038/s41537-021-00151-6
10.1007/s12561-012-9056-7
10.1109/TCBB.2019.2947428
10.2174/1573400510666140319234658
10.1162/neco_a_01273
10.1109/TMI.2019.2957097
10.1109/TIP.2012.2199502
10.1002/hbm.25013
10.1371/journal.pone.0068910
10.1007/s12021-013-9184-3
10.1093/schbul/sbt080
10.1109/TKDE.2018.2872063
10.1109/JPROC.2015.2460697
10.1111/j.2517-6161.1996.tb02080.x
10.1002/hbm.22642
10.25046/aj020390
10.1093/nar/gks1055
10.1016/j.media.2020.101953
10.1016/j.neuroimage.2017.10.022
10.1109/TMI.2019.2958256
10.1016/j.schres.2012.02.023
10.1080/01621459.2015.1034319
10.1016/j.bbr.2015.01.022
10.1109/TBME.2017.2771483
10.1038/msb4100180
10.1198/jcgs.2010.09208
10.1109/JBHI.2020.3019421
10.1016/j.media.2013.10.010
10.2307/1390712
10.1109/TBME.2021.3077875
10.1016/j.jneumeth.2011.10.031
10.1109/TBME.2015.2466616
10.3389/fninf.2014.00029
10.1109/TBME.2019.2921207
10.1111/j.1467-9868.2005.00532.x
10.1109/TMI.2021.3057635
10.1111/rssb.12033
10.1093/schbul/sbz060
10.1016/j.bpsc.2015.12.005
10.1111/biom.12035
10.1093/biostatistics/kxm045
10.1109/TII.2011.2172452
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/TMI.2022.3161828
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2272
ExternalDocumentID oai:pubmedcentral.nih.gov:9661879
PMC9661879
35320094
10_1109_TMI_2022_3161828
9740146
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NSF
  grantid: 1539067
  funderid: 10.13039/100000001
– fundername: NIH
  grantid: P20GM109068; R56 MH124925; R01 MH104680; R01MH107354; R01MH103220; R01 REB020407
  funderid: 10.13039/100000002
– fundername: NIGMS NIH HHS
  grantid: R01 GM109068
– fundername: NIMH NIH HHS
  grantid: R56 MH124925
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIBIB NIH HHS
  grantid: R01 EB006841
– fundername: NIGMS NIH HHS
  grantid: P20 GM103472
– fundername: NIMH NIH HHS
  grantid: R01 MH103220
– fundername: NIMH NIH HHS
  grantid: R01 MH104680
– fundername: NIMHD NIH HHS
  grantid: U54 MD007595
– fundername: NIMH NIH HHS
  grantid: R01 MH107354
– fundername: NIA NIH HHS
  grantid: U19 AG055373
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c444t-ae5d937776917abe023a0f4526f04b070a60b4d618dbaf69487c08ac883b8953
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Wed Aug 20 00:08:23 EDT 2025
Tue Sep 30 17:12:53 EDT 2025
Sat Sep 27 19:54:29 EDT 2025
Sun Jun 29 15:38:41 EDT 2025
Mon Jul 21 06:07:43 EDT 2025
Wed Oct 01 03:55:32 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Wed Aug 27 02:29:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-ae5d937776917abe023a0f4526f04b070a60b4d618dbaf69487c08ac883b8953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7108-8378
0000-0001-9058-0747
0000-0003-3326-2093
0000-0002-8916-3679
0000-0001-9340-5864
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9661879
PMID 35320094
PQID 2708642950
PQPubID 85460
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9661879
crossref_citationtrail_10_1109_TMI_2022_3161828
crossref_primary_10_1109_TMI_2022_3161828
proquest_journals_2708642950
unpaywall_primary_10_1109_tmi_2022_3161828
proquest_miscellaneous_2642890893
pubmed_primary_35320094
ieee_primary_9740146
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
Evgeniou (ref36)
ref58
ref53
ref52
ref11
ref55
ref10
Mueller (ref47) 2018; 369314
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref32
ref2
ref1
ref39
ref38
ref24
Ann (ref50) 2012; 4
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Sa (ref33)
ref60
ref62
ref61
References_xml – ident: ref37
  doi: 10.1038/nmeth.2810
– ident: ref34
  doi: 10.1016/j.inffus.2019.08.005
– ident: ref59
  doi: 10.1038/s41398-020-0832-8
– ident: ref29
  doi: 10.1109/TGRS.2013.2255297
– ident: ref43
  doi: 10.1093/bioinformatics/btw485
– ident: ref44
  doi: 10.1109/TCBB.2020.2999397
– ident: ref32
  doi: 10.1016/j.compmedimag.2019.101663
– ident: ref19
  doi: 10.1016/j.neuroimage.2018.04.052
– ident: ref62
  doi: 10.1016/j.eurpsy.2018.02.003
– ident: ref18
  doi: 10.1109/JBHI.2018.2872581
– ident: ref40
  doi: 10.1186/1471-2164-14-293
– ident: ref48
  doi: 10.12659/msm.922426
– ident: ref3
  doi: 10.1109/JPROC.2015.2461601
– ident: ref39
  doi: 10.1006/nimg.2001.0978
– ident: ref55
  doi: 10.1006/nimg.2002.1180
– ident: ref45
  doi: 10.1109/TCBB.2019.2899568
– start-page: 20
  volume-title: Proc. ICML Workshop Learn. Multiple Views
  ident: ref33
  article-title: Spectral clustering with two views
– ident: ref60
  doi: 10.1038/npp.2012.125
– ident: ref52
  doi: 10.1016/j.euroneuro.2012.06.009
– ident: ref46
  doi: 10.1038/mp.2011.170
– ident: ref7
  doi: 10.1016/j.neuroimage.2010.09.073
– ident: ref31
  doi: 10.7551/mitpress/7503.003.0205
– ident: ref11
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref68
  doi: 10.1007/s00521-013-1369-z
– ident: ref58
  doi: 10.1038/s41537-021-00151-6
– volume: 4
  start-page: 70
  issue: 2
  year: 2012
  ident: ref50
  article-title: Psychiatric disorders, mitochondrial dysfunction, and somatotypes
  publication-title: Ros Vestn Perinatol Pediat
– ident: ref15
  doi: 10.1007/s12561-012-9056-7
– ident: ref22
  doi: 10.1109/TCBB.2019.2947428
– ident: ref49
  doi: 10.2174/1573400510666140319234658
– ident: ref8
  doi: 10.1162/neco_a_01273
– ident: ref30
  doi: 10.1109/TMI.2019.2957097
– ident: ref63
  doi: 10.1109/TIP.2012.2199502
– ident: ref2
  doi: 10.1002/hbm.25013
– ident: ref56
  doi: 10.1371/journal.pone.0068910
– ident: ref28
  doi: 10.1007/s12021-013-9184-3
– ident: ref41
  doi: 10.1093/schbul/sbt080
– ident: ref4
  doi: 10.1109/TKDE.2018.2872063
– ident: ref1
  doi: 10.1109/JPROC.2015.2460697
– ident: ref9
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref20
  doi: 10.1002/hbm.22642
– ident: ref38
  doi: 10.25046/aj020390
– ident: ref57
  doi: 10.1093/nar/gks1055
– ident: ref24
  doi: 10.1016/j.media.2020.101953
– ident: ref53
  doi: 10.1016/j.neuroimage.2017.10.022
– volume: 369314
  year: 2018
  ident: ref47
  article-title: Glycosylation enzyme mRNA expression in dorsolateral prefrontal cortex of elderly patients with schizophrenia: Evidence for dysregulation of multiple glycosylation pathways
  publication-title: bioRxiv
– ident: ref23
  doi: 10.1109/TMI.2019.2958256
– ident: ref51
  doi: 10.1016/j.schres.2012.02.023
– ident: ref66
  doi: 10.1080/01621459.2015.1034319
– ident: ref54
  doi: 10.1016/j.bbr.2015.01.022
– ident: ref35
  doi: 10.1109/TBME.2017.2771483
– ident: ref14
  doi: 10.1038/msb4100180
– ident: ref13
  doi: 10.1198/jcgs.2010.09208
– ident: ref26
  doi: 10.1109/JBHI.2020.3019421
– ident: ref42
  doi: 10.1016/j.media.2013.10.010
– ident: ref10
  doi: 10.2307/1390712
– ident: ref64
  doi: 10.1109/TBME.2021.3077875
– ident: ref6
  doi: 10.1016/j.jneumeth.2011.10.031
– ident: ref21
  doi: 10.1109/TBME.2015.2466616
– ident: ref17
  doi: 10.3389/fninf.2014.00029
– ident: ref27
  doi: 10.1109/TBME.2019.2921207
– ident: ref12
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: ref25
  doi: 10.1109/TMI.2021.3057635
– ident: ref67
  doi: 10.1111/rssb.12033
– ident: ref61
  doi: 10.1093/schbul/sbz060
– ident: ref5
  doi: 10.1016/j.bpsc.2015.12.005
– ident: ref16
  doi: 10.1111/biom.12035
– start-page: 19
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Multi-task feature learning
– ident: ref65
  doi: 10.1093/biostatistics/kxm045
– ident: ref69
  doi: 10.1109/TII.2011.2172452
SSID ssj0014509
Score 2.510984
Snippet Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2263
SubjectTerms Algorithms
Brain
Brain - diagnostic imaging
Data integration
Data models
Environmental factors
Feature extraction
Genetics
Graph theory
Humans
Hypergraph
Imaging
information fusion Imaging genetics
Magnetic Resonance Imaging - methods
Manifolds
Medical imaging
Mental disorders
Modal data
multi-modal data
Multimodal Imaging - methods
Multitasking
Neuroimaging
Regularization
Risk factors
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - genetics
schizophrenia classification
Title Multi-Modal Imaging Genetics Data Fusion via a Hypergraph-Based Manifold Regularization: Application to Schizophrenia Study
URI https://ieeexplore.ieee.org/document/9740146
https://www.ncbi.nlm.nih.gov/pubmed/35320094
https://www.proquest.com/docview/2708642950
https://www.proquest.com/docview/2642890893
https://pubmed.ncbi.nlm.nih.gov/PMC9661879
https://www.ncbi.nlm.nih.gov/pmc/articles/9661879
UnpaywallVersion submittedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEC0lObAcWBIWQ0CNxAWEZzp2e2luYRlNkMwBBik3qzfDiIkdBRsU-HmqvDFDIsTNksuWyl3dXc9V_R7AU8zwjYh16CemKHwRmNjXJohwMYysTYzUgSGgmL2P55_Eu-PoeAtejGdhnHNt85mb0GVby7eVaehX2VSSfJyIt2E7SWR3VmusGIioa-cIiDGWx8FQkuRyusiOEAgGAeLTGNNpkugLSQ-BS7GxG7XyKpdlmhcbJq825ak6_6FWq7XdaHYTssGPrgnl66Sp9cT8_Ivi8X8dvQU3-rSUHXZxdBu2XLkL19fICnfhStaX4ffgV3ts188qi88cnbRCR4wIrInzmb1RtWKzhn7Dse9LxRSbI9g9a6mx_Ve4a1qWqXJZVCvLPrjP1AfbHwZ9yQ7_1NNZXbGP6y2BjHoez-_AYvZ28Xru9yoOvhFC1L5ykcUcKEliRIZKO0wSFC9I2bzgQuOKo2KuhcWRsVoVsUQEZXiqTJqGOpVReBd2yqp094GFBlcjbYNI4_cxyqbSKUxvtTywkTooEg-mw2Dmpmc4J6GNVd4iHS5zjIScIiHvI8GDZ-MTpx27xz9s92igRrt-jDzYH-Il76f_tzxIECniTh9xD56Mt3HiUjVGla5q0IaQH1VdQw_udeE1vnsITw-SjcAbDYgUfPNOufzSkoMjfCUBeQ-ejyF6wbX6ZLnh2oPLXXsI18iq66jbh536rHGPMAWr9eN27v0GwCYrsg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEC2FIBE4sCQshgCNxAWEZxy72wu3sIxmIM4BBik3qzfDiIkdBRsU-HmqvDFDIsTNkrstleu5u56r-hXAU4zwNQ9V4EY6z13u69BV2he4GApjIp0oXxNRTA_D6Sf-7kgcbcCL4SyMtbYpPrMjumxy-abUNf0qGyfUPo6Hl-CyQFYRtae1hpwBF21Bh0-asV7o90lJLxnP0xlSQd9HhhpiQE1N-gLqiOAlfG0_ahqsXBRrni-Z3KqLE3n2Qy6XK_vR5AakvSVtGcrXUV2pkf75l8jj_5p6E653gSnbb5F0CzZssQ3XVuQKt-FK2iXid-BXc3DXTUuDc2bHTasjRhLWpPrM3shKsklNP-LY94Vkkk2R7p424tjuK9w3DUtlscjLpWEf7GeqhO2Og75k-38y6qwq2cfVokBGVY9nt2E-eTt_PXW7Pg6u5pxXrrTCYBQURSFyQ6kshgnSy6m3ee5xhWuODD3FDXrGKJmHCbpWe7HUcRyoOBHBHdgsysLeAxZoXI-U8YXC96OliRMrMcBVyZ4Rci-PHBj3zsx0p3FOrTaWWcN1vCRDJGSEhKxDggPPhhknrb7HP8bukKOGcZ2PHNjt8ZJ1C8C3zI-QK-JeLzwHngy38dOlfIwsbFnjGOJ-lHcNHLjbwmt4dg9PB6I14A0DSBZ8_U6x-NLIgyOBpRbyDjwfIHrOtOp4sWba_YtNewxb03l6kB3MDt8_gKs0o62v24XN6rS2DzEgq9Sj5jv8DZXGLwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Imaging+Genetics+Data+Fusion+via+a+Hypergraph-Based+Manifold+Regularization%3A+Application+to+Schizophrenia+Study&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhang%2C+Yipu&rft.au=Zhang%2C+Haowei&rft.au=Xiao%2C+Li&rft.au=Bai%2C+Yuntong&rft.date=2022-09-01&rft.eissn=1558-254X&rft.volume=41&rft.issue=9&rft.spage=2263&rft_id=info:doi/10.1109%2FTMI.2022.3161828&rft_id=info%3Apmid%2F35320094&rft.externalDocID=35320094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon