Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm

Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed mod...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 80; pp. 209 - 222
Main Authors Rohart, Florian, San Cristobal, Magali, Laurent, Béatrice
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
1872-7352
DOI10.1016/j.csda.2014.06.022

Cover

Abstract Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a ℓ1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters p to be larger than the total number of observations n and does not require the inversion of the sample n×n covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the ℓ1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting.
AbstractList Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a ℓ1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters p to be larger than the total number of observations n and does not require the inversion of the sample n×n covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the ℓ1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting.
Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a [ell] super(1)[ell]1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters pp to be larger than the total number of observations nn and does not require the inversion of the sample nnnn covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the [ell] super(1)[ell]1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting.
Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a ℓ 1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters p to be larger than the total number of observations n and does not require the inversion of the sample n×n covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the ℓ 1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting.
Author Rohart, Florian
San Cristobal, Magali
Laurent, Béatrice
Author_xml – sequence: 1
  givenname: Florian
  surname: Rohart
  fullname: Rohart, Florian
  email: florian.rohart@gmail.com, f.rohart@uq.edu.au
  organization: UMR 5219, Institut de Mathématiques de Toulouse, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France
– sequence: 2
  givenname: Magali
  surname: San Cristobal
  fullname: San Cristobal, Magali
  organization: UMR 5219, Institut de Mathématiques de Toulouse, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France
– sequence: 3
  givenname: Béatrice
  surname: Laurent
  fullname: Laurent, Béatrice
  organization: UMR 5219, Institut de Mathématiques de Toulouse, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France
BackLink https://hal.science/hal-01974726$$DView record in HAL
BookMark eNqNkU1v1DAQhi1UJLaFP8DJRzhs6q-NE4lLtSq00iIOwNma2pNdrxx7sZPC_nsSgoTEoXCyNHqeGet9L8lFTBEJec1ZxRmvr4-VLQ4qwbiqWF0xIZ6RFW-0WGu5ERdkNUF63SotX5DLUo6MMaF0syL2Mwa0g0-Rpo52_gc6il03jQr1kR78_kCd7zGWCYFAg48Imfa_wD45DIWOxcc9BdqPYfD2bAPS2-1HCmGfsh8O_UvyvINQ8NXv94p8fX_7ZXu33n36cL-92a2tUmpYt65DpZWQyJlWDQgJTNWNRtHig3CsYW3tVMd4C1oDl0K3iG1nNTimRPsgr4hc9o7xBOfvEII5Zd9DPhvOzJyTOZo5JzPnZFhtppwm6-1iHeAPn8Cbu5udmWfTQa20qB_5xL5Z2FNO30Ysg-l9sRgCRExjMUJspOA1k80_Ub6pNZcbJeetYkFtTqVk7P7v281fkvUDzEUOGXx4Wn23qFN5-Ogxm2I9RovO56l445J_Sv8JTzW_6A
CitedBy_id crossref_primary_10_1007_s10182_017_0298_z
crossref_primary_10_1016_j_jmva_2018_08_014
crossref_primary_10_1371_journal_pcbi_1012143
crossref_primary_10_1214_23_AOAS1760
crossref_primary_10_1186_s13148_022_01341_4
crossref_primary_10_1016_j_csda_2015_10_006
crossref_primary_10_1080_01621459_2019_1660172
crossref_primary_10_1007_s10182_019_00359_z
crossref_primary_10_1186_s12859_017_1553_8
crossref_primary_10_3389_fpls_2021_675410
crossref_primary_10_1007_s12561_021_09328_0
crossref_primary_10_2139_ssrn_4168853
crossref_primary_10_1007_s10260_023_00685_2
crossref_primary_10_1016_j_agrformet_2018_02_029
Cites_doi 10.1016/j.jspi.2005.03.011
10.1093/ansci/1973.Symposium.10
10.1198/016214506000000735
10.1016/S0167-7152(02)00396-6
10.1111/j.2517-6161.1996.tb02080.x
10.1214/07-AOS520
10.1214/aos/1176344136
10.2307/3001853
10.1214/11-STS358
10.1111/j.1467-9469.2011.00740.x
10.1214/12-STS410
10.1111/j.1541-0420.2010.01391.x
10.1186/1297-9686-29-3-297
10.1111/j.1467-9868.2005.00503.x
10.1007/s11222-012-9359-z
10.1080/01621459.1977.10480998
10.1111/j.2517-6161.1995.tb02031.x
10.1093/biomet/80.2.267
10.1093/biomet/58.3.545
10.1111/j.1541-0420.2010.01463.x
10.2527/jas.2012-5338
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.csda.2014.06.022
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 222
ExternalDocumentID oai:HAL:hal-01974726v1
10_1016_j_csda_2014_06_022
S0167947314002011
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c444t-9dfe47423e10748a23a04687e29eb2d08096d4f019a77a13279ee9fc7ad0429b3
IEDL.DBID .~1
ISSN 0167-9473
1872-7352
IngestDate Sun Oct 26 03:50:40 EDT 2025
Sat Oct 25 06:43:51 EDT 2025
Mon Sep 29 04:51:42 EDT 2025
Thu Oct 02 12:09:37 EDT 2025
Wed Oct 01 03:05:11 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
Fri Feb 23 02:23:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Linear mixed model
LmmLasso
Multiple hypothesis testing
High-dimension
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-9dfe47423e10748a23a04687e29eb2d08096d4f019a77a13279ee9fc7ad0429b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-9588-8000
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-01974726
PQID 1567135431
PQPubID 23500
PageCount 14
ParticipantIDs unpaywall_primary_10_1016_j_csda_2014_06_022
hal_primary_oai_HAL_hal_01974726v1
proquest_miscellaneous_2253216038
proquest_miscellaneous_1567135431
crossref_primary_10_1016_j_csda_2014_06_022
crossref_citationtrail_10_1016_j_csda_2014_06_022
elsevier_sciencedirect_doi_10_1016_j_csda_2014_06_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bach (br000010) 2009
Henderson (br000060) 1973
Schelldorfer, Bühlmann, van~de Geer (br000035) 2011; 38
Schwarz (br000125) 1978; 6
McLachlan, Krishnan (br000085) 2008
Ibrahim, Zhu, Garcia, Guo (br000080) 2011; 67
Patterson, Thompson (br000100) 1971; 58
Zou (br000145) 2006; 101
Harville (br000055) 1977; 72
Rohart, F., 2011. Multiple Hypotheses Testing For Variable Selection.
Rohart, Paris, Laurent, Canlet, Molina, Mercat, Tribout, Muller, Ianuccelli, Villa-Vialaneix, Liaubet, Milan, San-Cristobal (br000120) 2012
Benjamini, Hochberg (br000015) 1995; 57
Huang, Ma, Zhang (br000075) 2008; 18
Anderson (br000005) 1984
(br000110) 2013
Henderson (br000070) 1984
Yuan, Lin (br000135) 2007; 68
Foulley, Delmas, Robert-Granié (br000045) 2006; 1–2
Müller, Scealy, Welsh (br000095) 2013; 28
Groll, Tutz (br000050) 2014; 24
Bondell, Krishna, Ghosh (br000025) 2010; 66
.
Pourahmadi (br000105) 2011; 26
Henderson (br000065) 1953; 9
Meng, Rubin (br000090) 1993; 80
Zhang, Hunag (br000140) 2008; 36
Tibshirani (br000130) 1996; 58
Biernacki, Chrétien (br000020) 2003; 61
Bunea, Wegkamp, Auguste (br000030) 2006; 136
Foulley (br000040) 1997; 29
Zou, Hastie (br000150) 2005; 67
Zou (10.1016/j.csda.2014.06.022_br000150) 2005; 67
Tibshirani (10.1016/j.csda.2014.06.022_br000130) 1996; 58
Harville (10.1016/j.csda.2014.06.022_br000055) 1977; 72
Biernacki (10.1016/j.csda.2014.06.022_br000020) 2003; 61
Benjamini (10.1016/j.csda.2014.06.022_br000015) 1995; 57
Pourahmadi (10.1016/j.csda.2014.06.022_br000105) 2011; 26
Groll (10.1016/j.csda.2014.06.022_br000050) 2014; 24
Henderson (10.1016/j.csda.2014.06.022_br000060) 1973
Müller (10.1016/j.csda.2014.06.022_br000095) 2013; 28
Zou (10.1016/j.csda.2014.06.022_br000145) 2006; 101
Bach (10.1016/j.csda.2014.06.022_br000010) 2009
Huang (10.1016/j.csda.2014.06.022_br000075) 2008; 18
Yuan (10.1016/j.csda.2014.06.022_br000135) 2007; 68
Meng (10.1016/j.csda.2014.06.022_br000090) 1993; 80
10.1016/j.csda.2014.06.022_br000115
Henderson (10.1016/j.csda.2014.06.022_br000065) 1953; 9
Schelldorfer (10.1016/j.csda.2014.06.022_br000035) 2011; 38
Anderson (10.1016/j.csda.2014.06.022_br000005) 1984
(10.1016/j.csda.2014.06.022_br000110) 2013
Foulley (10.1016/j.csda.2014.06.022_br000040) 1997; 29
Schwarz (10.1016/j.csda.2014.06.022_br000125) 1978; 6
Foulley (10.1016/j.csda.2014.06.022_br000045) 2006; 1–2
Ibrahim (10.1016/j.csda.2014.06.022_br000080) 2011; 67
Bondell (10.1016/j.csda.2014.06.022_br000025) 2010; 66
Henderson (10.1016/j.csda.2014.06.022_br000070) 1984
Patterson (10.1016/j.csda.2014.06.022_br000100) 1971; 58
Bunea (10.1016/j.csda.2014.06.022_br000030) 2006; 136
McLachlan (10.1016/j.csda.2014.06.022_br000085) 2008
Rohart (10.1016/j.csda.2014.06.022_br000120) 2012
Zhang (10.1016/j.csda.2014.06.022_br000140) 2008; 36
References_xml – volume: 24
  start-page: 137
  year: 2014
  end-page: 154
  ident: br000050
  article-title: Variable selection for generalized linear mixed models by
  publication-title: Stat. Comput.
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: br000125
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  ident: br000090
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
– reference: Rohart, F., 2011. Multiple Hypotheses Testing For Variable Selection.
– volume: 68
  start-page: 46
  year: 2007
  end-page: 67
  ident: br000135
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. B
– year: 1984
  ident: br000070
  article-title: Applications of Linear Models in Animal Breeding
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: br000015
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing
  publication-title: J. R. Stat. Soc. B
– year: 2012
  ident: br000120
  article-title: Phenotypic prediction based on metabolomic data on the growing pig from three main European breeds
  publication-title: J. Anim. Sci.
– volume: 36
  start-page: 1567
  year: 2008
  end-page: 1594
  ident: br000140
  article-title: The sparsity and bias of the Lasso selection in high-dimensional linear regression
  publication-title: Ann. Statist.
– start-page: 10
  year: 1973
  end-page: 41
  ident: br000060
  article-title: Sire evaluation and genetic trends
  publication-title: J. Anim. Sci.
– volume: 66
  start-page: 1069
  year: 2010
  end-page: 1077
  ident: br000025
  article-title: Joint variable selection of fixed and random effects in linear mixed-effects models
  publication-title: Biometrics
– volume: 38
  start-page: 197
  year: 2011
  end-page: 214
  ident: br000035
  article-title: Estimation for high-dimensional linear mixed-effects models using
  publication-title: Scand. J. Stat.
– year: 2009
  ident: br000010
  article-title: Model-consistent sparse estimation through the bootstrap. Technical Report, hal-00354771, version 1
– volume: 29
  start-page: 197
  year: 1997
  end-page: 318
  ident: br000040
  article-title: ECM approaches to heteroskedastic mixed models with constant variance ratios
  publication-title: Genet. Selection Evol.
– volume: 72
  start-page: 320
  year: 1977
  end-page: 340
  ident: br000055
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: J. Amer. Statist. Assoc.
– year: 1984
  ident: br000005
  publication-title: An introduction to multivariate analysis
– volume: 28
  start-page: 135
  year: 2013
  end-page: 281
  ident: br000095
  article-title: Model selection in linear mixed model
  publication-title: Statist. Sci.
– volume: 18
  start-page: 1603
  year: 2008
  end-page: 1618
  ident: br000075
  article-title: Adaptative Lasso for sparse high-dimensional regression models
  publication-title: Statist. Sinica
– volume: 58
  start-page: 545
  year: 1971
  end-page: 554
  ident: br000100
  article-title: Recovery of inter-block information when block sizes are unequal
  publication-title: Biometrika
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: br000130
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. B
– year: 2013
  ident: br000110
  article-title: R: A Language and Environment for Statistical Computing
– volume: 9
  start-page: 226
  year: 1953
  end-page: 252
  ident: br000065
  article-title: Estimation of variance and covariance components
  publication-title: Biometrics
– volume: 67
  start-page: 495
  year: 2011
  end-page: 503
  ident: br000080
  article-title: Fixed and random effects selection in mixed effects models
  publication-title: Biometrics
– reference: .
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: br000145
  article-title: The adaptive Lasso and its oracle properties
  publication-title: J. Amer. Statist. Assoc.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: br000150
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Statist. Soc. B
– volume: 26
  start-page: 369
  year: 2011
  end-page: 387
  ident: br000105
  article-title: Covariance estimation: the GLM and regularization perspectives
  publication-title: Statist. Sci.
– volume: 136
  start-page: 4349
  year: 2006
  end-page: 4363
  ident: br000030
  article-title: Consistent variable selection in high dimensional regression via multiple testing
  publication-title: J. Statist. Plann. Inference
– volume: 1–2
  start-page: 5
  year: 2006
  end-page: 52
  ident: br000045
  article-title: Méthodes du maximum de vraisemblance en modèle linéaire mixte
  publication-title: J. SFdS
– year: 2008
  ident: br000085
  article-title: The EM Algorithm and Extensions
– volume: 61
  start-page: 373
  year: 2003
  end-page: 382
  ident: br000020
  article-title: Degeneracy in the maximum likelihood estimation of univariate gaussian mixtures with EM
  publication-title: Statist. Probab. Lett.
– volume: 136
  start-page: 4349
  year: 2006
  ident: 10.1016/j.csda.2014.06.022_br000030
  article-title: Consistent variable selection in high dimensional regression via multiple testing
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2005.03.011
– start-page: 10
  year: 1973
  ident: 10.1016/j.csda.2014.06.022_br000060
  article-title: Sire evaluation and genetic trends
  publication-title: J. Anim. Sci.
  doi: 10.1093/ansci/1973.Symposium.10
– volume: 101
  start-page: 1418
  issue: 101
  year: 2006
  ident: 10.1016/j.csda.2014.06.022_br000145
  article-title: The adaptive Lasso and its oracle properties
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214506000000735
– volume: 61
  start-page: 373
  year: 2003
  ident: 10.1016/j.csda.2014.06.022_br000020
  article-title: Degeneracy in the maximum likelihood estimation of univariate gaussian mixtures with EM
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/S0167-7152(02)00396-6
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.csda.2014.06.022_br000130
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 18
  start-page: 1603
  year: 2008
  ident: 10.1016/j.csda.2014.06.022_br000075
  article-title: Adaptative Lasso for sparse high-dimensional regression models
  publication-title: Statist. Sinica
– volume: 36
  start-page: 1567
  year: 2008
  ident: 10.1016/j.csda.2014.06.022_br000140
  article-title: The sparsity and bias of the Lasso selection in high-dimensional linear regression
  publication-title: Ann. Statist.
  doi: 10.1214/07-AOS520
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.csda.2014.06.022_br000125
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume: 9
  start-page: 226
  year: 1953
  ident: 10.1016/j.csda.2014.06.022_br000065
  article-title: Estimation of variance and covariance components
  publication-title: Biometrics
  doi: 10.2307/3001853
– volume: 26
  start-page: 369
  year: 2011
  ident: 10.1016/j.csda.2014.06.022_br000105
  article-title: Covariance estimation: the GLM and regularization perspectives
  publication-title: Statist. Sci.
  doi: 10.1214/11-STS358
– volume: 38
  start-page: 197
  year: 2011
  ident: 10.1016/j.csda.2014.06.022_br000035
  article-title: Estimation for high-dimensional linear mixed-effects models using ℓ1-penalization
  publication-title: Scand. J. Stat.
  doi: 10.1111/j.1467-9469.2011.00740.x
– volume: 28
  start-page: 135
  year: 2013
  ident: 10.1016/j.csda.2014.06.022_br000095
  article-title: Model selection in linear mixed model
  publication-title: Statist. Sci.
  doi: 10.1214/12-STS410
– volume: 66
  start-page: 1069
  year: 2010
  ident: 10.1016/j.csda.2014.06.022_br000025
  article-title: Joint variable selection of fixed and random effects in linear mixed-effects models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01391.x
– volume: 29
  start-page: 197
  year: 1997
  ident: 10.1016/j.csda.2014.06.022_br000040
  article-title: ECM approaches to heteroskedastic mixed models with constant variance ratios
  publication-title: Genet. Selection Evol.
  doi: 10.1186/1297-9686-29-3-297
– year: 2008
  ident: 10.1016/j.csda.2014.06.022_br000085
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.csda.2014.06.022_br000150
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– year: 1984
  ident: 10.1016/j.csda.2014.06.022_br000005
– volume: 24
  start-page: 137
  year: 2014
  ident: 10.1016/j.csda.2014.06.022_br000050
  article-title: Variable selection for generalized linear mixed models by ℓ1-penalized estimation
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9359-z
– volume: 72
  start-page: 320
  year: 1977
  ident: 10.1016/j.csda.2014.06.022_br000055
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1977.10480998
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.csda.2014.06.022_br000015
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 1–2
  start-page: 5
  year: 2006
  ident: 10.1016/j.csda.2014.06.022_br000045
  article-title: Méthodes du maximum de vraisemblance en modèle linéaire mixte
  publication-title: J. SFdS
– volume: 80
  start-page: 267
  year: 1993
  ident: 10.1016/j.csda.2014.06.022_br000090
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– ident: 10.1016/j.csda.2014.06.022_br000115
– year: 2013
  ident: 10.1016/j.csda.2014.06.022_br000110
– volume: 58
  start-page: 545
  year: 1971
  ident: 10.1016/j.csda.2014.06.022_br000100
  article-title: Recovery of inter-block information when block sizes are unequal
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.545
– year: 1984
  ident: 10.1016/j.csda.2014.06.022_br000070
– volume: 67
  start-page: 495
  year: 2011
  ident: 10.1016/j.csda.2014.06.022_br000080
  article-title: Fixed and random effects selection in mixed effects models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01463.x
– year: 2012
  ident: 10.1016/j.csda.2014.06.022_br000120
  article-title: Phenotypic prediction based on metabolomic data on the growing pig from three main European breeds
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2012-5338
– year: 2009
  ident: 10.1016/j.csda.2014.06.022_br000010
– volume: 68
  start-page: 46
  year: 2007
  ident: 10.1016/j.csda.2014.06.022_br000135
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. B
SSID ssj0002478
Score 2.202952
Snippet Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in...
SourceID unpaywall
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 209
SubjectTerms Algorithms
Applications
Computation
computer software
Data processing
Electrochemical machining
High-dimension
Linear mixed model
linear models
LmmLasso
Mathematical models
Maximization
Methodology
Multiple hypothesis testing
Optimization
Samples
Statistics
system optimization
variance covariance matrix
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL206cO2h23dB8vaDXXsbXNJJNmyHkNpCWMpgzbQPQnFkppsqVNiZ1v363evP0IpNHRvtrlCiKOPc_HRuQAfNVfeiZREDD0XSUy-Iu29iBwmzF7YHp9U97hHp8lwLL9cxBdbwNq7MFNknM3eT8-Y6RLh5ck27CQxsu0O7IxPvw2-t5bdWlY_kfupQqKIZKK5F1NLuLLCkbVQX1YWnZzfd_ZsT0kEeYthPlrl1_bmt53Pbx02J89q0WNReRSSxuTn4aqcHGZ_7zg4bhrHc3jaME02qKfGLmz5_AU8Ga1tWouXkJ1VVXAQGrYILMz-eMcagQeb5YysjJkj-__auoMRJbVLdlUFVjV0CkbC-UtmWaVMzG6wK3Z8NGJ2frlYzsrp1SsYnxyfHw2jpupClEkpy0i74Akz4UmrmVqOiMkkVZ5rzMIdMkydOBlwQFYpi8msQnB1yJR1dLhNxGvo5IvcvwEmXBK0VnGIQyZj17NKO9mzNggvlEh8F_otHiZrLMmpMsbctNqzH4YwNIShIQEe5134tG5zXRtybIyOW5hNA0dNFQyeGBvbfUDU1h2QB_dw8NXQtxbJX_0uHLRTxuCipD8tNveLVWEwKabSh0jO7o_BjVRwKvKdduHzer49YExv_y98Dx7TWy3B2YdOuVz5d0ikysn7Zi39A0utF_E
  priority: 102
  providerName: Unpaywall
Title Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm
URI https://dx.doi.org/10.1016/j.csda.2014.06.022
https://www.proquest.com/docview/1567135431
https://www.proquest.com/docview/2253216038
https://hal.science/hal-01974726
UnpaywallVersion submittedVersion
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: AKRWK
  dateStart: 19830301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcgAOFU81PCqDuMGSje1dx8coahUIiRAlopwsZ223i9JNlEehF347M_sI5dAKcVqtZcvrGXse2s_fALzWXHknugRiiF0kMfmKtPcicpgwe2FjPi3vcY_G6WAiP5wkJzvQb-7CEKyytv2VTS-tdd3SrqXZXuR5-5gA9FoqgSlCTG6MbrBLRVUM3v36A_PgsrLGxO9NveuLMxXGK1s54h7qyJLDk_PrnNOtM0JJXglB72yKhb38YWezK97o6D7s1WEk61Vf-gB2fPEQ7o22HKyrR5AdlyVuUO5sHljIf3rHavQGywtGPMXMEbd_xcvBKN60S3ZediwL5KwYoeJPmWUl7DC7xKnYYX_E7Ox0vszXZ-ePYXJ0-KU_iOqSClEmpVxH2gVPChGegJhdy1EdMu0qzzWm2A7DR506GTDus0pZzFQVak6HTFlHnmsqnsBuMS_8PjDh0qC1SkISMpm42CrtZGxtEF4okfoWdBpZmqzmG6eyFzPTAMu-G5K_IfkbQtdx3oI32zGLim3jxt5JoyLz154x6A5uHPcK9bmdgAi2B72Phtpw4Zhf8fSi04KXjboNnjj6jWILP9-sDGa8VNcQI6_r-6CVFJwqeHdb8Ha7V_5hTU__c03P4C69VUCb57C7Xm78CwyX1tOD8jwcwO3e--FgTM_h569DfE7Gn3rffgPfHRUE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB71cSgcEC0gAgVMxQ2WbGzvOj5WUau0JL20lXqznLXdLko3UR4tvfDbO7OPUA6tENfdsbyeseeh_fwNwBfNlXeiSyCG2EUSi69Iey8ihwWzFzbmo_Ie9_Ak7Z_L44vkYg16zV0YglXWvr_y6aW3rp-0a222p3nePiUAvZZKYIkQUxhbh02ZcEUV2Pfff3AeXFbumAi-Sby-OVOBvLK5I_KhjixJPDl_LDqtXxFM8kEOurUspvbu1o7HD8LR4Ut4UeeRbL_61G1Y88UOPB-uSFjnryA7LXvcoOLZJLCQ__KO1fANlheMiIqZI3L_ipiDUcJpZ-y6FCw75MwZweIvmWUl7jC7w6nYQW_I7PhyMssXV9ev4fzw4KzXj-qeClEmpVxE2gVPFhGekJhdy9EeMu0qzzXW2A7zR506GTDxs0pZLFUVmk6HTFlHoWsk3sBGMSn8W2DCpUFrlYQkZDJxsVXaydjaILxQIvUt6DS6NFlNOE59L8amQZb9NKR_Q_o3BK_jvAVfV2OmFd3Gk9JJYyLz16YxGA-eHLeH9lxNQAzb_f2BoWe4cCyweHrTacHnxtwGjxz9R7GFnyznBkteamyIqdfjMugmBacW3t0WfFvtlX9Y07v_XNMn2OqfDQdmcHTy4z08ozcV6mYXNhazpf-AudNi9LE8G_fejRNG
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL206cO2h23dB8vaDXXsbXNJJNmyHkNpCWMpgzbQPQnFkppsqVNiZ1v363evP0IpNHRvtrlCiKOPc_HRuQAfNVfeiZREDD0XSUy-Iu29iBwmzF7YHp9U97hHp8lwLL9cxBdbwNq7MFNknM3eT8-Y6RLh5ck27CQxsu0O7IxPvw2-t5bdWlY_kfupQqKIZKK5F1NLuLLCkbVQX1YWnZzfd_ZsT0kEeYthPlrl1_bmt53Pbx02J89q0WNReRSSxuTn4aqcHGZ_7zg4bhrHc3jaME02qKfGLmz5_AU8Ga1tWouXkJ1VVXAQGrYILMz-eMcagQeb5YysjJkj-__auoMRJbVLdlUFVjV0CkbC-UtmWaVMzG6wK3Z8NGJ2frlYzsrp1SsYnxyfHw2jpupClEkpy0i74Akz4UmrmVqOiMkkVZ5rzMIdMkydOBlwQFYpi8msQnB1yJR1dLhNxGvo5IvcvwEmXBK0VnGIQyZj17NKO9mzNggvlEh8F_otHiZrLMmpMsbctNqzH4YwNIShIQEe5134tG5zXRtybIyOW5hNA0dNFQyeGBvbfUDU1h2QB_dw8NXQtxbJX_0uHLRTxuCipD8tNveLVWEwKabSh0jO7o_BjVRwKvKdduHzer49YExv_y98Dx7TWy3B2YdOuVz5d0ikysn7Zi39A0utF_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+fixed+effects+in+high+dimensional+linear+mixed+models+using+a+multicycle+ECM+algorithm&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Rohart%2C+Florian&rft.au=San+Cristobal%2C+Magali&rft.au=Laurent%2C+B%C3%A9atrice&rft.date=2014-12-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=80&rft.spage=209&rft.epage=222&rft_id=info:doi/10.1016%2Fj.csda.2014.06.022&rft.externalDocID=S0167947314002011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon