Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm
Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed mod...
        Saved in:
      
    
          | Published in | Computational statistics & data analysis Vol. 80; pp. 209 - 222 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.12.2014
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-9473 1872-7352 1872-7352  | 
| DOI | 10.1016/j.csda.2014.06.022 | 
Cover
| Abstract | Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a ℓ1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters p to be larger than the total number of observations n and does not require the inversion of the sample n×n covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the ℓ1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting. | 
    
|---|---|
| AbstractList | Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a ℓ1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters p to be larger than the total number of observations n and does not require the inversion of the sample n×n covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the ℓ1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting. Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a [ell] super(1)[ell]1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters pp to be larger than the total number of observations nn and does not require the inversion of the sample nnnn covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the [ell] super(1)[ell]1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting. Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a ℓ 1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters p to be larger than the total number of observations n and does not require the inversion of the sample n×n covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the ℓ 1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting.  | 
    
| Author | Rohart, Florian San Cristobal, Magali Laurent, Béatrice  | 
    
| Author_xml | – sequence: 1 givenname: Florian surname: Rohart fullname: Rohart, Florian email: florian.rohart@gmail.com, f.rohart@uq.edu.au organization: UMR 5219, Institut de Mathématiques de Toulouse, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France – sequence: 2 givenname: Magali surname: San Cristobal fullname: San Cristobal, Magali organization: UMR 5219, Institut de Mathématiques de Toulouse, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France – sequence: 3 givenname: Béatrice surname: Laurent fullname: Laurent, Béatrice organization: UMR 5219, Institut de Mathématiques de Toulouse, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France  | 
    
| BackLink | https://hal.science/hal-01974726$$DView record in HAL | 
    
| BookMark | eNqNkU1v1DAQhi1UJLaFP8DJRzhs6q-NE4lLtSq00iIOwNma2pNdrxx7sZPC_nsSgoTEoXCyNHqeGet9L8lFTBEJec1ZxRmvr4-VLQ4qwbiqWF0xIZ6RFW-0WGu5ERdkNUF63SotX5DLUo6MMaF0syL2Mwa0g0-Rpo52_gc6il03jQr1kR78_kCd7zGWCYFAg48Imfa_wD45DIWOxcc9BdqPYfD2bAPS2-1HCmGfsh8O_UvyvINQ8NXv94p8fX_7ZXu33n36cL-92a2tUmpYt65DpZWQyJlWDQgJTNWNRtHig3CsYW3tVMd4C1oDl0K3iG1nNTimRPsgr4hc9o7xBOfvEII5Zd9DPhvOzJyTOZo5JzPnZFhtppwm6-1iHeAPn8Cbu5udmWfTQa20qB_5xL5Z2FNO30Ysg-l9sRgCRExjMUJspOA1k80_Ub6pNZcbJeetYkFtTqVk7P7v281fkvUDzEUOGXx4Wn23qFN5-Ogxm2I9RovO56l445J_Sv8JTzW_6A | 
    
| CitedBy_id | crossref_primary_10_1007_s10182_017_0298_z crossref_primary_10_1016_j_jmva_2018_08_014 crossref_primary_10_1371_journal_pcbi_1012143 crossref_primary_10_1214_23_AOAS1760 crossref_primary_10_1186_s13148_022_01341_4 crossref_primary_10_1016_j_csda_2015_10_006 crossref_primary_10_1080_01621459_2019_1660172 crossref_primary_10_1007_s10182_019_00359_z crossref_primary_10_1186_s12859_017_1553_8 crossref_primary_10_3389_fpls_2021_675410 crossref_primary_10_1007_s12561_021_09328_0 crossref_primary_10_2139_ssrn_4168853 crossref_primary_10_1007_s10260_023_00685_2 crossref_primary_10_1016_j_agrformet_2018_02_029  | 
    
| Cites_doi | 10.1016/j.jspi.2005.03.011 10.1093/ansci/1973.Symposium.10 10.1198/016214506000000735 10.1016/S0167-7152(02)00396-6 10.1111/j.2517-6161.1996.tb02080.x 10.1214/07-AOS520 10.1214/aos/1176344136 10.2307/3001853 10.1214/11-STS358 10.1111/j.1467-9469.2011.00740.x 10.1214/12-STS410 10.1111/j.1541-0420.2010.01391.x 10.1186/1297-9686-29-3-297 10.1111/j.1467-9868.2005.00503.x 10.1007/s11222-012-9359-z 10.1080/01621459.1977.10480998 10.1111/j.2517-6161.1995.tb02031.x 10.1093/biomet/80.2.267 10.1093/biomet/58.3.545 10.1111/j.1541-0420.2010.01463.x 10.2527/jas.2012-5338  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7S9 L.6 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1016/j.csda.2014.06.022 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Statistics  | 
    
| EISSN | 1872-7352 | 
    
| EndPage | 222 | 
    
| ExternalDocumentID | oai:HAL:hal-01974726v1 10_1016_j_csda_2014_06_022 S0167947314002011  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D 7S9 L.6 1XC VOOES ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c444t-9dfe47423e10748a23a04687e29eb2d08096d4f019a77a13279ee9fc7ad0429b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0167-9473 1872-7352  | 
    
| IngestDate | Sun Oct 26 03:50:40 EDT 2025 Sat Oct 25 06:43:51 EDT 2025 Mon Sep 29 04:51:42 EDT 2025 Thu Oct 02 12:09:37 EDT 2025 Wed Oct 01 03:05:11 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Fri Feb 23 02:23:50 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Linear mixed model LmmLasso Multiple hypothesis testing High-dimension  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c444t-9dfe47423e10748a23a04687e29eb2d08096d4f019a77a13279ee9fc7ad0429b3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2  | 
    
| ORCID | 0000-0002-9588-8000 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-01974726 | 
    
| PQID | 1567135431 | 
    
| PQPubID | 23500 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_csda_2014_06_022 hal_primary_oai_HAL_hal_01974726v1 proquest_miscellaneous_2253216038 proquest_miscellaneous_1567135431 crossref_primary_10_1016_j_csda_2014_06_022 crossref_citationtrail_10_1016_j_csda_2014_06_022 elsevier_sciencedirect_doi_10_1016_j_csda_2014_06_022  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-12-01 | 
    
| PublicationDateYYYYMMDD | 2014-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Computational statistics & data analysis | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Bach (br000010) 2009 Henderson (br000060) 1973 Schelldorfer, Bühlmann, van~de Geer (br000035) 2011; 38 Schwarz (br000125) 1978; 6 McLachlan, Krishnan (br000085) 2008 Ibrahim, Zhu, Garcia, Guo (br000080) 2011; 67 Patterson, Thompson (br000100) 1971; 58 Zou (br000145) 2006; 101 Harville (br000055) 1977; 72 Rohart, F., 2011. Multiple Hypotheses Testing For Variable Selection. Rohart, Paris, Laurent, Canlet, Molina, Mercat, Tribout, Muller, Ianuccelli, Villa-Vialaneix, Liaubet, Milan, San-Cristobal (br000120) 2012 Benjamini, Hochberg (br000015) 1995; 57 Huang, Ma, Zhang (br000075) 2008; 18 Anderson (br000005) 1984 (br000110) 2013 Henderson (br000070) 1984 Yuan, Lin (br000135) 2007; 68 Foulley, Delmas, Robert-Granié (br000045) 2006; 1–2 Müller, Scealy, Welsh (br000095) 2013; 28 Groll, Tutz (br000050) 2014; 24 Bondell, Krishna, Ghosh (br000025) 2010; 66 . Pourahmadi (br000105) 2011; 26 Henderson (br000065) 1953; 9 Meng, Rubin (br000090) 1993; 80 Zhang, Hunag (br000140) 2008; 36 Tibshirani (br000130) 1996; 58 Biernacki, Chrétien (br000020) 2003; 61 Bunea, Wegkamp, Auguste (br000030) 2006; 136 Foulley (br000040) 1997; 29 Zou, Hastie (br000150) 2005; 67 Zou (10.1016/j.csda.2014.06.022_br000150) 2005; 67 Tibshirani (10.1016/j.csda.2014.06.022_br000130) 1996; 58 Harville (10.1016/j.csda.2014.06.022_br000055) 1977; 72 Biernacki (10.1016/j.csda.2014.06.022_br000020) 2003; 61 Benjamini (10.1016/j.csda.2014.06.022_br000015) 1995; 57 Pourahmadi (10.1016/j.csda.2014.06.022_br000105) 2011; 26 Groll (10.1016/j.csda.2014.06.022_br000050) 2014; 24 Henderson (10.1016/j.csda.2014.06.022_br000060) 1973 Müller (10.1016/j.csda.2014.06.022_br000095) 2013; 28 Zou (10.1016/j.csda.2014.06.022_br000145) 2006; 101 Bach (10.1016/j.csda.2014.06.022_br000010) 2009 Huang (10.1016/j.csda.2014.06.022_br000075) 2008; 18 Yuan (10.1016/j.csda.2014.06.022_br000135) 2007; 68 Meng (10.1016/j.csda.2014.06.022_br000090) 1993; 80 10.1016/j.csda.2014.06.022_br000115 Henderson (10.1016/j.csda.2014.06.022_br000065) 1953; 9 Schelldorfer (10.1016/j.csda.2014.06.022_br000035) 2011; 38 Anderson (10.1016/j.csda.2014.06.022_br000005) 1984 (10.1016/j.csda.2014.06.022_br000110) 2013 Foulley (10.1016/j.csda.2014.06.022_br000040) 1997; 29 Schwarz (10.1016/j.csda.2014.06.022_br000125) 1978; 6 Foulley (10.1016/j.csda.2014.06.022_br000045) 2006; 1–2 Ibrahim (10.1016/j.csda.2014.06.022_br000080) 2011; 67 Bondell (10.1016/j.csda.2014.06.022_br000025) 2010; 66 Henderson (10.1016/j.csda.2014.06.022_br000070) 1984 Patterson (10.1016/j.csda.2014.06.022_br000100) 1971; 58 Bunea (10.1016/j.csda.2014.06.022_br000030) 2006; 136 McLachlan (10.1016/j.csda.2014.06.022_br000085) 2008 Rohart (10.1016/j.csda.2014.06.022_br000120) 2012 Zhang (10.1016/j.csda.2014.06.022_br000140) 2008; 36  | 
    
| References_xml | – volume: 24 start-page: 137 year: 2014 end-page: 154 ident: br000050 article-title: Variable selection for generalized linear mixed models by publication-title: Stat. Comput. – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: br000125 article-title: Estimating the dimension of a model publication-title: Ann. Statist. – volume: 80 start-page: 267 year: 1993 end-page: 278 ident: br000090 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika – reference: Rohart, F., 2011. Multiple Hypotheses Testing For Variable Selection. – volume: 68 start-page: 46 year: 2007 end-page: 67 ident: br000135 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. B – year: 1984 ident: br000070 article-title: Applications of Linear Models in Animal Breeding – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: br000015 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing publication-title: J. R. Stat. Soc. B – year: 2012 ident: br000120 article-title: Phenotypic prediction based on metabolomic data on the growing pig from three main European breeds publication-title: J. Anim. Sci. – volume: 36 start-page: 1567 year: 2008 end-page: 1594 ident: br000140 article-title: The sparsity and bias of the Lasso selection in high-dimensional linear regression publication-title: Ann. Statist. – start-page: 10 year: 1973 end-page: 41 ident: br000060 article-title: Sire evaluation and genetic trends publication-title: J. Anim. Sci. – volume: 66 start-page: 1069 year: 2010 end-page: 1077 ident: br000025 article-title: Joint variable selection of fixed and random effects in linear mixed-effects models publication-title: Biometrics – volume: 38 start-page: 197 year: 2011 end-page: 214 ident: br000035 article-title: Estimation for high-dimensional linear mixed-effects models using publication-title: Scand. J. Stat. – year: 2009 ident: br000010 article-title: Model-consistent sparse estimation through the bootstrap. Technical Report, hal-00354771, version 1 – volume: 29 start-page: 197 year: 1997 end-page: 318 ident: br000040 article-title: ECM approaches to heteroskedastic mixed models with constant variance ratios publication-title: Genet. Selection Evol. – volume: 72 start-page: 320 year: 1977 end-page: 340 ident: br000055 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: J. Amer. Statist. Assoc. – year: 1984 ident: br000005 publication-title: An introduction to multivariate analysis – volume: 28 start-page: 135 year: 2013 end-page: 281 ident: br000095 article-title: Model selection in linear mixed model publication-title: Statist. Sci. – volume: 18 start-page: 1603 year: 2008 end-page: 1618 ident: br000075 article-title: Adaptative Lasso for sparse high-dimensional regression models publication-title: Statist. Sinica – volume: 58 start-page: 545 year: 1971 end-page: 554 ident: br000100 article-title: Recovery of inter-block information when block sizes are unequal publication-title: Biometrika – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: br000130 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. B – year: 2013 ident: br000110 article-title: R: A Language and Environment for Statistical Computing – volume: 9 start-page: 226 year: 1953 end-page: 252 ident: br000065 article-title: Estimation of variance and covariance components publication-title: Biometrics – volume: 67 start-page: 495 year: 2011 end-page: 503 ident: br000080 article-title: Fixed and random effects selection in mixed effects models publication-title: Biometrics – reference: . – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: br000145 article-title: The adaptive Lasso and its oracle properties publication-title: J. Amer. Statist. Assoc. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: br000150 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Statist. Soc. B – volume: 26 start-page: 369 year: 2011 end-page: 387 ident: br000105 article-title: Covariance estimation: the GLM and regularization perspectives publication-title: Statist. Sci. – volume: 136 start-page: 4349 year: 2006 end-page: 4363 ident: br000030 article-title: Consistent variable selection in high dimensional regression via multiple testing publication-title: J. Statist. Plann. Inference – volume: 1–2 start-page: 5 year: 2006 end-page: 52 ident: br000045 article-title: Méthodes du maximum de vraisemblance en modèle linéaire mixte publication-title: J. SFdS – year: 2008 ident: br000085 article-title: The EM Algorithm and Extensions – volume: 61 start-page: 373 year: 2003 end-page: 382 ident: br000020 article-title: Degeneracy in the maximum likelihood estimation of univariate gaussian mixtures with EM publication-title: Statist. Probab. Lett. – volume: 136 start-page: 4349 year: 2006 ident: 10.1016/j.csda.2014.06.022_br000030 article-title: Consistent variable selection in high dimensional regression via multiple testing publication-title: J. Statist. Plann. Inference doi: 10.1016/j.jspi.2005.03.011 – start-page: 10 year: 1973 ident: 10.1016/j.csda.2014.06.022_br000060 article-title: Sire evaluation and genetic trends publication-title: J. Anim. Sci. doi: 10.1093/ansci/1973.Symposium.10 – volume: 101 start-page: 1418 issue: 101 year: 2006 ident: 10.1016/j.csda.2014.06.022_br000145 article-title: The adaptive Lasso and its oracle properties publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214506000000735 – volume: 61 start-page: 373 year: 2003 ident: 10.1016/j.csda.2014.06.022_br000020 article-title: Degeneracy in the maximum likelihood estimation of univariate gaussian mixtures with EM publication-title: Statist. Probab. Lett. doi: 10.1016/S0167-7152(02)00396-6 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.csda.2014.06.022_br000130 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 18 start-page: 1603 year: 2008 ident: 10.1016/j.csda.2014.06.022_br000075 article-title: Adaptative Lasso for sparse high-dimensional regression models publication-title: Statist. Sinica – volume: 36 start-page: 1567 year: 2008 ident: 10.1016/j.csda.2014.06.022_br000140 article-title: The sparsity and bias of the Lasso selection in high-dimensional linear regression publication-title: Ann. Statist. doi: 10.1214/07-AOS520 – volume: 6 start-page: 461 year: 1978 ident: 10.1016/j.csda.2014.06.022_br000125 article-title: Estimating the dimension of a model publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – volume: 9 start-page: 226 year: 1953 ident: 10.1016/j.csda.2014.06.022_br000065 article-title: Estimation of variance and covariance components publication-title: Biometrics doi: 10.2307/3001853 – volume: 26 start-page: 369 year: 2011 ident: 10.1016/j.csda.2014.06.022_br000105 article-title: Covariance estimation: the GLM and regularization perspectives publication-title: Statist. Sci. doi: 10.1214/11-STS358 – volume: 38 start-page: 197 year: 2011 ident: 10.1016/j.csda.2014.06.022_br000035 article-title: Estimation for high-dimensional linear mixed-effects models using ℓ1-penalization publication-title: Scand. J. Stat. doi: 10.1111/j.1467-9469.2011.00740.x – volume: 28 start-page: 135 year: 2013 ident: 10.1016/j.csda.2014.06.022_br000095 article-title: Model selection in linear mixed model publication-title: Statist. Sci. doi: 10.1214/12-STS410 – volume: 66 start-page: 1069 year: 2010 ident: 10.1016/j.csda.2014.06.022_br000025 article-title: Joint variable selection of fixed and random effects in linear mixed-effects models publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01391.x – volume: 29 start-page: 197 year: 1997 ident: 10.1016/j.csda.2014.06.022_br000040 article-title: ECM approaches to heteroskedastic mixed models with constant variance ratios publication-title: Genet. Selection Evol. doi: 10.1186/1297-9686-29-3-297 – year: 2008 ident: 10.1016/j.csda.2014.06.022_br000085 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.csda.2014.06.022_br000150 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2005.00503.x – year: 1984 ident: 10.1016/j.csda.2014.06.022_br000005 – volume: 24 start-page: 137 year: 2014 ident: 10.1016/j.csda.2014.06.022_br000050 article-title: Variable selection for generalized linear mixed models by ℓ1-penalized estimation publication-title: Stat. Comput. doi: 10.1007/s11222-012-9359-z – volume: 72 start-page: 320 year: 1977 ident: 10.1016/j.csda.2014.06.022_br000055 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1977.10480998 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.csda.2014.06.022_br000015 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 1–2 start-page: 5 year: 2006 ident: 10.1016/j.csda.2014.06.022_br000045 article-title: Méthodes du maximum de vraisemblance en modèle linéaire mixte publication-title: J. SFdS – volume: 80 start-page: 267 year: 1993 ident: 10.1016/j.csda.2014.06.022_br000090 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – ident: 10.1016/j.csda.2014.06.022_br000115 – year: 2013 ident: 10.1016/j.csda.2014.06.022_br000110 – volume: 58 start-page: 545 year: 1971 ident: 10.1016/j.csda.2014.06.022_br000100 article-title: Recovery of inter-block information when block sizes are unequal publication-title: Biometrika doi: 10.1093/biomet/58.3.545 – year: 1984 ident: 10.1016/j.csda.2014.06.022_br000070 – volume: 67 start-page: 495 year: 2011 ident: 10.1016/j.csda.2014.06.022_br000080 article-title: Fixed and random effects selection in mixed effects models publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01463.x – year: 2012 ident: 10.1016/j.csda.2014.06.022_br000120 article-title: Phenotypic prediction based on metabolomic data on the growing pig from three main European breeds publication-title: J. Anim. Sci. doi: 10.2527/jas.2012-5338 – year: 2009 ident: 10.1016/j.csda.2014.06.022_br000010 – volume: 68 start-page: 46 year: 2007 ident: 10.1016/j.csda.2014.06.022_br000135 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. B  | 
    
| SSID | ssj0002478 | 
    
| Score | 2.202952 | 
    
| Snippet | Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in... | 
    
| SourceID | unpaywall hal proquest crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 209 | 
    
| SubjectTerms | Algorithms Applications Computation computer software Data processing Electrochemical machining High-dimension Linear mixed model linear models LmmLasso Mathematical models Maximization Methodology Multiple hypothesis testing Optimization Samples Statistics system optimization variance covariance matrix  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL206cO2h23dB8vaDXXsbXNJJNmyHkNpCWMpgzbQPQnFkppsqVNiZ1v363evP0IpNHRvtrlCiKOPc_HRuQAfNVfeiZREDD0XSUy-Iu29iBwmzF7YHp9U97hHp8lwLL9cxBdbwNq7MFNknM3eT8-Y6RLh5ck27CQxsu0O7IxPvw2-t5bdWlY_kfupQqKIZKK5F1NLuLLCkbVQX1YWnZzfd_ZsT0kEeYthPlrl1_bmt53Pbx02J89q0WNReRSSxuTn4aqcHGZ_7zg4bhrHc3jaME02qKfGLmz5_AU8Ga1tWouXkJ1VVXAQGrYILMz-eMcagQeb5YysjJkj-__auoMRJbVLdlUFVjV0CkbC-UtmWaVMzG6wK3Z8NGJ2frlYzsrp1SsYnxyfHw2jpupClEkpy0i74Akz4UmrmVqOiMkkVZ5rzMIdMkydOBlwQFYpi8msQnB1yJR1dLhNxGvo5IvcvwEmXBK0VnGIQyZj17NKO9mzNggvlEh8F_otHiZrLMmpMsbctNqzH4YwNIShIQEe5134tG5zXRtybIyOW5hNA0dNFQyeGBvbfUDU1h2QB_dw8NXQtxbJX_0uHLRTxuCipD8tNveLVWEwKabSh0jO7o_BjVRwKvKdduHzer49YExv_y98Dx7TWy3B2YdOuVz5d0ikysn7Zi39A0utF_E priority: 102 providerName: Unpaywall  | 
    
| Title | Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.csda.2014.06.022 https://www.proquest.com/docview/1567135431 https://www.proquest.com/docview/2253216038 https://hal.science/hal-01974726  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 80 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcgAOFU81PCqDuMGSje1dx8coahUIiRAlopwsZ223i9JNlEehF347M_sI5dAKcVqtZcvrGXse2s_fALzWXHknugRiiF0kMfmKtPcicpgwe2FjPi3vcY_G6WAiP5wkJzvQb-7CEKyytv2VTS-tdd3SrqXZXuR5-5gA9FoqgSlCTG6MbrBLRVUM3v36A_PgsrLGxO9NveuLMxXGK1s54h7qyJLDk_PrnNOtM0JJXglB72yKhb38YWezK97o6D7s1WEk61Vf-gB2fPEQ7o22HKyrR5AdlyVuUO5sHljIf3rHavQGywtGPMXMEbd_xcvBKN60S3ZediwL5KwYoeJPmWUl7DC7xKnYYX_E7Ox0vszXZ-ePYXJ0-KU_iOqSClEmpVxH2gVPChGegJhdy1EdMu0qzzWm2A7DR506GTDus0pZzFQVak6HTFlHnmsqnsBuMS_8PjDh0qC1SkISMpm42CrtZGxtEF4okfoWdBpZmqzmG6eyFzPTAMu-G5K_IfkbQtdx3oI32zGLim3jxt5JoyLz154x6A5uHPcK9bmdgAi2B72Phtpw4Zhf8fSi04KXjboNnjj6jWILP9-sDGa8VNcQI6_r-6CVFJwqeHdb8Ha7V_5hTU__c03P4C69VUCb57C7Xm78CwyX1tOD8jwcwO3e--FgTM_h569DfE7Gn3rffgPfHRUE | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB71cSgcEC0gAgVMxQ2WbGzvOj5WUau0JL20lXqznLXdLko3UR4tvfDbO7OPUA6tENfdsbyeseeh_fwNwBfNlXeiSyCG2EUSi69Iey8ihwWzFzbmo_Ie9_Ak7Z_L44vkYg16zV0YglXWvr_y6aW3rp-0a222p3nePiUAvZZKYIkQUxhbh02ZcEUV2Pfff3AeXFbumAi-Sby-OVOBvLK5I_KhjixJPDl_LDqtXxFM8kEOurUspvbu1o7HD8LR4Ut4UeeRbL_61G1Y88UOPB-uSFjnryA7LXvcoOLZJLCQ__KO1fANlheMiIqZI3L_ipiDUcJpZ-y6FCw75MwZweIvmWUl7jC7w6nYQW_I7PhyMssXV9ev4fzw4KzXj-qeClEmpVxE2gVPFhGekJhdy9EeMu0qzzXW2A7zR506GTDxs0pZLFUVmk6HTFlHoWsk3sBGMSn8W2DCpUFrlYQkZDJxsVXaydjaILxQIvUt6DS6NFlNOE59L8amQZb9NKR_Q_o3BK_jvAVfV2OmFd3Gk9JJYyLz16YxGA-eHLeH9lxNQAzb_f2BoWe4cCyweHrTacHnxtwGjxz9R7GFnyznBkteamyIqdfjMugmBacW3t0WfFvtlX9Y07v_XNMn2OqfDQdmcHTy4z08ozcV6mYXNhazpf-AudNi9LE8G_fejRNG | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL206cO2h23dB8vaDXXsbXNJJNmyHkNpCWMpgzbQPQnFkppsqVNiZ1v363evP0IpNHRvtrlCiKOPc_HRuQAfNVfeiZREDD0XSUy-Iu29iBwmzF7YHp9U97hHp8lwLL9cxBdbwNq7MFNknM3eT8-Y6RLh5ck27CQxsu0O7IxPvw2-t5bdWlY_kfupQqKIZKK5F1NLuLLCkbVQX1YWnZzfd_ZsT0kEeYthPlrl1_bmt53Pbx02J89q0WNReRSSxuTn4aqcHGZ_7zg4bhrHc3jaME02qKfGLmz5_AU8Ga1tWouXkJ1VVXAQGrYILMz-eMcagQeb5YysjJkj-__auoMRJbVLdlUFVjV0CkbC-UtmWaVMzG6wK3Z8NGJ2frlYzsrp1SsYnxyfHw2jpupClEkpy0i74Akz4UmrmVqOiMkkVZ5rzMIdMkydOBlwQFYpi8msQnB1yJR1dLhNxGvo5IvcvwEmXBK0VnGIQyZj17NKO9mzNggvlEh8F_otHiZrLMmpMsbctNqzH4YwNIShIQEe5134tG5zXRtybIyOW5hNA0dNFQyeGBvbfUDU1h2QB_dw8NXQtxbJX_0uHLRTxuCipD8tNveLVWEwKabSh0jO7o_BjVRwKvKdduHzer49YExv_y98Dx7TWy3B2YdOuVz5d0ikysn7Zi39A0utF_E | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+fixed+effects+in+high+dimensional+linear+mixed+models+using+a+multicycle+ECM+algorithm&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Rohart%2C+Florian&rft.au=San+Cristobal%2C+Magali&rft.au=Laurent%2C+B%C3%A9atrice&rft.date=2014-12-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=80&rft.spage=209&rft.epage=222&rft_id=info:doi/10.1016%2Fj.csda.2014.06.022&rft.externalDocID=S0167947314002011 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |