Innate immunity as a target for acute cardioprotection

Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI). First-line treatment involves rapid reperfusion. However, a highly dynamic and co-ordinated inflammatory response is rapidly mounted to repair and...

Full description

Saved in:
Bibliographic Details
Published inCardiovascular research Vol. 115; no. 7; pp. 1131 - 1142
Main Authors Zuurbier, Coert J, Abbate, Antonio, Cabrera-Fuentes, Hector A, Cohen, Michael V, Collino, Massimo, De Kleijn, Dominique P V, Downey, James M, Pagliaro, Pasquale, Preissner, Klaus T, Takahashi, Masafumi, Davidson, Sean M
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2019
Subjects
Online AccessGet full text
ISSN0008-6363
1755-3245
1755-3245
DOI10.1093/cvr/cvy304

Cover

Abstract Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI). First-line treatment involves rapid reperfusion. However, a highly dynamic and co-ordinated inflammatory response is rapidly mounted to repair and remove the injured cells which, paradoxically, can further exacerbate myocardial injury. Furthermore, although cardiac remodelling may initially preserve some function to the heart, it can lead over time to adverse remodelling and eventually heart failure. Since the size of the infarct corresponds to the subsequent risk of developing heart failure, it is important to find ways to limit initial infarct development. In this review, we focus on the role of the innate immune system in the acute response to ischaemia-reperfusion (IR) and specifically its contribution to cell death and myocardial infarction. Numerous danger-associated molecular patterns are released from dying cells in the myocardium, which can stimulate pattern recognition receptors including toll like receptors and NOD-like receptors (NLRs) in resident cardiac and immune cells. Activation of the NLRP3 inflammasome, caspase 1, and pyroptosis may ensue, particularly when the myocardium has been previously aggravated by the presence of comorbidities. Evidence will be discussed that suggests agents targeting innate immunity may be a promising means of protecting the hearts of STEMI patients against acute IR injury. However, the dosing and timing of such agents should be carefully determined because innate immunity pathways may also be involved in cardioprotection. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
AbstractList Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI). First-line treatment involves rapid reperfusion. However, a highly dynamic and co-ordinated inflammatory response is rapidly mounted to repair and remove the injured cells which, paradoxically, can further exacerbate myocardial injury. Furthermore, although cardiac remodelling may initially preserve some function to the heart, it can lead over time to adverse remodelling and eventually heart failure. Since the size of the infarct corresponds to the subsequent risk of developing heart failure, it is important to find ways to limit initial infarct development. In this review, we focus on the role of the innate immune system in the acute response to ischaemia-reperfusion (IR) and specifically its contribution to cell death and myocardial infarction. Numerous danger-associated molecular patterns are released from dying cells in the myocardium, which can stimulate pattern recognition receptors including toll like receptors and NOD-like receptors (NLRs) in resident cardiac and immune cells. Activation of the NLRP3 inflammasome, caspase 1, and pyroptosis may ensue, particularly when the myocardium has been previously aggravated by the presence of comorbidities. Evidence will be discussed that suggests agents targeting innate immunity may be a promising means of protecting the hearts of STEMI patients against acute IR injury. However, the dosing and timing of such agents should be carefully determined because innate immunity pathways may also be involved in cardioprotection. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Graphical Abstract Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI). First-line treatment involves rapid reperfusion. However, a highly dynamic and co-ordinated inflammatory response is rapidly mounted to repair and remove the injured cells which, paradoxically, can further exacerbate myocardial injury. Furthermore, although cardiac remodelling may initially preserve some function to the heart, it can lead over time to adverse remodelling and eventually heart failure. Since the size of the infarct corresponds to the subsequent risk of developing heart failure, it is important to find ways to limit initial infarct development. In this review, we focus on the role of the innate immune system in the acute response to ischaemia–reperfusion (IR) and specifically its contribution to cell death and myocardial infarction. Numerous danger-associated molecular patterns are released from dying cells in the myocardium, which can stimulate pattern recognition receptors including toll like receptors and NOD-like receptors (NLRs) in resident cardiac and immune cells. Activation of the NLRP3 inflammasome, caspase 1, and pyroptosis may ensue, particularly when the myocardium has been previously aggravated by the presence of comorbidities. Evidence will be discussed that suggests agents targeting innate immunity may be a promising means of protecting the hearts of STEMI patients against acute IR injury. However, the dosing and timing of such agents should be carefully determined because innate immunity pathways may also be involved in cardioprotection. This article is part of a Cardiovascular Research Spotlight Issue entitled ‘Cardioprotection Beyond the Cardiomyocyte’, and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI). First-line treatment involves rapid reperfusion. However, a highly dynamic and co-ordinated inflammatory response is rapidly mounted to repair and remove the injured cells which, paradoxically, can further exacerbate myocardial injury. Furthermore, although cardiac remodelling may initially preserve some function to the heart, it can lead over time to adverse remodelling and eventually heart failure. Since the size of the infarct corresponds to the subsequent risk of developing heart failure, it is important to find ways to limit initial infarct development. In this review, we focus on the role of the innate immune system in the acute response to ischaemia-reperfusion (IR) and specifically its contribution to cell death and myocardial infarction. Numerous danger-associated molecular patterns are released from dying cells in the myocardium, which can stimulate pattern recognition receptors including toll like receptors and NOD-like receptors (NLRs) in resident cardiac and immune cells. Activation of the NLRP3 inflammasome, caspase 1, and pyroptosis may ensue, particularly when the myocardium has been previously aggravated by the presence of comorbidities. Evidence will be discussed that suggests agents targeting innate immunity may be a promising means of protecting the hearts of STEMI patients against acute IR injury. However, the dosing and timing of such agents should be carefully determined because innate immunity pathways may also be involved in cardioprotection. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI). First-line treatment involves rapid reperfusion. However, a highly dynamic and co-ordinated inflammatory response is rapidly mounted to repair and remove the injured cells which, paradoxically, can further exacerbate myocardial injury. Furthermore, although cardiac remodelling may initially preserve some function to the heart, it can lead over time to adverse remodelling and eventually heart failure. Since the size of the infarct corresponds to the subsequent risk of developing heart failure, it is important to find ways to limit initial infarct development. In this review, we focus on the role of the innate immune system in the acute response to ischaemia-reperfusion (IR) and specifically its contribution to cell death and myocardial infarction. Numerous danger-associated molecular patterns are released from dying cells in the myocardium, which can stimulate pattern recognition receptors including toll like receptors and NOD-like receptors (NLRs) in resident cardiac and immune cells. Activation of the NLRP3 inflammasome, caspase 1, and pyroptosis may ensue, particularly when the myocardium has been previously aggravated by the presence of comorbidities. Evidence will be discussed that suggests agents targeting innate immunity may be a promising means of protecting the hearts of STEMI patients against acute IR injury. However, the dosing and timing of such agents should be carefully determined because innate immunity pathways may also be involved in cardioprotection. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Author Cohen, Michael V
Cabrera-Fuentes, Hector A
Preissner, Klaus T
Takahashi, Masafumi
Pagliaro, Pasquale
Downey, James M
Davidson, Sean M
Abbate, Antonio
De Kleijn, Dominique P V
Zuurbier, Coert J
Collino, Massimo
AuthorAffiliation 1 Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
4 National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
11 Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
7 Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
5 Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, Nuevo León, México
12 Netherlands Heart Institute, Utrecht, the Netherlands
8 Department of Medicine, University of South Alabama College of Medicine, Mobile, AL, USA
16 Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
10 Department of Drug Science and Technology, University of Turin, Torino, Italy
17 The Hatter Cardiovascular Institute, University College Lo
AuthorAffiliation_xml – name: 5 Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, Nuevo León, México
– name: 13 Department of Biological and Clinical Sciences, University of Turin, Torino, Italy
– name: 9 Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
– name: 6 Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
– name: 17 The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
– name: 16 Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
– name: 4 National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
– name: 8 Department of Medicine, University of South Alabama College of Medicine, Mobile, AL, USA
– name: 11 Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
– name: 2 VCU Pauley Heart Center and Wright Center for Clinical and Translational Research, Richmond, VA, USA
– name: 10 Department of Drug Science and Technology, University of Turin, Torino, Italy
– name: 12 Netherlands Heart Institute, Utrecht, the Netherlands
– name: 1 Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
– name: 14 National Institute for Cardiovascular Research, Bologna, Italy
– name: 7 Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
– name: 15 Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
– name: 3 Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
Author_xml – sequence: 1
  givenname: Coert J
  surname: Zuurbier
  fullname: Zuurbier, Coert J
  organization: Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
– sequence: 2
  givenname: Antonio
  surname: Abbate
  fullname: Abbate, Antonio
  organization: VCU Pauley Heart Center and Wright Center for Clinical and Translational Research, Richmond, VA, USA
– sequence: 3
  givenname: Hector A
  surname: Cabrera-Fuentes
  fullname: Cabrera-Fuentes, Hector A
  organization: Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore, National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, Nuevo León, México, Department of Microbiology, Kazan Federal University, Kazan, Russian Federation, Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
– sequence: 4
  givenname: Michael V
  surname: Cohen
  fullname: Cohen, Michael V
  organization: Department of Medicine, University of South Alabama College of Medicine, Mobile, AL, USA, Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
– sequence: 5
  givenname: Massimo
  surname: Collino
  fullname: Collino, Massimo
  organization: Department of Drug Science and Technology, University of Turin, Torino, Italy
– sequence: 6
  givenname: Dominique P V
  surname: De Kleijn
  fullname: De Kleijn, Dominique P V
  organization: Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands, Netherlands Heart Institute, Utrecht, the Netherlands
– sequence: 7
  givenname: James M
  surname: Downey
  fullname: Downey, James M
  organization: Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
– sequence: 8
  givenname: Pasquale
  surname: Pagliaro
  fullname: Pagliaro, Pasquale
  organization: Department of Biological and Clinical Sciences, University of Turin, Torino, Italy, National Institute for Cardiovascular Research, Bologna, Italy
– sequence: 9
  givenname: Klaus T
  surname: Preissner
  fullname: Preissner, Klaus T
  organization: Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
– sequence: 10
  givenname: Masafumi
  surname: Takahashi
  fullname: Takahashi, Masafumi
  organization: Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
– sequence: 11
  givenname: Sean M
  surname: Davidson
  fullname: Davidson, Sean M
  organization: The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30576455$$D View this record in MEDLINE/PubMed
BookMark eNptUU1LxDAUDLKiu6sXf4D0KEI1aT7aXgRZ_FhY8KLn8JqmGmmTNUmF_fdmWRUVD4_HY-bNwMwMTayzGqETgi8IrumlevdpNhSzPTQlJec5LRifoCnGuMoFFfQQzUJ4TSfnJTtAhxTzUjDOp0gsrYWoMzMMozVxk0HIIIvgn3XMOuczUGOCFfjWuLV3UatonD1C-x30QR9_7jl6ur15XNznq4e75eJ6lSvGWMyrWmkBmjTAS9I2quCqU23DoKYdb8tOaNYJUITqogYlKsVxR9uyKVtWUN0QOkdXO9312Ay6VdpGD71cezOA30gHRv5GrHmRz-5dCl7UNeFJ4OxTwLu3UYcoBxOU7nuw2o1BFoTXdVUVVZmopz-9vk2-wkoEvCMo70LwupPKRNjGkaxNLwmW2z5k6kPu-kgv539evlT_IX8AYXqPmg
CitedBy_id crossref_primary_10_3390_antiox12111944
crossref_primary_10_1038_s41392_020_00257_w
crossref_primary_10_3389_fphar_2020_01170
crossref_primary_10_1186_s12967_022_03466_9
crossref_primary_10_1016_j_apsb_2022_08_007
crossref_primary_10_1161_CIRCRESAHA_120_315937
crossref_primary_10_1007_s00125_020_05359_2
crossref_primary_10_1097_CRD_0000000000000391
crossref_primary_10_1016_j_vph_2022_106995
crossref_primary_10_3389_fimmu_2020_599511
crossref_primary_10_3389_fphar_2024_1434654
crossref_primary_10_3390_cells11020213
crossref_primary_10_1007_s10787_024_01481_4
crossref_primary_10_1016_j_vph_2024_107397
crossref_primary_10_1093_cvr_cvaa262
crossref_primary_10_1186_s13020_022_00616_5
crossref_primary_10_1021_acsptsci_9b00052
crossref_primary_10_1038_s41598_023_31286_4
crossref_primary_10_1016_j_jaccao_2024_10_010
crossref_primary_10_3389_fimmu_2024_1398990
crossref_primary_10_1016_j_intimp_2019_106116
crossref_primary_10_1186_s12871_021_01334_5
crossref_primary_10_1007_s00395_021_00852_0
crossref_primary_10_1093_cvr_cvz155
crossref_primary_10_1097_FJC_0000000000000694
crossref_primary_10_1016_j_bbadis_2020_165770
crossref_primary_10_1097_FJC_0000000000000696
crossref_primary_10_3389_fcvm_2023_1087721
crossref_primary_10_3389_fcvm_2021_681002
crossref_primary_10_1007_s00395_020_00825_9
crossref_primary_10_3390_antiox11061043
crossref_primary_10_31083_j_rcm2511419
crossref_primary_10_1152_physrev_00009_2023
crossref_primary_10_2174_1573403X18666220413121730
crossref_primary_10_3390_cells9010231
crossref_primary_10_4103_bc_bc_57_22
crossref_primary_10_3389_fimmu_2021_624703
crossref_primary_10_3390_antiox14030256
crossref_primary_10_1002_jat_4659
crossref_primary_10_1186_s12933_022_01480_1
crossref_primary_10_1007_s12265_020_10015_6
crossref_primary_10_1093_cvr_cvab139
crossref_primary_10_14814_phy2_14146
crossref_primary_10_1016_j_clinthera_2024_06_010
crossref_primary_10_3389_fcell_2021_746317
crossref_primary_10_1016_j_jid_2021_07_187
crossref_primary_10_1152_ajpcell_00330_2020
crossref_primary_10_1155_2022_7205476
crossref_primary_10_3390_ijms21207687
crossref_primary_10_1016_j_phymed_2021_153798
crossref_primary_10_1016_j_yjmcc_2022_03_005
crossref_primary_10_1111_imm_13291
crossref_primary_10_1016_j_vph_2025_107487
crossref_primary_10_1016_j_yjmcc_2021_05_010
crossref_primary_10_1016_j_yjmcc_2021_05_014
crossref_primary_10_1016_j_bioactmat_2021_06_006
crossref_primary_10_1016_j_biopha_2023_114228
crossref_primary_10_1007_s00395_020_00830_y
crossref_primary_10_1016_j_jare_2020_09_001
crossref_primary_10_3389_fcvm_2022_874436
crossref_primary_10_3390_ijms20163972
crossref_primary_10_1016_j_vph_2022_107001
crossref_primary_10_1093_cvr_cvaa119
crossref_primary_10_3389_fphar_2022_1002755
crossref_primary_10_1016_j_imlet_2023_10_007
crossref_primary_10_1111_bph_15229
crossref_primary_10_3390_cells12101432
crossref_primary_10_1155_2019_3753485
crossref_primary_10_1371_journal_pone_0316463
crossref_primary_10_1186_s40001_022_00967_7
crossref_primary_10_1016_j_dci_2021_104014
crossref_primary_10_3389_fcvm_2021_647785
crossref_primary_10_1007_s10557_024_07591_z
crossref_primary_10_1016_j_yjmcc_2023_11_011
crossref_primary_10_1002_cpt_1637
crossref_primary_10_23736_S0375_9393_19_13848_5
crossref_primary_10_1093_cvr_cvaa060
crossref_primary_10_3389_fpsyg_2020_02139
crossref_primary_10_1093_cvr_cvaa067
crossref_primary_10_3389_fcvm_2023_1219316
crossref_primary_10_1166_jbt_2023_3234
crossref_primary_10_2147_DDDT_S448140
crossref_primary_10_1007_s10517_023_05788_0
crossref_primary_10_24884_1682_6655_2022_21_3_82_90
crossref_primary_10_1016_j_ejphar_2022_175364
crossref_primary_10_1016_j_ebiom_2020_102884
crossref_primary_10_3390_ijms22063224
crossref_primary_10_1016_j_cellsig_2021_110008
crossref_primary_10_1155_2022_7343412
crossref_primary_10_1016_j_biopha_2020_110358
crossref_primary_10_3389_fimmu_2020_591815
crossref_primary_10_3389_fimmu_2020_01630
crossref_primary_10_1038_s41401_019_0307_8
crossref_primary_10_1515_jbcpp_2019_0063
crossref_primary_10_1093_cvr_cvz070
crossref_primary_10_1016_j_tcm_2022_02_013
crossref_primary_10_1093_cvr_cvz072
crossref_primary_10_1096_fj_202101220RR
crossref_primary_10_1152_ajpcell_00177_2023
crossref_primary_10_31083_j_rcm2312413
crossref_primary_10_1093_cvr_cvz128
crossref_primary_10_1093_cvr_cvy314
crossref_primary_10_3390_antiox12071396
crossref_primary_10_1080_10641955_2021_1921793
crossref_primary_10_1016_j_jacc_2024_02_056
crossref_primary_10_1016_j_phymed_2022_154093
crossref_primary_10_3389_fimmu_2020_01864
crossref_primary_10_3390_cells9081894
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106411
crossref_primary_10_1016_j_amjms_2021_06_025
crossref_primary_10_3389_fcvm_2025_1526170
crossref_primary_10_1007_s11010_023_04808_x
Cites_doi 10.1073/pnas.1108586108
10.1093/cvr/cvq272
10.1016/j.atherosclerosis.2007.08.004
10.1016/S0008-6363(99)00012-7
10.1161/CIRCRESAHA.116.304944
10.1093/cvr/cvs018
10.1007/s00395-014-0415-z
10.1038/nature18629
10.1038/nrcardio.2011.38
10.1097/00005344-199805000-00018
10.1073/pnas.1716095115
10.1161/ATVBAHA.115.305655
10.1177/0192623311436177
10.1016/j.gene.2013.05.041
10.1038/nature02664
10.1016/S1097-2765(02)00599-3
10.1007/s00395-018-0692-z
10.1161/CIRCULATIONAHA.109.880187
10.1038/ncomms2023
10.1074/jbc.M708182200
10.1371/journal.pone.0032366
10.1161/CIRCULATIONAHA.105.000901
10.1084/jem.20112322
10.1152/ajpheart.00306.2009
10.1177/039463200702000108
10.1007/s00395-017-0652-z
10.1007/BF00788727
10.1172/JCI6709
10.1038/ni1457
10.1016/j.coph.2012.06.002
10.1038/nature08938
10.1371/journal.pone.0036814
10.1016/j.celrep.2018.07.098
10.1038/nature00858
10.1056/NEJMoa1109400
10.1124/pr.113.008300
10.1155/2016/5271251
10.1160/TH-16-11-0858
10.4049/jimmunol.181.3.2103
10.1177/1074248417702890
10.1074/jbc.M109.082305
10.1016/j.yjmcc.2013.04.023
10.1126/science.1071059
10.1016/j.biopha.2016.10.073
10.1016/j.atherosclerosis.2015.07.043
10.1155/2016/3480637
10.1007/978-1-4939-1568-2_8
10.1253/circj.72.1178
10.1161/CIRCINTERVENTIONS.111.967596
10.1007/s00395-016-0558-1
10.1038/ni.2477
10.1016/j.cub.2016.02.019
10.1016/j.ijcard.2014.09.148
10.1182/blood-2016-11-754416
10.1038/ncomms14780
10.3389/fimmu.2016.00480
10.1016/j.bbrc.2015.12.051
10.1371/journal.pone.0034730
10.1038/nm1315
10.1111/imr.12293
10.1155/2013/828354
10.1038/ni.2022
10.1038/nrcardio.2017.161
10.1152/ajpheart.495.2008
10.1161/01.CIR.0000112575.66565.84
10.1161/CIRCULATIONAHA.110.982777
10.1161/ATVBAHA.118.311023
10.1155/2013/678627
10.3389/fendo.2017.00072
10.1161/CIRCULATIONAHA.108.769331
10.1007/s00395-016-0588-8
10.1038/s41591-018-0059-x
10.1111/1440-1681.12602
10.1002/cmdc.201600055
10.1093/cvr/cvz050
10.1016/j.molimm.2015.06.019
10.1038/nri1372
10.1007/s00011-014-0763-z
10.1038/aps.2009.102
10.1160/th14-08-0703
10.1161/CIRCRESAHA.110.224428
10.1016/j.bbadis.2013.10.006
10.1038/nri3042
10.1016/j.cardiores.2003.09.007
10.1016/j.immuni.2012.01.009
10.1016/j.jacc.2016.01.069
10.3389/fimmu.2016.00302
10.1007/s00395-014-0459-0
10.1016/j.ijcard.2016.02.043
10.1126/science.aaf1098
10.1056/NEJMoa1707914
10.1038/ni.2639
10.1093/cvr/cvy314
10.1371/journal.pone.0040643
10.1084/jem.20161031
10.1161/CIRCULATIONAHA.116.024014
10.3389/fphys.2014.00496
10.1038/nature10992
10.1097/01.shk.0000209540.99176.72
10.1186/s40168-018-0441-4
10.4049/jimmunol.1002843
10.1371/journal.pone.0172575
10.1038/nature15514
10.2119/molmed.2012.00011
10.1536/ihj.51.348
10.1093/cvr/cvu225
10.1038/s41467-018-05321-2
10.1007/s10557-018-6781-2
10.1038/nrd.2018.97
10.1093/cvr/cvx049
10.1074/jbc.M306793200
10.4049/jimmunol.1502340
10.1161/01.CIR.98.7.699
10.1007/s00395-018-0704-z
10.18632/oncotarget.17885
10.1016/j.yrtph.2017.07.028
10.1093/cvr/cvt091
10.1016/j.yjmcc.2006.09.020
10.1093/cvr/cvy145
10.1007/s10557-013-6474-9
10.1111/bph.12363
10.7554/eLife.29280
10.1161/CIRCRESAHA.109.209643
10.1007/s00441-005-0144-6
10.1152/japplphysiol.00436.2005
10.1371/journal.pone.0150606
10.1097/FJC.0000000000000053
10.1073/pnas.041611398
10.2174/0929867324666170407123522
ContentType Journal Article
Copyright Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com. 2018
Copyright_xml – notice: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.
– notice: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/cvr/cvy304
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1755-3245
EndPage 1142
ExternalDocumentID PMC6529915
30576455
10_1093_cvr_cvy304
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Department of Health
– fundername: British Heart Foundation
  grantid: PG/18/44/33790
– fundername: British Heart Foundation
  grantid: PG/16/85/32471
– fundername: NHLBI NIH HHS
  grantid: R56 HL136816
– fundername: ; ;
  grantid: R56 HL136816
– fundername: ; ;
  grantid: SHF/FG657P/2017
– fundername: ; ; ;
  grantid: PG/16/85/32471; PG/18/44/33790
– fundername: ; ; ;
– fundername: ; ;
  grantid: CA16225
– fundername: ; ;
– fundername: ; ;
  grantid: 755320-2
GroupedDBID ---
-E4
.2P
.I3
.ZR
08P
0R~
18M
1TH
29B
2WC
4.4
48X
53G
5GY
5RE
5VS
5WD
6J9
70D
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABHFT
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
L7B
LMP
M-Z
MHKGH
MJL
N9A
NGC
NOMLY
NOYVH
NQ-
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
Q1.
Q5Y
RD5
ROL
ROX
ROZ
RPZ
RUSNO
RW1
RXO
SEL
SV3
TCURE
TEORI
TJX
W8F
WH7
X7H
YAYTL
YKOAZ
YXANX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c444t-89ce6ae1ba571dbc25cfcdb4a93f5d7f6e4f6ac13e29ac68c50f3d7b7d423eb13
ISSN 0008-6363
1755-3245
IngestDate Thu Aug 21 14:37:18 EDT 2025
Fri Jul 11 10:17:20 EDT 2025
Sat May 31 02:14:02 EDT 2025
Tue Jul 01 04:12:04 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Ischaemia
Innate immunity
Inflammasome
Cardioprotection
Reperfusion
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-89ce6ae1ba571dbc25cfcdb4a93f5d7f6e4f6ac13e29ac68c50f3d7b7d423eb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://academic.oup.com/cardiovascres/article-pdf/115/7/1131/28679730/cvy304.pdf
PMID 30576455
PQID 2159988287
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6529915
proquest_miscellaneous_2159988287
pubmed_primary_30576455
crossref_citationtrail_10_1093_cvr_cvy304
crossref_primary_10_1093_cvr_cvy304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Cardiovascular research
PublicationTitleAlternate Cardiovasc Res
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Marchetti (2019052205002549600_cvy304-B81) 2014; 63
Juliana (2019052205002549600_cvy304-B94) 2010; 285
Toldo (2019052205002549600_cvy304-B8) 2018; 15
Yang (2019052205002549600_cvy304-B118) 2013; 27
Dobaczewski (2019052205002549600_cvy304-B55) 2006; 324
Sandanger (2019052205002549600_cvy304-B84) 2016; 469
Bell (2019052205002549600_cvy304-B5) 2016; 111
Pomerantz (2019052205002549600_cvy304-B114) 2001; 98
Arslan (2019052205002549600_cvy304-B9) 2011; 8
Schett (2019052205002549600_cvy304-B46) 1999; 42
Shimamoto (2019052205002549600_cvy304-B68) 2006; 114
Mishra (2019052205002549600_cvy304-B122) 2017; 8
Stokman (2019052205002549600_cvy304-B85) 2017; 214
Sheedy (2019052205002549600_cvy304-B99) 2013; 14
Pinto (2019052205002549600_cvy304-B26) 2012; 7
Arslan (2019052205002549600_cvy304-B63) 2010; 121
Hausenloy (2019052205002549600_cvy304-B3) 2017; 113
Andrassy (2019052205002549600_cvy304-B53) 2008; 117
He (2019052205002549600_cvy304-B54) 2017; 8
Irwin (2019052205002549600_cvy304-B127) 2011; 11
Toldo (2019052205002549600_cvy304-B98) 2018; 136
Zuurbier (2019052205002549600_cvy304-B76) 2012; 7
Zhao (2019052205002549600_cvy304-B112) 2015; 265
Mastrocola (2019052205002549600_cvy304-B105) 2018; 25
Stark (2019052205002549600_cvy304-B42) 2013; 14
Saffarzadeh (2019052205002549600_cvy304-B21) 2012; 7
Kaczorowski (2019052205002549600_cvy304-B15) 2012; 18
Zuurbier (2019052205002549600_cvy304-B87) 2005; 99
Kim (2019052205002549600_cvy304-B47) 2009; 105
Kurashima (2019052205002549600_cvy304-B16) 2012; 3
van der Meer (2019052205002549600_cvy304-B124) 2015; 68
Ferdinandy (2019052205002549600_cvy304-B120) 2014; 66
Benetti (2019052205002549600_cvy304-B106) 2013; 2013
Do Carmo (2019052205002549600_cvy304-B74) 2018; 32
Connolly (2019052205002549600_cvy304-B61) 2012; 12
Ding (2019052205002549600_cvy304-B66) 2013; 527
Shao (2019052205002549600_cvy304-B113) 2007; 282
Nederlof (2019052205002549600_cvy304-B89) 2014; 171
Timmers (2019052205002549600_cvy304-B17) 2012; 94
Yan (2019052205002549600_cvy304-B25) 2013; 62
Shimada (2019052205002549600_cvy304-B110) 2012; 36
Davidson (2019052205002549600_cvy304-B119) 2019; 115
von Bruhl (2019052205002549600_cvy304-B23) 2012; 209
Arslan (2019052205002549600_cvy304-B59) 2011; 108
Goldstein (2019052205002549600_cvy304-B50) 2006; 25
Park (2019052205002549600_cvy304-B51) 2004; 279
Liu (2019052205002549600_cvy304-B91) 2016; 535
Hooshdaran (2019052205002549600_cvy304-B35) 2017; 112
Garcia-Prieto (2019052205002549600_cvy304-B128) 2017; 8
Dong (2019052205002549600_cvy304-B64) 2010; 298
Martinon (2019052205002549600_cvy304-B70) 2002; 10
Schoneveld (2019052205002549600_cvy304-B58) 2008; 197
Hausenloy (2019052205002549600_cvy304-B1) 2017; 38
Hausenloy (2019052205002549600_cvy304-B4) 2016; 111
Macri (2019052205002549600_cvy304-B31) 2012; 40
Janicki (2019052205002549600_cvy304-B30) 2015; 1220
Andreadou (2019052205002549600_cvy304-B7) 2019; 115
Zhou (2019052205002549600_cvy304-B132) 2018; 6
Niemi (2019052205002549600_cvy304-B101) 2011; 186
Lee (2019052205002549600_cvy304-B22) 2016; 43
Cabrera-Fuentes (2019052205002549600_cvy304-B24) 2014; 112
Vande Walle (2019052205002549600_cvy304-B71) 2016; 26
Levick (2019052205002549600_cvy304-B37) 2011; 89
Jiang (2019052205002549600_cvy304-B57) 2005; 11
Cocco (2019052205002549600_cvy304-B96) 2016; 11
Ridker (2019052205002549600_cvy304-B133) 2017; 377
Reil (2019052205002549600_cvy304-B38) 2007; 42
Bando (2019052205002549600_cvy304-B107) 2015; 242
Mariathasan (2019052205002549600_cvy304-B69) 2004; 430
Kang (2019052205002549600_cvy304-B103) 2016; 196
Panahi (2019052205002549600_cvy304-B134) 2018; 114
Hong (2019052205002549600_cvy304-B109) 2018; 2018
Yang (2019052205002549600_cvy304-B34) 2014; 63
Xie (2019052205002549600_cvy304-B48) 2017; 89
Mangan (2019052205002549600_cvy304-B86) 2018; 17
Duewell (2019052205002549600_cvy304-B100) 2010; 464
Bhattacharya (2019052205002549600_cvy304-B33) 2007; 20
Oyama (2019052205002549600_cvy304-B67) 2004; 109
Arslan (2019052205002549600_cvy304-B62) 2012; 5
Haghikia (2019052205002549600_cvy304-B131) 2018; 38
Lecour (2019052205002549600_cvy304-B121) 2014; 104
O'Farrell (2019052205002549600_cvy304-B43) 2017; 6
Cannito (2019052205002549600_cvy304-B104) 2017; 12
Vilahur (2019052205002549600_cvy304-B10) 2014; 5
Yu (2019052205002549600_cvy304-B29) 2016; 11
Qian (2019052205002549600_cvy304-B126) 2009; 30
Liu (2019052205002549600_cvy304-B78) 2014; 109
Wen (2019052205002549600_cvy304-B102) 2011; 12
Preissner (2019052205002549600_cvy304-B14) 2017; 117
Tian (2019052205002549600_cvy304-B52) 2007; 8
Scaffidi (2019052205002549600_cvy304-B12) 2002; 418
Parikh (2019052205002549600_cvy304-B40) 1998; 31
Barry (2019052205002549600_cvy304-B93) 2018; 9
Tang (2019052205002549600_cvy304-B129) 2013; 368
Bajpai (2019052205002549600_cvy304-B27) 2018; 24
Makhdoumi (2019052205002549600_cvy304-B88) 2016; 84
Jackel (2019052205002549600_cvy304-B130) 2017; 130
Davidson (2019052205002549600_cvy304-B6) 2018; 113
Mastrocola (2019052205002549600_cvy304-B108) 2016; 2016
Kawaguchi (2019052205002549600_cvy304-B75) 2011; 123
Schiopu (2019052205002549600_cvy304-B13) 2013; 2013
Jong (2019052205002549600_cvy304-B80) 2014; 177
Yang (2019052205002549600_cvy304-B19) 2016; 7
Shi (2019052205002549600_cvy304-B92) 2015; 526
van Hout (2019052205002549600_cvy304-B83) 2017; 38
Kim (2019052205002549600_cvy304-B95) 2010; 51
Mangold (2019052205002549600_cvy304-B20) 2015; 116
Vilahur (2019052205002549600_cvy304-B116) 2016; 134
Ye (2019052205002549600_cvy304-B117) 2015; 35
Oozawa (2019052205002549600_cvy304-B18) 2008; 72
Mezzaroma (2019052205002549600_cvy304-B72) 2011; 108
Stone (2019052205002549600_cvy304-B2) 2016; 67
Navarro (2019052205002549600_cvy304-B41) 2016; 7
Wang (2019052205002549600_cvy304-B39) 1996; 91
Sandanger (2019052205002549600_cvy304-B77) 2013; 99
Frangogiannis (2019052205002549600_cvy304-B32) 1998; 98
Yang (2019052205002549600_cvy304-B73) 2017; 22
Rork (2019052205002549600_cvy304-B36) 2008; 295
Frantz (2019052205002549600_cvy304-B60) 1999; 104
Gariboldi (2019052205002549600_cvy304-B56) 2008; 181
Deftereos (2019052205002549600_cvy304-B11) 2014; 10
Bonner (2019052205002549600_cvy304-B28) 2012; 7
Toldo (2019052205002549600_cvy304-B82) 2016; 209
Audia (2019052205002549600_cvy304-B115) 2018; 113
Marchetti (2019052205002549600_cvy304-B97) 2018; 115
Li (2019052205002549600_cvy304-B125) 2004; 61
Seong (2019052205002549600_cvy304-B45) 2004; 4
Mastrocola (2019052205002549600_cvy304-B79) 2016; 2016
Lu (2019052205002549600_cvy304-B65) 2014; 1842
Yang (2019052205002549600_cvy304-B111) 2015; 110
Oka (2019052205002549600_cvy304-B49) 2012; 485
Matzinger (2019052205002549600_cvy304-B44) 2002; 296
Netea (2019052205002549600_cvy304-B123) 2016; 352
Zhang (2019052205002549600_cvy304-B90) 2018; 24
References_xml – volume: 108
  start-page: 19725
  year: 2011
  ident: 2019052205002549600_cvy304-B72
  article-title: The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1108586108
– volume: 89
  start-page: 12
  year: 2011
  ident: 2019052205002549600_cvy304-B37
  article-title: Cardiac mast cells: the centrepiece in adverse myocardial remodelling
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvq272
– volume: 197
  start-page: 95
  year: 2008
  ident: 2019052205002549600_cvy304-B58
  article-title: Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2007.08.004
– volume: 42
  start-page: 685
  year: 1999
  ident: 2019052205002549600_cvy304-B46
  article-title: Myocardial injury leads to a release of heat shock protein (hsp) 60 and a suppression of the anti-hsp65 immune response
  publication-title: Cardiovasc Res
  doi: 10.1016/S0008-6363(99)00012-7
– volume: 116
  start-page: 1182
  year: 2015
  ident: 2019052205002549600_cvy304-B20
  article-title: Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.304944
– volume: 94
  start-page: 276
  year: 2012
  ident: 2019052205002549600_cvy304-B17
  article-title: The innate immune response in reperfused myocardium
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvs018
– volume: 109
  start-page: 415
  year: 2014
  ident: 2019052205002549600_cvy304-B78
  article-title: TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-014-0415-z
– volume: 535
  start-page: 153
  year: 2016
  ident: 2019052205002549600_cvy304-B91
  article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
  doi: 10.1038/nature18629
– volume: 8
  start-page: 292
  year: 2011
  ident: 2019052205002549600_cvy304-B9
  article-title: Innate immune signaling in cardiac ischemia
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2011.38
– volume: 31
  start-page: 779
  year: 1998
  ident: 2019052205002549600_cvy304-B40
  article-title: Cardiac mast cell stabilization and cardioprotective effect of ischemic preconditioning in isolated rat heart
  publication-title: J Cardiovasc Pharmacol
  doi: 10.1097/00005344-199805000-00018
– volume: 115
  start-page: E1530
  year: 2018
  ident: 2019052205002549600_cvy304-B97
  article-title: OLT1177, a beta-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1716095115
– volume: 35
  start-page: 1805
  year: 2015
  ident: 2019052205002549600_cvy304-B117
  article-title: Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.115.305655
– volume: 40
  start-page: 637
  year: 2012
  ident: 2019052205002549600_cvy304-B31
  article-title: Immunophenotypic alterations in resident immune cells and myocardial fibrosis in the aging rhesus macaque (Macaca mulatta) heart
  publication-title: Toxicol Pathol
  doi: 10.1177/0192623311436177
– volume: 527
  start-page: 389
  year: 2013
  ident: 2019052205002549600_cvy304-B66
  article-title: The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis
  publication-title: Gene
  doi: 10.1016/j.gene.2013.05.041
– volume: 430
  start-page: 213
  year: 2004
  ident: 2019052205002549600_cvy304-B69
  article-title: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf
  publication-title: Nature
  doi: 10.1038/nature02664
– volume: 10
  start-page: 417
  year: 2002
  ident: 2019052205002549600_cvy304-B70
  article-title: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(02)00599-3
– volume: 113
  start-page: 32
  year: 2018
  ident: 2019052205002549600_cvy304-B115
  article-title: Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-018-0692-z
– volume: 121
  start-page: 80
  year: 2010
  ident: 2019052205002549600_cvy304-B63
  article-title: Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.880187
– volume: 3
  start-page: 1034
  year: 2012
  ident: 2019052205002549600_cvy304-B16
  article-title: Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors
  publication-title: Nat Commun
  doi: 10.1038/ncomms2023
– volume: 282
  start-page: 36321
  year: 2007
  ident: 2019052205002549600_cvy304-B113
  article-title: The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M708182200
– volume: 7
  start-page: e32366.
  year: 2012
  ident: 2019052205002549600_cvy304-B21
  article-title: Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0032366
– volume: 114
  start-page: I270
  year: 2006
  ident: 2019052205002549600_cvy304-B68
  article-title: Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.000901
– volume: 209
  start-page: 819
  year: 2012
  ident: 2019052205002549600_cvy304-B23
  article-title: Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
  publication-title: J Exp Med
  doi: 10.1084/jem.20112322
– volume: 298
  start-page: H1079
  year: 2010
  ident: 2019052205002549600_cvy304-B64
  article-title: Innate immunity mediates myocardial preconditioning through Toll-like receptor 2 and TIRAP-dependent signaling pathways
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00306.2009
– volume: 20
  start-page: 69
  year: 2007
  ident: 2019052205002549600_cvy304-B33
  article-title: Mast cell deficient W/Wv mice have lower serum IL-6 and less cardiac tissue necrosis than their normal littermates following myocardial ischemia-reperfusion
  publication-title: Int J Immunopathol Pharmacol
  doi: 10.1177/039463200702000108
– volume: 38
  start-page: 935
  year: 2017
  ident: 2019052205002549600_cvy304-B1
  article-title: Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations
  publication-title: Eur Heart J
– volume: 112
  start-page: 62
  year: 2017
  ident: 2019052205002549600_cvy304-B35
  article-title: Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-017-0652-z
– volume: 10
  start-page: 653
  year: 2014
  ident: 2019052205002549600_cvy304-B11
  article-title: Innate immune inflammatory response in the acutely ischemic myocardium
  publication-title: Med Clin
– volume: 91
  start-page: 458
  year: 1996
  ident: 2019052205002549600_cvy304-B39
  article-title: Mast cell degranulation does not contribute to ischemic preconditioning in isolated rabbit hearts
  publication-title: Basic Res Cardiol
  doi: 10.1007/BF00788727
– volume: 104
  start-page: 271
  year: 1999
  ident: 2019052205002549600_cvy304-B60
  article-title: Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium
  publication-title: J Clin Invest
  doi: 10.1172/JCI6709
– volume: 8
  start-page: 487
  year: 2007
  ident: 2019052205002549600_cvy304-B52
  article-title: Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE
  publication-title: Nat Immunol
  doi: 10.1038/ni1457
– volume: 12
  start-page: 510
  year: 2012
  ident: 2019052205002549600_cvy304-B61
  article-title: New developments in Toll-like receptor targeted therapeutics
  publication-title: Curr Opin Pharmacol
  doi: 10.1016/j.coph.2012.06.002
– volume: 464
  start-page: 1357
  year: 2010
  ident: 2019052205002549600_cvy304-B100
  article-title: NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
  publication-title: Nature
  doi: 10.1038/nature08938
– volume: 7
  start-page: e36814.
  year: 2012
  ident: 2019052205002549600_cvy304-B26
  article-title: An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036814
– volume: 24
  start-page: 2356
  year: 2018
  ident: 2019052205002549600_cvy304-B90
  article-title: A membrane potential- and calpain-dependent reversal of caspase-1 inhibition regulates canonical NLRP3 inflammasome
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.07.098
– volume: 418
  start-page: 191
  year: 2002
  ident: 2019052205002549600_cvy304-B12
  article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation
  publication-title: Nature
  doi: 10.1038/nature00858
– volume: 368
  start-page: 1575
  year: 2013
  ident: 2019052205002549600_cvy304-B129
  article-title: Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1109400
– volume: 66
  start-page: 1142
  year: 2014
  ident: 2019052205002549600_cvy304-B120
  article-title: Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.113.008300
– volume: 2016
  start-page: 5271251.
  year: 2016
  ident: 2019052205002549600_cvy304-B79
  article-title: Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2016/5271251
– volume: 117
  start-page: 1272
  year: 2017
  ident: 2019052205002549600_cvy304-B14
  article-title: Extracellular nucleic acids in immunity and cardiovascular responses: between alert and disease
  publication-title: Thromb Haemost
  doi: 10.1160/TH-16-11-0858
– volume: 181
  start-page: 2103
  year: 2008
  ident: 2019052205002549600_cvy304-B56
  article-title: Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.3.2103
– volume: 22
  start-page: 574
  year: 2017
  ident: 2019052205002549600_cvy304-B73
  article-title: The highly selective caspase-1 inhibitor VX-765 provides additive protection against myocardial infarction in rat hearts when combined with a platelet inhibitor
  publication-title: J Cardiovasc Pharmacol Ther
  doi: 10.1177/1074248417702890
– volume: 285
  start-page: 9792
  year: 2010
  ident: 2019052205002549600_cvy304-B94
  article-title: Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.082305
– volume: 62
  start-page: 24
  year: 2013
  ident: 2019052205002549600_cvy304-B25
  article-title: Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2013.04.023
– volume: 296
  start-page: 301
  year: 2002
  ident: 2019052205002549600_cvy304-B44
  article-title: The danger model: a renewed sense of self
  publication-title: Science
  doi: 10.1126/science.1071059
– volume: 84
  start-page: 1635
  year: 2016
  ident: 2019052205002549600_cvy304-B88
  article-title: MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2016.10.073
– volume: 242
  start-page: 407
  year: 2015
  ident: 2019052205002549600_cvy304-B107
  article-title: Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2015.07.043
– volume: 2016
  start-page: 3480637.
  year: 2016
  ident: 2019052205002549600_cvy304-B108
  article-title: Maladaptive modulations of NLRP3 inflammasome and cardioprotective pathways are involved in diet-induced exacerbation of myocardial ischemia/reperfusion injury in mice
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2016/3480637
– volume: 1220
  start-page: 121
  year: 2015
  ident: 2019052205002549600_cvy304-B30
  article-title: The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-1568-2_8
– volume: 72
  start-page: 1178
  year: 2008
  ident: 2019052205002549600_cvy304-B18
  article-title: Effects of HMGB1 on ischemia-reperfusion injury in the rat heart
  publication-title: Circ J
  doi: 10.1253/circj.72.1178
– volume: 5
  start-page: 279
  year: 2012
  ident: 2019052205002549600_cvy304-B62
  article-title: Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs
  publication-title: Circ Cardiovasc Interv
  doi: 10.1161/CIRCINTERVENTIONS.111.967596
– volume: 111
  start-page: 41
  year: 2016
  ident: 2019052205002549600_cvy304-B5
  article-title: 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0558-1
– volume: 14
  start-page: 41
  year: 2013
  ident: 2019052205002549600_cvy304-B42
  article-title: Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs
  publication-title: Nat Immunol
  doi: 10.1038/ni.2477
– volume: 136
  year: 2018
  ident: 2019052205002549600_cvy304-B98
  article-title: Novel NLRP3 inflammasome inhibitor OLT1177 reduces infarct size in a mouse model of myocardial ischemia reperfusion injury
  publication-title: Circulation
– volume: 26
  start-page: R568
  year: 2016
  ident: 2019052205002549600_cvy304-B71
  article-title: Pyroptosis
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2016.02.019
– volume: 177
  start-page: 41
  year: 2014
  ident: 2019052205002549600_cvy304-B80
  article-title: Nlrp3 plays no role in acute cardiac infarction due to low cardiac expression
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2014.09.148
– volume: 130
  start-page: 542
  year: 2017
  ident: 2019052205002549600_cvy304-B130
  article-title: Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2
  publication-title: Blood
  doi: 10.1182/blood-2016-11-754416
– volume: 8
  start-page: 14780.
  year: 2017
  ident: 2019052205002549600_cvy304-B128
  article-title: Neutrophil stunning by metoprolol reduces infarct size
  publication-title: Nat Commun
  doi: 10.1038/ncomms14780
– volume: 7
  start-page: 480
  year: 2016
  ident: 2019052205002549600_cvy304-B41
  article-title: Immune regulation by pericytes: modulating innate and adaptive immunity
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00480
– volume: 469
  start-page: 1012
  year: 2016
  ident: 2019052205002549600_cvy304-B84
  article-title: NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.12.051
– volume: 7
  start-page: e34730.
  year: 2012
  ident: 2019052205002549600_cvy304-B28
  article-title: Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034730
– volume: 11
  start-page: 1173
  year: 2005
  ident: 2019052205002549600_cvy304-B57
  article-title: Regulation of lung injury and repair by Toll-like receptors and hyaluronan
  publication-title: Nat Med
  doi: 10.1038/nm1315
– volume: 265
  start-page: 85
  year: 2015
  ident: 2019052205002549600_cvy304-B112
  article-title: The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus
  publication-title: Immunol Rev
  doi: 10.1111/imr.12293
– volume: 2013
  start-page: 828354
  year: 2013
  ident: 2019052205002549600_cvy304-B13
  article-title: S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease
  publication-title: Mediators Inflamm
  doi: 10.1155/2013/828354
– volume: 12
  start-page: 408
  year: 2011
  ident: 2019052205002549600_cvy304-B102
  article-title: Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
  publication-title: Nat Immunol
  doi: 10.1038/ni.2022
– volume: 15
  start-page: 203
  year: 2018
  ident: 2019052205002549600_cvy304-B8
  article-title: The NLRP3 inflammasome in acute myocardial infarction
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2017.161
– volume: 295
  start-page: H1825
  year: 2008
  ident: 2019052205002549600_cvy304-B36
  article-title: Adenosine A2A receptor activation reduces infarct size in the isolated, perfused mouse heart by inhibiting resident cardiac mast cell degranulation
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.495.2008
– volume: 109
  start-page: 784
  year: 2004
  ident: 2019052205002549600_cvy304-B67
  article-title: Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000112575.66565.84
– volume: 123
  start-page: 594
  year: 2011
  ident: 2019052205002549600_cvy304-B75
  article-title: Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.982777
– volume: 38
  start-page: 2225
  year: 2018
  ident: 2019052205002549600_cvy304-B131
  article-title: Gut microbiota-dependent trimethylamine n-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.118.311023
– volume: 2013
  start-page: 678627.
  year: 2013
  ident: 2019052205002549600_cvy304-B106
  article-title: The NLRP3 inflammasome as a novel player of the intercellular crosstalk in metabolic disorders
  publication-title: Mediators Inflamm
  doi: 10.1155/2013/678627
– volume: 8
  start-page: 72
  year: 2017
  ident: 2019052205002549600_cvy304-B122
  article-title: Diabetic cardiomyopathy: an immunometabolic perspective
  publication-title: Front Endocrinol (Lausanne
  doi: 10.3389/fendo.2017.00072
– volume: 117
  start-page: 3216
  year: 2008
  ident: 2019052205002549600_cvy304-B53
  article-title: High-mobility group box-1 in ischemia-reperfusion injury of the heart
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.769331
– volume: 111
  start-page: 70
  year: 2016
  ident: 2019052205002549600_cvy304-B4
  article-title: Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0588-8
– volume: 24
  start-page: 1234
  year: 2018
  ident: 2019052205002549600_cvy304-B27
  article-title: The human heart contains distinct macrophage subsets with divergent origins and functions
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0059-x
– volume: 43
  start-page: 864
  year: 2016
  ident: 2019052205002549600_cvy304-B22
  article-title: The role of Toll-like receptor 4 (TLR4) in cardiac ischaemic-reperfusion injury, cardioprotection and preconditioning
  publication-title: Clin Exp Pharmacol Physiol
  doi: 10.1111/1440-1681.12602
– volume: 11
  start-page: 1790
  year: 2016
  ident: 2019052205002549600_cvy304-B96
  article-title: Design, synthesis, and evaluation of acrylamide derivatives as direct NLRP3 inflammasome inhibitors
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201600055
– volume: 115
  start-page: 1117
  year: 2019
  ident: 2019052205002549600_cvy304-B7
  article-title: Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvz050
– volume: 68
  start-page: 40
  year: 2015
  ident: 2019052205002549600_cvy304-B124
  article-title: Trained immunity: a smart way to enhance innate immune defence
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2015.06.019
– volume: 4
  start-page: 469
  year: 2004
  ident: 2019052205002549600_cvy304-B45
  article-title: Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1372
– volume: 63
  start-page: 899
  year: 2014
  ident: 2019052205002549600_cvy304-B34
  article-title: The role of mast cells in ischemia and reperfusion injury
  publication-title: Inflamm Res
  doi: 10.1007/s00011-014-0763-z
– volume: 30
  start-page: 1092
  year: 2009
  ident: 2019052205002549600_cvy304-B126
  article-title: Protective effects of betaglucin on myocardial tissue during myocardial infarction in rats and dogs
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/aps.2009.102
– volume: 112
  start-page: 1110
  year: 2014
  ident: 2019052205002549600_cvy304-B24
  article-title: RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-alpha in cardiac ischaemia/reperfusion injury
  publication-title: Thromb Haemost
  doi: 10.1160/th14-08-0703
– volume: 108
  start-page: 582
  year: 2011
  ident: 2019052205002549600_cvy304-B59
  article-title: Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.224428
– volume: 1842
  start-page: 22
  year: 2014
  ident: 2019052205002549600_cvy304-B65
  article-title: Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2013.10.006
– volume: 11
  start-page: 625
  year: 2011
  ident: 2019052205002549600_cvy304-B127
  article-title: Reciprocal regulation of the neural and innate immune systems
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3042
– volume: 61
  start-page: 538
  year: 2004
  ident: 2019052205002549600_cvy304-B125
  article-title: Modulating Toll-like receptor mediated signaling by (1–>3)-beta-D-glucan rapidly induces cardioprotection
  publication-title: Cardiovasc Res
  doi: 10.1016/j.cardiores.2003.09.007
– volume: 36
  start-page: 401
  year: 2012
  ident: 2019052205002549600_cvy304-B110
  article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.009
– volume: 67
  start-page: 1674
  year: 2016
  ident: 2019052205002549600_cvy304-B2
  article-title: Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.01.069
– volume: 7
  start-page: 302
  year: 2016
  ident: 2019052205002549600_cvy304-B19
  article-title: New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00302
– volume: 110
  start-page: 3
  year: 2015
  ident: 2019052205002549600_cvy304-B111
  article-title: Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-014-0459-0
– volume: 209
  start-page: 215
  year: 2016
  ident: 2019052205002549600_cvy304-B82
  article-title: Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2016.02.043
– volume: 352
  start-page: aaf1098.
  year: 2016
  ident: 2019052205002549600_cvy304-B123
  article-title: Trained immunity: a program of innate immune memory in health and disease
  publication-title: Science
  doi: 10.1126/science.aaf1098
– volume: 377
  start-page: 1119
  year: 2017
  ident: 2019052205002549600_cvy304-B133
  article-title: Antiinflammatory therapy with canakinumab for atherosclerotic disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1707914
– volume: 14
  start-page: 812
  year: 2013
  ident: 2019052205002549600_cvy304-B99
  article-title: CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation
  publication-title: Nat Immunol
  doi: 10.1038/ni.2639
– volume: 115
  start-page: 1156
  year: 2019
  ident: 2019052205002549600_cvy304-B119
  article-title: Circulating blood cells and extracellular vesicles in acute cardioprotection
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvy314
– volume: 7
  start-page: e40643.
  year: 2012
  ident: 2019052205002549600_cvy304-B76
  article-title: Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased IL-6/STAT3 signaling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040643
– volume: 214
  start-page: 2405
  year: 2017
  ident: 2019052205002549600_cvy304-B85
  article-title: NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity
  publication-title: J Exp Med
  doi: 10.1084/jem.20161031
– volume: 134
  start-page: 1708
  year: 2016
  ident: 2019052205002549600_cvy304-B116
  article-title: Protective effects of ticagrelor on myocardial injury after infarction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.024014
– volume: 5
  start-page: 496
  year: 2014
  ident: 2019052205002549600_cvy304-B10
  article-title: Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00496
– volume: 485
  start-page: 251
  year: 2012
  ident: 2019052205002549600_cvy304-B49
  article-title: Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
  publication-title: Nature
  doi: 10.1038/nature10992
– volume: 25
  start-page: 571
  year: 2006
  ident: 2019052205002549600_cvy304-B50
  article-title: Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia
  publication-title: Shock
  doi: 10.1097/01.shk.0000209540.99176.72
– volume: 6
  start-page: 66
  year: 2018
  ident: 2019052205002549600_cvy304-B132
  article-title: Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0441-4
– volume: 186
  start-page: 6119
  year: 2011
  ident: 2019052205002549600_cvy304-B101
  article-title: Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1002843
– volume: 12
  start-page: e0172575.
  year: 2017
  ident: 2019052205002549600_cvy304-B104
  article-title: Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: a pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0172575
– volume: 526
  start-page: 660
  year: 2015
  ident: 2019052205002549600_cvy304-B92
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 18
  start-page: 851
  year: 2012
  ident: 2019052205002549600_cvy304-B15
  article-title: Mammalian DNA is an endogenous danger signal that stimulates local synthesis and release of complement factor B
  publication-title: Mol Med
  doi: 10.2119/molmed.2012.00011
– volume: 51
  start-page: 348
  year: 2010
  ident: 2019052205002549600_cvy304-B95
  article-title: BAY 11-7082, a nuclear factor-κB inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia-reperfusion injury model
  publication-title: Int Heart J
  doi: 10.1536/ihj.51.348
– volume: 104
  start-page: 399
  year: 2014
  ident: 2019052205002549600_cvy304-B121
  article-title: ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvu225
– volume: 9
  start-page: 3001
  year: 2018
  ident: 2019052205002549600_cvy304-B93
  article-title: SUMO-mediated regulation of NLRP3 modulates inflammasome activity
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05321-2
– volume: 32
  start-page: 165
  year: 2018
  ident: 2019052205002549600_cvy304-B74
  article-title: The caspase 1 inhibitor VX-765 protects the isolated rat heart via the RISK pathway
  publication-title: Cardiovasc Drugs Ther
  doi: 10.1007/s10557-018-6781-2
– volume: 17
  start-page: 588
  year: 2018
  ident: 2019052205002549600_cvy304-B86
  article-title: Targeting the NLRP3 inflammasome in inflammatory diseases
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2018.97
– volume: 113
  start-page: 564
  year: 2017
  ident: 2019052205002549600_cvy304-B3
  article-title: Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvx049
– volume: 279
  start-page: 7370
  year: 2004
  ident: 2019052205002549600_cvy304-B51
  article-title: Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M306793200
– volume: 2018
  start-page: 1.
  year: 2018
  ident: 2019052205002549600_cvy304-B109
  article-title: Inhibition of NLRP3 inflammasome ameliorates cerebral ischemia-reperfusion injury in diabetic mice
  publication-title: Neural Plast
– volume: 196
  start-page: 4331
  year: 2016
  ident: 2019052205002549600_cvy304-B103
  article-title: The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1502340
– volume: 98
  start-page: 699
  year: 1998
  ident: 2019052205002549600_cvy304-B32
  article-title: Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion
  publication-title: Circulation
  doi: 10.1161/01.CIR.98.7.699
– volume: 113
  start-page: 43
  year: 2018
  ident: 2019052205002549600_cvy304-B6
  article-title: The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection-evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-018-0704-z
– volume: 8
  start-page: 64534
  year: 2017
  ident: 2019052205002549600_cvy304-B54
  article-title: The dual role and therapeutic potential of high-mobility group box 1 in cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17885
– volume: 38
  start-page: 828
  year: 2017
  ident: 2019052205002549600_cvy304-B83
  article-title: The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction
  publication-title: Eur Heart J
– volume: 89
  start-page: 148
  year: 2017
  ident: 2019052205002549600_cvy304-B48
  article-title: Exogenous administration of mitochondrial DNA promotes ischemia reperfusion injury via TLR9-p38 MAPK pathway
  publication-title: Regul Toxicol Pharmacol
  doi: 10.1016/j.yrtph.2017.07.028
– volume: 99
  start-page: 164
  year: 2013
  ident: 2019052205002549600_cvy304-B77
  article-title: The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvt091
– volume: 42
  start-page: 133
  year: 2007
  ident: 2019052205002549600_cvy304-B38
  article-title: Insights from knock-out models concerning postischemic release of TNFalpha from isolated mouse hearts
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2006.09.020
– volume: 114
  start-page: 1445
  year: 2018
  ident: 2019052205002549600_cvy304-B134
  article-title: Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvy145
– volume: 27
  start-page: 403
  year: 2013
  ident: 2019052205002549600_cvy304-B118
  article-title: Triple therapy greatly increases myocardial salvage during ischemia/reperfusion in the in situ rat heart
  publication-title: Cardiovasc Drugs Ther
  doi: 10.1007/s10557-013-6474-9
– volume: 171
  start-page: 2067
  year: 2014
  ident: 2019052205002549600_cvy304-B89
  article-title: Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.12363
– volume: 6
  year: 2017
  ident: 2019052205002549600_cvy304-B43
  article-title: Capillary pericytes mediate coronary no-reflow after myocardial ischaemia
  publication-title: Elife
  doi: 10.7554/eLife.29280
– volume: 105
  start-page: 1186
  year: 2009
  ident: 2019052205002549600_cvy304-B47
  article-title: Extracellular heat shock protein 60, cardiac myocytes, and apoptosis
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.109.209643
– volume: 324
  start-page: 475
  year: 2006
  ident: 2019052205002549600_cvy304-B55
  article-title: Extracellular matrix remodeling in canine and mouse myocardial infarcts
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-005-0144-6
– volume: 99
  start-page: 1471
  year: 2005
  ident: 2019052205002549600_cvy304-B87
  article-title: Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.00436.2005
– volume: 11
  start-page: e0150606.
  year: 2016
  ident: 2019052205002549600_cvy304-B29
  article-title: A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150606
– volume: 63
  start-page: 316
  year: 2014
  ident: 2019052205002549600_cvy304-B81
  article-title: A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse
  publication-title: J Cardiovasc Pharmacol
  doi: 10.1097/FJC.0000000000000053
– volume: 98
  start-page: 2871
  year: 2001
  ident: 2019052205002549600_cvy304-B114
  article-title: Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.041611398
– volume: 25
  start-page: 1294
  year: 2018
  ident: 2019052205002549600_cvy304-B105
  article-title: Metaflammation: tissue-specific alterations of the NLRP3 inflammasome platform in metabolic syndrome
  publication-title: CMC
  doi: 10.2174/0929867324666170407123522
SSID ssj0005574
Score 2.5999172
SecondaryResourceType review_article
Snippet Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI)....
Graphical Abstract Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1131
SubjectTerms Animals
Anti-Inflammatory Agents - adverse effects
Anti-Inflammatory Agents - therapeutic use
Cardiovascular Agents - adverse effects
Cardiovascular Agents - therapeutic use
Caspase 1 - immunology
Caspase 1 - metabolism
Caspase Inhibitors - therapeutic use
Editor's Choice
Heart Failure - immunology
Heart Failure - metabolism
Heart Failure - pathology
Heart Failure - prevention & control
Humans
Immunity, Innate
Inflammasomes - drug effects
Inflammasomes - immunology
Inflammasomes - metabolism
Invited Spotlight Reviews
Molecular Targeted Therapy
Myocardial Reperfusion Injury - immunology
Myocardial Reperfusion Injury - metabolism
Myocardial Reperfusion Injury - pathology
Myocardial Reperfusion Injury - prevention & control
Myocardium - immunology
Myocardium - metabolism
Myocardium - pathology
NLR Family, Pyrin Domain-Containing 3 Protein - antagonists & inhibitors
NLR Family, Pyrin Domain-Containing 3 Protein - immunology
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
Receptors, Immunologic - antagonists & inhibitors
Receptors, Immunologic - immunology
Receptors, Immunologic - metabolism
Signal Transduction
ST Elevation Myocardial Infarction - immunology
ST Elevation Myocardial Infarction - metabolism
ST Elevation Myocardial Infarction - pathology
ST Elevation Myocardial Infarction - therapy
Title Innate immunity as a target for acute cardioprotection
URI https://www.ncbi.nlm.nih.gov/pubmed/30576455
https://www.proquest.com/docview/2159988287
https://pubmed.ncbi.nlm.nih.gov/PMC6529915
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbFEIupe9uX6i0l7I4Wdt62MelNCQN6SmB0IuRZJkutN7gtQvtr-_II3nXmxTaXoSxtTZoZkffSN98IuQdzNgSprUkUpVhEeOliDLFRWRhsmRZpUTaL7idfxYnl-zTFb-aTM62WEtdqw_Nr1vrSv7HqnAP7OqqZP_BssNL4QZcg32hBQtD-1c2Pq1rgIqzZV_jAWharWdqhtxuZEcaxwIwPeXUCzIEMwziBCM6qpf-GZaIv3Rdo5e-VnBlm3azi7TQWuHRegt3DDHSuXA3A7LsRkXHnZP7XOPc5rYGNsumQ02IJ-17pq1ffHD1ToEkdWgxYErOIwBlfBRRsULTu47cio9xjDH_RuBGUSvzo-nbnymeSbxlw-vvvREhPEnBUNl3Ryg7PLpD7iYSgJRDyKdnG74Plyzo0-bpEXzqCD90QPbDT8fg5EbGsUuc3UIiF_fJPZ9C0AX6wwMysfVDsn_uSRKPiEC3oMEtqFpTRdEtKLgF7d2C7rrFY3J5_PHiw0nkj8eIDGOsjbLcWKFsrBWXcalNwk1lSs1Unla8lJWwrBLKxKlNcmVEZvi8SkupZQkQGqbo9AnZq1e1fUaomWeQJ8O_NrNzBjm_210vAakLmVSQv8dT8j6MS2G8drw7wuRbgRyGtIDhLHA4p-Tt0PcaFVNu7fUmDG8BAc3tUqnarrp1ARg0zzN3DsOUPMXhHt4T7DQlcmSIoYMTSx8_qZdfe9F0wQF4xfz5H9_5ghxsPPwl2Wubzr4CwNnq170j_QZ2yYUo
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innate+immunity+as+a+target+for+acute+cardioprotection&rft.jtitle=Cardiovascular+research&rft.au=Zuurbier%2C+Coert+J&rft.au=Abbate%2C+Antonio&rft.au=Cabrera-Fuentes%2C+Hector+A&rft.au=Cohen%2C+Michael+V&rft.date=2019-06-01&rft.eissn=1755-3245&rft.volume=115&rft.issue=7&rft.spage=1131&rft_id=info:doi/10.1093%2Fcvr%2Fcvy304&rft_id=info%3Apmid%2F30576455&rft.externalDocID=30576455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6363&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6363&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6363&client=summon