Utilizing Gamma Band to Improve Mental Task Based Brain-Computer Interface Design

A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 14; no. 3; pp. 299 - 303
Main Author Palaniappan, R.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
DOI10.1109/TNSRE.2006.881539

Cover

Abstract A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that 1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; 2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method
AbstractList The results indicated that 1 the classification performance and training time of the BCI design were improved through the use of additional gamma band features; 2 classification performances were nearly invariant to the number of ENN hidden units or feature extraction method
A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.
A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that 1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; 2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method
A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.
Author Palaniappan, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Palaniappan
  fullname: Palaniappan, R.
  email: rpalan@essex.ac.uk;palani@iueee.org
  organization: Dept. of Comput. Sci., Essex Univ., Colchester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17009489$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wAxASsljAKsP1M_GSDm0ZqYCA6dryODeVS-IMsYMEv74epgjURTe2pfsd655zjslBHCMS8pzBgjEwb9efvn09W3AAvWgapoR5RI6YUk0FnMHB7i1kJQWHQ3Kc0g0Aq7Wqn5BDVgMY2Zgj8uUqhz78DvGaXrhhcPTUxZbmka6G7TT-RPoRY3Y9Xbv0vcwStvR0ciFWy3HYzhknuorl7JxH-h5TuI5PyePO9Qmf3d0n5Or8bL38UF1-vlgt311WXkqZq9oI2XUOmdbOM8M9dlq5DRiuuGnNxrfSaFdcgUDcSKlBARcd65zS4FshTsib_b9lzx8zpmyHkDz2vYs4zsk2RvDiFkwhXz9I6saAaPQOfHUPvBnnKRYX1rC6BMk4L9DLO2jeDNja7RQGN_2yfzMtANsDfhpTmrD7h4Dd9Wb_9GZ3vdl9b0VT39P4kF0OY8wl7f5B5Yu9MiDi_8sIpZm4BXs4ovw
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s40708_017_0073_7
crossref_primary_10_1016_j_compeleceng_2014_01_010
crossref_primary_10_1016_j_procs_2012_09_047
crossref_primary_10_1109_ACCESS_2020_2993318
crossref_primary_10_1109_ACCESS_2018_2855194
crossref_primary_10_3390_s140712784
crossref_primary_10_1007_s40846_016_0102_7
crossref_primary_10_1097_JCE_0000000000000238
crossref_primary_10_1155_2017_3720589
crossref_primary_10_1016_j_bspc_2020_102033
crossref_primary_10_1371_journal_pone_0197642
crossref_primary_10_1007_s11517_008_0345_8
crossref_primary_10_1016_j_bspc_2020_102251
crossref_primary_10_1109_TBME_2010_2048568
crossref_primary_10_1109_TNSRE_2011_2116805
crossref_primary_10_1007_s00034_022_02057_9
crossref_primary_10_1016_j_jneumeth_2015_07_007
crossref_primary_10_1007_s40430_019_1585_2
crossref_primary_10_1016_j_inffus_2019_06_006
crossref_primary_10_1145_3297713
crossref_primary_10_1080_2326263X_2019_1614770
crossref_primary_10_1109_ACCESS_2020_2967814
crossref_primary_10_1016_j_bspc_2022_103494
crossref_primary_10_3389_fnins_2023_895094
crossref_primary_10_9718_JBER_2012_33_1_015
crossref_primary_10_1109_JSEN_2022_3156152
crossref_primary_10_1007_s13198_022_01799_8
crossref_primary_10_1016_j_jneumeth_2009_03_011
crossref_primary_10_1016_j_neuroscience_2009_07_031
crossref_primary_10_3389_fnhum_2015_00536
crossref_primary_10_1002_mus_26828
crossref_primary_10_1007_s10916_008_9215_z
crossref_primary_10_1142_S0219635209002071
crossref_primary_10_4018_IJBCE_301215
crossref_primary_10_3390_brainsci3041569
crossref_primary_10_1016_j_bspc_2017_08_004
crossref_primary_10_1088_1361_6579_acd51b
crossref_primary_10_4015_S1016237213500580
crossref_primary_10_1016_j_dsp_2019_102582
crossref_primary_10_1016_j_neucom_2014_08_092
crossref_primary_10_1016_j_bbe_2014_03_004
crossref_primary_10_1080_20479700_2022_2130645
crossref_primary_10_1016_j_imu_2016_09_001
crossref_primary_10_3390_s20247212
crossref_primary_10_1016_j_neucom_2020_07_050
crossref_primary_10_1587_transinf_E95_D_829
Cites_doi 10.1109/ICNN.1993.298623
10.1109/10.64464
10.1109/TRE.2000.847807
10.1109/TNSRE.2002.802854
10.1109/TBME.2004.827081
10.1109/86.847808
10.1109/10.661153
10.1109/TNSRE.2003.810426
10.1109/51.395322
10.1016/0364-0213(90)90002-E
10.1109/86.847821
10.1007/s00500-004-0439-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2006.881539
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 303
ExternalDocumentID 2568827291
17009489
10_1109_TNSRE_2006_881539
1703561
Genre orig-research
Clinical Trial
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c444t-7934ffae166ac192cef65ab092529d9bcd496a81503eeb44605023f1fa560cd33
IEDL.DBID RIE
ISSN 1534-4320
IngestDate Tue Oct 07 09:45:07 EDT 2025
Fri Sep 05 11:43:42 EDT 2025
Fri Jul 25 07:36:40 EDT 2025
Wed Feb 19 01:44:02 EST 2025
Thu Apr 24 22:58:14 EDT 2025
Wed Oct 01 01:12:14 EDT 2025
Wed Aug 27 02:51:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-7934ffae166ac192cef65ab092529d9bcd496a81503eeb44605023f1fa560cd33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 17009489
PQID 917432122
PQPubID 85423
PageCount 5
ParticipantIDs crossref_primary_10_1109_TNSRE_2006_881539
proquest_journals_917432122
pubmed_primary_17009489
crossref_citationtrail_10_1109_TNSRE_2006_881539
proquest_miscellaneous_893265709
ieee_primary_1703561
proquest_miscellaneous_68903869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-09-01
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2006
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref12
ref7
ref9
ref4
ref3
ref6
ref11
ref10
ref5
ref2
ref1
References_xml – ident: ref12
  doi: 10.1109/ICNN.1993.298623
– ident: ref2
  doi: 10.1109/10.64464
– ident: ref1
  doi: 10.1109/TRE.2000.847807
– ident: ref4
  doi: 10.1109/TNSRE.2002.802854
– ident: ref10
  doi: 10.1109/TBME.2004.827081
– ident: ref5
  doi: 10.1109/86.847808
– ident: ref3
  doi: 10.1109/10.661153
– ident: ref7
  doi: 10.1109/TNSRE.2003.810426
– ident: ref9
  doi: 10.1109/51.395322
– ident: ref11
  doi: 10.1016/0364-0213(90)90002-E
– ident: ref6
  doi: 10.1109/86.847821
– ident: ref8
  doi: 10.1007/s00500-004-0439-7
SSID ssj0017657
Score 2.1242654
Snippet A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs,...
The results indicated that 1 the classification performance and training time of the BCI design were improved through the use of additional gamma band...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 299
SubjectTerms Algorithms
Artificial Intelligence
Asymmetry
Asymmetry ratio
Backpropagation algorithms
Biological neural networks
Brain - physiology
Brain computer interfaces
brain-computer interface (BCI)
Cognition - physiology
Communication Aids for Disabled
Design
Design methodology
Electrodes
Electroencephalography
Electroencephalography - methods
Equipment Design
Equipment Failure Analysis
Evoked Potentials - physiology
Feature extraction
Frequency
gamma band
Humans
mental task
Neural networks
Pattern Recognition, Automated - methods
Scalp
Signal design
Studies
Therapy, Computer-Assisted - instrumentation
Therapy, Computer-Assisted - methods
User-Computer Interface
Title Utilizing Gamma Band to Improve Mental Task Based Brain-Computer Interface Design
URI https://ieeexplore.ieee.org/document/1703561
https://www.ncbi.nlm.nih.gov/pubmed/17009489
https://www.proquest.com/docview/917432122
https://www.proquest.com/docview/68903869
https://www.proquest.com/docview/893265709
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrjwKo-lPHwADohsncRx7COFlgqplSi7Um-R7UwupVnEZi_99czYm2VBFHFLlEliZ2biefkbgFe18WVtjcwkBo5WKeT_YJkF6ywWuScx4Tjk6Zk-mavPF9XFDrzb7IVBxFh8hlM-jLn8dhFWHCo7yEk8K_Z1btVGp71am4xBrSOqJymwylRZjBnMXNqD2dnX86OUdzCGCCJSaM01ddzcfWs5iv1VbjY145JzfBdOx8GmSpPL6Wrw03D9B47j_87mHtxZ257ifRKW-7CD_QN4vY0zLGYJZEC8Eee_QXjvwZf5QGfXtNKJT-7qyolD17diWIgUlkCR0IDEzC0v6doSW3HI7SeysW-EiMHHzgUUH2PZyEOYHx_NPpxk634MWVBKDRmpsuo6h7nWLpBlGLDTlfPSFlVhW-tDq6x29IVliegVZ1zJIujyzpFZFdqyfAS7_aLHJyDYC81D6wM7qKojKyg4WRaVKXxlO-smIEe2NGE9U-6Z8a2JTou0TWQqN9HUTWLqBN5ubvmekDr-RbzHDPlFmHgxgf2R981al5eNZaeNVvhiAi83V0kJObPielyslo02VpZG02PFDRSG7eSqlkTyOMnU9rujKD79-5j24XYK-3Bd2zPYHX6s8DkZQoN_ETXgJ939AKI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LctMwUNMpB7jwKo9QoDoABwansi3J1pFCS4AmMxRnpjePJK8vpQ5DnEu_nl0pDoGhDDd7tLYl7a73qV3GXhSlywtTikSAJ2-VBPoP5ok31kCWOiQT8kNOZ3oyl5_O1fkOe7M5CwMAIfkMxnQZYvnNwq_IVXaYInkqsnVuKCmliqe1NjGDQoe6nsjCMpF5NsQwU2EOq9nXs-MYeShLBAi1QgvKqqP27lsCKXRYuV7ZDELn5A6bDtONuSYX41Xvxv7qj0qO_7ueu-z2WvvkbyO53GM70N1nL7crDfMqlhngr_jZb0W899iXeY93Vyjr-Ad7eWn5ke0a3i94dEwAj_WAeGWXFzi2hIYfUQOKZOgcwYP7sbUe-PuQOPKAzU-Oq3eTZN2RIfG44X2CzCzb1kKqtfWoG3potbJOmExlpjHON9JoizsscgAnKeaKOkGbthYVK9_k-UO22y06eMw42aGpb5wnE1W2qAd5K_JMlZlTpjV2xMSAltqvV0pdM77VwWwRpg5IpTaauo5IHbHXm0e-x1od_wLeI4T8Aoy4GLH9Aff1mpuXtSGzDWV8NmIHm1FkQ4qt2A4Wq2WtSyPyUuNr-TUQJWnKqhAI8ijS1Pa3Ayk--fucDtjNSTU9rU8_zj7vs1vRCURZbk_Zbv9jBc9QLerd88ANPwFvcAPv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Gamma+Band+to+Improve+Mental+Task+Based+Brain-Computer+Interface+Design&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Palaniappan%2C+R.&rft.date=2006-09-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=14&rft.issue=3&rft.spage=299&rft.epage=303&rft_id=info:doi/10.1109%2FTNSRE.2006.881539&rft_id=info%3Apmid%2F17009489&rft.externalDocID=1703561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon