MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples

Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 29; no. 20; pp. 2529 - 2538
Main Authors Behr, Jonas, Kahles, André, Zhong, Yi, Sreedharan, Vipin T., Drewe, Philipp, Rätsch, Gunnar
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.10.2013
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/btt442

Cover

Abstract Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. Availability: MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license. Contact:  Jonas_Behr@web.de and raetsch@cbio.mskcc.org Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction.MOTIVATIONHigh-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction.We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction.RESULTSWe present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction.MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.AVAILABILITYMITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.
Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. Availability: MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license. Contact:  Jonas_Behr@web.de and raetsch@cbio.mskcc.org Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. Availability: MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license. Contact: Jonas_Behr@web.de and raetsch@cbio.mskcc.org Supplementary information: Supplementary data are available at Bioinformatics online.
Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction.Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction.
High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.
Author Kahles, André
Rätsch, Gunnar
Drewe, Philipp
Sreedharan, Vipin T.
Behr, Jonas
Zhong, Yi
AuthorAffiliation 1 Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA and 2 Friedrich Miescher Laboratory, Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany
AuthorAffiliation_xml – name: 1 Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA and 2 Friedrich Miescher Laboratory, Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany
Author_xml – sequence: 1
  givenname: Jonas
  surname: Behr
  fullname: Behr, Jonas
– sequence: 2
  givenname: André
  surname: Kahles
  fullname: Kahles, André
– sequence: 3
  givenname: Yi
  surname: Zhong
  fullname: Zhong, Yi
– sequence: 4
  givenname: Vipin T.
  surname: Sreedharan
  fullname: Sreedharan, Vipin T.
– sequence: 5
  givenname: Philipp
  surname: Drewe
  fullname: Drewe, Philipp
– sequence: 6
  givenname: Gunnar
  surname: Rätsch
  fullname: Rätsch, Gunnar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23980025$$D View this record in MEDLINE/PubMed
BookMark eNqNUVtLHDEUDkWpuu1PaJlHX6bmOpNUEES8LGgL3e1zSDIZTZlJdpOM4L83dl3RPkifTsj5bpzvAOz44C0AXxD8hqAgR9oF5_sQR5WdSUc6Z0rxB7CPSNPWlCO08_KGZA8cpPQHQsggaz6CPUwEhxCzfaBv5sv5-fdq4cZpyMrbMKXq14_TemHXtVbJdlWOyicT3SpXrrM-u96ZYhp8pXxXrSf1-sv56knIrQZbJTWWkT6B3V4NyX5-njPw--J8eXZVX_-8nJ-dXteGUprrpoNWWKNbLCBGRhPLKe9YIxhSTdMh0vYGcay7voGwNYwxBbEQWjDLmKU9mYGTje5q0qPtTIka1SBX0Y0qPsignHy78e5O3oZ7SVouGGVF4PBZIIb1ZFOWo0vGDsPmLBJRgRtUPMV_QCkhHHPCC_Tr61gvebYdFMDxBmBiSCnaXhqX_16zpHSDRFA-NS7fNi43jRc2-4e9NXif9wjfCrl0
CitedBy_id crossref_primary_10_1214_17_AOAS1100
crossref_primary_10_1261_rna_051557_115
crossref_primary_10_1093_bioinformatics_btac838
crossref_primary_10_1093_bioinformatics_btaa052
crossref_primary_10_1186_1471_2164_16_S2_S15
crossref_primary_10_1186_s13059_014_0501_4
crossref_primary_10_1093_bioinformatics_btae215
crossref_primary_10_1007_s40484_018_0144_7
crossref_primary_10_1101_gr_276434_121
crossref_primary_10_1186_s12859_015_0695_9
crossref_primary_10_1038_s41467_018_03402_w
crossref_primary_10_1109_TCBB_2017_2779509
crossref_primary_10_1186_s13059_015_0865_0
crossref_primary_10_1093_bib_bbz068
crossref_primary_10_1002_gepi_22052
crossref_primary_10_1038_s41467_019_12990_0
crossref_primary_10_1186_1471_2105_15_135
crossref_primary_10_1093_bioinformatics_btv488
crossref_primary_10_1093_bioinformatics_btx267
crossref_primary_10_1261_rna_046037_114
crossref_primary_10_1093_bioinformatics_btab494
crossref_primary_10_1186_1471_2105_15_S9_S3
crossref_primary_10_1093_nar_gkw158
crossref_primary_10_1093_bib_bbab261
crossref_primary_10_1093_bioinformatics_btw076
crossref_primary_10_1038_s41467_021_26944_y
crossref_primary_10_1186_s13059_014_0498_8
crossref_primary_10_1101_gr_251108_119
crossref_primary_10_1016_j_cois_2015_02_008
crossref_primary_10_1093_bioinformatics_btu317
crossref_primary_10_1101_gr_257766_119
crossref_primary_10_1101_gr_230516_117
crossref_primary_10_1038_nbt_3122
Cites_doi 10.1101/gr.124107.111
10.1146/annurev.ecolsys.28.1.437
10.1101/gr.142232.112
10.1007/978-3-642-20036-6_18
10.1038/nmeth.1517
10.1056/NEJMoa1106920
10.1101/gr.090597.108
10.1101/gr.089532.108
10.1371/journal.pbio.1001229
10.1093/bioinformatics/btp120
10.1007/978-3-540-87361-7_5
10.1007/978-3-642-33122-0_14
10.1093/bioinformatics/bts094
10.1038/nbt.1621
10.1093/bioinformatics/btq057
10.1093/bioinformatics/18.suppl_1.S181
10.1038/nature11247
10.1038/nbt.1633
10.1093/nar/gkt211
10.1093/nar/gkq622
10.1186/1471-2105-10-S13-P5
10.1371/journal.pcbi.0030020
10.1002/0471250953.bi1106s32
10.1186/1471-2105-8-S10-S7
10.1186/1471-2105-12-162
10.1101/gr.133744.111
10.1093/bioinformatics/btg1044
10.1186/gb-2006-7-s1-s4
10.1093/bioinformatics/btn300
10.1038/nmeth.1528
10.1038/nrg2484
10.1093/nar/gks666
10.1186/gb-2010-11-10-r106
10.1093/bioinformatics/bts635
10.1038/ejhg.2011.28
10.4161/rna.19683
10.1038/459927a
10.1186/gb-2008-9-12-r175
10.1038/nbt.1883
10.1093/nar/gkr991
10.1038/nature08909
10.1038/nmeth.1226
10.1101/gr.1304504
10.1093/bioinformatics/btk028
ContentType Journal Article
Copyright The Author 2013. Published by Oxford University Press. 2013
Copyright_xml – notice: The Author 2013. Published by Oxford University Press. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
5PM
DOI 10.1093/bioinformatics/btt442
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
CrossRef

Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 2538
ExternalDocumentID PMC3789545
23980025
10_1093_bioinformatics_btt442
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
482
7QO
7TM
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
5PM
ID FETCH-LOGICAL-c444t-6d0e9ecb729021cb3e848d56951a66d137fc182bdf6007c555a0299b95e55e4f3
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:36:59 EDT 2025
Fri Sep 05 01:18:00 EDT 2025
Fri Jul 11 13:46:18 EDT 2025
Mon Jul 21 05:45:55 EDT 2025
Tue Jul 01 03:27:09 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License http://creativecommons.org/licenses/by/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-6d0e9ecb729021cb3e848d56951a66d137fc182bdf6007c555a0299b95e55e4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Ivo Hofacker
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3789545
PMID 23980025
PQID 1443382838
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3789545
proquest_miscellaneous_1492612999
proquest_miscellaneous_1443382838
pubmed_primary_23980025
crossref_citationtrail_10_1093_bioinformatics_btt442
crossref_primary_10_1093_bioinformatics_btt442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-15
PublicationDateYYYYMMDD 2013-10-15
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Harrow (2023012810473689000_btt442-B18) 2006; 7
Grabherr (2023012810473689000_btt442-B15) 2011; 29
Hiller (2023012810473689000_btt442-B20) 2012
Bradley (2023012810473689000_btt442-B6) 2012; 10
Jean (2023012810473689000_btt442-B22) 2010; 32
Wang (2023012810473689000_btt442-B44) 2003; 19
Schulz (2023012810473689000_btt442-B35) 2012; 28
Anders (2023012810473689000_btt442-B1) 2010; 11
Mortazavi (2023012810473689000_btt442-B28) 2008; 5
Smith (2023012810473689000_btt442-B39) 2012; 9
Trapnell (2023012810473689000_btt442-B43) 2010; 28
Drewe (2023012810473689000_btt442-B12) 2012; 41
Li (2023012810473689000_btt442-B25) 2011
Robertson (2023012810473689000_btt442-B34) 2010; 7
Nilsen (2023012810473689000_btt442-B30) 2010; 463
Rasmusen (2023012810473689000_btt442-B32) 2010; 11
Wang (2023012810473689000_btt442-B45) 2009; 10
De Bona (2023012810473689000_btt442-B9) 2008; 24
Trapnell (2023012810473689000_btt442-B42) 2009; 25
Xia (2023012810473689000_btt442-B48) 2011; 12
Heber (2023012810473689000_btt442-B19) 2002; 18
ENCODE Project Consortium et al. (2023012810473689000_btt442-B13) 2012; 489
Shai (2023012810473689000_btt442-B37) 2006; 22
Mezlini (2023012810473689000_btt442-B27) 2012; 23
Sonnenburg (2023012810473689000_btt442-B41) 2007; 8
Snoek (2023012810473689000_btt442-B40) 2012
Lin (2023012810473689000_btt442-B26) 2012
Xing (2023012810473689000_btt442-B49) 2004; 14
Griebel (2023012810473689000_btt442-B16) 2012; 40
Bohnert (2023012810473689000_btt442-B4) 2011
Denoeud (2023012810473689000_btt442-B10) 2008; 9
Flicek (2023012810473689000_btt442-B14) 2012; 40
Coffey (2023012810473689000_btt442-B8) 2011; 19
Schweikert (2023012810473689000_btt442-B36) 2009; 19
Simpson (2023012810473689000_btt442-B38) 2009; 19
Bahn (2023012810473689000_btt442-B3) 2012; 22
Lacroix (2023012810473689000_btt442-B24) 2008
Dobin (2023012810473689000_btt442-B11) 2012; 29
Bohnert (2023012810473689000_btt442-B5) 2009; 10
Rasko (2023012810473689000_btt442-B31) 2011; 365
Wu (2023012810473689000_btt442-B47) 2010; 26
Celniker (2023012810473689000_btt442-B7) 2009; 459
Rätsch (2023012810473689000_btt442-B33) 2007; 3
Huelsenbeck (2023012810473689000_btt442-B21) 1997; 28
Nelder (2023012810473689000_btt442-B29) 1972; 135
Guttman (2023012810473689000_btt442-B17) 2010; 28
Katz (2023012810473689000_btt442-B23) 2010; 7
Anders (2023012810473689000_btt442-B2) 2012; 22
Wang (2023012810473689000_btt442-B46) 2010; 38
References_xml – volume: 22
  start-page: 142
  year: 2012
  ident: 2023012810473689000_btt442-B3
  article-title: Accurate identification of a-to-i rna editing in human by transcriptome sequencing
  publication-title: Genome Res.
  doi: 10.1101/gr.124107.111
– volume: 28
  start-page: 437
  year: 1997
  ident: 2023012810473689000_btt442-B21
  article-title: Phylogeny estimation and hypothesis testing using maximum likelihood
  publication-title: Annu. Revi. Ecol. Syst.
  doi: 10.1146/annurev.ecolsys.28.1.437
– volume: 23
  start-page: 519
  year: 2012
  ident: 2023012810473689000_btt442-B27
  article-title: iReckon: simultaneous isoform discovery and abundance estimation from RNA-Seq
  publication-title: Genome Res.
  doi: 10.1101/gr.142232.112
– volume-title: Research in Computational Molecular Biology
  year: 2011
  ident: 2023012810473689000_btt442-B25
  article-title: Isolasso: a lasso regression approach to RNA-Seq based transcriptome assembly
  doi: 10.1007/978-3-642-20036-6_18
– volume: 7
  start-page: 909
  year: 2010
  ident: 2023012810473689000_btt442-B34
  article-title: De novo assembly and analysis of RNA-Seq data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1517
– volume: 365
  start-page: 709
  year: 2011
  ident: 2023012810473689000_btt442-B31
  article-title: Origins of the e. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1106920
– volume: 19
  start-page: 2133
  year: 2009
  ident: 2023012810473689000_btt442-B36
  article-title: mGene: accurate SVM-based gene finding with an application to nematode genomes
  publication-title: Genome Res.
  doi: 10.1101/gr.090597.108
– volume: 19
  start-page: 1117
  year: 2009
  ident: 2023012810473689000_btt442-B38
  article-title: ABySS: A parallel assembler for short read sequence data
  publication-title: Genome Res.
  doi: 10.1101/gr.089532.108
– volume: 10
  start-page: e1001229
  year: 2012
  ident: 2023012810473689000_btt442-B6
  article-title: Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001229
– volume: 25
  start-page: 1105
  year: 2009
  ident: 2023012810473689000_btt442-B42
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume-title: Proceedings of the 8th International Workshop on Algorithms in Bioinformatics
  year: 2008
  ident: 2023012810473689000_btt442-B24
  article-title: Exact transcriptome reconstruction from short sequence reads
  doi: 10.1007/978-3-540-87361-7_5
– volume-title: Algorithms in Bioinformatics
  year: 2012
  ident: 2023012810473689000_btt442-B26
  article-title: Cliiq: accurate comparative detection and quantification of expressed isoforms in a population
  doi: 10.1007/978-3-642-33122-0_14
– volume: 28
  start-page: 1086
  year: 2012
  ident: 2023012810473689000_btt442-B35
  article-title: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts094
– volume: 28
  start-page: 511
  year: 2010
  ident: 2023012810473689000_btt442-B43
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– year: 2011
  ident: 2023012810473689000_btt442-B4
  article-title: Computational methods for high-throughput genomics and transcriptomics
– volume: 26
  start-page: 873
  year: 2010
  ident: 2023012810473689000_btt442-B47
  article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq057
– year: 2012
  ident: 2023012810473689000_btt442-B40
  article-title: Practical bayesian optimization of machine learning algorithms
– volume: 18
  start-page: S181
  year: 2002
  ident: 2023012810473689000_btt442-B19
  article-title: Splicing graphs and est assembly problem
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S181
– volume: 11
  start-page: 3011
  year: 2010
  ident: 2023012810473689000_btt442-B32
  article-title: Gaussian processes for machine learning (gpml) toolbox
  publication-title: J. Mach. Learn. Res.
– volume: 489
  start-page: 57
  year: 2012
  ident: 2023012810473689000_btt442-B13
  article-title: An integrated encyclopedia of dna elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 28
  start-page: 503
  year: 2010
  ident: 2023012810473689000_btt442-B17
  article-title: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1633
– volume: 41
  start-page: 5189
  year: 2012
  ident: 2023012810473689000_btt442-B12
  article-title: Accurate detection of differential rna processing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt211
– volume: 38
  start-page: e178
  year: 2010
  ident: 2023012810473689000_btt442-B46
  article-title: MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq622
– volume: 10
  start-page: P5
  year: 2009
  ident: 2023012810473689000_btt442-B5
  article-title: Transcript quantification with RNA-Seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-S13-P5
– volume: 3
  start-page: e20
  year: 2007
  ident: 2023012810473689000_btt442-B33
  article-title: Improving the caenorhabditis elegans genome annotation using machine learning
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030020
– volume: 32
  start-page: 11.6.1
  year: 2010
  ident: 2023012810473689000_btt442-B22
  article-title: RNA-Seq read alignments with palmapper
  publication-title: Curr. Protoc. Bioinform.
  doi: 10.1002/0471250953.bi1106s32
– volume: 8
  start-page: S7
  year: 2007
  ident: 2023012810473689000_btt442-B41
  article-title: Accurate splice site prediction using support vector machines
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-S10-S7
– volume: 12
  start-page: 162
  year: 2011
  ident: 2023012810473689000_btt442-B48
  article-title: NSMAP: a method for spliced isoforms identification and quantification from RNA-Seq
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-162
– volume: 22
  start-page: 2008
  year: 2012
  ident: 2023012810473689000_btt442-B2
  article-title: Detecting differential usage of exons from RNA-seq data
  publication-title: Genome Res.
  doi: 10.1101/gr.133744.111
– volume: 135
  start-page: 375
  year: 1972
  ident: 2023012810473689000_btt442-B29
  article-title: Generalized linear models
  publication-title: J. R. Stat. Soc.
– volume: 19
  start-page: i315
  year: 2003
  ident: 2023012810473689000_btt442-B44
  article-title: Gene structure-based splice variant deconvolution using a microarry platform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1044
– volume: 7
  start-page: S4
  year: 2006
  ident: 2023012810473689000_btt442-B18
  article-title: Gencode: producing a reference annotation for encode
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-s1-s4
– volume: 24
  start-page: i174
  year: 2008
  ident: 2023012810473689000_btt442-B9
  article-title: Optimal spliced alignments of short sequence reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn300
– volume: 7
  start-page: 1009
  year: 2010
  ident: 2023012810473689000_btt442-B23
  article-title: Analysis and design of rna sequencing experiments for identifying isoform regulation
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1528
– volume: 10
  start-page: 57
  year: 2009
  ident: 2023012810473689000_btt442-B45
  article-title: RNA-Seq: a revolutionary tool for transcriptomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2484
– volume: 40
  start-page: 10073
  year: 2012
  ident: 2023012810473689000_btt442-B16
  article-title: Modelling and simulating generic RNA-Seq experiments with the flux simulator
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks666
– start-page: 1
  year: 2012
  ident: 2023012810473689000_btt442-B20
  article-title: Simultaneous isoform discovery and quantification from RNA-Seq
  publication-title: Stat. Biosci.
– volume: 11
  start-page: R106
  year: 2010
  ident: 2023012810473689000_btt442-B1
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 29
  start-page: 15
  year: 2012
  ident: 2023012810473689000_btt442-B11
  article-title: Star: ultrafast universal RNA-Seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 19
  start-page: 827
  year: 2011
  ident: 2023012810473689000_btt442-B8
  article-title: The gencode exome: sequencing the complete human exome
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2011.28
– volume: 9
  start-page: 596
  year: 2012
  ident: 2023012810473689000_btt442-B39
  article-title: Multiple insert size paired-end sequencing for deconvolution of complex transcriptomes
  publication-title: RNA Biol.
  doi: 10.4161/rna.19683
– volume: 459
  start-page: 927
  year: 2009
  ident: 2023012810473689000_btt442-B7
  article-title: Unlocking the secrets of the genome
  publication-title: Nature
  doi: 10.1038/459927a
– volume: 9
  start-page: R175
  year: 2008
  ident: 2023012810473689000_btt442-B10
  article-title: Annotating genomes with massive-scale RNA sequencing
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-12-r175
– volume: 29
  start-page: 644
  year: 2011
  ident: 2023012810473689000_btt442-B15
  article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1883
– volume: 40
  start-page: D84
  year: 2012
  ident: 2023012810473689000_btt442-B14
  article-title: Ensembl 2012
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr991
– volume: 463
  start-page: 457
  year: 2010
  ident: 2023012810473689000_btt442-B30
  article-title: Expansion of the eukaryotic proteome by alternative splicing
  publication-title: Nature
  doi: 10.1038/nature08909
– volume: 5
  start-page: 621
  year: 2008
  ident: 2023012810473689000_btt442-B28
  article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1226
– volume: 14
  start-page: 426
  year: 2004
  ident: 2023012810473689000_btt442-B49
  article-title: The multiassembly problem: reconstructing multiple transcript isoforms from est fragment mixtures
  publication-title: Genome Res.
  doi: 10.1101/gr.1304504
– volume: 22
  start-page: 606
  year: 2006
  ident: 2023012810473689000_btt442-B37
  article-title: Inferring global levels of alternative splicing isoforms using a generative model of microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk028
SSID ssj0005056
ssj0051444
Score 2.3369176
Snippet Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA...
High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts....
Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2529
SubjectTerms Animals
Drosophila melanogaster
High-Throughput Nucleotide Sequencing - methods
Humans
Internet
Original Papers
RNA - analysis
RNA - genetics
Sequence Analysis, RNA - methods
Software
Transcription, Genetic
Title MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples
URI https://www.ncbi.nlm.nih.gov/pubmed/23980025
https://www.proquest.com/docview/1443382838
https://www.proquest.com/docview/1492612999
https://pubmed.ncbi.nlm.nih.gov/PMC3789545
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4t2lgIzEDaVN1k7icCtoqxbKItFdtJwi23HUSCilu-mh_HpmYudhiqBwiRLnYcXfZDIzHn9DyCvD01IJbQLwkYuA64wHMotYkJZcClOUybSdLvg4Tw6X_P0qXg1TMe3qkkbt6h-_XVfyP6hCG-CKq2T_Adn-odAA-4AvbAFh2F4LY9A7RzP06U8qTAyUtcGE1s_z_eDEnAf4gyqwBkRtVcPrqnCpQRZ0DJmfX8hxU1UPGYYbicTBG2_WtzpzRKvNKEn-rTldd4H4YWoIyypv-pTJIT7tUoC_Vn1sZw0_UKSNbvXfF6yl7TK3XTAiatPa7HJMpz8Z0qiL0OosY9t4EgJsjvjbKV0X5rDCNQ3HKjR254w7tOwvV1S9pcFS3otjQ9Nwy9flk2vPP-UHy-PjfDFbLW6SW9MUTC20oY8-DBlBIfIK2QOwI7ktiOxeqFv9lbE9v88926Nv11xxVn7NuR0ZMYt75K7zPui-FaX75IapH5Dbth7p5UOiWoF6Q8fiRD1xooM4UV-cKIgT9cWJVjXtxIk6cXpElgezxbvDwBXhCDSMQBMkRWgyoxU4YWAOasWM4KKIE7DMZZIUEUtLDT6qgs8azE0dx7EMwcRRWWzi2PCSPSZb9VlttgnViRaZVIZFSnAtlDClLmWUGs0BDBlPCO-GMNeOoR4LpXzLbaYEy_2Rz-3IT8huf9t3S9HytxtedvjkoExxhsyOKPjBnDEBFrf40zUZ0u6BYzUhTyymfbdIpolexISkHtr9BUjm7p-pq9OW1J2lIgNv5uk1-t0hd4Zv7xnZatYX5jmYxo160Qr0T7K8w9k
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MITIE%3A+Simultaneous+RNA-Seq-based+transcript+identification+and+quantification+in+multiple+samples&rft.jtitle=Bioinformatics&rft.au=Behr%2C+Jonas&rft.au=Kahles%2C+Andre&rft.au=Zhong%2C+Yi&rft.au=Sreedharan%2C+Vipin+T&rft.date=2013-10-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=29&rft.issue=20&rft.spage=2529&rft.epage=2538&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtt442&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon