MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples
Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the...
Saved in:
Published in | Bioinformatics Vol. 29; no. 20; pp. 2529 - 2538 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.10.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1367-4811 1460-2059 |
DOI | 10.1093/bioinformatics/btt442 |
Cover
Abstract | Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction.
Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction.
Availability: MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.
Contact: Jonas_Behr@web.de and raetsch@cbio.mskcc.org
Supplementary information: Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction.MOTIVATIONHigh-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction.We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction.RESULTSWe present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction.MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.AVAILABILITYMITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license. Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. Availability: MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license. Contact: Jonas_Behr@web.de and raetsch@cbio.mskcc.org Supplementary information: Supplementary data are available at Bioinformatics online. Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. Availability: MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license. Contact: Jonas_Behr@web.de and raetsch@cbio.mskcc.org Supplementary information: Supplementary data are available at Bioinformatics online. Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction.Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license. |
Author | Kahles, André Rätsch, Gunnar Drewe, Philipp Sreedharan, Vipin T. Behr, Jonas Zhong, Yi |
AuthorAffiliation | 1 Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA and 2 Friedrich Miescher Laboratory, Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany |
AuthorAffiliation_xml | – name: 1 Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA and 2 Friedrich Miescher Laboratory, Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany |
Author_xml | – sequence: 1 givenname: Jonas surname: Behr fullname: Behr, Jonas – sequence: 2 givenname: André surname: Kahles fullname: Kahles, André – sequence: 3 givenname: Yi surname: Zhong fullname: Zhong, Yi – sequence: 4 givenname: Vipin T. surname: Sreedharan fullname: Sreedharan, Vipin T. – sequence: 5 givenname: Philipp surname: Drewe fullname: Drewe, Philipp – sequence: 6 givenname: Gunnar surname: Rätsch fullname: Rätsch, Gunnar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23980025$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUVtLHDEUDkWpuu1PaJlHX6bmOpNUEES8LGgL3e1zSDIZTZlJdpOM4L83dl3RPkifTsj5bpzvAOz44C0AXxD8hqAgR9oF5_sQR5WdSUc6Z0rxB7CPSNPWlCO08_KGZA8cpPQHQsggaz6CPUwEhxCzfaBv5sv5-fdq4cZpyMrbMKXq14_TemHXtVbJdlWOyicT3SpXrrM-u96ZYhp8pXxXrSf1-sv56knIrQZbJTWWkT6B3V4NyX5-njPw--J8eXZVX_-8nJ-dXteGUprrpoNWWKNbLCBGRhPLKe9YIxhSTdMh0vYGcay7voGwNYwxBbEQWjDLmKU9mYGTje5q0qPtTIka1SBX0Y0qPsignHy78e5O3oZ7SVouGGVF4PBZIIb1ZFOWo0vGDsPmLBJRgRtUPMV_QCkhHHPCC_Tr61gvebYdFMDxBmBiSCnaXhqX_16zpHSDRFA-NS7fNi43jRc2-4e9NXif9wjfCrl0 |
CitedBy_id | crossref_primary_10_1214_17_AOAS1100 crossref_primary_10_1261_rna_051557_115 crossref_primary_10_1093_bioinformatics_btac838 crossref_primary_10_1093_bioinformatics_btaa052 crossref_primary_10_1186_1471_2164_16_S2_S15 crossref_primary_10_1186_s13059_014_0501_4 crossref_primary_10_1093_bioinformatics_btae215 crossref_primary_10_1007_s40484_018_0144_7 crossref_primary_10_1101_gr_276434_121 crossref_primary_10_1186_s12859_015_0695_9 crossref_primary_10_1038_s41467_018_03402_w crossref_primary_10_1109_TCBB_2017_2779509 crossref_primary_10_1186_s13059_015_0865_0 crossref_primary_10_1093_bib_bbz068 crossref_primary_10_1002_gepi_22052 crossref_primary_10_1038_s41467_019_12990_0 crossref_primary_10_1186_1471_2105_15_135 crossref_primary_10_1093_bioinformatics_btv488 crossref_primary_10_1093_bioinformatics_btx267 crossref_primary_10_1261_rna_046037_114 crossref_primary_10_1093_bioinformatics_btab494 crossref_primary_10_1186_1471_2105_15_S9_S3 crossref_primary_10_1093_nar_gkw158 crossref_primary_10_1093_bib_bbab261 crossref_primary_10_1093_bioinformatics_btw076 crossref_primary_10_1038_s41467_021_26944_y crossref_primary_10_1186_s13059_014_0498_8 crossref_primary_10_1101_gr_251108_119 crossref_primary_10_1016_j_cois_2015_02_008 crossref_primary_10_1093_bioinformatics_btu317 crossref_primary_10_1101_gr_257766_119 crossref_primary_10_1101_gr_230516_117 crossref_primary_10_1038_nbt_3122 |
Cites_doi | 10.1101/gr.124107.111 10.1146/annurev.ecolsys.28.1.437 10.1101/gr.142232.112 10.1007/978-3-642-20036-6_18 10.1038/nmeth.1517 10.1056/NEJMoa1106920 10.1101/gr.090597.108 10.1101/gr.089532.108 10.1371/journal.pbio.1001229 10.1093/bioinformatics/btp120 10.1007/978-3-540-87361-7_5 10.1007/978-3-642-33122-0_14 10.1093/bioinformatics/bts094 10.1038/nbt.1621 10.1093/bioinformatics/btq057 10.1093/bioinformatics/18.suppl_1.S181 10.1038/nature11247 10.1038/nbt.1633 10.1093/nar/gkt211 10.1093/nar/gkq622 10.1186/1471-2105-10-S13-P5 10.1371/journal.pcbi.0030020 10.1002/0471250953.bi1106s32 10.1186/1471-2105-8-S10-S7 10.1186/1471-2105-12-162 10.1101/gr.133744.111 10.1093/bioinformatics/btg1044 10.1186/gb-2006-7-s1-s4 10.1093/bioinformatics/btn300 10.1038/nmeth.1528 10.1038/nrg2484 10.1093/nar/gks666 10.1186/gb-2010-11-10-r106 10.1093/bioinformatics/bts635 10.1038/ejhg.2011.28 10.4161/rna.19683 10.1038/459927a 10.1186/gb-2008-9-12-r175 10.1038/nbt.1883 10.1093/nar/gkr991 10.1038/nature08909 10.1038/nmeth.1226 10.1101/gr.1304504 10.1093/bioinformatics/btk028 |
ContentType | Journal Article |
Copyright | The Author 2013. Published by Oxford University Press. 2013 |
Copyright_xml | – notice: The Author 2013. Published by Oxford University Press. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TM 8FD FR3 P64 5PM |
DOI | 10.1093/bioinformatics/btt442 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 1460-2059 |
EndPage | 2538 |
ExternalDocumentID | PMC3789545 23980025 10_1093_bioinformatics_btt442 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 482 7QO 7TM 8FD ABJNI FR3 P64 ROZ TN5 WH7 5PM |
ID | FETCH-LOGICAL-c444t-6d0e9ecb729021cb3e848d56951a66d137fc182bdf6007c555a0299b95e55e4f3 |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 18:36:59 EDT 2025 Fri Sep 05 01:18:00 EDT 2025 Fri Jul 11 13:46:18 EDT 2025 Mon Jul 21 05:45:55 EDT 2025 Tue Jul 01 03:27:09 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-6d0e9ecb729021cb3e848d56951a66d137fc182bdf6007c555a0299b95e55e4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Associate Editor: Ivo Hofacker |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3789545 |
PMID | 23980025 |
PQID | 1443382838 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3789545 proquest_miscellaneous_1492612999 proquest_miscellaneous_1443382838 pubmed_primary_23980025 crossref_citationtrail_10_1093_bioinformatics_btt442 crossref_primary_10_1093_bioinformatics_btt442 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-15 |
PublicationDateYYYYMMDD | 2013-10-15 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2013 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Harrow (2023012810473689000_btt442-B18) 2006; 7 Grabherr (2023012810473689000_btt442-B15) 2011; 29 Hiller (2023012810473689000_btt442-B20) 2012 Bradley (2023012810473689000_btt442-B6) 2012; 10 Jean (2023012810473689000_btt442-B22) 2010; 32 Wang (2023012810473689000_btt442-B44) 2003; 19 Schulz (2023012810473689000_btt442-B35) 2012; 28 Anders (2023012810473689000_btt442-B1) 2010; 11 Mortazavi (2023012810473689000_btt442-B28) 2008; 5 Smith (2023012810473689000_btt442-B39) 2012; 9 Trapnell (2023012810473689000_btt442-B43) 2010; 28 Drewe (2023012810473689000_btt442-B12) 2012; 41 Li (2023012810473689000_btt442-B25) 2011 Robertson (2023012810473689000_btt442-B34) 2010; 7 Nilsen (2023012810473689000_btt442-B30) 2010; 463 Rasmusen (2023012810473689000_btt442-B32) 2010; 11 Wang (2023012810473689000_btt442-B45) 2009; 10 De Bona (2023012810473689000_btt442-B9) 2008; 24 Trapnell (2023012810473689000_btt442-B42) 2009; 25 Xia (2023012810473689000_btt442-B48) 2011; 12 Heber (2023012810473689000_btt442-B19) 2002; 18 ENCODE Project Consortium et al. (2023012810473689000_btt442-B13) 2012; 489 Shai (2023012810473689000_btt442-B37) 2006; 22 Mezlini (2023012810473689000_btt442-B27) 2012; 23 Sonnenburg (2023012810473689000_btt442-B41) 2007; 8 Snoek (2023012810473689000_btt442-B40) 2012 Lin (2023012810473689000_btt442-B26) 2012 Xing (2023012810473689000_btt442-B49) 2004; 14 Griebel (2023012810473689000_btt442-B16) 2012; 40 Bohnert (2023012810473689000_btt442-B4) 2011 Denoeud (2023012810473689000_btt442-B10) 2008; 9 Flicek (2023012810473689000_btt442-B14) 2012; 40 Coffey (2023012810473689000_btt442-B8) 2011; 19 Schweikert (2023012810473689000_btt442-B36) 2009; 19 Simpson (2023012810473689000_btt442-B38) 2009; 19 Bahn (2023012810473689000_btt442-B3) 2012; 22 Lacroix (2023012810473689000_btt442-B24) 2008 Dobin (2023012810473689000_btt442-B11) 2012; 29 Bohnert (2023012810473689000_btt442-B5) 2009; 10 Rasko (2023012810473689000_btt442-B31) 2011; 365 Wu (2023012810473689000_btt442-B47) 2010; 26 Celniker (2023012810473689000_btt442-B7) 2009; 459 Rätsch (2023012810473689000_btt442-B33) 2007; 3 Huelsenbeck (2023012810473689000_btt442-B21) 1997; 28 Nelder (2023012810473689000_btt442-B29) 1972; 135 Guttman (2023012810473689000_btt442-B17) 2010; 28 Katz (2023012810473689000_btt442-B23) 2010; 7 Anders (2023012810473689000_btt442-B2) 2012; 22 Wang (2023012810473689000_btt442-B46) 2010; 38 |
References_xml | – volume: 22 start-page: 142 year: 2012 ident: 2023012810473689000_btt442-B3 article-title: Accurate identification of a-to-i rna editing in human by transcriptome sequencing publication-title: Genome Res. doi: 10.1101/gr.124107.111 – volume: 28 start-page: 437 year: 1997 ident: 2023012810473689000_btt442-B21 article-title: Phylogeny estimation and hypothesis testing using maximum likelihood publication-title: Annu. Revi. Ecol. Syst. doi: 10.1146/annurev.ecolsys.28.1.437 – volume: 23 start-page: 519 year: 2012 ident: 2023012810473689000_btt442-B27 article-title: iReckon: simultaneous isoform discovery and abundance estimation from RNA-Seq publication-title: Genome Res. doi: 10.1101/gr.142232.112 – volume-title: Research in Computational Molecular Biology year: 2011 ident: 2023012810473689000_btt442-B25 article-title: Isolasso: a lasso regression approach to RNA-Seq based transcriptome assembly doi: 10.1007/978-3-642-20036-6_18 – volume: 7 start-page: 909 year: 2010 ident: 2023012810473689000_btt442-B34 article-title: De novo assembly and analysis of RNA-Seq data publication-title: Nat. Methods doi: 10.1038/nmeth.1517 – volume: 365 start-page: 709 year: 2011 ident: 2023012810473689000_btt442-B31 article-title: Origins of the e. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1106920 – volume: 19 start-page: 2133 year: 2009 ident: 2023012810473689000_btt442-B36 article-title: mGene: accurate SVM-based gene finding with an application to nematode genomes publication-title: Genome Res. doi: 10.1101/gr.090597.108 – volume: 19 start-page: 1117 year: 2009 ident: 2023012810473689000_btt442-B38 article-title: ABySS: A parallel assembler for short read sequence data publication-title: Genome Res. doi: 10.1101/gr.089532.108 – volume: 10 start-page: e1001229 year: 2012 ident: 2023012810473689000_btt442-B6 article-title: Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001229 – volume: 25 start-page: 1105 year: 2009 ident: 2023012810473689000_btt442-B42 article-title: TopHat: discovering splice junctions with RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume-title: Proceedings of the 8th International Workshop on Algorithms in Bioinformatics year: 2008 ident: 2023012810473689000_btt442-B24 article-title: Exact transcriptome reconstruction from short sequence reads doi: 10.1007/978-3-540-87361-7_5 – volume-title: Algorithms in Bioinformatics year: 2012 ident: 2023012810473689000_btt442-B26 article-title: Cliiq: accurate comparative detection and quantification of expressed isoforms in a population doi: 10.1007/978-3-642-33122-0_14 – volume: 28 start-page: 1086 year: 2012 ident: 2023012810473689000_btt442-B35 article-title: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts094 – volume: 28 start-page: 511 year: 2010 ident: 2023012810473689000_btt442-B43 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – year: 2011 ident: 2023012810473689000_btt442-B4 article-title: Computational methods for high-throughput genomics and transcriptomics – volume: 26 start-page: 873 year: 2010 ident: 2023012810473689000_btt442-B47 article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq057 – year: 2012 ident: 2023012810473689000_btt442-B40 article-title: Practical bayesian optimization of machine learning algorithms – volume: 18 start-page: S181 year: 2002 ident: 2023012810473689000_btt442-B19 article-title: Splicing graphs and est assembly problem publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S181 – volume: 11 start-page: 3011 year: 2010 ident: 2023012810473689000_btt442-B32 article-title: Gaussian processes for machine learning (gpml) toolbox publication-title: J. Mach. Learn. Res. – volume: 489 start-page: 57 year: 2012 ident: 2023012810473689000_btt442-B13 article-title: An integrated encyclopedia of dna elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 28 start-page: 503 year: 2010 ident: 2023012810473689000_btt442-B17 article-title: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1633 – volume: 41 start-page: 5189 year: 2012 ident: 2023012810473689000_btt442-B12 article-title: Accurate detection of differential rna processing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt211 – volume: 38 start-page: e178 year: 2010 ident: 2023012810473689000_btt442-B46 article-title: MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq622 – volume: 10 start-page: P5 year: 2009 ident: 2023012810473689000_btt442-B5 article-title: Transcript quantification with RNA-Seq data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-S13-P5 – volume: 3 start-page: e20 year: 2007 ident: 2023012810473689000_btt442-B33 article-title: Improving the caenorhabditis elegans genome annotation using machine learning publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030020 – volume: 32 start-page: 11.6.1 year: 2010 ident: 2023012810473689000_btt442-B22 article-title: RNA-Seq read alignments with palmapper publication-title: Curr. Protoc. Bioinform. doi: 10.1002/0471250953.bi1106s32 – volume: 8 start-page: S7 year: 2007 ident: 2023012810473689000_btt442-B41 article-title: Accurate splice site prediction using support vector machines publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-S10-S7 – volume: 12 start-page: 162 year: 2011 ident: 2023012810473689000_btt442-B48 article-title: NSMAP: a method for spliced isoforms identification and quantification from RNA-Seq publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-162 – volume: 22 start-page: 2008 year: 2012 ident: 2023012810473689000_btt442-B2 article-title: Detecting differential usage of exons from RNA-seq data publication-title: Genome Res. doi: 10.1101/gr.133744.111 – volume: 135 start-page: 375 year: 1972 ident: 2023012810473689000_btt442-B29 article-title: Generalized linear models publication-title: J. R. Stat. Soc. – volume: 19 start-page: i315 year: 2003 ident: 2023012810473689000_btt442-B44 article-title: Gene structure-based splice variant deconvolution using a microarry platform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1044 – volume: 7 start-page: S4 year: 2006 ident: 2023012810473689000_btt442-B18 article-title: Gencode: producing a reference annotation for encode publication-title: Genome Biol. doi: 10.1186/gb-2006-7-s1-s4 – volume: 24 start-page: i174 year: 2008 ident: 2023012810473689000_btt442-B9 article-title: Optimal spliced alignments of short sequence reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn300 – volume: 7 start-page: 1009 year: 2010 ident: 2023012810473689000_btt442-B23 article-title: Analysis and design of rna sequencing experiments for identifying isoform regulation publication-title: Nat. Methods doi: 10.1038/nmeth.1528 – volume: 10 start-page: 57 year: 2009 ident: 2023012810473689000_btt442-B45 article-title: RNA-Seq: a revolutionary tool for transcriptomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2484 – volume: 40 start-page: 10073 year: 2012 ident: 2023012810473689000_btt442-B16 article-title: Modelling and simulating generic RNA-Seq experiments with the flux simulator publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks666 – start-page: 1 year: 2012 ident: 2023012810473689000_btt442-B20 article-title: Simultaneous isoform discovery and quantification from RNA-Seq publication-title: Stat. Biosci. – volume: 11 start-page: R106 year: 2010 ident: 2023012810473689000_btt442-B1 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – volume: 29 start-page: 15 year: 2012 ident: 2023012810473689000_btt442-B11 article-title: Star: ultrafast universal RNA-Seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 19 start-page: 827 year: 2011 ident: 2023012810473689000_btt442-B8 article-title: The gencode exome: sequencing the complete human exome publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2011.28 – volume: 9 start-page: 596 year: 2012 ident: 2023012810473689000_btt442-B39 article-title: Multiple insert size paired-end sequencing for deconvolution of complex transcriptomes publication-title: RNA Biol. doi: 10.4161/rna.19683 – volume: 459 start-page: 927 year: 2009 ident: 2023012810473689000_btt442-B7 article-title: Unlocking the secrets of the genome publication-title: Nature doi: 10.1038/459927a – volume: 9 start-page: R175 year: 2008 ident: 2023012810473689000_btt442-B10 article-title: Annotating genomes with massive-scale RNA sequencing publication-title: Genome Biol. doi: 10.1186/gb-2008-9-12-r175 – volume: 29 start-page: 644 year: 2011 ident: 2023012810473689000_btt442-B15 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1883 – volume: 40 start-page: D84 year: 2012 ident: 2023012810473689000_btt442-B14 article-title: Ensembl 2012 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr991 – volume: 463 start-page: 457 year: 2010 ident: 2023012810473689000_btt442-B30 article-title: Expansion of the eukaryotic proteome by alternative splicing publication-title: Nature doi: 10.1038/nature08909 – volume: 5 start-page: 621 year: 2008 ident: 2023012810473689000_btt442-B28 article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq publication-title: Nat. Methods doi: 10.1038/nmeth.1226 – volume: 14 start-page: 426 year: 2004 ident: 2023012810473689000_btt442-B49 article-title: The multiassembly problem: reconstructing multiple transcript isoforms from est fragment mixtures publication-title: Genome Res. doi: 10.1101/gr.1304504 – volume: 22 start-page: 606 year: 2006 ident: 2023012810473689000_btt442-B37 article-title: Inferring global levels of alternative splicing isoforms using a generative model of microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btk028 |
SSID | ssj0005056 ssj0051444 |
Score | 2.3369176 |
Snippet | Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA... High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts.... Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2529 |
SubjectTerms | Animals Drosophila melanogaster High-Throughput Nucleotide Sequencing - methods Humans Internet Original Papers RNA - analysis RNA - genetics Sequence Analysis, RNA - methods Software Transcription, Genetic |
Title | MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23980025 https://www.proquest.com/docview/1443382838 https://www.proquest.com/docview/1492612999 https://pubmed.ncbi.nlm.nih.gov/PMC3789545 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4t2lgIzEDaVN1k7icCtoqxbKItFdtJwi23HUSCilu-mh_HpmYudhiqBwiRLnYcXfZDIzHn9DyCvD01IJbQLwkYuA64wHMotYkJZcClOUybSdLvg4Tw6X_P0qXg1TMe3qkkbt6h-_XVfyP6hCG-CKq2T_Adn-odAA-4AvbAFh2F4LY9A7RzP06U8qTAyUtcGE1s_z_eDEnAf4gyqwBkRtVcPrqnCpQRZ0DJmfX8hxU1UPGYYbicTBG2_WtzpzRKvNKEn-rTldd4H4YWoIyypv-pTJIT7tUoC_Vn1sZw0_UKSNbvXfF6yl7TK3XTAiatPa7HJMpz8Z0qiL0OosY9t4EgJsjvjbKV0X5rDCNQ3HKjR254w7tOwvV1S9pcFS3otjQ9Nwy9flk2vPP-UHy-PjfDFbLW6SW9MUTC20oY8-DBlBIfIK2QOwI7ktiOxeqFv9lbE9v88926Nv11xxVn7NuR0ZMYt75K7zPui-FaX75IapH5Dbth7p5UOiWoF6Q8fiRD1xooM4UV-cKIgT9cWJVjXtxIk6cXpElgezxbvDwBXhCDSMQBMkRWgyoxU4YWAOasWM4KKIE7DMZZIUEUtLDT6qgs8azE0dx7EMwcRRWWzi2PCSPSZb9VlttgnViRaZVIZFSnAtlDClLmWUGs0BDBlPCO-GMNeOoR4LpXzLbaYEy_2Rz-3IT8huf9t3S9HytxtedvjkoExxhsyOKPjBnDEBFrf40zUZ0u6BYzUhTyymfbdIpolexISkHtr9BUjm7p-pq9OW1J2lIgNv5uk1-t0hd4Zv7xnZatYX5jmYxo160Qr0T7K8w9k |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MITIE%3A+Simultaneous+RNA-Seq-based+transcript+identification+and+quantification+in+multiple+samples&rft.jtitle=Bioinformatics&rft.au=Behr%2C+Jonas&rft.au=Kahles%2C+Andre&rft.au=Zhong%2C+Yi&rft.au=Sreedharan%2C+Vipin+T&rft.date=2013-10-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=29&rft.issue=20&rft.spage=2529&rft.epage=2538&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtt442&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |