Robustness in Human Manipulation of Dynamically Complex Objects Through Control Contraction Metrics
Control and manipulation of objects with underactuated dynamics remains a challenge for robots. Due to their typically nonlinear dynamics, it is computationally taxing to implement model-based planning and control techniques. Yet humans can skillfully manipulate such objects, seemingly with ease. Mo...
Saved in:
| Published in | IEEE robotics and automation letters Vol. 5; no. 2; pp. 2578 - 2585 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2377-3766 2377-3766 |
| DOI | 10.1109/LRA.2020.2972863 |
Cover
| Abstract | Control and manipulation of objects with underactuated dynamics remains a challenge for robots. Due to their typically nonlinear dynamics, it is computationally taxing to implement model-based planning and control techniques. Yet humans can skillfully manipulate such objects, seemingly with ease. More insight into human control strategies may inform how to enhance control strategies in robots. This study examined human control of objects that exhibit complex - underactuated and nonlinear - dynamics. We hypothesized that humans seek to make their trajectories exponentially stable to achieve robustness in the face of external perturbations. A stable trajectory is also robust to the high levels of noise in the human neuromotor system. Motivated by the task of carrying a cup of coffee, a virtual implementation of transporting a cart-pendulum system was developed. Subjects interacted with the virtual system via a robotic manipulandum that provided a haptic and visual interface. Human subjects were instructed to transport this simplified system to a target position as fast as possible without `spilling coffee,' while accommodating different visible perturbations that could be anticipated. To test the hypothesis of exponential convergence, tools from the framework of control contraction metrics were leveraged to analyze human trajectories. Results showed that with practice the trajectories indeed became exponentially stable, selectively around the perturbation. While these findings are agnostic about the involvement of feedback and feedforward control, they do support the hypothesis that humans learn to make trajectories stable, consistent with achieving predictability. |
|---|---|
| AbstractList | Control and manipulation of objects with underactuated dynamics remains a challenge for robots. Due to their typically nonlinear dynamics, it is computationally taxing to implement model-based planning and control techniques. Yet humans can skillfully manipulate such objects, seemingly with ease. More insight into human control strategies may inform how to enhance control strategies in robots. This study examined human control of objects that exhibit complex - underactuated and nonlinear - dynamics. We hypothesized that humans seek to make their trajectories exponentially stable to achieve robustness in the face of external perturbations. A stable trajectory is also robust to the high levels of noise in the human neuromotor system. Motivated by the task of carrying a cup of coffee, a virtual implementation of transporting a cart-pendulum system was developed. Subjects interacted with the virtual system via a robotic manipulandum that provided a haptic and visual interface. Human subjects were instructed to transport this simplified system to a target position as fast as possible without 'spilling coffee', while accommodating different visible perturbations that could be anticipated. To test the hypothesis of exponential convergence, tools from the framework of control contraction metrics were leveraged to analyze human trajectories. Results showed that with practice the trajectories indeed became exponentially stable, selectively around the perturbation. While these findings are agnostic about the involvement of feedback and feedforward control, they do support the hypothesis that humans learn to make trajectories stable, consistent with achieving predictability.Control and manipulation of objects with underactuated dynamics remains a challenge for robots. Due to their typically nonlinear dynamics, it is computationally taxing to implement model-based planning and control techniques. Yet humans can skillfully manipulate such objects, seemingly with ease. More insight into human control strategies may inform how to enhance control strategies in robots. This study examined human control of objects that exhibit complex - underactuated and nonlinear - dynamics. We hypothesized that humans seek to make their trajectories exponentially stable to achieve robustness in the face of external perturbations. A stable trajectory is also robust to the high levels of noise in the human neuromotor system. Motivated by the task of carrying a cup of coffee, a virtual implementation of transporting a cart-pendulum system was developed. Subjects interacted with the virtual system via a robotic manipulandum that provided a haptic and visual interface. Human subjects were instructed to transport this simplified system to a target position as fast as possible without 'spilling coffee', while accommodating different visible perturbations that could be anticipated. To test the hypothesis of exponential convergence, tools from the framework of control contraction metrics were leveraged to analyze human trajectories. Results showed that with practice the trajectories indeed became exponentially stable, selectively around the perturbation. While these findings are agnostic about the involvement of feedback and feedforward control, they do support the hypothesis that humans learn to make trajectories stable, consistent with achieving predictability. Control and manipulation of objects with underactuated dynamics remains a challenge for robots. Due to their typically nonlinear dynamics, it is computationally taxing to implement model-based planning and control techniques. Yet humans can skillfully manipulate such objects, seemingly with ease. More insight into human control strategies may inform how to enhance control strategies in robots. This study examined human control of objects that exhibit complex - underactuated and nonlinear - dynamics. We hypothesized that humans seek to make their trajectories exponentially stable to achieve robustness in the face of external perturbations. A stable trajectory is also robust to the high levels of noise in the human neuromotor system. Motivated by the task of carrying a cup of coffee, a virtual implementation of transporting a cart-pendulum system was developed. Subjects interacted with the virtual system via a robotic manipulandum that provided a haptic and visual interface. Human subjects were instructed to transport this simplified system to a target position as fast as possible without `spilling coffee,' while accommodating different visible perturbations that could be anticipated. To test the hypothesis of exponential convergence, tools from the framework of control contraction metrics were leveraged to analyze human trajectories. Results showed that with practice the trajectories indeed became exponentially stable, selectively around the perturbation. While these findings are agnostic about the involvement of feedback and feedforward control, they do support the hypothesis that humans learn to make trajectories stable, consistent with achieving predictability. |
| Author | Bazzi, Salah Sternad, Dagmar |
| Author_xml | – sequence: 1 givenname: Salah orcidid: 0000-0002-8631-0426 surname: Bazzi fullname: Bazzi, Salah email: smb20@aub.edu.lb organization: Department of Electrical and Computer Engineering and the Department of Biology, Northeastern University, Boston, Massachusetts, USA – sequence: 2 givenname: Dagmar orcidid: 0000-0001-9318-2920 surname: Sternad fullname: Sternad, Dagmar email: d.sternad@northeastern.edu organization: Department of Electrical and Computer Engineering and the Department of Biology, Northeastern University, Boston, Massachusetts, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32219173$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks1rGzEQxUVJadI090KhLPTSi1197Wp1KQT3IwWHQEjPQhrLsYxWcqXdtP7vK2ddNzU9jZB-b3jzRi_RSYjBIvSa4CkhWH6Y315OKaZ4SqWgbcOeoTPKhJgw0TQnT86n6CLnNcaY1FQwWb9Ap4xSIolgZwhuoxlyH2zOlQvV1dDpUF3r4DaD172LoYrL6tM26M6B9n5bzWK38fZXdWPWFvpc3a1SHO5X5T70KfqxaniUXts-Ociv0POl9tle7Os5-v7l893sajK_-fptdjmfAOe8n9Q1A1IDM6w1sCBMcALcNAY4CDCUY8upoNhovOSmZrgllNlaLjBAaxYg2TkiY98hbPT2Z7GrNsl1Om0VwWqXmfJJq11map9Z0XwcNZvBdHYBduf-ry5qp_59CW6l7uODEli2vOGlwft9gxR_DDb3qnMZrPc62DhkRVnLKZYl-4K-O0LXcUihRFKopgxYuKZQb586Olj5s7MCNCMAKeac7FKB6x93VQw6f5i1_I_jWfGR8Die_0jejBJnrT3grZQYM8p-A1UExIk |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1162_neco_a_01576 crossref_primary_10_1371_journal_pcbi_1009597 crossref_primary_10_1109_TNSRE_2022_3226067 crossref_primary_10_1080_01691864_2020_1777198 |
| Cites_doi | 10.1109/TRO.2006.878794 10.1016/S0959-4388(99)00028-8 10.1016/S0079-6123(06)65027-9 10.1109/TAC.2017.2668380 10.1109/ICRA.2017.7989693 10.1152/jn.00704.2003 10.1016/j.als.2016.05.009 10.1137/0321028 10.1523/JNEUROSCI.19-20-j0005.1999 10.1109/ICRA.2018.8460774 10.1109/ROBOT.2006.1641933 10.1007/s10107-003-0387-5 10.1016/S0960-9822(03)00007-1 10.1016/S0167-9457(00)00028-2 10.1016/S1474-6670(17)58105-7 10.1016/j.humov.2018.12.004 10.1016/S0005-1098(98)00019-3 10.1109/TAC.2009.2017144 10.1103/PhysRevE.85.046117 10.1109/LRA.2017.2737048 10.1152/jn.2001.86.2.1047 10.1109/MRA.2015.2507098 10.1108/01439910310506783 10.1152/jn.2002.88.2.942 10.1523/JNEUROSCI.0770-19.2019 10.1007/978-3-319-60916-4_23 10.1016/0362-546X(83)90049-4 10.1152/jn.00918.2017 10.1109/CACSD.2004.1393890 10.1523/JNEUROSCI.05-07-01688.1985 10.1371/journal.pcbi.1003900 10.1063/1.5042090 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| DOI | 10.1109/LRA.2020.2972863 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 2585 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7098464 PMC7098464 32219173 10_1109_LRA_2020_2972863 8990032 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: NIH grantid: R01-HD087089 – fundername: NSF-NRI grantid: 1637854 – fundername: NSF grantid: M3X-1825942 – fundername: NICHD NIH HHS grantid: R01 HD087089 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c444t-553c15c3b38bcd13741c4b6bc4c7cb240e42720ba0f4b5308123e59d0cc8bdc93 |
| IEDL.DBID | UNPAY |
| ISSN | 2377-3766 |
| IngestDate | Sun Oct 26 04:09:59 EDT 2025 Tue Sep 30 16:38:46 EDT 2025 Thu Oct 02 07:02:48 EDT 2025 Sun Oct 05 00:24:56 EDT 2025 Thu Jan 02 22:32:57 EST 2025 Wed Oct 01 04:32:17 EDT 2025 Thu Apr 24 23:06:45 EDT 2025 Wed Aug 27 02:30:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Virtual Reality and Interfaces Dexterous Manipulation Physical Human-Robot Interaction Biologically-Inspired Robots |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publicationstandards/publications/rights/index.html for more information. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-553c15c3b38bcd13741c4b6bc4c7cb240e42720ba0f4b5308123e59d0cc8bdc93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8631-0426 0000-0001-9318-2920 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7098464 |
| PMID | 32219173 |
| PQID | 2362402096 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_LRA_2020_2972863 crossref_primary_10_1109_LRA_2020_2972863 ieee_primary_8990032 unpaywall_primary_10_1109_lra_2020_2972863 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098464 proquest_miscellaneous_2384209152 pubmed_primary_32219173 proquest_journals_2362402096 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationTitleAlternate | IEEE Robot Autom Lett |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 kandel (ref14) 2000; 4 ref17 ref16 ref19 ref18 spong (ref26) 1996; 29 schaal (ref4) 2007; 165 ref24 cover (ref15) 2012 ref23 ref25 ref20 ref21 ref28 ref27 carroll (ref22) 2004 ref29 ref8 ref7 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref33 doi: 10.1109/TRO.2006.878794 – ident: ref9 doi: 10.1016/S0959-4388(99)00028-8 – volume: 165 start-page: 425 year: 2007 ident: ref4 article-title: Dynamics systems vs. optimal controla unifying view publication-title: Prog Brain Res doi: 10.1016/S0079-6123(06)65027-9 – ident: ref20 doi: 10.1109/TAC.2017.2668380 – ident: ref21 doi: 10.1109/ICRA.2017.7989693 – ident: ref32 doi: 10.1152/jn.00704.2003 – ident: ref7 doi: 10.1016/j.als.2016.05.009 – ident: ref24 doi: 10.1137/0321028 – ident: ref11 doi: 10.1523/JNEUROSCI.19-20-j0005.1999 – ident: ref18 doi: 10.1109/ICRA.2018.8460774 – ident: ref1 doi: 10.1109/ROBOT.2006.1641933 – ident: ref25 doi: 10.1007/s10107-003-0387-5 – ident: ref12 doi: 10.1016/S0960-9822(03)00007-1 – ident: ref3 doi: 10.1016/S0167-9457(00)00028-2 – volume: 29 start-page: 2828 year: 1996 ident: ref26 article-title: Energy based control of a class of underactuated mechanical systems publication-title: IFAC Proc Vol doi: 10.1016/S1474-6670(17)58105-7 – ident: ref34 doi: 10.1016/j.humov.2018.12.004 – ident: ref17 doi: 10.1016/S0005-1098(98)00019-3 – ident: ref30 doi: 10.1109/TAC.2009.2017144 – year: 2012 ident: ref15 publication-title: Elements of Information Theory – ident: ref6 doi: 10.1103/PhysRevE.85.046117 – ident: ref5 doi: 10.1109/LRA.2017.2737048 – ident: ref10 doi: 10.1152/jn.2001.86.2.1047 – ident: ref2 doi: 10.1109/MRA.2015.2507098 – ident: ref28 doi: 10.1108/01439910310506783 – ident: ref13 doi: 10.1152/jn.2002.88.2.942 – volume: 4 year: 2000 ident: ref14 publication-title: Principles of Neural Science – ident: ref35 doi: 10.1523/JNEUROSCI.0770-19.2019 – ident: ref27 doi: 10.1007/978-3-319-60916-4_23 – ident: ref23 doi: 10.1016/0362-546X(83)90049-4 – ident: ref16 doi: 10.1152/jn.00918.2017 – ident: ref29 doi: 10.1109/CACSD.2004.1393890 – year: 2004 ident: ref22 publication-title: Spacetime and Geometry An Introduction to General Relativity – ident: ref31 doi: 10.1523/JNEUROSCI.05-07-01688.1985 – ident: ref8 doi: 10.1371/journal.pcbi.1003900 – ident: ref19 doi: 10.1063/1.5042090 |
| SSID | ssj0001527395 |
| Score | 2.1915927 |
| Snippet | Control and manipulation of objects with underactuated dynamics remains a challenge for robots. Due to their typically nonlinear dynamics, it is... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2578 |
| SubjectTerms | biologically-inspired robots Coffee Control theory dexterous manipulation Dynamical systems Feedforward control Hypotheses Measurement Nonlinear dynamical systems Nonlinear dynamics Pendulums Perturbation Perturbation methods Physical human-robot interaction Robot control Robots Robustness Task analysis Trajectory Trajectory analysis virtual reality and interfaces |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Na9VAcKm9qAerVtvUKit4Ucx7SXbzscdSLUV8CqWF3sLuZIMPQ1L6Emz7653JJrHPFvGUQCbJDjM7O9_D2Dshi1jIsvAhCwpfljrBLRWlPqShNKBCBZIKnBffkuMz-eU8Pt9gH6daGGttn3xmZ3Tbx_KLBjpylc3RNkAmRIH7IM0SV6v1x59CncRUPEYiAzX_enKA9l8UzCKVRlki1k6efpTKfVrl3eTIh119oa9_6aq6dfIcbbHFuGaXcPJz1rVmBjd_tXP8X6SesieDCsoPHM88Yxu2fs4e32pMuM3gpDHdqiUxyJc17z39fKHr5Tjtizcl_-SG2eOKrzmJlcpe8e-G_DorfurG__BDlwnvrq6Ggi9oiBesXrCzo8-nh8f-MI7BByll68exgDAGYURmoAgF6iIgTWJAQgoGNQMrKahrdFBKEwvUNSJhY1UEAJkpQImXbLNuarvLOCoeBfUfNZlCoVFqbRKrgzTRRQqRCbXH5iOpchh6ldPIjCrvbZZA5UjcnIibD8T12PvpjQvXp-MfsNtEhgluoIDH9kduyIeNvMojPODJxFaJx95Oj3ELUlxF17bpCCaTCIEc6LEdxzzTt1FekkWM_0zX2GoCoPbe60_q5Y--zXcaKFQOpcc-TAx4B7XqUq-htnc_aq_YI4JyGUf7bLO97OxrVKZa86bfRb8BuzEd3Q priority: 102 providerName: IEEE |
| Title | Robustness in Human Manipulation of Dynamically Complex Objects Through Control Contraction Metrics |
| URI | https://ieeexplore.ieee.org/document/8990032 https://www.ncbi.nlm.nih.gov/pubmed/32219173 https://www.proquest.com/docview/2362402096 https://www.proquest.com/docview/2384209152 https://pubmed.ncbi.nlm.nih.gov/PMC7098464 https://www.ncbi.nlm.nih.gov/pmc/articles/7098464 |
| UnpaywallVersion | submittedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: KQ8 dateStart: 20160101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB612wNw4FUegbIyEheQkk1i53VclVYVYgtadaVyiuxJoq5Is6tuIigHfjvjOIm6FCH1FEWePCzP4xt7HgDvuMgCLorMxtjNbFHIkETKj2yMPKEw8RIUOsF5dhqeLMSn8-B8B7w-F6YN2ke1dKry0qmWF21s5foSJ32c2CRyE7KZYhf2woDg9wj2Fqdfp9_aJnJRKzDDcaSbTMorXVzIdx0_ifw45Fvmp-2n8i9oeTtC8l5TreX1D1mWN8zP8SOY9z9uok6-O02tHPz1V03HO83sMTzswCibmqEnsJNXT-HBjRKF-4DzlWo2tVaIbFmxds-fzWS17Pt-sVXBPpq29vTb10wrmDL_yb4ovcOzYWemERA7NDHx5mqyKdhMt_PCzTNYHB-dHZ7YXWMGG4UQtR0EHL0AueKxwszjhEpQqFChwAgVYYRc6ONdJd1CqIAT6vB5HiSZixirDBP-HEbVqspfAiMIkulKpCpOSH0UUqowl24UyixCX3nSgkm_Xil2Vct184wybb0XN0k_z6epXuG0W2EL3g9PrE3Fjv_Q7msWGOjI-SQt51tw0LNE2on0JvXJ1GtnOwkteDsMkzDqExZZ5atG08SCKAgTWfDCcNDwbtKc2jemb0ZbvDUQ6ELf2yPEJW3B744xLPgwcOGtqRGjb03t1V2IX8N9fWsikg5gVF81-RsCW7Uaw-7s99G4zYscd6L2B90hKuM |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9QwLJrGw-BhfIyPwoAg8QKid22TtM3jNJgOuA5pukl7qxI3FSeqdtpdNcavx2nasmMT4qmV6rRx_RHbcWxC3jJeCMbLwoc0KHxeqhhFKkp8SEKuQYYSuD3gnB3Hs1P-5UycbZEP41kYY0yXfGYm9rbbyy8aaG2obIq-ATIhKtw7gnMu3GmtPxEVW0tMimEvMpDT-ckBeoBRMIlkEqUx21h7umYqt9mVN9Mjd9r6XF1dqqq6tvYc3SfZMGuXcvJj0q71BH79VdDxf9F6QHZ7I5QeOK55SLZM_Yjcu1aacI_ASaPb1doqQrqsaRfrp5mql0O_L9qU9KNrZ48zvqJWsVTmJ_2mbWRnRReuARA9dLnw7upOUdDMtvGC1WNyevRpcTjz-4YMPuD_XvtCMAgFMM1SDUXI0BoBrmMNHBLQaBsYbrd1tQpKrgVDayNiRsgiAEh1AZI9Idt1U5tnhKLpUdgKpDqVqDZKpXRsVJDEqkgg0qHyyHQgVQ59tXLbNKPKO68lkDkSN7fEzXvieuTdOOLcVer4B-yeJcMI11PAI_sDN-S9KK_yCJd462TL2CNvxscohHZnRdWmaS1MyhECOdAjTx3zjO9GjWl9YvxmssFWI4At8L35pF5-7wp9J4FE85B75P3IgDdQqy7UBmrPb0ftNdmZLbJ5Pv98_PUFuWtHuPyjfbK9vmjNSzSt1vpVJ1G_Ace3ISo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE48CrQQEFG4gJSdpPYefi4KlQVYgtadaVyiuxJoq5Is6tuolJ-PeM4iboUIfUURZ48LM-Mv7HH3wC85yILuSgyFxMvc0WhIjKpIHYx9oVG6UsU5oDz7CQ6XogvZ-HZDvj9WZg2aR_1clyVF-Nqed7mVq4vcNLniU1iT9KcKe7BbhQS_B7B7uLk-_RHW0Qubg1m2I705KS8NORCgTcOZBwkEd-aftp6Kv-ClrczJO831VpdX6myvDH9HD2Gef_jNuvk57ip9Rh__8XpeKeePYFHHRhlU9v0FHby6hk8vEFRuAc4X-lmUxuHyJYVa9f82UxVy77uF1sV7JMta0-_fc2MgynzX-ybNis8G3ZqCwGxQ5sTb6_2NAWbmXJeuHkOi6PPp4fHbleYwUUhRO2GIUc_RK55ojHzOaESFDrSKDBGTRghF2Z7VyuvEDrkhDoCnocy8xATnaHkL2BUrap8HxhBkMwwkepEkvsolNJRrrw4UlmMgfaVA5N-vFLsWMtN8YwybaMXT6Zf59PUjHDajbADH4Yn1pax4z-ye0YFBjkKPsnLBQ4c9CqRdia9SQOa6k2wLSMH3g3NZIxmh0VV-aoxMokgCcJEDry0GjS8mzyniY3pm_GWbg0Chuh7u4W0pCX87hTDgY-DFt7qGin6Vtde3UX4NTwwtzYj6QBG9WWTvyGwVeu3nXn9AerMKLE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+in+Human+Manipulation+of+Dynamically+Complex+Objects+through+Control+Contraction+Metrics&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Bazzi%2C+Salah&rft.au=Sternad%2C+Dagmar&rft.date=2020-04-01&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=2578&rft.epage=2585&rft_id=info:doi/10.1109%2Flra.2020.2972863&rft_id=info%3Apmid%2F32219173&rft.externalDocID=PMC7098464 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |