Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning
Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in...
Saved in:
Published in | IEEE transactions on image processing Vol. 27; no. 2; pp. 923 - 937 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1057-7149 1941-0042 1941-0042 |
DOI | 10.1109/TIP.2017.2768621 |
Cover
Abstract | Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods. |
---|---|
AbstractList | Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods. Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods.Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods. |
Author | Wang, Zhensong Shen, Dinggang Wang, Li Chen, Wufan Wei, Lifang Gao, Yaozong |
Author_xml | – sequence: 1 givenname: Zhensong orcidid: 0000-0003-0384-4666 surname: Wang fullname: Wang, Zhensong email: wangzs@uestc.edu.cn organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Lifang surname: Wei fullname: Wei, Lifang email: weilifang1981@163.com organization: College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li email: li_wang@med.unc.edu organization: Department of Radiology, Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA – sequence: 4 givenname: Yaozong surname: Gao fullname: Gao, Yaozong email: yzgao@cs.unc.edu organization: Department of Radiology, Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA – sequence: 5 givenname: Wufan surname: Chen fullname: Chen, Wufan email: chenwf@fimmu.com organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 6 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology, Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29757737$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc-LEzEcxYOsuD_0LggS8OJlapLJTCYXQYvawqLLWr2GTPLNNOs0qclU3P_elHYX3YOnhHw_7_G-eefoJMQACD2nZEYpkW9Wy6sZI1TMmGi7ltFH6IxKTitCODspd9KISlAuT9F5zjeEUN7Q9gk6ZVI0QtTiDLmFh6STWXujR_wd0gS_8TUMCXL2MVTvdQaLv8KwgTDpqTzh6PACtMU6WPwZzA88X-HlRg-QsYsJX2vr47QurttbfDXqEHwYnqLHTo8Znh3PC_Tt44fVfFFdfvm0nL-7rAznfKoaQohm1jlhe9sK6jhjXdOX0D3XUBNqu85ZVsvG1EZw0jvWGg6c1z21uu3qC_T24Lvd9RuwpoROelTb5Dc63aqovfp3EvxaDfGXamTDu3pv8PpokOLPHeRJbXw2MJY9IO6yYqSWTBIq24K-eoDexF0KZT1FpSCCFkoU6uXfie6j3FVQgPYAmBRzTuCU8YefLgH9qChR-65V6Vrtu1bHrouQPBDeef9H8uIg8QBwj3dEUiZZ_QdBoLQX |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1007_s11684_020_0761_1 crossref_primary_10_1007_s11063_021_10531_9 crossref_primary_10_1109_TMI_2020_2975853 crossref_primary_10_1109_JBHI_2021_3087494 crossref_primary_10_1002_mp_15287 crossref_primary_10_1016_j_patcog_2018_07_020 crossref_primary_10_1088_1361_6560_ab79c3 crossref_primary_10_1002_mp_13300 crossref_primary_10_1002_mp_14378 crossref_primary_10_1002_mp_15765 crossref_primary_10_1016_j_neucom_2021_01_135 crossref_primary_10_1002_mp_13147 crossref_primary_10_1002_acm2_13579 crossref_primary_10_1109_TIP_2021_3052359 crossref_primary_10_3390_app12031358 crossref_primary_10_3390_jpm11060560 crossref_primary_10_3390_cancers13040702 crossref_primary_10_1016_j_media_2019_03_003 crossref_primary_10_1016_j_ejmp_2018_06_012 crossref_primary_10_1016_j_media_2020_101831 crossref_primary_10_3390_jpm11050364 crossref_primary_10_1109_TRS_2024_3476411 crossref_primary_10_1002_mp_14320 crossref_primary_10_1016_j_eswa_2020_114446 crossref_primary_10_1002_mp_16247 crossref_primary_10_1002_mp_13553 crossref_primary_10_1016_j_compbiomed_2023_106628 crossref_primary_10_1038_s42256_019_0099_z crossref_primary_10_1016_j_displa_2023_102600 crossref_primary_10_3390_jpm11070629 crossref_primary_10_1109_TMI_2021_3128408 crossref_primary_10_1109_ACCESS_2020_3028038 crossref_primary_10_1109_ACCESS_2021_3131768 crossref_primary_10_3390_jpm11060492 crossref_primary_10_1109_ACCESS_2019_2944958 crossref_primary_10_1016_j_media_2019_01_008 crossref_primary_10_1007_s11042_021_10515_w crossref_primary_10_1016_j_neucom_2019_11_118 |
Cites_doi | 10.1109/ICCV.2015.203 10.1007/s11263-012-0549-0 10.1016/j.media.2010.06.004 10.1016/j.neuroimage.2013.02.069 10.1088/0031-9155/57/5/1283 10.1109/TBME.2015.2503421 10.1006/cviu.1995.1004 10.1007/978-3-642-40763-5_20 10.1561/0600000035 10.1016/j.oraloncology.2012.06.019 10.1007/978-3-540-85990-1_52 10.1007/978-3-642-33418-4_57 10.1016/j.neuroimage.2011.03.050 10.54294/n4k16a 10.1016/j.ijrobp.2008.06.1285 10.1111/j.1467-8659.2011.01884.x 10.1109/CVPR.2009.5206740 10.1007/978-3-540-73273-0_28 10.1088/0031-9155/60/24/9377 10.1109/TMI.2016.2519264 10.1109/CVPR.2015.7298965 10.1109/TIP.2014.2300751 10.1109/TMI.2016.2535302 10.1016/j.ijrobp.2010.10.019 10.1109/TMI.2013.2258030 10.54294/e86siq 10.1109/ISBI.2014.6867861 10.54294/kmcunc 10.1023/B:VISI.0000013087.49260.fb 10.1007/978-3-642-33454-2_54 10.1118/1.4802215 10.1016/j.patcog.2016.03.002 10.1007/978-3-642-33786-4_21 10.1016/j.neuroimage.2010.09.018 10.1186/1748-717X-7-32 10.1109/ICARCV.2014.7064414 10.1118/1.4871623 10.1118/1.3515459 10.1016/S0360-3016(01)01751-5 10.1200/JCO.2013.53.5633 10.1007/978-3-642-18421-5_11 10.1016/j.radonc.2009.08.013 10.1109/TMI.2015.2461533 10.1118/1.2794174 10.1007/978-3-642-40763-5_31 10.1016/j.neuroimage.2014.12.042 10.1007/978-3-319-24574-4_14 10.1109/TIP.2014.2305073 10.1109/TPAMI.2007.70841 10.1109/CVPR.2001.990517 10.1109/TMI.2013.2282124 10.2307/1932409 10.1016/j.radonc.2009.09.008 10.1118/1.4810971 10.1109/TIP.2015.2481326 10.1109/TIP.2013.2287604 10.1016/j.media.2015.06.007 10.1118/1.3464799 10.1109/TIP.2012.2186306 10.54294/hk5bjs 10.1109/TIP.2013.2282049 10.1007/s11548-015-1319-6 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1109/TIP.2017.2768621 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 937 |
ExternalDocumentID | PMC5954838 29757737 10_1109_TIP_2017_2768621 8091292 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: NIH grantid: CA206100 – fundername: Natural Science Foundation of Fujian Province grantid: 2017J01736 funderid: 10.13039/501100003392 – fundername: National Basic Research Program of China (973 Program) grantid: 2010CB732501 – fundername: National Natural Science Foundation of China grantid: 61701117 funderid: 10.13039/501100001809 – fundername: NCI NIH HHS grantid: R01 CA206100 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c444t-5000a2dff7dbd671f42285b516b4ae301d88fd2395c3c740bf26c4e443b1da683 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Thu Aug 21 13:30:08 EDT 2025 Sun Sep 28 09:20:11 EDT 2025 Mon Jun 30 10:20:09 EDT 2025 Mon Jul 21 05:37:01 EDT 2025 Tue Jul 01 02:03:16 EDT 2025 Thu Apr 24 22:54:41 EDT 2025 Wed Aug 27 02:30:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-5000a2dff7dbd671f42285b516b4ae301d88fd2395c3c740bf26c4e443b1da683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0384-4666 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5954838 |
PMID | 29757737 |
PQID | 1970710197 |
PQPubID | 85429 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5954838 crossref_citationtrail_10_1109_TIP_2017_2768621 proquest_journals_1970710197 proquest_miscellaneous_2039290196 pubmed_primary_29757737 crossref_primary_10_1109_TIP_2017_2768621 ieee_primary_8091292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref14 ref53 chen (ref15) 2014 ref52 ref55 ref11 ref54 ref10 arteaga (ref66) 2016 ref17 ref16 ref19 ref18 ronneberger (ref12) 2015 mannion-haworth (ref63) 2016 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 albrecht (ref64) 2015 ref3 ref6 chen (ref67) 2016 ref5 ref40 criminisi (ref43) 2012; 7 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 goodfellow (ref13) 2014 ref24 ref26 uzunba? (ref23) 2012 ref25 ref20 ref22 ref21 ref28 ref27 ref29 aghdasi (ref65) 2016 xie (ref68) 2015 ref60 ref62 ref61 |
References_xml | – ident: ref14 doi: 10.1109/ICCV.2015.203 – ident: ref47 doi: 10.1007/s11263-012-0549-0 – ident: ref31 doi: 10.1016/j.media.2010.06.004 – start-page: 234 year: 2015 ident: ref12 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – ident: ref62 doi: 10.1016/j.neuroimage.2013.02.069 – ident: ref33 doi: 10.1088/0031-9155/57/5/1283 – ident: ref59 doi: 10.1109/TBME.2015.2503421 – ident: ref35 doi: 10.1006/cviu.1995.1004 – ident: ref21 doi: 10.1007/978-3-642-40763-5_20 – volume: 7 start-page: 81 year: 2012 ident: ref43 article-title: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning publication-title: Found Trends Comput Graph Vis doi: 10.1561/0600000035 – ident: ref1 doi: 10.1016/j.oraloncology.2012.06.019 – ident: ref6 doi: 10.1007/978-3-540-85990-1_52 – ident: ref32 doi: 10.1007/978-3-642-33418-4_57 – ident: ref38 doi: 10.1016/j.neuroimage.2011.03.050 – start-page: 254 year: 2012 ident: ref23 article-title: Segmentation of myocardium using deformable regions and graph cuts publication-title: Proc IEEE Int Symp Biomed Imag – year: 2016 ident: ref65 article-title: Automatic mandible segmentation on CT images using prior anatomical knowledge publication-title: Midas J doi: 10.54294/n4k16a – ident: ref7 doi: 10.1016/j.ijrobp.2008.06.1285 – ident: ref40 doi: 10.1111/j.1467-8659.2011.01884.x – ident: ref48 doi: 10.1109/CVPR.2009.5206740 – ident: ref42 doi: 10.1007/978-3-540-73273-0_28 – ident: ref58 doi: 10.1088/0031-9155/60/24/9377 – ident: ref53 doi: 10.1109/TMI.2016.2519264 – ident: ref11 doi: 10.1109/CVPR.2015.7298965 – ident: ref26 doi: 10.1109/TIP.2014.2300751 – ident: ref17 doi: 10.1109/TMI.2016.2535302 – ident: ref4 doi: 10.1016/j.ijrobp.2010.10.019 – ident: ref45 doi: 10.1109/TMI.2013.2258030 – year: 2016 ident: ref66 article-title: Head and neck auto segmentation challenge based on non-local generative models publication-title: Midas J – year: 2016 ident: ref63 article-title: Fully automatic segmentation of head and neck organs using active appearance models publication-title: Midas J doi: 10.54294/e86siq – ident: ref19 doi: 10.1109/ISBI.2014.6867861 – year: 2015 ident: ref64 article-title: Multi atlas segmentation with active shape model refinement for multi-organ segmentation in head and neck cancer radiotherapy planning publication-title: Midas J doi: 10.54294/kmcunc – ident: ref52 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref22 doi: 10.1007/978-3-642-33454-2_54 – ident: ref20 doi: 10.1118/1.4802215 – ident: ref34 doi: 10.1016/j.patcog.2016.03.002 – ident: ref46 doi: 10.1007/978-3-642-33786-4_21 – ident: ref61 doi: 10.1016/j.neuroimage.2010.09.018 – start-page: 1275 year: 2015 ident: ref68 article-title: Deepshape: Deep learned shape descriptor for 3D shape matching and retrieval publication-title: Proc CVPR – start-page: 2672 year: 2014 ident: ref13 article-title: Generative adversarial nets publication-title: Proc NIPS – ident: ref2 doi: 10.1186/1748-717X-7-32 – ident: ref16 doi: 10.1109/ICARCV.2014.7064414 – ident: ref29 doi: 10.1118/1.4871623 – ident: ref9 doi: 10.1118/1.3515459 – ident: ref3 doi: 10.1016/S0360-3016(01)01751-5 – ident: ref54 doi: 10.1200/JCO.2013.53.5633 – ident: ref44 doi: 10.1007/978-3-642-18421-5_11 – ident: ref8 doi: 10.1016/j.radonc.2009.08.013 – ident: ref60 doi: 10.1109/TMI.2015.2461533 – ident: ref5 doi: 10.1118/1.2794174 – ident: ref18 doi: 10.1007/978-3-642-40763-5_31 – ident: ref57 doi: 10.1016/j.neuroimage.2014.12.042 – ident: ref37 doi: 10.1007/978-3-319-24574-4_14 – ident: ref49 doi: 10.1109/TIP.2014.2305073 – ident: ref39 doi: 10.1109/TPAMI.2007.70841 – year: 2014 ident: ref15 publication-title: Semantic image segmentation with deep convolutional nets and fully connected crfs – ident: ref51 doi: 10.1109/CVPR.2001.990517 – ident: ref50 doi: 10.1109/TMI.2013.2282124 – ident: ref56 doi: 10.2307/1932409 – ident: ref55 doi: 10.1016/j.radonc.2009.09.008 – ident: ref10 doi: 10.1118/1.4810971 – ident: ref25 doi: 10.1109/TIP.2015.2481326 – ident: ref27 doi: 10.1109/TIP.2013.2287604 – ident: ref36 doi: 10.1016/j.media.2015.06.007 – ident: ref30 doi: 10.1118/1.3464799 – ident: ref24 doi: 10.1109/TIP.2012.2186306 – year: 2016 ident: ref67 article-title: A multi-atlas approach for the automatic segmentation of multiple structures in head and neck CT images publication-title: Midas J doi: 10.54294/hk5bjs – ident: ref28 doi: 10.1109/TIP.2013.2282049 – ident: ref41 doi: 10.1007/s11548-015-1319-6 |
SSID | ssj0014516 |
Score | 2.5127327 |
Snippet | Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy.... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 923 |
SubjectTerms | Algorithms Biomedical imaging Computed tomography Deformable models Head - diagnostic imaging head and neck cancer Head and Neck Neoplasms - diagnostic imaging Head and Neck Neoplasms - radiotherapy Humans Image contrast Image Interpretation, Computer-Assisted - methods Image segmentation Machine Learning Neck - diagnostic imaging Organs Radiation therapy radiotherapy planning Radiotherapy Planning, Computer-Assisted - methods random forest Shape Testing Training vertex regression |
Title | Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning |
URI | https://ieeexplore.ieee.org/document/8091292 https://www.ncbi.nlm.nih.gov/pubmed/29757737 https://www.proquest.com/docview/1970710197 https://www.proquest.com/docview/2039290196 https://pubmed.ncbi.nlm.nih.gov/PMC5954838 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB6sT_pQW3811pYt9KVg7i7JJpt9VKmcglLkFN9C9pc91Jx4OWj713cm2YRTpPQpgWxCwszOftmZ-T6Arzwi8VilQy6cDLlWOW00mdAJgXAkNTKLqFH4_CIbX_Gzm_RmBQ76XhhrbVN8Zgd02uTyzUwvaKtsmOPiFksMuG_QzdperT5jQIKzTWYzFaFA2N-lJEdyODn9QTVcYhAL6ocgcRjqJxWCxM-XVqNGXuU1pPmyYHJpBTrZgPPu3dvCk7vBolYD_ecFreP_ftw7eOuhKDtsfec9rNhqEzY8LGV-0s83YX2Js3AL3HhKPcuNhMo9u7ZPtf3FLu1tW09bhUe4LOLd9vbBdzVVbObYGF2JlZVhF1bfseMJO33AQDZnCJnZZWmmvg_sN-tElLbh6uT75HgcerGGUHPO65CEFcrYOCeMMpmIHHGLpQqtonhpMYyYPHcmTmSqEy34SLk409xynqjIlFme7MBqNavsB2AYRDMdRwrDDeciMfhLJY1MTJlGLlHGBjDsjFZoz2ROghr3RfNHM5IFWrwgixfe4gF86-94bFk8_jF2i4zTj_N2CWC_84vCT_N5EUlBEA0PAXzpL-MEpaxLWdnZYo7PJghKNEQB7LZu1D-7c8MAxDMH6wcQ-ffzK9X0Z0MCnhJTX5Lvvf62H2ENvylvy8v3YbV-WthPiJ5q9bmZNn8BRsoUJw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb5RAEJ409UF9sLXVilZdE19M5O6AhYVH29hw2ruY5mr6Rthf9dKWMz0uaf3rnYGFXJvG-AQJC4HM7Oy3zMz3AXzkAYnHSuVzYTOfK5nSjybtWyEQjsQ6SwJqFJ5Mk_yUfzuLzzbgc98LY4xpis_MgE6bXL5eqBX9KhumuLiFGQbcRzHuKtK2W6vPGZDkbJPbjIUvEPh3SclRNpyNf1AVlxiEgjoiSB6GOkqFIPnztfWoEVh5CGveL5lcW4OOtmDSvX1benIxWNVyoP7cI3b838_bhmcOjLIvrfc8hw1T7cCWA6bMTfvlDjxdYy3cBZvPqWu5EVG5ZD_NdW1u2Ik5bytqK_8AF0a825xfub6mii0sy9GZWFlpNjXqgh3O2PgKQ9mSIWhmJ6Weu06wW9bJKL2A06Ovs8Pcd3INvuKc1z5JK5ShtlZoqRMRWGIXiyVaRfLSYCDRaWp1GGWxipTgI2nDRHHDeSQDXSZp9BI2q0VlXgHDMJqoMJAYcDgXkcZNVaazSJdxYCOpjQfDzmiFclzmJKlxWTR7mlFWoMULsnjhLO7Bp_6O3y2Pxz_G7pJx-nHOLh7sd35RuIm-LIJMEEjDgwcf-ss4RSnvUlZmsVriswmEEhGRB3utG_XP7tzQA3HHwfoBRP9990o1_9XQgMfE1Relrx9-2_fwOJ9Njovj8fT7G3iC35e2xeb7sFlfr8xbxFK1fNdMob_rgBd6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Vertex+Regression-Based+Segmentation+of+Head+and+Neck+CT+Images+for+Radiotherapy+Planning&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Zhensong&rft.au=Wei%2C+Lifang&rft.au=Wang%2C+Li&rft.au=Gao%2C+Yaozong&rft.date=2018-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=2&rft.spage=923&rft_id=info:doi/10.1109%2FTIP.2017.2768621&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |