Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning

Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 27; no. 2; pp. 923 - 937
Main Authors Wang, Zhensong, Wei, Lifang, Wang, Li, Gao, Yaozong, Chen, Wufan, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2017.2768621

Cover

Abstract Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods.
AbstractList Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods.
Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods.Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods.
Author Wang, Zhensong
Shen, Dinggang
Wang, Li
Chen, Wufan
Wei, Lifang
Gao, Yaozong
Author_xml – sequence: 1
  givenname: Zhensong
  orcidid: 0000-0003-0384-4666
  surname: Wang
  fullname: Wang, Zhensong
  email: wangzs@uestc.edu.cn
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Lifang
  surname: Wei
  fullname: Wei, Lifang
  email: weilifang1981@163.com
  organization: College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  email: li_wang@med.unc.edu
  organization: Department of Radiology, Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
– sequence: 4
  givenname: Yaozong
  surname: Gao
  fullname: Gao, Yaozong
  email: yzgao@cs.unc.edu
  organization: Department of Radiology, Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
– sequence: 5
  givenname: Wufan
  surname: Chen
  fullname: Chen, Wufan
  email: chenwf@fimmu.com
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 6
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology, Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29757737$$D View this record in MEDLINE/PubMed
BookMark eNp9kc-LEzEcxYOsuD_0LggS8OJlapLJTCYXQYvawqLLWr2GTPLNNOs0qclU3P_elHYX3YOnhHw_7_G-eefoJMQACD2nZEYpkW9Wy6sZI1TMmGi7ltFH6IxKTitCODspd9KISlAuT9F5zjeEUN7Q9gk6ZVI0QtTiDLmFh6STWXujR_wd0gS_8TUMCXL2MVTvdQaLv8KwgTDpqTzh6PACtMU6WPwZzA88X-HlRg-QsYsJX2vr47QurttbfDXqEHwYnqLHTo8Znh3PC_Tt44fVfFFdfvm0nL-7rAznfKoaQohm1jlhe9sK6jhjXdOX0D3XUBNqu85ZVsvG1EZw0jvWGg6c1z21uu3qC_T24Lvd9RuwpoROelTb5Dc63aqovfp3EvxaDfGXamTDu3pv8PpokOLPHeRJbXw2MJY9IO6yYqSWTBIq24K-eoDexF0KZT1FpSCCFkoU6uXfie6j3FVQgPYAmBRzTuCU8YefLgH9qChR-65V6Vrtu1bHrouQPBDeef9H8uIg8QBwj3dEUiZZ_QdBoLQX
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s11684_020_0761_1
crossref_primary_10_1007_s11063_021_10531_9
crossref_primary_10_1109_TMI_2020_2975853
crossref_primary_10_1109_JBHI_2021_3087494
crossref_primary_10_1002_mp_15287
crossref_primary_10_1016_j_patcog_2018_07_020
crossref_primary_10_1088_1361_6560_ab79c3
crossref_primary_10_1002_mp_13300
crossref_primary_10_1002_mp_14378
crossref_primary_10_1002_mp_15765
crossref_primary_10_1016_j_neucom_2021_01_135
crossref_primary_10_1002_mp_13147
crossref_primary_10_1002_acm2_13579
crossref_primary_10_1109_TIP_2021_3052359
crossref_primary_10_3390_app12031358
crossref_primary_10_3390_jpm11060560
crossref_primary_10_3390_cancers13040702
crossref_primary_10_1016_j_media_2019_03_003
crossref_primary_10_1016_j_ejmp_2018_06_012
crossref_primary_10_1016_j_media_2020_101831
crossref_primary_10_3390_jpm11050364
crossref_primary_10_1109_TRS_2024_3476411
crossref_primary_10_1002_mp_14320
crossref_primary_10_1016_j_eswa_2020_114446
crossref_primary_10_1002_mp_16247
crossref_primary_10_1002_mp_13553
crossref_primary_10_1016_j_compbiomed_2023_106628
crossref_primary_10_1038_s42256_019_0099_z
crossref_primary_10_1016_j_displa_2023_102600
crossref_primary_10_3390_jpm11070629
crossref_primary_10_1109_TMI_2021_3128408
crossref_primary_10_1109_ACCESS_2020_3028038
crossref_primary_10_1109_ACCESS_2021_3131768
crossref_primary_10_3390_jpm11060492
crossref_primary_10_1109_ACCESS_2019_2944958
crossref_primary_10_1016_j_media_2019_01_008
crossref_primary_10_1007_s11042_021_10515_w
crossref_primary_10_1016_j_neucom_2019_11_118
Cites_doi 10.1109/ICCV.2015.203
10.1007/s11263-012-0549-0
10.1016/j.media.2010.06.004
10.1016/j.neuroimage.2013.02.069
10.1088/0031-9155/57/5/1283
10.1109/TBME.2015.2503421
10.1006/cviu.1995.1004
10.1007/978-3-642-40763-5_20
10.1561/0600000035
10.1016/j.oraloncology.2012.06.019
10.1007/978-3-540-85990-1_52
10.1007/978-3-642-33418-4_57
10.1016/j.neuroimage.2011.03.050
10.54294/n4k16a
10.1016/j.ijrobp.2008.06.1285
10.1111/j.1467-8659.2011.01884.x
10.1109/CVPR.2009.5206740
10.1007/978-3-540-73273-0_28
10.1088/0031-9155/60/24/9377
10.1109/TMI.2016.2519264
10.1109/CVPR.2015.7298965
10.1109/TIP.2014.2300751
10.1109/TMI.2016.2535302
10.1016/j.ijrobp.2010.10.019
10.1109/TMI.2013.2258030
10.54294/e86siq
10.1109/ISBI.2014.6867861
10.54294/kmcunc
10.1023/B:VISI.0000013087.49260.fb
10.1007/978-3-642-33454-2_54
10.1118/1.4802215
10.1016/j.patcog.2016.03.002
10.1007/978-3-642-33786-4_21
10.1016/j.neuroimage.2010.09.018
10.1186/1748-717X-7-32
10.1109/ICARCV.2014.7064414
10.1118/1.4871623
10.1118/1.3515459
10.1016/S0360-3016(01)01751-5
10.1200/JCO.2013.53.5633
10.1007/978-3-642-18421-5_11
10.1016/j.radonc.2009.08.013
10.1109/TMI.2015.2461533
10.1118/1.2794174
10.1007/978-3-642-40763-5_31
10.1016/j.neuroimage.2014.12.042
10.1007/978-3-319-24574-4_14
10.1109/TIP.2014.2305073
10.1109/TPAMI.2007.70841
10.1109/CVPR.2001.990517
10.1109/TMI.2013.2282124
10.2307/1932409
10.1016/j.radonc.2009.09.008
10.1118/1.4810971
10.1109/TIP.2015.2481326
10.1109/TIP.2013.2287604
10.1016/j.media.2015.06.007
10.1118/1.3464799
10.1109/TIP.2012.2186306
10.54294/hk5bjs
10.1109/TIP.2013.2282049
10.1007/s11548-015-1319-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TIP.2017.2768621
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 937
ExternalDocumentID PMC5954838
29757737
10_1109_TIP_2017_2768621
8091292
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: NIH
  grantid: CA206100
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2017J01736
  funderid: 10.13039/501100003392
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2010CB732501
– fundername: National Natural Science Foundation of China
  grantid: 61701117
  funderid: 10.13039/501100001809
– fundername: NCI NIH HHS
  grantid: R01 CA206100
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c444t-5000a2dff7dbd671f42285b516b4ae301d88fd2395c3c740bf26c4e443b1da683
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Aug 21 13:30:08 EDT 2025
Sun Sep 28 09:20:11 EDT 2025
Mon Jun 30 10:20:09 EDT 2025
Mon Jul 21 05:37:01 EDT 2025
Tue Jul 01 02:03:16 EDT 2025
Thu Apr 24 22:54:41 EDT 2025
Wed Aug 27 02:30:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-5000a2dff7dbd671f42285b516b4ae301d88fd2395c3c740bf26c4e443b1da683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0384-4666
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5954838
PMID 29757737
PQID 1970710197
PQPubID 85429
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5954838
crossref_citationtrail_10_1109_TIP_2017_2768621
proquest_journals_1970710197
proquest_miscellaneous_2039290196
pubmed_primary_29757737
crossref_primary_10_1109_TIP_2017_2768621
ieee_primary_8091292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref14
ref53
chen (ref15) 2014
ref52
ref55
ref11
ref54
ref10
arteaga (ref66) 2016
ref17
ref16
ref19
ref18
ronneberger (ref12) 2015
mannion-haworth (ref63) 2016
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
albrecht (ref64) 2015
ref3
ref6
chen (ref67) 2016
ref5
ref40
criminisi (ref43) 2012; 7
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
goodfellow (ref13) 2014
ref24
ref26
uzunba? (ref23) 2012
ref25
ref20
ref22
ref21
ref28
ref27
ref29
aghdasi (ref65) 2016
xie (ref68) 2015
ref60
ref62
ref61
References_xml – ident: ref14
  doi: 10.1109/ICCV.2015.203
– ident: ref47
  doi: 10.1007/s11263-012-0549-0
– ident: ref31
  doi: 10.1016/j.media.2010.06.004
– start-page: 234
  year: 2015
  ident: ref12
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– ident: ref62
  doi: 10.1016/j.neuroimage.2013.02.069
– ident: ref33
  doi: 10.1088/0031-9155/57/5/1283
– ident: ref59
  doi: 10.1109/TBME.2015.2503421
– ident: ref35
  doi: 10.1006/cviu.1995.1004
– ident: ref21
  doi: 10.1007/978-3-642-40763-5_20
– volume: 7
  start-page: 81
  year: 2012
  ident: ref43
  article-title: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
  publication-title: Found Trends Comput Graph Vis
  doi: 10.1561/0600000035
– ident: ref1
  doi: 10.1016/j.oraloncology.2012.06.019
– ident: ref6
  doi: 10.1007/978-3-540-85990-1_52
– ident: ref32
  doi: 10.1007/978-3-642-33418-4_57
– ident: ref38
  doi: 10.1016/j.neuroimage.2011.03.050
– start-page: 254
  year: 2012
  ident: ref23
  article-title: Segmentation of myocardium using deformable regions and graph cuts
  publication-title: Proc IEEE Int Symp Biomed Imag
– year: 2016
  ident: ref65
  article-title: Automatic mandible segmentation on CT images using prior anatomical knowledge
  publication-title: Midas J
  doi: 10.54294/n4k16a
– ident: ref7
  doi: 10.1016/j.ijrobp.2008.06.1285
– ident: ref40
  doi: 10.1111/j.1467-8659.2011.01884.x
– ident: ref48
  doi: 10.1109/CVPR.2009.5206740
– ident: ref42
  doi: 10.1007/978-3-540-73273-0_28
– ident: ref58
  doi: 10.1088/0031-9155/60/24/9377
– ident: ref53
  doi: 10.1109/TMI.2016.2519264
– ident: ref11
  doi: 10.1109/CVPR.2015.7298965
– ident: ref26
  doi: 10.1109/TIP.2014.2300751
– ident: ref17
  doi: 10.1109/TMI.2016.2535302
– ident: ref4
  doi: 10.1016/j.ijrobp.2010.10.019
– ident: ref45
  doi: 10.1109/TMI.2013.2258030
– year: 2016
  ident: ref66
  article-title: Head and neck auto segmentation challenge based on non-local generative models
  publication-title: Midas J
– year: 2016
  ident: ref63
  article-title: Fully automatic segmentation of head and neck organs using active appearance models
  publication-title: Midas J
  doi: 10.54294/e86siq
– ident: ref19
  doi: 10.1109/ISBI.2014.6867861
– year: 2015
  ident: ref64
  article-title: Multi atlas segmentation with active shape model refinement for multi-organ segmentation in head and neck cancer radiotherapy planning
  publication-title: Midas J
  doi: 10.54294/kmcunc
– ident: ref52
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref22
  doi: 10.1007/978-3-642-33454-2_54
– ident: ref20
  doi: 10.1118/1.4802215
– ident: ref34
  doi: 10.1016/j.patcog.2016.03.002
– ident: ref46
  doi: 10.1007/978-3-642-33786-4_21
– ident: ref61
  doi: 10.1016/j.neuroimage.2010.09.018
– start-page: 1275
  year: 2015
  ident: ref68
  article-title: Deepshape: Deep learned shape descriptor for 3D shape matching and retrieval
  publication-title: Proc CVPR
– start-page: 2672
  year: 2014
  ident: ref13
  article-title: Generative adversarial nets
  publication-title: Proc NIPS
– ident: ref2
  doi: 10.1186/1748-717X-7-32
– ident: ref16
  doi: 10.1109/ICARCV.2014.7064414
– ident: ref29
  doi: 10.1118/1.4871623
– ident: ref9
  doi: 10.1118/1.3515459
– ident: ref3
  doi: 10.1016/S0360-3016(01)01751-5
– ident: ref54
  doi: 10.1200/JCO.2013.53.5633
– ident: ref44
  doi: 10.1007/978-3-642-18421-5_11
– ident: ref8
  doi: 10.1016/j.radonc.2009.08.013
– ident: ref60
  doi: 10.1109/TMI.2015.2461533
– ident: ref5
  doi: 10.1118/1.2794174
– ident: ref18
  doi: 10.1007/978-3-642-40763-5_31
– ident: ref57
  doi: 10.1016/j.neuroimage.2014.12.042
– ident: ref37
  doi: 10.1007/978-3-319-24574-4_14
– ident: ref49
  doi: 10.1109/TIP.2014.2305073
– ident: ref39
  doi: 10.1109/TPAMI.2007.70841
– year: 2014
  ident: ref15
  publication-title: Semantic image segmentation with deep convolutional nets and fully connected crfs
– ident: ref51
  doi: 10.1109/CVPR.2001.990517
– ident: ref50
  doi: 10.1109/TMI.2013.2282124
– ident: ref56
  doi: 10.2307/1932409
– ident: ref55
  doi: 10.1016/j.radonc.2009.09.008
– ident: ref10
  doi: 10.1118/1.4810971
– ident: ref25
  doi: 10.1109/TIP.2015.2481326
– ident: ref27
  doi: 10.1109/TIP.2013.2287604
– ident: ref36
  doi: 10.1016/j.media.2015.06.007
– ident: ref30
  doi: 10.1118/1.3464799
– ident: ref24
  doi: 10.1109/TIP.2012.2186306
– year: 2016
  ident: ref67
  article-title: A multi-atlas approach for the automatic segmentation of multiple structures in head and neck CT images
  publication-title: Midas J
  doi: 10.54294/hk5bjs
– ident: ref28
  doi: 10.1109/TIP.2013.2282049
– ident: ref41
  doi: 10.1007/s11548-015-1319-6
SSID ssj0014516
Score 2.5127327
Snippet Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy....
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 923
SubjectTerms Algorithms
Biomedical imaging
Computed tomography
Deformable models
Head - diagnostic imaging
head and neck cancer
Head and Neck Neoplasms - diagnostic imaging
Head and Neck Neoplasms - radiotherapy
Humans
Image contrast
Image Interpretation, Computer-Assisted - methods
Image segmentation
Machine Learning
Neck - diagnostic imaging
Organs
Radiation therapy
radiotherapy planning
Radiotherapy Planning, Computer-Assisted - methods
random forest
Shape
Testing
Training
vertex regression
Title Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning
URI https://ieeexplore.ieee.org/document/8091292
https://www.ncbi.nlm.nih.gov/pubmed/29757737
https://www.proquest.com/docview/1970710197
https://www.proquest.com/docview/2039290196
https://pubmed.ncbi.nlm.nih.gov/PMC5954838
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB6sT_pQW3811pYt9KVg7i7JJpt9VKmcglLkFN9C9pc91Jx4OWj713cm2YRTpPQpgWxCwszOftmZ-T6Arzwi8VilQy6cDLlWOW00mdAJgXAkNTKLqFH4_CIbX_Gzm_RmBQ76XhhrbVN8Zgd02uTyzUwvaKtsmOPiFksMuG_QzdperT5jQIKzTWYzFaFA2N-lJEdyODn9QTVcYhAL6ocgcRjqJxWCxM-XVqNGXuU1pPmyYHJpBTrZgPPu3dvCk7vBolYD_ecFreP_ftw7eOuhKDtsfec9rNhqEzY8LGV-0s83YX2Js3AL3HhKPcuNhMo9u7ZPtf3FLu1tW09bhUe4LOLd9vbBdzVVbObYGF2JlZVhF1bfseMJO33AQDZnCJnZZWmmvg_sN-tElLbh6uT75HgcerGGUHPO65CEFcrYOCeMMpmIHHGLpQqtonhpMYyYPHcmTmSqEy34SLk409xynqjIlFme7MBqNavsB2AYRDMdRwrDDeciMfhLJY1MTJlGLlHGBjDsjFZoz2ROghr3RfNHM5IFWrwgixfe4gF86-94bFk8_jF2i4zTj_N2CWC_84vCT_N5EUlBEA0PAXzpL-MEpaxLWdnZYo7PJghKNEQB7LZu1D-7c8MAxDMH6wcQ-ffzK9X0Z0MCnhJTX5Lvvf62H2ENvylvy8v3YbV-WthPiJ5q9bmZNn8BRsoUJw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb5RAEJ409UF9sLXVilZdE19M5O6AhYVH29hw2ruY5mr6Rthf9dKWMz0uaf3rnYGFXJvG-AQJC4HM7Oy3zMz3AXzkAYnHSuVzYTOfK5nSjybtWyEQjsQ6SwJqFJ5Mk_yUfzuLzzbgc98LY4xpis_MgE6bXL5eqBX9KhumuLiFGQbcRzHuKtK2W6vPGZDkbJPbjIUvEPh3SclRNpyNf1AVlxiEgjoiSB6GOkqFIPnztfWoEVh5CGveL5lcW4OOtmDSvX1benIxWNVyoP7cI3b838_bhmcOjLIvrfc8hw1T7cCWA6bMTfvlDjxdYy3cBZvPqWu5EVG5ZD_NdW1u2Ik5bytqK_8AF0a825xfub6mii0sy9GZWFlpNjXqgh3O2PgKQ9mSIWhmJ6Weu06wW9bJKL2A06Ovs8Pcd3INvuKc1z5JK5ShtlZoqRMRWGIXiyVaRfLSYCDRaWp1GGWxipTgI2nDRHHDeSQDXSZp9BI2q0VlXgHDMJqoMJAYcDgXkcZNVaazSJdxYCOpjQfDzmiFclzmJKlxWTR7mlFWoMULsnjhLO7Bp_6O3y2Pxz_G7pJx-nHOLh7sd35RuIm-LIJMEEjDgwcf-ss4RSnvUlZmsVriswmEEhGRB3utG_XP7tzQA3HHwfoBRP9990o1_9XQgMfE1Relrx9-2_fwOJ9Njovj8fT7G3iC35e2xeb7sFlfr8xbxFK1fNdMob_rgBd6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Vertex+Regression-Based+Segmentation+of+Head+and+Neck+CT+Images+for+Radiotherapy+Planning&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Zhensong&rft.au=Wei%2C+Lifang&rft.au=Wang%2C+Li&rft.au=Gao%2C+Yaozong&rft.date=2018-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=2&rft.spage=923&rft_id=info:doi/10.1109%2FTIP.2017.2768621&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon