Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks
Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations, which are challengi...
        Saved in:
      
    
          | Published in | IEEE transactions on medical imaging Vol. 37; no. 8; pp. 1822 - 1834 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.08.2018
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0278-0062 1558-254X 1558-254X  | 
| DOI | 10.1109/TMI.2018.2806309 | 
Cover
| Abstract | Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations, which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deep-learning-based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the gastrointestinal tract (esophagus, stomach, and duodenum) and surrounding organs (liver, spleen, left kidney, and gallbladder). We directly compared the segmentation accuracy of the proposed method to the existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 versus 0.71, 0.74, and 0.74 for the pancreas, 0.90 versus 0.85, 0.87, and 0.83 for the stomach, and 0.76 versus 0.68, 0.69, and 0.66 for the esophagus. We conclude that the deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures. | 
    
|---|---|
| AbstractList | Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deep-learning-based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the GI tract (esophagus, stomach, duodenum) and surrounding organs (liver, spleen, left kidney, gallbladder). We directly compared the segmentation accuracy of the proposed method to existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 vs. 0.71, and 0.74 for the pancreas, 0.90 vs 0.85, 0.87 and 0.83 for the stomach and 0.76 vs 0.68, 0.69 and 0.66 for the esophagus. We conclude that deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures. Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations, which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deep-learning-based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the gastrointestinal tract (esophagus, stomach, and duodenum) and surrounding organs (liver, spleen, left kidney, and gallbladder). We directly compared the segmentation accuracy of the proposed method to the existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 versus 0.71, 0.74, and 0.74 for the pancreas, 0.90 versus 0.85, 0.87, and 0.83 for the stomach, and 0.76 versus 0.68, 0.69, and 0.66 for the esophagus. We conclude that the deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures. Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations, which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deep-learning-based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the gastrointestinal tract (esophagus, stomach, and duodenum) and surrounding organs (liver, spleen, left kidney, and gallbladder). We directly compared the segmentation accuracy of the proposed method to the existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 versus 0.71, 0.74, and 0.74 for the pancreas, 0.90 versus 0.85, 0.87, and 0.83 for the stomach, and 0.76 versus 0.68, 0.69, and 0.66 for the esophagus. We conclude that the deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures.Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations, which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deep-learning-based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the gastrointestinal tract (esophagus, stomach, and duodenum) and surrounding organs (liver, spleen, left kidney, and gallbladder). We directly compared the segmentation accuracy of the proposed method to the existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 versus 0.71, 0.74, and 0.74 for the pancreas, 0.90 versus 0.85, 0.87, and 0.83 for the stomach, and 0.76 versus 0.68, 0.69, and 0.66 for the esophagus. We conclude that the deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures.  | 
    
| Author | Bonmati, Ester Barratt, Dean C. Giganti, Francesco Gibson, Eli Clarkson, Matthew J. Hu, Yipeng Pereira, Stephen P. Davidson, Brian Bandula, Steve Gurusamy, Kurinchi  | 
    
| AuthorAffiliation | Department of Radiology, University College Hospital Trust, UK Institute for Liver and Digestive Health, University College London, UK Division of Surgery and Interventional Science, University College London, UK UCL Centre for Medical Imaging, University College London, UK Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, UK UCL Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, UK  | 
    
| AuthorAffiliation_xml | – name: Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, UK – name: UCL Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, UK – name: UCL Centre for Medical Imaging, University College London, UK – name: Division of Surgery and Interventional Science, University College London, UK – name: Institute for Liver and Digestive Health, University College London, UK – name: Department of Radiology, University College Hospital Trust, UK  | 
    
| Author_xml | – sequence: 1 givenname: Eli orcidid: 0000-0001-9207-7280 surname: Gibson fullname: Gibson, Eli email: eli.gibson@ucl.ac.uk organization: Department of Medical Physics and Biomedical Engineering, UCL Centre for Medical Image Computing, University College London, London, U.K – sequence: 2 givenname: Francesco orcidid: 0000-0001-5218-6431 surname: Giganti fullname: Giganti, Francesco organization: Department of Radiology, University College Hospital Trust, London, U.K – sequence: 3 givenname: Yipeng orcidid: 0000-0003-4902-0486 surname: Hu fullname: Hu, Yipeng organization: Department of Medical Physics and Biomedical Engineering, UCL Centre for Medical Image Computing, University College London, London, U.K – sequence: 4 givenname: Ester orcidid: 0000-0001-9217-5438 surname: Bonmati fullname: Bonmati, Ester organization: Department of Medical Physics and Biomedical Engineering, UCL Centre for Medical Image Computing, University College London, London, U.K – sequence: 5 givenname: Steve orcidid: 0000-0002-4558-288X surname: Bandula fullname: Bandula, Steve organization: UCL Centre for Medical Imaging, University College London, London, U.K – sequence: 6 givenname: Kurinchi orcidid: 0000-0002-0313-9134 surname: Gurusamy fullname: Gurusamy, Kurinchi organization: Division of Surgery and Interventional Science, University College London, London, U.K – sequence: 7 givenname: Brian orcidid: 0000-0002-9152-5907 surname: Davidson fullname: Davidson, Brian organization: Division of Surgery and Interventional Science, University College London, London, U.K – sequence: 8 givenname: Stephen P. orcidid: 0000-0003-0821-1809 surname: Pereira fullname: Pereira, Stephen P. organization: Institute for Liver and Digestive Health, University College London, London, U.K – sequence: 9 givenname: Matthew J. orcidid: 0000-0002-5565-1252 surname: Clarkson fullname: Clarkson, Matthew J. organization: Department of Medical Physics and Biomedical Engineering, UCL Centre for Medical Image Computing, University College London, London, U.K – sequence: 10 givenname: Dean C. orcidid: 0000-0003-2916-655X surname: Barratt fullname: Barratt, Dean C. organization: Department of Medical Physics and Biomedical Engineering, UCL Centre for Medical Image Computing, University College London, London, U.K  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994628$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptkt1r2zAUxcXoWNN274PBMOxlL850ZVuWXgYhW9dCPx6afbwJ2blK1dlSatkt_e-n4CzbQkEg0P2do3uPdEQOnHdIyBugUwAqPy4uz6eMgpgyQXlG5QsygaIQKSvynwdkQlkpUko5OyRHIdxRCnlB5StyyKSUOWdiQs5mQ-9b3ds6uRya3qbX3Uq75AZXLbo-nnuXxDWrlr61TjfJfJH8sP1t8hldwOR7eoX9o-9-hRPy0ugm4Ovtfky-nX5ZzM_Si-uv5_PZRVrned6nmaygqkRRoi5NLqBGRkuqWWGg1jTPuKn0kjMEagwzBRRZKUzEgCM3hZTZMYHRd3Br_fSom0atO9vq7kkBVZtUVN9atUlFbVOJmk-jZj1ULS7rOFmn_-q8tur_irO3auUfFKclj0lFgw9bg87fDxh61dpQY9Noh34I8TYuspxyyCL6fg-980MXk4sUQAmQCbYxfPdvR7tW_jxMBPgI1J0PoUOjajs-R2zQNrtZ4w_Yn5XuCffjeUbydpRYRNzhgkngsfobHJi45Q | 
    
| CODEN | ITMID4 | 
    
| CitedBy_id | crossref_primary_10_1002_mp_17364 crossref_primary_10_1016_j_compbiomed_2024_109079 crossref_primary_10_1088_1361_6560_ad33b5 crossref_primary_10_1097_RLU_0000000000003789 crossref_primary_10_3390_app12146876 crossref_primary_10_1016_j_eswa_2024_123856 crossref_primary_10_3389_feart_2022_783481 crossref_primary_10_1038_s41598_022_21206_3 crossref_primary_10_1109_MCE_2020_3048254 crossref_primary_10_1186_s12880_022_00893_4 crossref_primary_10_2139_ssrn_4117316 crossref_primary_10_1016_j_compbiomed_2023_106995 crossref_primary_10_1109_TMI_2022_3162111 crossref_primary_10_36548_jiip_2020_2_006 crossref_primary_10_1016_j_ijrobp_2024_07_2149 crossref_primary_10_1016_j_media_2024_103181 crossref_primary_10_1016_j_smhl_2022_100304 crossref_primary_10_1053_j_ro_2023_01_005 crossref_primary_10_1097_RLI_0000000000000755 crossref_primary_10_1016_j_compbiomed_2022_106473 crossref_primary_10_1007_s00530_021_00776_8 crossref_primary_10_1097_BRS_0000000000004308 crossref_primary_10_1038_s41598_024_55137_y crossref_primary_10_3390_app131910765 crossref_primary_10_1186_s12938_024_01238_8 crossref_primary_10_1016_j_media_2021_101979 crossref_primary_10_1007_s11042_024_18336_3 crossref_primary_10_1024_1661_8157_a003597 crossref_primary_10_3389_fonc_2020_618357 crossref_primary_10_1007_s00330_020_06679_y crossref_primary_10_1109_TPAMI_2021_3100536 crossref_primary_10_3389_fnins_2021_756536 crossref_primary_10_1051_itmconf_20235401003 crossref_primary_10_3390_jimaging11010019 crossref_primary_10_1016_j_media_2019_101558 crossref_primary_10_1109_TMI_2024_3354673 crossref_primary_10_4018_IJBDAH_287605 crossref_primary_10_1016_j_ejrad_2020_109031 crossref_primary_10_1016_j_bspc_2022_103867 crossref_primary_10_1016_j_media_2022_102642 crossref_primary_10_1038_s41598_022_18173_0 crossref_primary_10_1088_2057_1976_acfb06 crossref_primary_10_1007_s11548_022_02730_z crossref_primary_10_1016_j_ejmp_2023_102595 crossref_primary_10_1016_j_media_2023_102838 crossref_primary_10_1016_j_engappai_2022_105532 crossref_primary_10_1142_S0219467822500395 crossref_primary_10_3390_bioengineering11121255 crossref_primary_10_1016_j_compbiomed_2024_108684 crossref_primary_10_1016_j_bspc_2022_104294 crossref_primary_10_1038_s41598_022_20804_5 crossref_primary_10_1016_j_amjms_2024_01_018 crossref_primary_10_1016_j_compbiomed_2024_108326 crossref_primary_10_3389_frobt_2020_00106 crossref_primary_10_1088_1361_6560_ab59a4 crossref_primary_10_1016_j_bbe_2021_05_004 crossref_primary_10_1007_s00371_021_02328_7 crossref_primary_10_1016_j_cmpb_2022_107085 crossref_primary_10_1002_mp_14429 crossref_primary_10_1088_1361_6560_ab9b57 crossref_primary_10_1016_j_gande_2025_03_002 crossref_primary_10_1088_1361_6560_ad611d crossref_primary_10_1186_s13014_021_01864_9 crossref_primary_10_1371_journal_pone_0293560 crossref_primary_10_1007_s11548_021_02363_8 crossref_primary_10_3390_s23073420 crossref_primary_10_1002_mp_16280 crossref_primary_10_1007_s11684_020_0770_0 crossref_primary_10_26599_IJCS_2022_9100014 crossref_primary_10_1088_1361_6560_ab7877 crossref_primary_10_1016_j_radonc_2021_04_019 crossref_primary_10_1002_ima_23039 crossref_primary_10_1002_mp_14422 crossref_primary_10_1016_j_radi_2024_02_001 crossref_primary_10_1177_0003702820929064 crossref_primary_10_1016_j_displa_2022_102223 crossref_primary_10_1002_mp_15507 crossref_primary_10_1148_radiol_2019190737 crossref_primary_10_1109_ACCESS_2021_3055803 crossref_primary_10_1016_j_liver_2024_100251 crossref_primary_10_3390_app14083275 crossref_primary_10_1371_journal_pone_0265567 crossref_primary_10_1016_j_media_2024_103156 crossref_primary_10_1016_j_neucom_2021_05_081 crossref_primary_10_2196_26601 crossref_primary_10_1007_s11042_019_08320_7 crossref_primary_10_1016_j_cmpb_2020_105447 crossref_primary_10_1109_ACCESS_2023_3264582 crossref_primary_10_1109_TRPMS_2021_3055199 crossref_primary_10_1109_TMI_2021_3137854 crossref_primary_10_1002_mp_15264 crossref_primary_10_1016_j_media_2020_101766 crossref_primary_10_1002_mp_15146 crossref_primary_10_1016_j_media_2019_04_002 crossref_primary_10_1016_j_bspc_2023_105562 crossref_primary_10_3390_diagnostics12112765 crossref_primary_10_1109_TMI_2019_2903562 crossref_primary_10_1109_JBHI_2024_3516012 crossref_primary_10_1007_s11042_022_12055_3 crossref_primary_10_1016_j_bspc_2021_102686 crossref_primary_10_1016_j_acra_2019_08_014 crossref_primary_10_1016_j_cagd_2021_101972 crossref_primary_10_1016_j_eswa_2021_116444 crossref_primary_10_1016_j_neucom_2019_03_049 crossref_primary_10_1016_j_rineng_2023_100929 crossref_primary_10_1016_j_eswa_2022_118625 crossref_primary_10_1016_S2589_7500_20_30078_9 crossref_primary_10_1016_j_compbiomed_2021_104497 crossref_primary_10_2139_ssrn_3984233 crossref_primary_10_1016_j_compbiomed_2022_106152 crossref_primary_10_3390_diagnostics12061489 crossref_primary_10_1016_j_compmedimag_2024_102434 crossref_primary_10_1155_2020_8861035 crossref_primary_10_1109_TCYB_2024_3418937 crossref_primary_10_1109_JBHI_2023_3285230 crossref_primary_10_1148_radiol_233029 crossref_primary_10_1109_TMI_2024_3398728 crossref_primary_10_1109_JPROC_2019_2950506 crossref_primary_10_18663_tjcl_1647005 crossref_primary_10_1016_j_canrad_2023_05_001 crossref_primary_10_36401_IDDB_24_1 crossref_primary_10_1016_j_media_2020_101874 crossref_primary_10_1016_j_ymeth_2020_10_004 crossref_primary_10_1109_JBHI_2021_3137603 crossref_primary_10_1002_mp_15490 crossref_primary_10_1007_s11548_021_02386_1 crossref_primary_10_1016_j_ejrad_2021_109735 crossref_primary_10_1109_ACCESS_2020_3012990 crossref_primary_10_1016_j_media_2020_101876 crossref_primary_10_3389_fonc_2022_960056 crossref_primary_10_1109_TCSVT_2023_3295062 crossref_primary_10_1109_TMI_2019_2926568 crossref_primary_10_3389_fnimg_2022_832512 crossref_primary_10_3390_healthcare10081511 crossref_primary_10_1002_mp_14835 crossref_primary_10_1186_s12880_020_00460_9 crossref_primary_10_1109_ACCESS_2020_3027685 crossref_primary_10_1109_TRPMS_2018_2876562 crossref_primary_10_1080_03772063_2021_1944335 crossref_primary_10_1007_s10278_021_00563_x crossref_primary_10_3390_genes13030431 crossref_primary_10_1016_j_clinimag_2022_04_007 crossref_primary_10_1038_s41467_022_34257_x crossref_primary_10_1016_j_compmedimag_2019_101664 crossref_primary_10_1109_TIP_2020_3038363 crossref_primary_10_1016_j_imed_2021_06_004 crossref_primary_10_1002_mp_14193 crossref_primary_10_1007_s11766_022_4346_4 crossref_primary_10_1007_s00521_020_05407_3 crossref_primary_10_1016_j_bspc_2024_107208 crossref_primary_10_6009_jjrt_2020_JSRT_76_11_1133 crossref_primary_10_1007_s13246_023_01295_8 crossref_primary_10_17816_DD629866 crossref_primary_10_3389_fcell_2024_1532228 crossref_primary_10_1007_s00330_020_07147_3 crossref_primary_10_1016_j_compeleceng_2023_108926 crossref_primary_10_1007_s11548_020_02212_0 crossref_primary_10_1016_j_bspc_2022_103832 crossref_primary_10_1007_s11517_024_03273_y crossref_primary_10_1109_ACCESS_2020_2998901 crossref_primary_10_1137_21M1433782 crossref_primary_10_3390_s23125720 crossref_primary_10_1007_s11633_021_1313_0 crossref_primary_10_1093_jrr_rraa132 crossref_primary_10_1016_j_cmpb_2022_106902 crossref_primary_10_1186_s12880_024_01362_w crossref_primary_10_2174_1573405620666230515090523 crossref_primary_10_1109_TMI_2022_3225667 crossref_primary_10_1109_TNNLS_2023_3243241 crossref_primary_10_3390_make3020026 crossref_primary_10_1016_j_compmedimag_2019_101672 crossref_primary_10_3389_fonc_2024_1415859 crossref_primary_10_55007_dufed_1181996 crossref_primary_10_1016_j_cmpb_2025_108611 crossref_primary_10_1016_j_media_2025_103499 crossref_primary_10_1007_s00500_023_07891_w crossref_primary_10_1016_j_compmedimag_2021_101938 crossref_primary_10_1016_j_ijrobp_2023_05_034 crossref_primary_10_1016_j_media_2021_102200 crossref_primary_10_1109_TMI_2021_3060634 crossref_primary_10_1007_s00530_022_00977_9 crossref_primary_10_1109_RBME_2022_3183852 crossref_primary_10_3390_cancers14153581 crossref_primary_10_1073_pnas_1812995116 crossref_primary_10_1016_j_media_2020_101840 crossref_primary_10_1007_s10462_019_09743_2 crossref_primary_10_1007_s11063_023_11356_4 crossref_primary_10_1016_j_ibmed_2022_100055 crossref_primary_10_1007_s42452_022_04936_x crossref_primary_10_1142_S2196888824500076 crossref_primary_10_1002_mp_14131 crossref_primary_10_1016_j_displa_2024_102650 crossref_primary_10_1148_ryai_2020190102 crossref_primary_10_3390_s24144749 crossref_primary_10_1002_mp_14134 crossref_primary_10_1016_j_cosrev_2024_100648 crossref_primary_10_1016_j_neucom_2021_01_135 crossref_primary_10_1016_j_heliyon_2024_e26414 crossref_primary_10_1109_TMI_2020_2987981 crossref_primary_10_1007_s00330_021_08036_z crossref_primary_10_1016_j_artmed_2021_102109 crossref_primary_10_3390_electronics11203323 crossref_primary_10_1002_acm2_14233 crossref_primary_10_1016_j_compbiomed_2022_105782 crossref_primary_10_1016_j_jvcir_2021_103134 crossref_primary_10_3389_fonc_2021_618496 crossref_primary_10_1088_1361_6560_ac344d crossref_primary_10_1136_bmjopen_2021_053204 crossref_primary_10_1007_s10278_019_00227_x crossref_primary_10_1007_s10278_023_00857_2 crossref_primary_10_1016_j_patrec_2023_08_005 crossref_primary_10_1016_j_softx_2019_100347 crossref_primary_10_1016_j_eswa_2022_118090 crossref_primary_10_1109_TMI_2022_3213983 crossref_primary_10_1109_TMI_2021_3104460 crossref_primary_10_1186_s13244_019_0738_2 crossref_primary_10_1016_j_cmpb_2019_07_002 crossref_primary_10_1002_mp_14364 crossref_primary_10_1007_s10489_021_02197_6 crossref_primary_10_1007_s00259_019_04606_y crossref_primary_10_7717_peerj_17005 crossref_primary_10_1109_ACCESS_2020_3020579 crossref_primary_10_1109_TMI_2022_3228316 crossref_primary_10_1148_ryai_210026 crossref_primary_10_1016_j_media_2024_103333 crossref_primary_10_1016_j_ejro_2023_100537 crossref_primary_10_1016_j_engappai_2025_110230 crossref_primary_10_3389_fnins_2022_918623 crossref_primary_10_1109_TMI_2020_3045775 crossref_primary_10_1038_s41598_020_63285_0 crossref_primary_10_1109_ACCESS_2024_3450961 crossref_primary_10_1109_TMI_2020_3001036 crossref_primary_10_1007_s00330_022_09347_5 crossref_primary_10_1109_JBHI_2021_3063080 crossref_primary_10_1109_TMI_2021_3079709 crossref_primary_10_1186_s13014_019_1392_z crossref_primary_10_1002_mp_16330 crossref_primary_10_1002_mp_15485 crossref_primary_10_1002_mp_17300 crossref_primary_10_1109_TMI_2023_3262680 crossref_primary_10_1016_j_semradonc_2019_02_001 crossref_primary_10_1186_s40658_023_00536_9 crossref_primary_10_12677_mos_2024_133213 crossref_primary_10_1002_mp_13735 crossref_primary_10_25699_SSSB_2022_44_4_004 crossref_primary_10_1007_s10462_024_10966_1 crossref_primary_10_1097_MPA_0000000000001412 crossref_primary_10_1117_1_JMI_9_4_045001 crossref_primary_10_1016_j_ejmp_2021_05_003 crossref_primary_10_3390_jimaging10080202 crossref_primary_10_1016_j_neucom_2021_08_157 crossref_primary_10_1080_08839514_2022_2151186 crossref_primary_10_1109_TCYB_2023_3291369 crossref_primary_10_1002_mp_14141 crossref_primary_10_1007_s00371_020_02018_w crossref_primary_10_1016_j_media_2020_101931 crossref_primary_10_1038_s41598_022_20108_8 crossref_primary_10_1002_mp_14386 crossref_primary_10_1155_2022_5797431 crossref_primary_10_1371_journal_pone_0253863 crossref_primary_10_1016_j_bspc_2020_102233 crossref_primary_10_3390_bioengineering11040319 crossref_primary_10_1016_j_bspc_2021_102652 crossref_primary_10_1016_j_bspc_2021_102894 crossref_primary_10_1002_ima_22901 crossref_primary_10_1016_j_cmpb_2021_106480 crossref_primary_10_1038_s41598_022_07111_9 crossref_primary_10_1002_mp_14814 crossref_primary_10_3390_electronics13245038 crossref_primary_10_3390_app131810521 crossref_primary_10_1007_s10462_019_09788_3 crossref_primary_10_1007_s11255_024_04082_w crossref_primary_10_1016_j_artmed_2021_102231 crossref_primary_10_3389_fonc_2022_908903 crossref_primary_10_1007_s11548_022_02757_2 crossref_primary_10_1007_s12024_021_00431_8 crossref_primary_10_1002_mp_16072 crossref_primary_10_1109_TMI_2019_2911588 crossref_primary_10_1007_s10489_021_02221_9 crossref_primary_10_1049_ipr2_13221 crossref_primary_10_1080_0284186X_2020_1775290 crossref_primary_10_3389_fbioe_2021_636953 crossref_primary_10_1016_j_compbiomed_2021_104658 crossref_primary_10_1016_j_compbiomed_2020_103720 crossref_primary_10_1097_MNM_0000000000001436 crossref_primary_10_1186_s40644_024_00711_w crossref_primary_10_1002_mp_15303 crossref_primary_10_1016_j_cmpb_2022_106894 crossref_primary_10_1016_j_eswa_2023_121905 crossref_primary_10_3390_bioengineering10010119 crossref_primary_10_1007_s10916_019_1476_1 crossref_primary_10_1016_j_compeleceng_2022_108345 crossref_primary_10_1109_ACCESS_2019_2899635 crossref_primary_10_1016_j_compbiomed_2021_105067 crossref_primary_10_1186_s12880_020_00509_9 crossref_primary_10_1007_s00261_023_04122_6 crossref_primary_10_1186_s13244_024_01636_5 crossref_primary_10_1177_20552076221111941 crossref_primary_10_1109_TBME_2024_3380058 crossref_primary_10_1016_j_media_2023_103024 crossref_primary_10_1016_j_media_2024_103382 crossref_primary_10_1016_j_artmed_2021_102023 crossref_primary_10_1109_TMI_2021_3060465 crossref_primary_10_1016_j_inffus_2024_102560 crossref_primary_10_1007_s40747_024_01671_1 crossref_primary_10_1038_s41598_021_95972_x crossref_primary_10_1016_j_cmpb_2021_106547 crossref_primary_10_1016_j_media_2022_102567 crossref_primary_10_1007_s11604_021_01098_5 crossref_primary_10_1016_j_media_2023_102987 crossref_primary_10_1016_j_bspc_2024_106667 crossref_primary_10_1148_radiol_220101 crossref_primary_10_1016_j_cmpb_2022_106887 crossref_primary_10_1016_j_media_2019_02_006 crossref_primary_10_1109_JBHI_2021_3136597 crossref_primary_10_1016_j_compbiomed_2021_104424 crossref_primary_10_29109_gujsc_1210343 crossref_primary_10_1109_TMI_2023_3242980 crossref_primary_10_1007_s11042_020_09592_0 crossref_primary_10_1016_j_displa_2025_103032 crossref_primary_10_1016_j_artmed_2023_102608 crossref_primary_10_1096_fj_202200253R crossref_primary_10_1007_s10916_023_01968_7 crossref_primary_10_1371_journal_pone_0313126 crossref_primary_10_3390_app15020837 crossref_primary_10_1088_1361_6560_ada0a0 crossref_primary_10_1016_j_morpho_2019_09_002 crossref_primary_10_1109_TRPMS_2021_3071148 crossref_primary_10_1016_j_diii_2019_05_008 crossref_primary_10_1016_j_media_2023_102984 crossref_primary_10_1016_j_media_2022_102444 crossref_primary_10_3389_fonc_2020_00675 crossref_primary_10_1016_j_compbiomed_2024_109173 crossref_primary_10_3748_wjg_v27_i27_4395 crossref_primary_10_1097_JP9_0000000000000056 crossref_primary_10_1186_s12880_022_00807_4 crossref_primary_10_1016_j_placenta_2023_02_009 crossref_primary_10_1002_ird3_101 crossref_primary_10_3748_wjg_v27_i43_7480 crossref_primary_10_1016_j_heliyon_2023_e13081 crossref_primary_10_1016_j_acra_2019_01_012 crossref_primary_10_1038_s41597_020_00715_8 crossref_primary_10_1002_mp_15322 crossref_primary_10_1038_s41574_021_00543_9 crossref_primary_10_1002_mp_16527 crossref_primary_10_1109_ACCESS_2020_2975983 crossref_primary_10_1016_j_neucom_2024_128125 crossref_primary_10_1016_j_neucom_2024_128124 crossref_primary_10_1049_ipr2_12709 crossref_primary_10_1016_j_media_2021_102155 crossref_primary_10_1016_j_media_2021_102156 crossref_primary_10_1007_s11517_018_1929_6 crossref_primary_10_1016_j_bbe_2020_07_011 crossref_primary_10_1016_j_media_2023_102873 crossref_primary_10_3390_app15052516 crossref_primary_10_1016_j_media_2021_102035 crossref_primary_10_1109_LSP_2024_3451962 crossref_primary_10_1007_s10278_022_00660_5 crossref_primary_10_1007_s12149_019_01359_4 crossref_primary_10_1007_s12265_021_10166_0 crossref_primary_10_1186_s12885_020_07595_6 crossref_primary_10_4251_wjgo_v13_i11_1599 crossref_primary_10_1186_s13014_020_01528_0 crossref_primary_10_3390_tomography7040078 crossref_primary_10_1016_j_cviu_2024_104138 crossref_primary_10_1016_j_knosys_2021_107471 crossref_primary_10_1088_1361_6560_ab9453 crossref_primary_10_1089_ten_tec_2019_0052 crossref_primary_10_1016_j_bspc_2021_103027 crossref_primary_10_3390_jimaging8120330 crossref_primary_10_1186_s12891_023_06153_y crossref_primary_10_1038_s41598_022_19037_3 crossref_primary_10_1155_2021_5852595  | 
    
| Cites_doi | 10.1007/978-3-319-24553-9_68 10.1016/j.media.2015.05.009 10.1109/TPAMI.2012.143 10.1148/radiol.11091710 10.1016/j.csda.2006.08.028 10.1109/TBME.2016.2574816 10.1002/jmrs.65 10.1109/CVPR.2015.7298664 10.1016/j.media.2015.04.015 10.1007/s11548-007-0135-z 10.1016/j.media.2015.06.009 10.1007/978-3-319-46493-0_38 10.1007/s10278-013-9622-7 10.1109/CVPR.2015.7298965 10.1007/978-3-319-10404-1_83 10.1016/j.media.2015.04.003 10.1007/978-3-642-33454-2_52 10.1016/S0016-5107(01)70082-X 10.9734/BJMCS/2016/20812 10.5565/rev/elcvia.206 10.1007/978-3-319-46723-8_53 10.1146/annurev.bioeng.1.1.211 10.1016/j.media.2009.05.004 10.1007/978-3-319-10470-6_62 10.1109/3DV.2016.79 10.1007/s11548-016-1501-5 10.1007/978-3-319-49644-3_11 10.1109/TMI.2017.2743464 10.1109/TMI.2013.2246577 10.1007/978-3-319-59129-2_4 10.1007/978-3-319-66182-7_83 10.1109/34.927467 10.1007/978-3-319-46976-8_12  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1109/TMI.2018.2806309 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplorer url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1558-254X | 
    
| EndPage | 1834 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6076994 PMC6076994 29994628 10_1109_TMI_2018_2806309 8291609  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Cancer Research UK grantid: C28070/A19985 funderid: 10.13039/501100000289 – fundername: National Institute for Health Research funderid: 10.13039/501100000272 – fundername: Cancer Research UK grantid: 19985 – fundername: Department of Health grantid: UCLBRC-2012-1 – fundername: Department of Health grantid: PB-PG-0712-28114 – fundername: Cancer Research UK grantid: A19985  | 
    
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c444t-39b1bb857ea7f481ce2070a25f1ca0436fbad62e10ff2f515378f81c16e6f5993 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0278-0062 1558-254X  | 
    
| IngestDate | Wed Oct 29 11:45:15 EDT 2025 Tue Sep 30 15:59:20 EDT 2025 Sun Sep 28 10:07:37 EDT 2025 Sun Jun 29 12:30:05 EDT 2025 Mon Jul 21 06:03:21 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Wed Oct 01 03:55:28 EDT 2025 Wed Aug 27 02:30:46 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c444t-39b1bb857ea7f481ce2070a25f1ca0436fbad62e10ff2f515378f81c16e6f5993 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-9152-5907 0000-0002-5565-1252 0000-0001-5218-6431 0000-0003-4902-0486 0000-0003-2916-655X 0000-0001-9207-7280 0000-0003-0821-1809 0000-0002-4558-288X 0000-0001-9217-5438 0000-0002-0313-9134  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6076994 | 
    
| PMID | 29994628 | 
    
| PQID | 2117113824 | 
    
| PQPubID | 85460 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1109_tmi_2018_2806309 pubmed_primary_29994628 ieee_primary_8291609 proquest_journals_2117113824 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6076994 crossref_citationtrail_10_1109_TMI_2018_2806309 proquest_miscellaneous_2068340613 crossref_primary_10_1109_TMI_2018_2806309  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-08-01 | 
    
| PublicationDateYYYYMMDD | 2018-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on medical imaging | 
    
| PublicationTitleAbbrev | TMI | 
    
| PublicationTitleAlternate | IEEE Trans Med Imaging | 
    
| PublicationYear | 2018 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ioffe (ref38) 2015 ref13 he (ref14) 2015 ref12 ref15 ref53 çiçek (ref24) 2016 ref11 ref10 ref19 brust (ref46) 2015 ref18 landman (ref50) 2012 veit (ref43) 2016 gal (ref41) 2016; 48 ref51 zografos (ref54) 2015 litjens (ref17) 2017 landman (ref16) 2015 ref42 pereyra (ref47) 2017 odena (ref45) 2016 oda (ref52) 2011 ref49 pleiss (ref44) 2017 ref8 ref7 ref9 ref4 ref3 ref6 ref5 roth (ref33) 2016 ref40 ref35 ref34 ref37 ref30 ref32 ref2 ref1 huang (ref27) 2016 chen (ref36) 2017 yu (ref28) 2015 ref23 ref26 ref25 nair (ref39) 2010 ref20 ref22 ref21 kroon (ref48) 2010 ref29 roth (ref31) 2017  | 
    
| References_xml | – ident: ref26 doi: 10.1007/978-3-319-24553-9_68 – year: 2016 ident: ref27 publication-title: Densely Connected Convolutional Networks – ident: ref7 doi: 10.1016/j.media.2015.05.009 – year: 2017 ident: ref44 publication-title: Memory-efficient implementation of densenets – ident: ref35 doi: 10.1109/TPAMI.2012.143 – year: 2017 ident: ref17 publication-title: A survey on deep learning in medical image analysis – year: 2012 ident: ref50 publication-title: MICCAI Grand Challenge and Workshop on Multi-Atlas Labeling – volume: 48 start-page: 1050 year: 2016 ident: ref41 article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning publication-title: Proc 33rd Int Conf Mach Learn – ident: ref1 doi: 10.1148/radiol.11091710 – ident: ref49 doi: 10.1016/j.csda.2006.08.028 – year: 2015 ident: ref38 publication-title: Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift – year: 2016 ident: ref45 publication-title: Deconvolution and checkerboard artifacts – start-page: 1 year: 2015 ident: ref46 article-title: Efficient convolutional patch networks for scene understanding publication-title: CVPR Scene Understanding Workshop – ident: ref15 doi: 10.1109/TBME.2016.2574816 – start-page: 18 year: 2015 ident: ref14 article-title: Fully automatic multi-organ segmentation based on multi-boost learning and statistical shape model search publication-title: Proc VISCERAL Challenge at ISBI – ident: ref2 doi: 10.1002/jmrs.65 – ident: ref40 doi: 10.1109/CVPR.2015.7298664 – ident: ref8 doi: 10.1016/j.media.2015.04.015 – ident: ref10 doi: 10.1007/s11548-007-0135-z – year: 2016 ident: ref33 publication-title: Data from TCIA pancreas-CT – ident: ref6 doi: 10.1016/j.media.2015.06.009 – year: 2010 ident: ref48 publication-title: Smooth Triangulated Mesh MATLAB Central File Exchange – year: 2015 ident: ref16 publication-title: Multi-Atlas Labeling Beyond the Cranial Vault-Workshop and Challenge – year: 2015 ident: ref28 publication-title: Multi-scale context aggregation by dilated convolutions – year: 2017 ident: ref31 publication-title: Hierarchical 3D fully convolutional networks for multi-organ segmentation – ident: ref42 doi: 10.1007/978-3-319-46493-0_38 – ident: ref32 doi: 10.1007/s10278-013-9622-7 – ident: ref37 doi: 10.1109/CVPR.2015.7298965 – ident: ref53 doi: 10.1007/978-3-319-10404-1_83 – ident: ref5 doi: 10.1016/j.media.2015.04.003 – ident: ref9 doi: 10.1007/978-3-642-33454-2_52 – ident: ref4 doi: 10.1016/S0016-5107(01)70082-X – ident: ref12 doi: 10.9734/BJMCS/2016/20812 – year: 2017 ident: ref36 article-title: VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images publication-title: NeuroImage – ident: ref11 doi: 10.5565/rev/elcvia.206 – ident: ref30 doi: 10.1007/978-3-319-46723-8_53 – start-page: 424 year: 2016 ident: ref24 article-title: 3D U-net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc MICCAI – ident: ref3 doi: 10.1146/annurev.bioeng.1.1.211 – ident: ref22 doi: 10.1016/j.media.2009.05.004 – start-page: 550 year: 2016 ident: ref43 article-title: Residual networks behave like ensembles of relatively shallow networks publication-title: Proc NIPS – ident: ref13 doi: 10.1007/978-3-319-10470-6_62 – ident: ref25 doi: 10.1109/3DV.2016.79 – start-page: 37 year: 2015 ident: ref54 article-title: Hierarchical multi-organ segmentation without registration in 3D abdominal CT images publication-title: Proc MICCAI Workshop on Medical Computer Vision – ident: ref19 doi: 10.1007/s11548-016-1501-5 – start-page: 807 year: 2010 ident: ref39 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc ICML – ident: ref51 doi: 10.1007/978-3-319-49644-3_11 – ident: ref29 doi: 10.1109/TMI.2017.2743464 – ident: ref34 doi: 10.1109/TMI.2013.2246577 – ident: ref20 doi: 10.1007/978-3-319-59129-2_4 – ident: ref21 doi: 10.1007/978-3-319-66182-7_83 – year: 2017 ident: ref47 publication-title: Regularizing neural networks by penalizing confident output disrributions – ident: ref23 doi: 10.1109/34.927467 – start-page: 181 year: 2011 ident: ref52 article-title: Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut publication-title: Proc Int MICCAI Workshop Comput Clin Challenges Abdominal Imag – ident: ref18 doi: 10.1007/978-3-319-46976-8_12  | 
    
| SSID | ssj0014509 | 
    
| Score | 2.698226 | 
    
| Snippet | Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows.... Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning and treatment delivery workflows....  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1822 | 
    
| SubjectTerms | Abdomen Abdominal CT Accuracy Algorithms Computed tomography Deep learning Digestive System - diagnostic imaging Duodenum Endoscopy Esophagus Gallbladder Gastrointestinal system Gastrointestinal tract Humans Image processing Image segmentation Kidney Kidney - diagnostic imaging Kidneys Liver Machine learning Mathematical models Medical imaging Methods Organs Pancreas Radiographic Image Interpretation, Computer-Assisted - methods Radiography, Abdominal - methods Registration segmentation Spleen Spleen - diagnostic imaging Statistical analysis Statistical methods Statistical models Stomach Three-dimensional displays Tomography, X-Ray Computed - methods  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTuLjYcA2INtAQeIFJKf5cBLnsdqYClIrBC2Up8h2bVbRphVLhOCv5-x8qGUIaVJfWl8SWT73fs797ncAr3g6ZzzUknDBOaEhF0QEVBGM5ixiMSJo20VhNE6GU_p-Fs_2IGhrYSxpX4qFVyxXXrG4stzKzUr2W55YP8GTd5bRO7CfxAi_e7A_HX8YfLXvUoxarG-biGKYRA-I6axNTfpZv1wtDJeLeSabGBkK4lYosr1V_gUzb7Il71XFhv_6yZfLrVB0-RA-tpOoGSjfvaoUnvz9l77jrWb5CA4aYOoO6qHHsKeKQ3iwJVd4CHdHTSL-CIaDqlxbtVfXlvASW9PpflLfVk0xU-HiZyDma9s1zD2fuF8W5ZV7gcdm5X4m45p-fn0M08u3k_MhaZoyEEkpLUmUiUAIFqeKp5qyQKoQ_zV4GOtAcqNnrwWfJ6EKfK1DjWgpSplGsyBRiY4RDT2BXrEu1DNwKdUZkyxSTFAaxymnmclrZlSyROEjHOi365PLRrHcNM5Y5vbk4mf5ZPQuNyuaNyvqwOvuik2t1vEf2yOz5J0dCxEpm5_PWhfIm-18neMpOQ2MWiN14GU3jBvRZFd4odYV2vgJiyw8cuBp7THdvTHmZ6YI2IF0x5c6AyPyvTuCXmHFvhtHcOBN53U3poaOvTO1k9sYn8J987UmNZ5Br_xRqecItErxotlafwD9sCIl priority: 102 providerName: Unpaywall  | 
    
| Title | Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks | 
    
| URI | https://ieeexplore.ieee.org/document/8291609 https://www.ncbi.nlm.nih.gov/pubmed/29994628 https://www.proquest.com/docview/2117113824 https://www.proquest.com/docview/2068340613 https://pubmed.ncbi.nlm.nih.gov/PMC6076994 https://www.ncbi.nlm.nih.gov/pmc/articles/6076994  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplorer customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIQF7GLCNLWNMQeIFhNvEcWznsRpMBakVEi2Mp8h2bVbRJdOWCMFfj-380MomhJSHSLkkOt85_py7-w7glWALLrBRSEghEMFCIhkTjexqzhOeWgTtuyhMpnQ8Jx_P0rMNeNvXwmitffKZHrhTH8tflKp2v8qGHFsw46r17jFOm1qtPmJA0iadAzvG2IjiLiQZZcPZ5IPL4eIDF0VMIkcUaj_CmavKXFuNfHuVu5Dm7YTJh3VxKX79FKvVjdXo9DFMOj2aJJQfg7qSA_X7L4rH_1X0CWy3sDQcNX70FDZ0sQNbN8gKd-DBpA3D78J4VFel53oNfQEv8hWd4Wf9_aItZSpCe4zkovQ9w8KTWfh1WZ2H7-ymWYdf0LRJPr_eg_np-9nJGLUtGZAihFQoyWQsJU-ZFswQHiuN7TdD4NTESjg2eyPFgmIdR8ZgY7FSwrixYjHV1KQWCz2DzaIs9AGEhJiMK55oLglJUyZI5qKaGVGcavuKAIadaXLV8pW7thmr3O9boiy3ds2dXfPWrgG87u-4bLg6_iG764a9l2tHPICjzvp5O5mvc7tHZrHjaiQBvOwv22noYiui0GVtZSLKEw-OAthvnKV_dudsAbA1N-oFHMX3-pViee6pvmnEqL05gDe9w91SrbpYrql2eLdqz-GRk2qSF49gs7qq9QsLqCp57GfSMdyfTz-Nvv0BrOIaBA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ2LwwMfGWGBAkHgB4TZxHMd5rAZTB0tf6GBvkZ3arKJLpi0Rgr-es_OhlU0IqQ-Rck51vnP8c-7udwBvZLIQkpqCSCUlYVQqokKmCe7mIhIxImjXRSGb8ekJ-3Qan27A-6EWRmvtks_0yF66WP6iKhr7qWwsKIIZW613J2aMxW211hAzYHGb0EEtZ2zAaR-UDNLxPDuyWVxiZOOIUWCpQvE1nNq6zLX9yDVYuQ1r3kyZ3GrKC_nrp1ytru1Hhw8h6zVp01B-jJpajYrff5E8_q-qj-BBB0z9SetJj2FDl9tw_xpd4TbczbpA_A5MJ01dObZX35XwElfT6X_R38-7YqbSx99ELSrXNcw_mPvflvWZ_wGPzdr_SmZt-vnVEzg5_Dg_mJKuKQMpcM5rEqUqVErEiZaJYSIsNMW3hqSxCQtp-eyNkgtOdRgYQw2ipSgRBsVCrrmJEQ3twmZZlXoPfMZMKgoRaaHQmnEiWWrjmikrBNf4Fx6Me9PkRcdYbhtnrHJ3cgnSHO2aW7vmnV09eDuMuGjZOv4hu2OnfZDrZtyD_d76ebecr3I8JSehZWtkHrwebuNCtNEVWeqqQZmAi8jBIw-ets4yPLt3Ng-SNTcaBCzJ9_qdcnnmyL55kHAc7MG7weFuqFafL9dUe3a7aq9gazrPjvPjo9nn53DPjmhTGfdhs75s9AuEV7V66VbVH6_VG6E | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTuLjYcA2INtAQeIFJKf5cBLnsdqYClIrBC2Up8h2bVbRphVLhOCv5-x8qGUIaVJfWl8SWT73fs797ncAr3g6ZzzUknDBOaEhF0QEVBGM5ixiMSJo20VhNE6GU_p-Fs_2IGhrYSxpX4qFVyxXXrG4stzKzUr2W55YP8GTd5bRO7CfxAi_e7A_HX8YfLXvUoxarG-biGKYRA-I6axNTfpZv1wtDJeLeSabGBkK4lYosr1V_gUzb7Il71XFhv_6yZfLrVB0-RA-tpOoGSjfvaoUnvz9l77jrWb5CA4aYOoO6qHHsKeKQ3iwJVd4CHdHTSL-CIaDqlxbtVfXlvASW9PpflLfVk0xU-HiZyDma9s1zD2fuF8W5ZV7gcdm5X4m45p-fn0M08u3k_MhaZoyEEkpLUmUiUAIFqeKp5qyQKoQ_zV4GOtAcqNnrwWfJ6EKfK1DjWgpSplGsyBRiY4RDT2BXrEu1DNwKdUZkyxSTFAaxymnmclrZlSyROEjHOi365PLRrHcNM5Y5vbk4mf5ZPQuNyuaNyvqwOvuik2t1vEf2yOz5J0dCxEpm5_PWhfIm-18neMpOQ2MWiN14GU3jBvRZFd4odYV2vgJiyw8cuBp7THdvTHmZ6YI2IF0x5c6AyPyvTuCXmHFvhtHcOBN53U3poaOvTO1k9sYn8J987UmNZ5Br_xRqecItErxotlafwD9sCIl | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Multi-Organ+Segmentation+on+Abdominal+CT+With+Dense+V-Networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Gibson%2C+Eli&rft.au=Giganti%2C+Francesco&rft.au=Hu%2C+Yipeng&rft.au=Bonmati%2C+Ester&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=37&rft.issue=8&rft.spage=1822&rft_id=info:doi/10.1109%2FTMI.2018.2806309&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |