Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data

A bstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 6; pp. 1 - 23
Main Authors Sierra, D. Aristizabal, Liao, Jiajun, Marfatia, D.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer Nature B.V
Springer Berlin
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1029-8479
DOI10.1007/JHEP06(2019)141

Cover

Abstract A bstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches.
AbstractList The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches.
The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q≳20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection search
The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches.
A bstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches.
Abstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches.
ArticleNumber 141
Author Liao, Jiajun
Marfatia, D.
Sierra, D. Aristizabal
Author_xml – sequence: 1
  givenname: D. Aristizabal
  surname: Sierra
  fullname: Sierra, D. Aristizabal
  email: daristizabal@ulg.ac.be
  organization: Departamento de Física, Universidad Técnica Federico Santa María, IFPA, Dep. AGO, Université de Liège
– sequence: 2
  givenname: Jiajun
  surname: Liao
  fullname: Liao, Jiajun
  organization: School of Physics, Sun Yat-Sen University, Department of Physics and Astronomy, University of Hawaii at Manoa
– sequence: 3
  givenname: D.
  surname: Marfatia
  fullname: Marfatia, D.
  organization: Department of Physics and Astronomy, University of Hawaii at Manoa
BackLink https://www.osti.gov/servlets/purl/1598844$$D View this record in Osti.gov
BookMark eNp1kUFvFSEUhSemJrbVtVuiG12MvczADCxNU-0zTXSha8LApeU5D0ZgFv57eZ2aGpOuuJDzndzDOWtOQgzYNK8pfKAA48WX66tvMLzrgMr3lNFnzSmFTraCjfLkn_lFc5bzHoByKuG0-bk7LNoUEh1xMR2Iq5eYyBoMpqJ9KB4ziYHUCdOSsOjiY8hHvYl3mDAUgrPOxRsScC3Jh9iG1cy4ZpKNLhXz4ZZYXfTL5rnTc8ZXD-d58-PT1ffL6_bm6-fd5ceb1jDGStv3o7S2B9oLoHoYuOMTOEeBgbTU4mRqRNqBYFTLDrnkprODE3aaRinl2J83u83XRr1XS_IHnX6rqL26f4jpVulUF55RgWE9GGE5YxPrDWgxjWIacLC9HXUnqtebzSvWiCobX9DcmRgCmqIol0IwVkVvN9GS4q8Vc1H7uKZQM6qu48BHCgKqim8qk2LOCZ2qbvffWZL2s6KgjkWqrUh1LFLVIit38R_3N9LTBGxEXo6fj-lxn6eQPzkdsPE
CitedBy_id crossref_primary_10_1007_JHEP02_2021_099
crossref_primary_10_1007_JHEP07_2019_103
crossref_primary_10_1007_JHEP09_2020_106
crossref_primary_10_1103_PhysRevD_102_113014
crossref_primary_10_1007_JHEP09_2022_076
crossref_primary_10_1007_JHEP05_2020_130
crossref_primary_10_1007_JHEP10_2024_003
crossref_primary_10_1007_JHEP12_2020_178
crossref_primary_10_1088_1475_7516_2020_04_044
crossref_primary_10_1103_PhysRevD_111_033003
crossref_primary_10_3390_universe9050207
crossref_primary_10_1103_Physics_14_58
crossref_primary_10_1103_PhysRevD_104_095017
crossref_primary_10_1007_JHEP09_2019_069
crossref_primary_10_1103_PhysRevD_102_074018
crossref_primary_10_1103_PhysRevD_103_092002
crossref_primary_10_1103_PhysRevD_100_113003
crossref_primary_10_1007_JHEP12_2019_124
crossref_primary_10_1103_PhysRevD_102_113004
crossref_primary_10_1007_JHEP04_2023_035
crossref_primary_10_1103_PhysRevC_100_054301
crossref_primary_10_1103_PhysRevD_101_035012
crossref_primary_10_1103_PhysRevD_110_055040
crossref_primary_10_1103_PhysRevC_100_061304
crossref_primary_10_1103_PhysRevD_100_115020
crossref_primary_10_1103_PhysRevD_104_015005
crossref_primary_10_1103_PhysRevD_102_015009
crossref_primary_10_1103_PhysRevLett_124_121802
crossref_primary_10_1103_PhysRevD_100_073014
crossref_primary_10_1007_JHEP04_2024_038
crossref_primary_10_1103_PhysRevD_108_033002
crossref_primary_10_1088_1742_6596_1468_1_012126
crossref_primary_10_1103_PhysRevD_106_L031702
crossref_primary_10_1088_1475_7516_2022_01_055
crossref_primary_10_1007_JHEP05_2022_037
crossref_primary_10_1007_JHEP03_2021_294
crossref_primary_10_1103_PhysRevD_104_033004
crossref_primary_10_1103_PhysRevD_105_033001
crossref_primary_10_1007_s12648_024_03406_x
crossref_primary_10_1007_JHEP05_2022_085
crossref_primary_10_1103_PhysRevD_109_055038
crossref_primary_10_1103_PhysRevLett_126_012002
crossref_primary_10_1103_PhysRevD_104_015015
crossref_primary_10_3389_fphy_2019_00191
crossref_primary_10_1103_PhysRevLett_123_061801
crossref_primary_10_1103_PhysRevD_102_075004
crossref_primary_10_1103_PhysRevD_108_063023
crossref_primary_10_1103_PhysRevD_106_013001
crossref_primary_10_1103_PhysRevD_100_033003
crossref_primary_10_1103_PhysRevC_102_035501
crossref_primary_10_1007_JHEP11_2019_028
crossref_primary_10_1088_1475_7516_2025_03_037
crossref_primary_10_1103_PhysRevD_106_093010
crossref_primary_10_1007_JHEP04_2021_266
crossref_primary_10_1007_JHEP02_2021_097
crossref_primary_10_21468_SciPostPhysProc_2_001
crossref_primary_10_1103_PhysRevD_111_055007
Cites_doi 10.1103/PhysRevLett.120.072501
10.1016/j.astropartphys.2005.03.006
10.1103/PhysRevD.97.033003
10.1103/PhysRevD.79.083013
10.1007/JHEP03(2017)097
10.1007/JHEP08(2018)010
10.1016/j.physletb.2017.10.046
10.1103/PhysRevLett.108.112502
10.1103/PhysRev.104.1466
10.1016/j.nuclphysbps.2009.03.117
10.1103/PhysRevD.89.023524
10.1103/PhysRev.105.1671
10.1140/epjp/i2018-11973-4
10.1016/0370-2693(89)90402-4
10.1103/PhysRevD.9.1389
10.1016/S0927-6505(96)00047-3
10.1088/1475-7516/2018/11/016
10.1103/PhysRevD.17.2369
10.1088/1126-6708/2005/12/021
10.1103/PhysRevC.60.014903
10.1086/376502
10.1103/PhysRevD.98.113010
10.1103/PhysRevC.94.034316
10.1088/1367-2630/6/1/170
10.2172/877507
10.1016/j.adt.2011.12.006
10.1007/JHEP05(2015)123
10.1103/PhysRevD.98.030001
10.1103/PhysRevD.96.115007
10.1146/annurev.ns.27.120177.001123
10.1103/PhysRevLett.115.162001
10.1016/j.physletb.2018.07.049
10.1088/0305-4470/30/18/026
10.1103/PhysRevC.86.024612
10.1103/PhysRevD.73.033005
10.1103/PhysRevD.98.075018
10.1140/epja/i2014-14048-3
10.1103/PhysRevD.60.093008
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
CorporateAuthor Univ. of Hawaii, Honolulu, HI (United States)
CorporateAuthor_xml – name: Univ. of Hawaii, Honolulu, HI (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP06(2019)141
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Collection (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 23
ExternalDocumentID oai_doaj_org_article_0c430c8d544b43c0a8b78b6e6d3d7a28
1598844
10_1007_JHEP06_2019_141
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
PUEGO
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
AHBXF
OIOZB
OTOTI
ID FETCH-LOGICAL-c444t-3379dd3013801a665f5b0ff10409d1debc019120841a92e595c2d6f8dbb799973
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 00:40:21 EDT 2025
Thu May 18 22:28:30 EDT 2023
Fri Jul 25 22:08:51 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
Wed Oct 01 04:35:47 EDT 2025
Fri Feb 21 02:33:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Neutrino Physics
Beyond Standard Model
Solar and Atmospheric Neutrinos
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-3379dd3013801a665f5b0ff10409d1debc019120841a92e595c2d6f8dbb799973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0010504
USDOE Office of Science (SC), High Energy Physics (HEP)
OpenAccessLink https://doaj.org/article/0c430c8d544b43c0a8b78b6e6d3d7a28
PQID 2250571080
PQPubID 2034718
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_0c430c8d544b43c0a8b78b6e6d3d7a28
osti_scitechconnect_1598844
proquest_journals_2250571080
crossref_citationtrail_10_1007_JHEP06_2019_141
crossref_primary_10_1007_JHEP06_2019_141
springer_journals_10_1007_JHEP06_2019_141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Berlin
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Berlin
– name: SpringerOpen
References FreedmanDZSchrammDNTubbsDLThe Weak Neutral Current and Its Effects in Stellar CollapseAnn. Rev. Nucl. Part. Sci.1977271671977ARNPS..27..167F10.1146/annurev.ns.27.120177.001123[INSPIRE]
COHERENT collaboration, COHERENT 2018 at the Spallation Neutron Source, arXiv:1803.09183 [INSPIRE].
G. Rich, private communication.
BattistoniGFerrariAMontaruliTSalaPRThe atmospheric neutrino flux below 100-MeV: The FLUKA resultsAstropart. Phys.2005235262005APh....23..526B10.1016/j.astropartphys.2005.03.006[INSPIRE]
M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin and Y.Y. Zhang, Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering, Phys. Rev.D 98 (2018) 113010 [arXiv:1810.05606] [INSPIRE].
L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev.D 17 (1978) 2369 [INSPIRE].
K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev.D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE].
BillardJJohnstonJKavanaghBJProspects for exploring New Physics in Coherent Elastic Neutrino-Nucleus ScatteringJCAP2018110162018JCAP...11..016B10.1088/1475-7516/2018/11/016[arXiv:1805.01798] [INSPIRE]
G.R. Goldstein, J.O. Gonzalez Hernandez and S. Liuti, Flavor dependence of chiral odd generalized parton distributions and the tensor charge from the analysis of combined π0and η exclusive electroproduction data, arXiv:1401.0438 [INSPIRE].
COHERENT collaboration, COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].
COHERENT collaboration, The COHERENT Experiment at the Spallation Neutron Source, arXiv:1509.08702 [INSPIRE].
S. Ando and K. Sato, Relic neutrino background from cosmological supernovae, New J. Phys.6 (2004) 170 [astro-ph/0410061] [INSPIRE].
S. Bergmann, Y. Grossman and E. Nardi, Neutrino propagation in matter with general interactions, Phys. Rev.D 60 (1999) 093008 [hep-ph/9903517] [INSPIRE].
AbrahamyanSMeasurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron ScatteringPhys. Rev. Lett.20121081125022012PhRvL.108k2502A10.1103/PhysRevLett.108.112502[arXiv:1201.2568] [INSPIRE]
DentlerMUpdated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile NeutrinosJHEP2018080102018JHEP...08..010D10.1007/JHEP08(2018)010[arXiv:1803.10661] [INSPIRE]
H.-Y. Cheng, Low-energy Interactions of Scalar and Pseudoscalar Higgs Bosons With Baryons, Phys. Lett.B 219 (1989) 347 [INSPIRE].
J. Piekarewicz, A.R. Linero, P. Giuliani and E. Chicken, Power of two: Assessing the impact of a second measurement of the weak-charge form factor of208Pb, Phys. Rev.C 94 (2016) 034316 [arXiv:1604.07799] [INSPIRE].
D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev.D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].
RadiciMCourtoyABacchettaAGuagnelliMImproved extraction of valence transversity distributions from inclusive dihadron productionJHEP2015051232015JHEP...05..123R10.1007/JHEP05(2015)123[arXiv:1503.03495] [INSPIRE]
J. Piekarewicz, private communication.
D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev.D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].
AalsethCEDarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGSEur. Phys. J. Plus201813313110.1140/epjp/i2018-11973-4[arXiv:1707.08145] [INSPIRE]
CourtoyABaeßlerSGonzález-AlonsoMLiutiSBeyond-Standard-Model Tensor Interaction and Hadron PhenomenologyPhys. Rev. Lett.20151151620012015PhRvL.115p2001C10.1103/PhysRevLett.115.162001[arXiv:1503.06814] [INSPIRE]
B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, Phys. Lett.B 784 (2018) 159 [arXiv:1806.01310] [INSPIRE].
M. Anselmino et al., Update on transversity and Collins functions from SIDIS and e+e−data, Nucl. Phys. Proc. Suppl.191 (2009) 98 [arXiv:0812.4366] [INSPIRE].
J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev.D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
M. Cadeddu, C. Giunti, Y.F. Li and Y.Y. Zhang, Average CsI neutron density distribution from COHERENT data, Phys. Rev. Lett.120 (2018) 072501 [arXiv:1710.02730] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
LeeTDYangC-NParity Nonconservation and a Two Component Theory of the NeutrinoPhys. Rev.195710516711957PhRv..105.1671L10238110.1103/PhysRev.105.1671[INSPIRE]
C.J. Horowitz et al., Weak charge form factor and radius of 208Pb through parity violation in electron scattering, Phys. Rev.C 85 (2012) 032501 [arXiv:1202.1468] [INSPIRE].
K. Patton, J. Engel, G.C. McLaughlin and N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions, Phys. Rev.C 86 (2012) 024612 [arXiv:1207.0693] [INSPIRE].
LindnerMRodejohannWXuX-JCoherent Neutrino-Nucleus Scattering and new Neutrino InteractionsJHEP2017030972017JHEP...03..097L10.1007/JHEP03(2017)097[arXiv:1612.04150] [INSPIRE]
J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett.B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
S. Klein and J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions, Phys. Rev.C 60 (1999) 014903 [hep-ph/9902259] [INSPIRE].
D.W.L. Sprung and J. Martorell, The symmetrized Fermi function and its transforms, J. Phys.A 30 (1997) 6525.
COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
MuLan collaboration, Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, Phys. Rev.D 87 (2013) 052003 [arXiv:1211.0960] [INSPIRE].
A. Ferrari, P.R. Sala, A. Fasso and J. Ranft, FLUKA: A multi-particle transport code (Program version 2005), CERN-2005-010 (2005) [INSPIRE].
C.J. Horowitz, K.S. Kumar and R. Michaels, Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA, Eur. Phys. J.A 50 (2014) 48 [arXiv:1307.3572] [INSPIRE].
P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT Enlightenment of the Neutrino Dark Side, Phys. Rev.D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].
AngeliIMarinovaKPTable of experimental nuclear ground state charge radii: An updateAtom. Data Nucl. Data Tabl.201399692013ADNDT..99...69A10.1016/j.adt.2011.12.006
I.K. Baldry and K. Glazebrook, Constraints on a universal IMF from UV to near-IR galaxy luminosity densities, Astrophys. J.593 (2003) 258 [astro-ph/0304423] [INSPIRE].
S. Horiuchi, J.F. Beacom and E. Dwek, The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande, Phys. Rev.D 79 (2009) 083013 [arXiv:0812.3157] [INSPIRE].
LewinJDSmithPFReview of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoilAstropart. Phys.19966871996APh.....6...87L10.1016/S0927-6505(96)00047-3[INSPIRE]
D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev.D 9 (1974) 1389 [INSPIRE].
HelmRHInelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even NucleiPhys. Rev.195610414661956PhRv..104.1466H10.1103/PhysRev.104.1466[INSPIRE]
J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP12 (2005) 021 [hep-ph/0508299] [INSPIRE].
10819_CR29
10819_CR26
10819_CR28
10819_CR27
TD Lee (10819_CR36) 1957; 105
I Angeli (10819_CR16) 2013; 99
S Abrahamyan (10819_CR25) 2012; 108
10819_CR8
10819_CR7
10819_CR6
10819_CR5
10819_CR22
10819_CR44
10819_CR43
10819_CR24
10819_CR46
10819_CR23
10819_CR4
10819_CR40
10819_CR3
10819_CR2
10819_CR20
10819_CR42
10819_CR1
10819_CR19
G Battistoni (10819_CR33) 2005; 23
CE Aalseth (10819_CR18) 2018; 133
10819_CR37
10819_CR14
10819_CR17
10819_CR39
M Lindner (10819_CR38) 2017; 03
A Courtoy (10819_CR45) 2015; 115
J Billard (10819_CR9) 2018; 11
JD Lewin (10819_CR15) 1996; 6
RH Helm (10819_CR12) 1956; 104
DZ Freedman (10819_CR21) 1977; 27
M Dentler (10819_CR41) 2018; 08
10819_CR11
10819_CR10
10819_CR32
10819_CR13
10819_CR35
M Radici (10819_CR47) 2015; 05
10819_CR34
10819_CR31
10819_CR30
References_xml – reference: J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett.B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
– reference: S. Bergmann, Y. Grossman and E. Nardi, Neutrino propagation in matter with general interactions, Phys. Rev.D 60 (1999) 093008 [hep-ph/9903517] [INSPIRE].
– reference: COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
– reference: Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
– reference: RadiciMCourtoyABacchettaAGuagnelliMImproved extraction of valence transversity distributions from inclusive dihadron productionJHEP2015051232015JHEP...05..123R10.1007/JHEP05(2015)123[arXiv:1503.03495] [INSPIRE]
– reference: D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev.D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].
– reference: A. Ferrari, P.R. Sala, A. Fasso and J. Ranft, FLUKA: A multi-particle transport code (Program version 2005), CERN-2005-010 (2005) [INSPIRE].
– reference: D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev.D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].
– reference: LeeTDYangC-NParity Nonconservation and a Two Component Theory of the NeutrinoPhys. Rev.195710516711957PhRv..105.1671L10238110.1103/PhysRev.105.1671[INSPIRE]
– reference: BattistoniGFerrariAMontaruliTSalaPRThe atmospheric neutrino flux below 100-MeV: The FLUKA resultsAstropart. Phys.2005235262005APh....23..526B10.1016/j.astropartphys.2005.03.006[INSPIRE]
– reference: M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin and Y.Y. Zhang, Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering, Phys. Rev.D 98 (2018) 113010 [arXiv:1810.05606] [INSPIRE].
– reference: HelmRHInelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even NucleiPhys. Rev.195610414661956PhRv..104.1466H10.1103/PhysRev.104.1466[INSPIRE]
– reference: J. Piekarewicz, private communication.
– reference: COHERENT collaboration, COHERENT 2018 at the Spallation Neutron Source, arXiv:1803.09183 [INSPIRE].
– reference: MuLan collaboration, Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, Phys. Rev.D 87 (2013) 052003 [arXiv:1211.0960] [INSPIRE].
– reference: CourtoyABaeßlerSGonzález-AlonsoMLiutiSBeyond-Standard-Model Tensor Interaction and Hadron PhenomenologyPhys. Rev. Lett.20151151620012015PhRvL.115p2001C10.1103/PhysRevLett.115.162001[arXiv:1503.06814] [INSPIRE]
– reference: S. Klein and J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions, Phys. Rev.C 60 (1999) 014903 [hep-ph/9902259] [INSPIRE].
– reference: L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev.D 17 (1978) 2369 [INSPIRE].
– reference: AngeliIMarinovaKPTable of experimental nuclear ground state charge radii: An updateAtom. Data Nucl. Data Tabl.201399692013ADNDT..99...69A10.1016/j.adt.2011.12.006
– reference: M. Cadeddu, C. Giunti, Y.F. Li and Y.Y. Zhang, Average CsI neutron density distribution from COHERENT data, Phys. Rev. Lett.120 (2018) 072501 [arXiv:1710.02730] [INSPIRE].
– reference: K. Patton, J. Engel, G.C. McLaughlin and N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions, Phys. Rev.C 86 (2012) 024612 [arXiv:1207.0693] [INSPIRE].
– reference: COHERENT collaboration, COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].
– reference: B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, Phys. Lett.B 784 (2018) 159 [arXiv:1806.01310] [INSPIRE].
– reference: S. Horiuchi, J.F. Beacom and E. Dwek, The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande, Phys. Rev.D 79 (2009) 083013 [arXiv:0812.3157] [INSPIRE].
– reference: FreedmanDZSchrammDNTubbsDLThe Weak Neutral Current and Its Effects in Stellar CollapseAnn. Rev. Nucl. Part. Sci.1977271671977ARNPS..27..167F10.1146/annurev.ns.27.120177.001123[INSPIRE]
– reference: G.R. Goldstein, J.O. Gonzalez Hernandez and S. Liuti, Flavor dependence of chiral odd generalized parton distributions and the tensor charge from the analysis of combined π0and η exclusive electroproduction data, arXiv:1401.0438 [INSPIRE].
– reference: G. Rich, private communication.
– reference: K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev.D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE].
– reference: J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev.D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
– reference: DentlerMUpdated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile NeutrinosJHEP2018080102018JHEP...08..010D10.1007/JHEP08(2018)010[arXiv:1803.10661] [INSPIRE]
– reference: C.J. Horowitz et al., Weak charge form factor and radius of 208Pb through parity violation in electron scattering, Phys. Rev.C 85 (2012) 032501 [arXiv:1202.1468] [INSPIRE].
– reference: I.K. Baldry and K. Glazebrook, Constraints on a universal IMF from UV to near-IR galaxy luminosity densities, Astrophys. J.593 (2003) 258 [astro-ph/0304423] [INSPIRE].
– reference: COHERENT collaboration, The COHERENT Experiment at the Spallation Neutron Source, arXiv:1509.08702 [INSPIRE].
– reference: P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT Enlightenment of the Neutrino Dark Side, Phys. Rev.D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].
– reference: BillardJJohnstonJKavanaghBJProspects for exploring New Physics in Coherent Elastic Neutrino-Nucleus ScatteringJCAP2018110162018JCAP...11..016B10.1088/1475-7516/2018/11/016[arXiv:1805.01798] [INSPIRE]
– reference: LewinJDSmithPFReview of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoilAstropart. Phys.19966871996APh.....6...87L10.1016/S0927-6505(96)00047-3[INSPIRE]
– reference: J. Piekarewicz, A.R. Linero, P. Giuliani and E. Chicken, Power of two: Assessing the impact of a second measurement of the weak-charge form factor of208Pb, Phys. Rev.C 94 (2016) 034316 [arXiv:1604.07799] [INSPIRE].
– reference: M. Anselmino et al., Update on transversity and Collins functions from SIDIS and e+e−data, Nucl. Phys. Proc. Suppl.191 (2009) 98 [arXiv:0812.4366] [INSPIRE].
– reference: S. Ando and K. Sato, Relic neutrino background from cosmological supernovae, New J. Phys.6 (2004) 170 [astro-ph/0410061] [INSPIRE].
– reference: D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev.D 9 (1974) 1389 [INSPIRE].
– reference: AbrahamyanSMeasurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron ScatteringPhys. Rev. Lett.20121081125022012PhRvL.108k2502A10.1103/PhysRevLett.108.112502[arXiv:1201.2568] [INSPIRE]
– reference: H.-Y. Cheng, Low-energy Interactions of Scalar and Pseudoscalar Higgs Bosons With Baryons, Phys. Lett.B 219 (1989) 347 [INSPIRE].
– reference: D.W.L. Sprung and J. Martorell, The symmetrized Fermi function and its transforms, J. Phys.A 30 (1997) 6525.
– reference: C.J. Horowitz, K.S. Kumar and R. Michaels, Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA, Eur. Phys. J.A 50 (2014) 48 [arXiv:1307.3572] [INSPIRE].
– reference: J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP12 (2005) 021 [hep-ph/0508299] [INSPIRE].
– reference: LindnerMRodejohannWXuX-JCoherent Neutrino-Nucleus Scattering and new Neutrino InteractionsJHEP2017030972017JHEP...03..097L10.1007/JHEP03(2017)097[arXiv:1612.04150] [INSPIRE]
– reference: AalsethCEDarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGSEur. Phys. J. Plus201813313110.1140/epjp/i2018-11973-4[arXiv:1707.08145] [INSPIRE]
– ident: 10819_CR28
  doi: 10.1103/PhysRevLett.120.072501
– ident: 10819_CR40
– volume: 23
  start-page: 526
  year: 2005
  ident: 10819_CR33
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2005.03.006
– ident: 10819_CR17
– ident: 10819_CR8
  doi: 10.1103/PhysRevD.97.033003
– ident: 10819_CR32
  doi: 10.1103/PhysRevD.79.083013
– ident: 10819_CR19
– volume: 03
  start-page: 097
  year: 2017
  ident: 10819_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP03(2017)097
– volume: 08
  start-page: 010
  year: 2018
  ident: 10819_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)010
– ident: 10819_CR7
  doi: 10.1016/j.physletb.2017.10.046
– volume: 108
  start-page: 112502
  year: 2012
  ident: 10819_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.112502
– volume: 104
  start-page: 1466
  year: 1956
  ident: 10819_CR12
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.104.1466
– ident: 10819_CR44
  doi: 10.1016/j.nuclphysbps.2009.03.117
– ident: 10819_CR24
  doi: 10.1103/PhysRevD.89.023524
– volume: 105
  start-page: 1671
  year: 1957
  ident: 10819_CR36
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.105.1671
– volume: 133
  start-page: 131
  year: 2018
  ident: 10819_CR18
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-11973-4
– ident: 10819_CR43
  doi: 10.1016/0370-2693(89)90402-4
– ident: 10819_CR20
  doi: 10.1103/PhysRevD.9.1389
– volume: 6
  start-page: 87
  year: 1996
  ident: 10819_CR15
  publication-title: Astropart. Phys.
  doi: 10.1016/S0927-6505(96)00047-3
– volume: 11
  start-page: 016
  year: 2018
  ident: 10819_CR9
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/11/016
– ident: 10819_CR26
– ident: 10819_CR35
  doi: 10.1103/PhysRevD.17.2369
– ident: 10819_CR4
  doi: 10.1088/1126-6708/2005/12/021
– ident: 10819_CR14
  doi: 10.1103/PhysRevC.60.014903
– ident: 10819_CR42
  doi: 10.1086/376502
– ident: 10819_CR11
  doi: 10.1103/PhysRevD.98.113010
– ident: 10819_CR30
  doi: 10.1103/PhysRevC.94.034316
– ident: 10819_CR39
– ident: 10819_CR1
– ident: 10819_CR31
  doi: 10.1088/1367-2630/6/1/170
– ident: 10819_CR34
  doi: 10.2172/877507
– volume: 99
  start-page: 69
  year: 2013
  ident: 10819_CR16
  publication-title: Atom. Data Nucl. Data Tabl.
  doi: 10.1016/j.adt.2011.12.006
– volume: 05
  start-page: 123
  year: 2015
  ident: 10819_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP05(2015)123
– ident: 10819_CR23
  doi: 10.1103/PhysRevD.98.030001
– ident: 10819_CR22
– ident: 10819_CR6
  doi: 10.1103/PhysRevD.96.115007
– volume: 27
  start-page: 167
  year: 1977
  ident: 10819_CR21
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev.ns.27.120177.001123
– volume: 115
  start-page: 162001
  year: 2015
  ident: 10819_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.162001
– ident: 10819_CR2
  doi: 10.1016/j.physletb.2018.07.049
– ident: 10819_CR29
– ident: 10819_CR13
  doi: 10.1088/0305-4470/30/18/026
– ident: 10819_CR3
  doi: 10.1103/PhysRevC.86.024612
– ident: 10819_CR5
  doi: 10.1103/PhysRevD.73.033005
– ident: 10819_CR46
– ident: 10819_CR10
  doi: 10.1103/PhysRevD.98.075018
– ident: 10819_CR27
  doi: 10.1140/epja/i2014-14048-3
– ident: 10819_CR37
  doi: 10.1103/PhysRevD.60.093008
SSID ssj0015190
Score 2.5362313
Snippet A bstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven...
The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the...
Abstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Argon
Beyond Standard Model
Cesium iodides
Classical and Quantum Gravitation
Coherent scattering
Dark matter
Density distribution
Elastic scattering
Elementary Particles
Form factors
High energy physics
Neutrino Physics
Nuclei (nuclear physics)
Parameterization
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Recoil
Regular Article - Theoretical Physics
Relativity Theory
Searching
Solar and Atmospheric Neutrinos
Solar neutrinos
Standard model (particle physics)
String Theory
Uncertainty
Xenon
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA9aEbyIn_hslRw8tIfYZJNNsidR6fNZUDxY6C3kU4uyW7vb_9-Z_XjlCfW0sJsNITPJ_CYz-Q0hb3KlSym1YOBOGKaC18wLVVgoPlgBqy9GvOD85avenKnT8_p8PnDr57TKZU8cN-rURTwjP67QVhvMiHt3-Ydh1SiMrs4lNO6Se6ICTcKb4utP2ygCoBO-0Plwc3y6OfnG9SGYvOZIKLFjiUbCfnh0sLB2wOY_8dHR7KwfkYczXqTvJwE_Jndy-4TcH_M2Y_-U_Po83nKkXaGIPulUPoeCsZpC_UiXSruWXuzkFvbYPnY_8arfQDMAaOidthmZ-duOtchxfN3TPo7kmzAuiomkz8jZ-uT7xw2b6yewqJQamJSmSUliLJILr3Vd6sBLAQeMN0mkHCLMhKi4VcI3Va6bOlZJF5tCMIAbjXxO9tquzS8IDbXyxsZcCQm-tJfeF3AswbtNyhYw8yvydplLF2dycaxx8dsttMjT5DucfHA3xIocbn-4nHg1bm_6AYWzbYaE2OOL7uqHm9eX41FJHm2qlQpKRu5tMDborJNMxld2RfZRtA5wBZLjRswiioMDMGetguEfLBJ38xru3Y3GrcjRogU3n28Z7cv_d7VPHmDLKdnsgOwNV9f5FcCaIbwedfcvG4L1IQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT94wDI4QaNIuaGxMvHxMOewAh6KkSdP0CAj0DmnTDkPiFuUTEKhFtPz_2WkLepk47NSqdarITurHsv2EkO-xVCmlihcQTtSFdFYVlstUuGSd5rD7vMcG55-_1PJKXl5X12uEz70wudp9TknmP_Xc7Ha5PP_N1CE4rOaIY6v6BoAPhYcWnGGDw5Q4gGdsZvD5d9CK88kc_XDpYC-t4Ms3KdHsaS4-kc0JItKT0aZbZC22n8mHXKrp-y_k_kdubKRdogg46XhiDgX_NGb3kSGVdi29Wykn7FHed7fY3TfQCJgZvk7biGT8bVe0SGv83NPeZ75NmBfF2tFtcnVx_udsWUxHJhReSjkUQtRNCALTj4xbpapUOZYSxFysCTxE50ETvGRactuUsWoqXwaVdHCuBqhYi69kve3auEOoq6SttY8lFxA-W2FtglgSAtogdQLPviDHsy6Nn_jE8ViLBzMzIY_KN6h8iDD4ghy-DHgcqTTeFz1F47yIIQd2ftA93ZhpSxnmpWBeh0pKJ4VnVrtaOxVVEKG2pV6QPTStASiBfLgeC4f8YAC_aS1h-vuzxc20bXtTIiCssexyQY7mVfD6-p3Z7v6H7B75iLdjsdk-WR-enuMBwJrBfcsL-S-mUPCy
  priority: 102
  providerName: Springer Nature
Title Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data
URI https://link.springer.com/article/10.1007/JHEP06(2019)141
https://www.proquest.com/docview/2250571080
https://www.osti.gov/servlets/purl/1598844
https://doaj.org/article/0c430c8d544b43c0a8b78b6e6d3d7a28
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: 8FG
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4imWlpUPHNpDqB07tnNsV7sslagqxEq9WX4KBEoQSf8_M3kUFqniwiVREscajceabzQznwl5m0qVc654AeGELqR3qnBc5sJn5w2H3RcCNjh_vFTbnby4rq7_OOoLa8JGeuBRcacsSMGCiZWUXorAnPHaeJVUFFG7cmjzBTc2B1NT_gBwCZuJfJg-vdiur5g6BmdXn3DJ93zQQNUPtxa21B7M_CszOjiczRPyeEKK9GyU8Cm5l5pn5OFQsRm65-Tbh6G_kbaZIu6k48E5FNzUmORHolTaNvTrXlVhh-ND-wWb_HqaADrD7LRJyMnftEWD7MY3He3CQLsJclEsIX1Bdpv159W2mE5OKIKUsi-E0HWMArOQjDulqlx5ljOEXqyOPCYfQBMc9Ca5q8tU1VUoo8omeq8BMWrxkhw0bZNeEeor6bQJqeQComgnnMsQUkJcG6XJ4OAX5N2sSxsmWnE83eK7nQmRR-VbVD4EGnxBjm9_-DEyatw99BwX53YYUmEPL8BA7GQg9l8GsiCHuLQWEAXS4gasHwq9BRhnjATxj-YVt9Pu7WyJuFBj9eWCnMxW8PvzHdK-_h_SHpJHON9YjHZEDvqfN-kNwJ7eL8l9s3m_JA_O15dXn-BpVUq8qtVysH247sqzX1GKAuc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qkuLeADSO0h1I6dxDkgxKPLbl_i0Eq9GT8BtUpKkwrxp_iNzOSx1SKVW0-REtuy7BnPN5nxN4S8CmkeY8x4Au5EkUhr8sRwGRMbjVUctM85vOB8cJjPjuXuSXayQv6Md2EwrXI8E7uD2tcO_5Fvp2irC8yIe3f-M8GqURhdHUto9GKxF37_ApeteTv_BPv7Ok2nO0cfZ8lQVSBxUso2EaIovRcYoWPc5HkWM8tiBLeElZ77YB2gHp4yJbkp05CVmUt9HpW3tgA0VQgY9xa5LYUQyNWvpp8XUQtAQ2ykD2LF9u5s5wvLN8HElltc8iXL1xUIgEcNirwEbv-Jx3ZmbvqA3B_wKX3fC9RDshKqR-ROlyfqmsfkdN7dqqR1pIh2aV-uh4Jx7FMLkJ6V1hX9sZTL2GB7V3_Hq4UtDQDYYXRaBawEUNVJhZzKlw1tXEf2CfOimLj6hBzfyMo-JatVXYU1Qm0mTaFcSLkA390IYyI4suBNe6kiwIoJeTOupXYDmTnW1DjTIw1zv_gaFx_cGz4hm4sO5z2Px_VNP-DmLJohAXf3or74pgd91sxJwZzymZRWCseMsoWyeci98IVJ1YSs49ZqwDFIxuswa8m1GsCjUhKmvzHuuB7OjEZfSfiEbI1ScPX5mtk--_9QL8nd2dHBvt6fH-6tk3vYq0902yCr7cVleA6QqrUvOjmm5OtNK85f6wkwWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiKe6tIAPILWHsHbixN5DhSjd1W4LqxWiUm_BT0CtktKkQvxFfhUzeWy1SOXWU6SNY1m2x_PN-ptvCHnt4yyEkPIIwgkZCaOzSHMRIhO0URysz1pMcP60yGYn4ug0Pd0gf_pcGKRV9mdic1C70uJ_5KMYfbVERtwodLSI5eH03cXPCCtI4U1rX05Dd2UW3H4jN9YleRz7378gnKv254ew9m_ieDr58mEWdRUHIiuEqKMkkWPnEry9Y1xnWRpSw0KAkIWNHXfeWEBEPGZKcD2OfTpObeyyoJwxEpCWTKDfO2RTYr7ogGweTBbLz6s7DcBKrBcXYnJ0NJssWbYLDni8xwVf84tN-QB4lGDma9D3n9vaxglOH5IHHXql79vt9ohs-OIxuduwSG31hJzNm5xLWgaKWJi2xXwouM6WeIDirbQs6I81pmOF7W35HRMPa-oBzkPvtPBYJ6AoowIVl68qWtlGChTGRZHW-pSc3MrcPiODoiz8FqEmFVoq62OeQGSvE60DhLkQazuhAoCOIXnbz2VuO6lzrLhxnvcize3k5zj5EPzwIdldfXDRqnzc3PQAF2fVDOW5mx_Ky295Z-05syJhVrlUCCMSy7QyUpnMZy5xUsdqSLZxaXNAOSjVa5HTZOscoKVSAoa_06943p0oVX69_4dkr98F169vGO3z_3f1itwDI8o_zhfH2-Q-ftSy4HbIoL688i8Ab9XmZbeRKfl627bzF2WkOzI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+form+factor+uncertainties+on+interpretations+of+coherent+elastic+neutrino-nucleus+scattering+data&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Sierra%2C+D.+Aristizabal&rft.au=Liao%2C+Jiajun&rft.au=Marfatia%2C+D.&rft.date=2019-06-01&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2019&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282019%29141&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP06_2019_141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon