Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data
A bstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection...
Saved in:
Published in | The journal of high energy physics Vol. 2019; no. 6; pp. 1 - 23 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2019
Springer Nature B.V Springer Berlin SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1029-8479 |
DOI | 10.1007/JHEP06(2019)141 |
Cover
Abstract | A
bstract
The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers
q
≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches. |
---|---|
AbstractList | The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers
q
≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches. The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q≳20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection search The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches. A bstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches. Abstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches. |
ArticleNumber | 141 |
Author | Liao, Jiajun Marfatia, D. Sierra, D. Aristizabal |
Author_xml | – sequence: 1 givenname: D. Aristizabal surname: Sierra fullname: Sierra, D. Aristizabal email: daristizabal@ulg.ac.be organization: Departamento de Física, Universidad Técnica Federico Santa María, IFPA, Dep. AGO, Université de Liège – sequence: 2 givenname: Jiajun surname: Liao fullname: Liao, Jiajun organization: School of Physics, Sun Yat-Sen University, Department of Physics and Astronomy, University of Hawaii at Manoa – sequence: 3 givenname: D. surname: Marfatia fullname: Marfatia, D. organization: Department of Physics and Astronomy, University of Hawaii at Manoa |
BackLink | https://www.osti.gov/servlets/purl/1598844$$D View this record in Osti.gov |
BookMark | eNp1kUFvFSEUhSemJrbVtVuiG12MvczADCxNU-0zTXSha8LApeU5D0ZgFv57eZ2aGpOuuJDzndzDOWtOQgzYNK8pfKAA48WX66tvMLzrgMr3lNFnzSmFTraCjfLkn_lFc5bzHoByKuG0-bk7LNoUEh1xMR2Iq5eYyBoMpqJ9KB4ziYHUCdOSsOjiY8hHvYl3mDAUgrPOxRsScC3Jh9iG1cy4ZpKNLhXz4ZZYXfTL5rnTc8ZXD-d58-PT1ffL6_bm6-fd5ceb1jDGStv3o7S2B9oLoHoYuOMTOEeBgbTU4mRqRNqBYFTLDrnkprODE3aaRinl2J83u83XRr1XS_IHnX6rqL26f4jpVulUF55RgWE9GGE5YxPrDWgxjWIacLC9HXUnqtebzSvWiCobX9DcmRgCmqIol0IwVkVvN9GS4q8Vc1H7uKZQM6qu48BHCgKqim8qk2LOCZ2qbvffWZL2s6KgjkWqrUh1LFLVIit38R_3N9LTBGxEXo6fj-lxn6eQPzkdsPE |
CitedBy_id | crossref_primary_10_1007_JHEP02_2021_099 crossref_primary_10_1007_JHEP07_2019_103 crossref_primary_10_1007_JHEP09_2020_106 crossref_primary_10_1103_PhysRevD_102_113014 crossref_primary_10_1007_JHEP09_2022_076 crossref_primary_10_1007_JHEP05_2020_130 crossref_primary_10_1007_JHEP10_2024_003 crossref_primary_10_1007_JHEP12_2020_178 crossref_primary_10_1088_1475_7516_2020_04_044 crossref_primary_10_1103_PhysRevD_111_033003 crossref_primary_10_3390_universe9050207 crossref_primary_10_1103_Physics_14_58 crossref_primary_10_1103_PhysRevD_104_095017 crossref_primary_10_1007_JHEP09_2019_069 crossref_primary_10_1103_PhysRevD_102_074018 crossref_primary_10_1103_PhysRevD_103_092002 crossref_primary_10_1103_PhysRevD_100_113003 crossref_primary_10_1007_JHEP12_2019_124 crossref_primary_10_1103_PhysRevD_102_113004 crossref_primary_10_1007_JHEP04_2023_035 crossref_primary_10_1103_PhysRevC_100_054301 crossref_primary_10_1103_PhysRevD_101_035012 crossref_primary_10_1103_PhysRevD_110_055040 crossref_primary_10_1103_PhysRevC_100_061304 crossref_primary_10_1103_PhysRevD_100_115020 crossref_primary_10_1103_PhysRevD_104_015005 crossref_primary_10_1103_PhysRevD_102_015009 crossref_primary_10_1103_PhysRevLett_124_121802 crossref_primary_10_1103_PhysRevD_100_073014 crossref_primary_10_1007_JHEP04_2024_038 crossref_primary_10_1103_PhysRevD_108_033002 crossref_primary_10_1088_1742_6596_1468_1_012126 crossref_primary_10_1103_PhysRevD_106_L031702 crossref_primary_10_1088_1475_7516_2022_01_055 crossref_primary_10_1007_JHEP05_2022_037 crossref_primary_10_1007_JHEP03_2021_294 crossref_primary_10_1103_PhysRevD_104_033004 crossref_primary_10_1103_PhysRevD_105_033001 crossref_primary_10_1007_s12648_024_03406_x crossref_primary_10_1007_JHEP05_2022_085 crossref_primary_10_1103_PhysRevD_109_055038 crossref_primary_10_1103_PhysRevLett_126_012002 crossref_primary_10_1103_PhysRevD_104_015015 crossref_primary_10_3389_fphy_2019_00191 crossref_primary_10_1103_PhysRevLett_123_061801 crossref_primary_10_1103_PhysRevD_102_075004 crossref_primary_10_1103_PhysRevD_108_063023 crossref_primary_10_1103_PhysRevD_106_013001 crossref_primary_10_1103_PhysRevD_100_033003 crossref_primary_10_1103_PhysRevC_102_035501 crossref_primary_10_1007_JHEP11_2019_028 crossref_primary_10_1088_1475_7516_2025_03_037 crossref_primary_10_1103_PhysRevD_106_093010 crossref_primary_10_1007_JHEP04_2021_266 crossref_primary_10_1007_JHEP02_2021_097 crossref_primary_10_21468_SciPostPhysProc_2_001 crossref_primary_10_1103_PhysRevD_111_055007 |
Cites_doi | 10.1103/PhysRevLett.120.072501 10.1016/j.astropartphys.2005.03.006 10.1103/PhysRevD.97.033003 10.1103/PhysRevD.79.083013 10.1007/JHEP03(2017)097 10.1007/JHEP08(2018)010 10.1016/j.physletb.2017.10.046 10.1103/PhysRevLett.108.112502 10.1103/PhysRev.104.1466 10.1016/j.nuclphysbps.2009.03.117 10.1103/PhysRevD.89.023524 10.1103/PhysRev.105.1671 10.1140/epjp/i2018-11973-4 10.1016/0370-2693(89)90402-4 10.1103/PhysRevD.9.1389 10.1016/S0927-6505(96)00047-3 10.1088/1475-7516/2018/11/016 10.1103/PhysRevD.17.2369 10.1088/1126-6708/2005/12/021 10.1103/PhysRevC.60.014903 10.1086/376502 10.1103/PhysRevD.98.113010 10.1103/PhysRevC.94.034316 10.1088/1367-2630/6/1/170 10.2172/877507 10.1016/j.adt.2011.12.006 10.1007/JHEP05(2015)123 10.1103/PhysRevD.98.030001 10.1103/PhysRevD.96.115007 10.1146/annurev.ns.27.120177.001123 10.1103/PhysRevLett.115.162001 10.1016/j.physletb.2018.07.049 10.1088/0305-4470/30/18/026 10.1103/PhysRevC.86.024612 10.1103/PhysRevD.73.033005 10.1103/PhysRevD.98.075018 10.1140/epja/i2014-14048-3 10.1103/PhysRevD.60.093008 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
CorporateAuthor | Univ. of Hawaii, Honolulu, HI (United States) |
CorporateAuthor_xml | – name: Univ. of Hawaii, Honolulu, HI (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP06(2019)141 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_0c430c8d544b43c0a8b78b6e6d3d7a28 1598844 10_1007_JHEP06_2019_141 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEINN AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE PQGLB PUEGO Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS AHBXF OIOZB OTOTI |
ID | FETCH-LOGICAL-c444t-3379dd3013801a665f5b0ff10409d1debc019120841a92e595c2d6f8dbb799973 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 00:40:21 EDT 2025 Thu May 18 22:28:30 EDT 2023 Fri Jul 25 22:08:51 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 Wed Oct 01 04:35:47 EDT 2025 Fri Feb 21 02:33:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Neutrino Physics Beyond Standard Model Solar and Atmospheric Neutrinos |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-3379dd3013801a665f5b0ff10409d1debc019120841a92e595c2d6f8dbb799973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0010504 USDOE Office of Science (SC), High Energy Physics (HEP) |
OpenAccessLink | https://doaj.org/article/0c430c8d544b43c0a8b78b6e6d3d7a28 |
PQID | 2250571080 |
PQPubID | 2034718 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0c430c8d544b43c0a8b78b6e6d3d7a28 osti_scitechconnect_1598844 proquest_journals_2250571080 crossref_citationtrail_10_1007_JHEP06_2019_141 crossref_primary_10_1007_JHEP06_2019_141 springer_journals_10_1007_JHEP06_2019_141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Berlin SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Berlin – name: SpringerOpen |
References | FreedmanDZSchrammDNTubbsDLThe Weak Neutral Current and Its Effects in Stellar CollapseAnn. Rev. Nucl. Part. Sci.1977271671977ARNPS..27..167F10.1146/annurev.ns.27.120177.001123[INSPIRE] COHERENT collaboration, COHERENT 2018 at the Spallation Neutron Source, arXiv:1803.09183 [INSPIRE]. G. Rich, private communication. BattistoniGFerrariAMontaruliTSalaPRThe atmospheric neutrino flux below 100-MeV: The FLUKA resultsAstropart. Phys.2005235262005APh....23..526B10.1016/j.astropartphys.2005.03.006[INSPIRE] M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin and Y.Y. Zhang, Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering, Phys. Rev.D 98 (2018) 113010 [arXiv:1810.05606] [INSPIRE]. L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev.D 17 (1978) 2369 [INSPIRE]. K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev.D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE]. BillardJJohnstonJKavanaghBJProspects for exploring New Physics in Coherent Elastic Neutrino-Nucleus ScatteringJCAP2018110162018JCAP...11..016B10.1088/1475-7516/2018/11/016[arXiv:1805.01798] [INSPIRE] G.R. Goldstein, J.O. Gonzalez Hernandez and S. Liuti, Flavor dependence of chiral odd generalized parton distributions and the tensor charge from the analysis of combined π0and η exclusive electroproduction data, arXiv:1401.0438 [INSPIRE]. COHERENT collaboration, COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE]. COHERENT collaboration, The COHERENT Experiment at the Spallation Neutron Source, arXiv:1509.08702 [INSPIRE]. S. Ando and K. Sato, Relic neutrino background from cosmological supernovae, New J. Phys.6 (2004) 170 [astro-ph/0410061] [INSPIRE]. S. Bergmann, Y. Grossman and E. Nardi, Neutrino propagation in matter with general interactions, Phys. Rev.D 60 (1999) 093008 [hep-ph/9903517] [INSPIRE]. AbrahamyanSMeasurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron ScatteringPhys. Rev. Lett.20121081125022012PhRvL.108k2502A10.1103/PhysRevLett.108.112502[arXiv:1201.2568] [INSPIRE] DentlerMUpdated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile NeutrinosJHEP2018080102018JHEP...08..010D10.1007/JHEP08(2018)010[arXiv:1803.10661] [INSPIRE] H.-Y. Cheng, Low-energy Interactions of Scalar and Pseudoscalar Higgs Bosons With Baryons, Phys. Lett.B 219 (1989) 347 [INSPIRE]. J. Piekarewicz, A.R. Linero, P. Giuliani and E. Chicken, Power of two: Assessing the impact of a second measurement of the weak-charge form factor of208Pb, Phys. Rev.C 94 (2016) 034316 [arXiv:1604.07799] [INSPIRE]. D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev.D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE]. RadiciMCourtoyABacchettaAGuagnelliMImproved extraction of valence transversity distributions from inclusive dihadron productionJHEP2015051232015JHEP...05..123R10.1007/JHEP05(2015)123[arXiv:1503.03495] [INSPIRE] J. Piekarewicz, private communication. D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev.D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE]. AalsethCEDarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGSEur. Phys. J. Plus201813313110.1140/epjp/i2018-11973-4[arXiv:1707.08145] [INSPIRE] CourtoyABaeßlerSGonzález-AlonsoMLiutiSBeyond-Standard-Model Tensor Interaction and Hadron PhenomenologyPhys. Rev. Lett.20151151620012015PhRvL.115p2001C10.1103/PhysRevLett.115.162001[arXiv:1503.06814] [INSPIRE] B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, Phys. Lett.B 784 (2018) 159 [arXiv:1806.01310] [INSPIRE]. M. Anselmino et al., Update on transversity and Collins functions from SIDIS and e+e−data, Nucl. Phys. Proc. Suppl.191 (2009) 98 [arXiv:0812.4366] [INSPIRE]. J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev.D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE]. M. Cadeddu, C. Giunti, Y.F. Li and Y.Y. Zhang, Average CsI neutron density distribution from COHERENT data, Phys. Rev. Lett.120 (2018) 072501 [arXiv:1710.02730] [INSPIRE]. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE]. LeeTDYangC-NParity Nonconservation and a Two Component Theory of the NeutrinoPhys. Rev.195710516711957PhRv..105.1671L10238110.1103/PhysRev.105.1671[INSPIRE] C.J. Horowitz et al., Weak charge form factor and radius of 208Pb through parity violation in electron scattering, Phys. Rev.C 85 (2012) 032501 [arXiv:1202.1468] [INSPIRE]. K. Patton, J. Engel, G.C. McLaughlin and N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions, Phys. Rev.C 86 (2012) 024612 [arXiv:1207.0693] [INSPIRE]. LindnerMRodejohannWXuX-JCoherent Neutrino-Nucleus Scattering and new Neutrino InteractionsJHEP2017030972017JHEP...03..097L10.1007/JHEP03(2017)097[arXiv:1612.04150] [INSPIRE] J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett.B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE]. S. Klein and J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions, Phys. Rev.C 60 (1999) 014903 [hep-ph/9902259] [INSPIRE]. D.W.L. Sprung and J. Martorell, The symmetrized Fermi function and its transforms, J. Phys.A 30 (1997) 6525. COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science357 (2017) 1123 [arXiv:1708.01294] [INSPIRE]. MuLan collaboration, Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, Phys. Rev.D 87 (2013) 052003 [arXiv:1211.0960] [INSPIRE]. A. Ferrari, P.R. Sala, A. Fasso and J. Ranft, FLUKA: A multi-particle transport code (Program version 2005), CERN-2005-010 (2005) [INSPIRE]. C.J. Horowitz, K.S. Kumar and R. Michaels, Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA, Eur. Phys. J.A 50 (2014) 48 [arXiv:1307.3572] [INSPIRE]. P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT Enlightenment of the Neutrino Dark Side, Phys. Rev.D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE]. AngeliIMarinovaKPTable of experimental nuclear ground state charge radii: An updateAtom. Data Nucl. Data Tabl.201399692013ADNDT..99...69A10.1016/j.adt.2011.12.006 I.K. Baldry and K. Glazebrook, Constraints on a universal IMF from UV to near-IR galaxy luminosity densities, Astrophys. J.593 (2003) 258 [astro-ph/0304423] [INSPIRE]. S. Horiuchi, J.F. Beacom and E. Dwek, The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande, Phys. Rev.D 79 (2009) 083013 [arXiv:0812.3157] [INSPIRE]. LewinJDSmithPFReview of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoilAstropart. Phys.19966871996APh.....6...87L10.1016/S0927-6505(96)00047-3[INSPIRE] D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev.D 9 (1974) 1389 [INSPIRE]. HelmRHInelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even NucleiPhys. Rev.195610414661956PhRv..104.1466H10.1103/PhysRev.104.1466[INSPIRE] J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP12 (2005) 021 [hep-ph/0508299] [INSPIRE]. 10819_CR29 10819_CR26 10819_CR28 10819_CR27 TD Lee (10819_CR36) 1957; 105 I Angeli (10819_CR16) 2013; 99 S Abrahamyan (10819_CR25) 2012; 108 10819_CR8 10819_CR7 10819_CR6 10819_CR5 10819_CR22 10819_CR44 10819_CR43 10819_CR24 10819_CR46 10819_CR23 10819_CR4 10819_CR40 10819_CR3 10819_CR2 10819_CR20 10819_CR42 10819_CR1 10819_CR19 G Battistoni (10819_CR33) 2005; 23 CE Aalseth (10819_CR18) 2018; 133 10819_CR37 10819_CR14 10819_CR17 10819_CR39 M Lindner (10819_CR38) 2017; 03 A Courtoy (10819_CR45) 2015; 115 J Billard (10819_CR9) 2018; 11 JD Lewin (10819_CR15) 1996; 6 RH Helm (10819_CR12) 1956; 104 DZ Freedman (10819_CR21) 1977; 27 M Dentler (10819_CR41) 2018; 08 10819_CR11 10819_CR10 10819_CR32 10819_CR13 10819_CR35 M Radici (10819_CR47) 2015; 05 10819_CR34 10819_CR31 10819_CR30 |
References_xml | – reference: J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett.B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE]. – reference: S. Bergmann, Y. Grossman and E. Nardi, Neutrino propagation in matter with general interactions, Phys. Rev.D 60 (1999) 093008 [hep-ph/9903517] [INSPIRE]. – reference: COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science357 (2017) 1123 [arXiv:1708.01294] [INSPIRE]. – reference: Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE]. – reference: RadiciMCourtoyABacchettaAGuagnelliMImproved extraction of valence transversity distributions from inclusive dihadron productionJHEP2015051232015JHEP...05..123R10.1007/JHEP05(2015)123[arXiv:1503.03495] [INSPIRE] – reference: D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev.D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE]. – reference: A. Ferrari, P.R. Sala, A. Fasso and J. Ranft, FLUKA: A multi-particle transport code (Program version 2005), CERN-2005-010 (2005) [INSPIRE]. – reference: D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev.D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE]. – reference: LeeTDYangC-NParity Nonconservation and a Two Component Theory of the NeutrinoPhys. Rev.195710516711957PhRv..105.1671L10238110.1103/PhysRev.105.1671[INSPIRE] – reference: BattistoniGFerrariAMontaruliTSalaPRThe atmospheric neutrino flux below 100-MeV: The FLUKA resultsAstropart. Phys.2005235262005APh....23..526B10.1016/j.astropartphys.2005.03.006[INSPIRE] – reference: M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin and Y.Y. Zhang, Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering, Phys. Rev.D 98 (2018) 113010 [arXiv:1810.05606] [INSPIRE]. – reference: HelmRHInelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even NucleiPhys. Rev.195610414661956PhRv..104.1466H10.1103/PhysRev.104.1466[INSPIRE] – reference: J. Piekarewicz, private communication. – reference: COHERENT collaboration, COHERENT 2018 at the Spallation Neutron Source, arXiv:1803.09183 [INSPIRE]. – reference: MuLan collaboration, Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, Phys. Rev.D 87 (2013) 052003 [arXiv:1211.0960] [INSPIRE]. – reference: CourtoyABaeßlerSGonzález-AlonsoMLiutiSBeyond-Standard-Model Tensor Interaction and Hadron PhenomenologyPhys. Rev. Lett.20151151620012015PhRvL.115p2001C10.1103/PhysRevLett.115.162001[arXiv:1503.06814] [INSPIRE] – reference: S. Klein and J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions, Phys. Rev.C 60 (1999) 014903 [hep-ph/9902259] [INSPIRE]. – reference: L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev.D 17 (1978) 2369 [INSPIRE]. – reference: AngeliIMarinovaKPTable of experimental nuclear ground state charge radii: An updateAtom. Data Nucl. Data Tabl.201399692013ADNDT..99...69A10.1016/j.adt.2011.12.006 – reference: M. Cadeddu, C. Giunti, Y.F. Li and Y.Y. Zhang, Average CsI neutron density distribution from COHERENT data, Phys. Rev. Lett.120 (2018) 072501 [arXiv:1710.02730] [INSPIRE]. – reference: K. Patton, J. Engel, G.C. McLaughlin and N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions, Phys. Rev.C 86 (2012) 024612 [arXiv:1207.0693] [INSPIRE]. – reference: COHERENT collaboration, COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE]. – reference: B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, Phys. Lett.B 784 (2018) 159 [arXiv:1806.01310] [INSPIRE]. – reference: S. Horiuchi, J.F. Beacom and E. Dwek, The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande, Phys. Rev.D 79 (2009) 083013 [arXiv:0812.3157] [INSPIRE]. – reference: FreedmanDZSchrammDNTubbsDLThe Weak Neutral Current and Its Effects in Stellar CollapseAnn. Rev. Nucl. Part. Sci.1977271671977ARNPS..27..167F10.1146/annurev.ns.27.120177.001123[INSPIRE] – reference: G.R. Goldstein, J.O. Gonzalez Hernandez and S. Liuti, Flavor dependence of chiral odd generalized parton distributions and the tensor charge from the analysis of combined π0and η exclusive electroproduction data, arXiv:1401.0438 [INSPIRE]. – reference: G. Rich, private communication. – reference: K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev.D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE]. – reference: J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev.D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE]. – reference: DentlerMUpdated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile NeutrinosJHEP2018080102018JHEP...08..010D10.1007/JHEP08(2018)010[arXiv:1803.10661] [INSPIRE] – reference: C.J. Horowitz et al., Weak charge form factor and radius of 208Pb through parity violation in electron scattering, Phys. Rev.C 85 (2012) 032501 [arXiv:1202.1468] [INSPIRE]. – reference: I.K. Baldry and K. Glazebrook, Constraints on a universal IMF from UV to near-IR galaxy luminosity densities, Astrophys. J.593 (2003) 258 [astro-ph/0304423] [INSPIRE]. – reference: COHERENT collaboration, The COHERENT Experiment at the Spallation Neutron Source, arXiv:1509.08702 [INSPIRE]. – reference: P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT Enlightenment of the Neutrino Dark Side, Phys. Rev.D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE]. – reference: BillardJJohnstonJKavanaghBJProspects for exploring New Physics in Coherent Elastic Neutrino-Nucleus ScatteringJCAP2018110162018JCAP...11..016B10.1088/1475-7516/2018/11/016[arXiv:1805.01798] [INSPIRE] – reference: LewinJDSmithPFReview of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoilAstropart. Phys.19966871996APh.....6...87L10.1016/S0927-6505(96)00047-3[INSPIRE] – reference: J. Piekarewicz, A.R. Linero, P. Giuliani and E. Chicken, Power of two: Assessing the impact of a second measurement of the weak-charge form factor of208Pb, Phys. Rev.C 94 (2016) 034316 [arXiv:1604.07799] [INSPIRE]. – reference: M. Anselmino et al., Update on transversity and Collins functions from SIDIS and e+e−data, Nucl. Phys. Proc. Suppl.191 (2009) 98 [arXiv:0812.4366] [INSPIRE]. – reference: S. Ando and K. Sato, Relic neutrino background from cosmological supernovae, New J. Phys.6 (2004) 170 [astro-ph/0410061] [INSPIRE]. – reference: D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev.D 9 (1974) 1389 [INSPIRE]. – reference: AbrahamyanSMeasurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron ScatteringPhys. Rev. Lett.20121081125022012PhRvL.108k2502A10.1103/PhysRevLett.108.112502[arXiv:1201.2568] [INSPIRE] – reference: H.-Y. Cheng, Low-energy Interactions of Scalar and Pseudoscalar Higgs Bosons With Baryons, Phys. Lett.B 219 (1989) 347 [INSPIRE]. – reference: D.W.L. Sprung and J. Martorell, The symmetrized Fermi function and its transforms, J. Phys.A 30 (1997) 6525. – reference: C.J. Horowitz, K.S. Kumar and R. Michaels, Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA, Eur. Phys. J.A 50 (2014) 48 [arXiv:1307.3572] [INSPIRE]. – reference: J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP12 (2005) 021 [hep-ph/0508299] [INSPIRE]. – reference: LindnerMRodejohannWXuX-JCoherent Neutrino-Nucleus Scattering and new Neutrino InteractionsJHEP2017030972017JHEP...03..097L10.1007/JHEP03(2017)097[arXiv:1612.04150] [INSPIRE] – reference: AalsethCEDarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGSEur. Phys. J. Plus201813313110.1140/epjp/i2018-11973-4[arXiv:1707.08145] [INSPIRE] – ident: 10819_CR28 doi: 10.1103/PhysRevLett.120.072501 – ident: 10819_CR40 – volume: 23 start-page: 526 year: 2005 ident: 10819_CR33 publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2005.03.006 – ident: 10819_CR17 – ident: 10819_CR8 doi: 10.1103/PhysRevD.97.033003 – ident: 10819_CR32 doi: 10.1103/PhysRevD.79.083013 – ident: 10819_CR19 – volume: 03 start-page: 097 year: 2017 ident: 10819_CR38 publication-title: JHEP doi: 10.1007/JHEP03(2017)097 – volume: 08 start-page: 010 year: 2018 ident: 10819_CR41 publication-title: JHEP doi: 10.1007/JHEP08(2018)010 – ident: 10819_CR7 doi: 10.1016/j.physletb.2017.10.046 – volume: 108 start-page: 112502 year: 2012 ident: 10819_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.112502 – volume: 104 start-page: 1466 year: 1956 ident: 10819_CR12 publication-title: Phys. Rev. doi: 10.1103/PhysRev.104.1466 – ident: 10819_CR44 doi: 10.1016/j.nuclphysbps.2009.03.117 – ident: 10819_CR24 doi: 10.1103/PhysRevD.89.023524 – volume: 105 start-page: 1671 year: 1957 ident: 10819_CR36 publication-title: Phys. Rev. doi: 10.1103/PhysRev.105.1671 – volume: 133 start-page: 131 year: 2018 ident: 10819_CR18 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-11973-4 – ident: 10819_CR43 doi: 10.1016/0370-2693(89)90402-4 – ident: 10819_CR20 doi: 10.1103/PhysRevD.9.1389 – volume: 6 start-page: 87 year: 1996 ident: 10819_CR15 publication-title: Astropart. Phys. doi: 10.1016/S0927-6505(96)00047-3 – volume: 11 start-page: 016 year: 2018 ident: 10819_CR9 publication-title: JCAP doi: 10.1088/1475-7516/2018/11/016 – ident: 10819_CR26 – ident: 10819_CR35 doi: 10.1103/PhysRevD.17.2369 – ident: 10819_CR4 doi: 10.1088/1126-6708/2005/12/021 – ident: 10819_CR14 doi: 10.1103/PhysRevC.60.014903 – ident: 10819_CR42 doi: 10.1086/376502 – ident: 10819_CR11 doi: 10.1103/PhysRevD.98.113010 – ident: 10819_CR30 doi: 10.1103/PhysRevC.94.034316 – ident: 10819_CR39 – ident: 10819_CR1 – ident: 10819_CR31 doi: 10.1088/1367-2630/6/1/170 – ident: 10819_CR34 doi: 10.2172/877507 – volume: 99 start-page: 69 year: 2013 ident: 10819_CR16 publication-title: Atom. Data Nucl. Data Tabl. doi: 10.1016/j.adt.2011.12.006 – volume: 05 start-page: 123 year: 2015 ident: 10819_CR47 publication-title: JHEP doi: 10.1007/JHEP05(2015)123 – ident: 10819_CR23 doi: 10.1103/PhysRevD.98.030001 – ident: 10819_CR22 – ident: 10819_CR6 doi: 10.1103/PhysRevD.96.115007 – volume: 27 start-page: 167 year: 1977 ident: 10819_CR21 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.ns.27.120177.001123 – volume: 115 start-page: 162001 year: 2015 ident: 10819_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.162001 – ident: 10819_CR2 doi: 10.1016/j.physletb.2018.07.049 – ident: 10819_CR29 – ident: 10819_CR13 doi: 10.1088/0305-4470/30/18/026 – ident: 10819_CR3 doi: 10.1103/PhysRevC.86.024612 – ident: 10819_CR5 doi: 10.1103/PhysRevD.73.033005 – ident: 10819_CR46 – ident: 10819_CR10 doi: 10.1103/PhysRevD.98.075018 – ident: 10819_CR27 doi: 10.1140/epja/i2014-14048-3 – ident: 10819_CR37 doi: 10.1103/PhysRevD.60.093008 |
SSID | ssj0015190 |
Score | 2.5362313 |
Snippet | A
bstract
The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven... The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the... Abstract The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Argon Beyond Standard Model Cesium iodides Classical and Quantum Gravitation Coherent scattering Dark matter Density distribution Elastic scattering Elementary Particles Form factors High energy physics Neutrino Physics Nuclei (nuclear physics) Parameterization Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum Field Theories Quantum Field Theory Quantum Physics Recoil Regular Article - Theoretical Physics Relativity Theory Searching Solar and Atmospheric Neutrinos Solar neutrinos Standard model (particle physics) String Theory Uncertainty Xenon |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA9aEbyIn_hslRw8tIfYZJNNsidR6fNZUDxY6C3kU4uyW7vb_9-Z_XjlCfW0sJsNITPJ_CYz-Q0hb3KlSym1YOBOGKaC18wLVVgoPlgBqy9GvOD85avenKnT8_p8PnDr57TKZU8cN-rURTwjP67QVhvMiHt3-Ydh1SiMrs4lNO6Se6ICTcKb4utP2ygCoBO-0Plwc3y6OfnG9SGYvOZIKLFjiUbCfnh0sLB2wOY_8dHR7KwfkYczXqTvJwE_Jndy-4TcH_M2Y_-U_Po83nKkXaGIPulUPoeCsZpC_UiXSruWXuzkFvbYPnY_8arfQDMAaOidthmZ-duOtchxfN3TPo7kmzAuiomkz8jZ-uT7xw2b6yewqJQamJSmSUliLJILr3Vd6sBLAQeMN0mkHCLMhKi4VcI3Va6bOlZJF5tCMIAbjXxO9tquzS8IDbXyxsZcCQm-tJfeF3AswbtNyhYw8yvydplLF2dycaxx8dsttMjT5DucfHA3xIocbn-4nHg1bm_6AYWzbYaE2OOL7uqHm9eX41FJHm2qlQpKRu5tMDborJNMxld2RfZRtA5wBZLjRswiioMDMGetguEfLBJ38xru3Y3GrcjRogU3n28Z7cv_d7VPHmDLKdnsgOwNV9f5FcCaIbwedfcvG4L1IQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT94wDI4QaNIuaGxMvHxMOewAh6KkSdP0CAj0DmnTDkPiFuUTEKhFtPz_2WkLepk47NSqdarITurHsv2EkO-xVCmlihcQTtSFdFYVlstUuGSd5rD7vMcG55-_1PJKXl5X12uEz70wudp9TknmP_Xc7Ha5PP_N1CE4rOaIY6v6BoAPhYcWnGGDw5Q4gGdsZvD5d9CK88kc_XDpYC-t4Ms3KdHsaS4-kc0JItKT0aZbZC22n8mHXKrp-y_k_kdubKRdogg46XhiDgX_NGb3kSGVdi29Wykn7FHed7fY3TfQCJgZvk7biGT8bVe0SGv83NPeZ75NmBfF2tFtcnVx_udsWUxHJhReSjkUQtRNCALTj4xbpapUOZYSxFysCTxE50ETvGRactuUsWoqXwaVdHCuBqhYi69kve3auEOoq6SttY8lFxA-W2FtglgSAtogdQLPviDHsy6Nn_jE8ViLBzMzIY_KN6h8iDD4ghy-DHgcqTTeFz1F47yIIQd2ftA93ZhpSxnmpWBeh0pKJ4VnVrtaOxVVEKG2pV6QPTStASiBfLgeC4f8YAC_aS1h-vuzxc20bXtTIiCssexyQY7mVfD6-p3Z7v6H7B75iLdjsdk-WR-enuMBwJrBfcsL-S-mUPCy priority: 102 providerName: Springer Nature |
Title | Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data |
URI | https://link.springer.com/article/10.1007/JHEP06(2019)141 https://www.proquest.com/docview/2250571080 https://www.osti.gov/servlets/purl/1598844 https://doaj.org/article/0c430c8d544b43c0a8b78b6e6d3d7a28 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: 8FG dateStart: 20121201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4imWlpUPHNpDqB07tnNsV7sslagqxEq9WX4KBEoQSf8_M3kUFqniwiVREscajceabzQznwl5m0qVc654AeGELqR3qnBc5sJn5w2H3RcCNjh_vFTbnby4rq7_OOoLa8JGeuBRcacsSMGCiZWUXorAnPHaeJVUFFG7cmjzBTc2B1NT_gBwCZuJfJg-vdiur5g6BmdXn3DJ93zQQNUPtxa21B7M_CszOjiczRPyeEKK9GyU8Cm5l5pn5OFQsRm65-Tbh6G_kbaZIu6k48E5FNzUmORHolTaNvTrXlVhh-ND-wWb_HqaADrD7LRJyMnftEWD7MY3He3CQLsJclEsIX1Bdpv159W2mE5OKIKUsi-E0HWMArOQjDulqlx5ljOEXqyOPCYfQBMc9Ca5q8tU1VUoo8omeq8BMWrxkhw0bZNeEeor6bQJqeQComgnnMsQUkJcG6XJ4OAX5N2sSxsmWnE83eK7nQmRR-VbVD4EGnxBjm9_-DEyatw99BwX53YYUmEPL8BA7GQg9l8GsiCHuLQWEAXS4gasHwq9BRhnjATxj-YVt9Pu7WyJuFBj9eWCnMxW8PvzHdK-_h_SHpJHON9YjHZEDvqfN-kNwJ7eL8l9s3m_JA_O15dXn-BpVUq8qtVysH247sqzX1GKAuc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qkuLeADSO0h1I6dxDkgxKPLbl_i0Eq9GT8BtUpKkwrxp_iNzOSx1SKVW0-REtuy7BnPN5nxN4S8CmkeY8x4Au5EkUhr8sRwGRMbjVUctM85vOB8cJjPjuXuSXayQv6Md2EwrXI8E7uD2tcO_5Fvp2irC8yIe3f-M8GqURhdHUto9GKxF37_ApeteTv_BPv7Ok2nO0cfZ8lQVSBxUso2EaIovRcYoWPc5HkWM8tiBLeElZ77YB2gHp4yJbkp05CVmUt9HpW3tgA0VQgY9xa5LYUQyNWvpp8XUQtAQ2ykD2LF9u5s5wvLN8HElltc8iXL1xUIgEcNirwEbv-Jx3ZmbvqA3B_wKX3fC9RDshKqR-ROlyfqmsfkdN7dqqR1pIh2aV-uh4Jx7FMLkJ6V1hX9sZTL2GB7V3_Hq4UtDQDYYXRaBawEUNVJhZzKlw1tXEf2CfOimLj6hBzfyMo-JatVXYU1Qm0mTaFcSLkA390IYyI4suBNe6kiwIoJeTOupXYDmTnW1DjTIw1zv_gaFx_cGz4hm4sO5z2Px_VNP-DmLJohAXf3or74pgd91sxJwZzymZRWCseMsoWyeci98IVJ1YSs49ZqwDFIxuswa8m1GsCjUhKmvzHuuB7OjEZfSfiEbI1ScPX5mtk--_9QL8nd2dHBvt6fH-6tk3vYq0902yCr7cVleA6QqrUvOjmm5OtNK85f6wkwWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiKe6tIAPILWHsHbixN5DhSjd1W4LqxWiUm_BT0CtktKkQvxFfhUzeWy1SOXWU6SNY1m2x_PN-ptvCHnt4yyEkPIIwgkZCaOzSHMRIhO0URysz1pMcP60yGYn4ug0Pd0gf_pcGKRV9mdic1C70uJ_5KMYfbVERtwodLSI5eH03cXPCCtI4U1rX05Dd2UW3H4jN9YleRz7378gnKv254ew9m_ieDr58mEWdRUHIiuEqKMkkWPnEry9Y1xnWRpSw0KAkIWNHXfeWEBEPGZKcD2OfTpObeyyoJwxEpCWTKDfO2RTYr7ogGweTBbLz6s7DcBKrBcXYnJ0NJssWbYLDni8xwVf84tN-QB4lGDma9D3n9vaxglOH5IHHXql79vt9ohs-OIxuduwSG31hJzNm5xLWgaKWJi2xXwouM6WeIDirbQs6I81pmOF7W35HRMPa-oBzkPvtPBYJ6AoowIVl68qWtlGChTGRZHW-pSc3MrcPiODoiz8FqEmFVoq62OeQGSvE60DhLkQazuhAoCOIXnbz2VuO6lzrLhxnvcize3k5zj5EPzwIdldfXDRqnzc3PQAF2fVDOW5mx_Ky295Z-05syJhVrlUCCMSy7QyUpnMZy5xUsdqSLZxaXNAOSjVa5HTZOscoKVSAoa_06943p0oVX69_4dkr98F169vGO3z_3f1itwDI8o_zhfH2-Q-ftSy4HbIoL688i8Ab9XmZbeRKfl627bzF2WkOzI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+form+factor+uncertainties+on+interpretations+of+coherent+elastic+neutrino-nucleus+scattering+data&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Sierra%2C+D.+Aristizabal&rft.au=Liao%2C+Jiajun&rft.au=Marfatia%2C+D.&rft.date=2019-06-01&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2019&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282019%29141&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP06_2019_141 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |