Defined conditions for propagation and manipulation of mouse embryonic stem cells
The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This power is vulnerable, however, to the cell culture environment, deficiencies in which can lead to cellular heterogeneity, adaptive phenotypes...
Saved in:
Published in | Development (Cambridge) Vol. 146; no. 6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
26.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0950-1991 1477-9129 1477-9129 |
DOI | 10.1242/dev.173146 |
Cover
Abstract | The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This power is vulnerable, however, to the cell culture environment, deficiencies in which can lead to cellular heterogeneity, adaptive phenotypes, epigenetic aberrations and genetic abnormalities. Here, we provide detailed methodologies for derivation, propagation, genetic modification and primary differentiation of ES cells in 2i or 2i+LIF media without serum or undefined serum substitutes. Implemented diligently, these procedures minimise variability and deviation, thereby improving the efficiency, reproducibility and biological validity of ES cell experimentation. |
---|---|
AbstractList | The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This power is vulnerable, however, to the cell culture environment, deficiencies in which can lead to cellular heterogeneity, adaptive phenotypes, epigenetic aberrations and genetic abnormalities. Here, we provide detailed methodologies for derivation, propagation, genetic modification and primary differentiation of ES cells in 2i or 2i+LIF media without serum or undefined serum substitutes. Implemented diligently, these procedures minimise variability and deviation, thereby improving the efficiency, reproducibility and biological validity of ES cell experimentation.The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This power is vulnerable, however, to the cell culture environment, deficiencies in which can lead to cellular heterogeneity, adaptive phenotypes, epigenetic aberrations and genetic abnormalities. Here, we provide detailed methodologies for derivation, propagation, genetic modification and primary differentiation of ES cells in 2i or 2i+LIF media without serum or undefined serum substitutes. Implemented diligently, these procedures minimise variability and deviation, thereby improving the efficiency, reproducibility and biological validity of ES cell experimentation. The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This power is vulnerable, however, to the cell culture environment, deficiencies in which can lead to cellular heterogeneity, adaptive phenotypes, epigenetic aberrations and genetic abnormalities. Here, we provide detailed methodologies for derivation, propagation, genetic modification and primary differentiation of ES cells in 2i or 2i+LIF media without serum or undefined serum substitutes. Implemented diligently, these procedures minimise variability and deviation, thereby improving the efficiency, reproducibility and biological validity of ES cell experimentation. The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This power is vulnerable, however, to the cell culture environment, deficiencies in which can lead to cellular heterogeneity, adaptive phenotypes, epigenetic aberrations and genetic abnormalities. Here, we provide detailed methodologies for derivation, propagation, genetic modification and primary differentiation of ES cells in 2i or 2i+LIF media without serum or undefined serum substitutes. Implemented diligently, these procedures minimise variability and deviation, thereby improving the efficiency, reproducibility and biological validity of ES cell experimentation. Summary: Detailed protocols for the propagation, manipulation and differentiation of mouse embryonic stem cells, with tips for minimising variability and improving the efficiency, reproducibility and reliability of embryonic stem cell culture. |
Author | Leitch, Harry G. Kalkan, Tüzer Nichols, Jennifer Smith, Austin von Meyenn, Ferdinand Mulas, Carla |
AuthorAffiliation | 6 Department of Biochemistry , University of Cambridge , Hopkins Building, Tennis Court Road, Cambridge CB2 1QW , UK 3 MRC London Institute of Medical Sciences (LMS) , Du Cane Road, London W12 0NN , UK 1 Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge , Gleeson Building, Tennis Court Road, Cambridge CB2 1QR , UK 2 Department of Medical and Molecular Genetics , King's College London , London SE1 9RT , UK 4 Institute of Clinical Sciences (ICS) , Faculty of Medicine , Imperial College London , Du Cane Road, London W12 0NN , UK 5 Department of Physiology, Development and Neuroscience , University of Cambridge , Downing Street, Cambridge CB2 3DY , UK |
AuthorAffiliation_xml | – name: 1 Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge , Gleeson Building, Tennis Court Road, Cambridge CB2 1QR , UK – name: 2 Department of Medical and Molecular Genetics , King's College London , London SE1 9RT , UK – name: 6 Department of Biochemistry , University of Cambridge , Hopkins Building, Tennis Court Road, Cambridge CB2 1QW , UK – name: 3 MRC London Institute of Medical Sciences (LMS) , Du Cane Road, London W12 0NN , UK – name: 5 Department of Physiology, Development and Neuroscience , University of Cambridge , Downing Street, Cambridge CB2 3DY , UK – name: 4 Institute of Clinical Sciences (ICS) , Faculty of Medicine , Imperial College London , Du Cane Road, London W12 0NN , UK |
Author_xml | – sequence: 1 givenname: Carla orcidid: 0000-0002-9492-6482 surname: Mulas fullname: Mulas, Carla – sequence: 2 givenname: Tüzer surname: Kalkan fullname: Kalkan, Tüzer – sequence: 3 givenname: Ferdinand orcidid: 0000-0001-9920-3075 surname: von Meyenn fullname: von Meyenn, Ferdinand – sequence: 4 givenname: Harry G. orcidid: 0000-0002-3486-8962 surname: Leitch fullname: Leitch, Harry G. – sequence: 5 givenname: Jennifer orcidid: 0000-0002-8650-1388 surname: Nichols fullname: Nichols, Jennifer – sequence: 6 givenname: Austin orcidid: 0000-0002-3029-4682 surname: Smith fullname: Smith, Austin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30914406$$D View this record in MEDLINE/PubMed |
BookMark | eNptUU1LxTAQDKLo8-PiD5AcRahm2zRpLoL4DYIIeg5putVIm9SkT_Df2-dTUfG0sDs7s7OzSVZ98EjILrBDyHl-1ODrIcgCuFghM-BSZgpytUpmTJUsA6Vgg2ym9MwYK4SU62SjYAo4Z2JG7s6wdR4baoNv3OiCT7QNkQ4xDObRLBrU-Ib2xrth3i0boaV9mCek2NfxLXhnaRqxpxa7Lm2TtdZ0CXc-6xZ5uDi_P73Kbm4vr09PbjLLOR-zPOe8EIYbQFkXpVK1kaoWFQhoeSmUmU4FJmrZ2spCwZipFFZVmStsatvIYoscL3mHed1jY9GP0XR6iK438U0H4_TviXdP-jG8asFLKHI2Eex_EsTwMsc06t6lhQXjcXKnc1BVWSoG5QTd-6n1LfL1xwnAlgAbQ0oRW23d-PGsSdp1GpheRKWnqPQyqmnl4M_KF-s_4He7IZWC |
CitedBy_id | crossref_primary_10_1016_j_crmeth_2022_100244 crossref_primary_10_1016_j_stem_2020_06_005 crossref_primary_10_1126_sciadv_abp8085 crossref_primary_10_1002_bies_202400108 crossref_primary_10_1186_s13059_024_03305_8 crossref_primary_10_3389_fgene_2022_933534 crossref_primary_10_1038_s41567_022_01822_6 crossref_primary_10_1002_stem_3199 crossref_primary_10_1186_s12915_023_01777_x crossref_primary_10_1186_s12864_025_11405_3 crossref_primary_10_1016_j_celrep_2021_108834 crossref_primary_10_1242_dev_201790 crossref_primary_10_1016_j_stem_2020_11_005 crossref_primary_10_1242_dev_199901 crossref_primary_10_1016_j_xpro_2021_100575 crossref_primary_10_1242_jcs_263811 crossref_primary_10_1016_j_jbc_2022_102607 crossref_primary_10_1038_s41467_024_54152_x crossref_primary_10_15252_embr_202255843 crossref_primary_10_1093_biolre_ioab075 crossref_primary_10_2174_1574888X15666200331135227 crossref_primary_10_1242_jcs_255018 crossref_primary_10_1007_s12015_023_10513_5 crossref_primary_10_1038_s41589_022_01225_x crossref_primary_10_1186_s13059_023_03070_0 crossref_primary_10_3390_genes12111675 crossref_primary_10_1016_j_stemcr_2020_12_013 crossref_primary_10_1038_s41467_023_36114_x crossref_primary_10_1002_bies_202400123 crossref_primary_10_1242_dev_203106 crossref_primary_10_1242_dev_201522 crossref_primary_10_1073_pnas_2109475118 crossref_primary_10_1016_j_devcel_2020_09_001 crossref_primary_10_1242_dev_164772 crossref_primary_10_1016_j_stem_2020_10_018 crossref_primary_10_1016_j_stem_2020_10_017 crossref_primary_10_1002_cpsc_105 crossref_primary_10_1371_journal_pbio_3001947 crossref_primary_10_1111_jpi_12669 crossref_primary_10_1242_dev_177238 crossref_primary_10_56093_ijans_v90i5_104614 crossref_primary_10_1016_j_tibtech_2023_03_020 crossref_primary_10_1039_D0LC00165A crossref_primary_10_15302_J_FASE_2019305 crossref_primary_10_1016_j_devcel_2024_01_022 crossref_primary_10_1016_j_celrep_2021_109705 crossref_primary_10_3390_cancers16010095 crossref_primary_10_1016_j_bpj_2023_03_038 crossref_primary_10_1016_j_stem_2024_01_003 crossref_primary_10_3389_fcell_2023_1112069 crossref_primary_10_1242_dev_204329 crossref_primary_10_1242_dev_200845 |
Cites_doi | 10.1016/j.stemcr.2013.03.004 10.1126/science.1225829 10.1016/j.stem.2013.06.004 10.1242/dev.038893 10.1038/nrg1619 10.1016/j.celrep.2017.12.060 10.1016/j.molcel.2016.04.025 10.1016/j.stem.2015.09.011 10.1038/309255a0 10.1016/j.stem.2018.11.021 10.1038/ncb2965 10.1038/336684a0 10.1038/nature13981 10.1073/pnas.94.11.5709 10.1016/j.stem.2017.09.004 10.1101/cshperspect.a008128 10.1242/dev.125.12.2273 10.1242/dev.083675 10.1126/science.1226889 10.1042/BST0381027 10.1016/j.stemcr.2017.05.014 10.1002/dvg.20614 10.1016/j.stemcr.2017.05.033 10.1016/j.cell.2012.03.026 10.1038/nature08113 10.1371/journal.pone.0056738 10.1242/dev.139113 10.1038/nature23274 10.1016/j.celrep.2018.06.027 10.1038/nature13920 10.1016/j.cell.2008.12.006 10.1016/j.stem.2017.03.002 10.1038/nm.1996 10.1038/emboj.2013.177 10.1038/nature23286 10.1038/nsmb.2510 10.1038/nature06403 10.1038/nbt780 10.1007/s11248-008-9218-z 10.1016/j.stem.2008.07.027 10.1242/dev.110.4.1341 10.1038/nature12362 10.1242/dev.050427 10.1038/ncb2267 10.1016/j.cell.2011.06.052 10.1038/292154a0 10.1038/nmeth.4156 10.1038/nature16480 10.1242/dev.017400 10.1016/j.cell.2013.03.012 10.1002/dvg.20442 10.1101/373373 10.1016/j.cell.2008.12.007 10.1016/j.stem.2013.06.002 10.7554/eLife.23468 10.1016/j.stem.2013.12.008 10.1016/j.cell.2013.08.022 10.1242/dev.142711 10.1073/pnas.78.12.7634 10.1101/pdb.prot094086 10.1371/journal.pgen.1003112 10.15252/embr.201745642 10.1038/336688a0 10.1038/nature06968 10.2337/db15-1175 10.1038/ncb3237 10.1038/s41467-017-01076-4 10.1242/dev.142679 10.1146/annurev-cellbio-100913-013116 10.1126/science.1231143 10.1126/science.1248882 |
ContentType | Journal Article |
Copyright | 2019. Published by The Company of Biologists Ltd. 2019. Published by The Company of Biologists Ltd 2019 |
Copyright_xml | – notice: 2019. Published by The Company of Biologists Ltd. – notice: 2019. Published by The Company of Biologists Ltd 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1242/dev.173146 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
ExternalDocumentID | PMC6451320 30914406 10_1242_dev_173146 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G015678/1 – fundername: Medical Research Council grantid: G1100526 – fundername: Medical Research Council grantid: G19/38 – fundername: Medical Research Council grantid: G1100526/1 – fundername: Wellcome Trust grantid: 091484/Z/10/Z – fundername: Medical Research Council grantid: MC_UP_1605/2 – fundername: ; grantid: 091484/Z/10/Z – fundername: ; grantid: BB/G015678/1 – fundername: ; grantid: HEALTH-F4-2007-200720 – fundername: ; grantid: G1100526/1 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c444t-224436a4a1e7b3599ba79b68161f4569a367106b7fc8c1300a89e88529edbcd73 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Thu Aug 21 14:12:47 EDT 2025 Fri Sep 05 13:50:22 EDT 2025 Mon Jul 21 05:36:53 EDT 2025 Tue Jul 01 00:45:14 EDT 2025 Thu Apr 24 23:00:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Self-renewal Differentiation Embryonic stem cells Pluripotency |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 2019. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-224436a4a1e7b3599ba79b68161f4569a367106b7fc8c1300a89e88529edbcd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3486-8962 0000-0001-9920-3075 0000-0002-3029-4682 0000-0002-9492-6482 0000-0002-8650-1388 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6451320 |
PMID | 30914406 |
PQID | 2198559015 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451320 proquest_miscellaneous_2198559015 pubmed_primary_30914406 crossref_citationtrail_10_1242_dev_173146 crossref_primary_10_1242_dev_173146 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-26 |
PublicationDateYYYYMMDD | 2019-03-26 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2019 |
Publisher | The Company of Biologists Ltd |
Publisher_xml | – name: The Company of Biologists Ltd |
References | Brook (2024061300282036500_DEV173146C7) 1997; 94 Choi (2024061300282036500_DEV173146C12) 2017; 20 Andersson-Rolf (2024061300282036500_DEV173146C1) 2017; 14 Jakubczik (2024061300282036500_DEV173146C27) 2016; 65 Hayashi (2024061300282036500_DEV173146C25) 2012; 338 Ying (2024061300282036500_DEV173146C72) 2003; 21 Dunn (2024061300282036500_DEV173146C16) 2014; 344 Martello (2024061300282036500_DEV173146C43) 2014; 30 Hayashi (2024061300282036500_DEV173146C24) 2011; 146 Nichols (2024061300282036500_DEV173146C53) 2012; 4 Morgan (2024061300282036500_DEV173146C48) 2013; 8 Zhang (2024061300282036500_DEV173146C73) 2018; 22 Mulas (2024061300282036500_DEV173146C49) 2017; 9 Niwa (2024061300282036500_DEV173146C57) 2009; 460 Kiyonari (2024061300282036500_DEV173146C30) 2010; 48 Nichols (2024061300282036500_DEV173146C54) 1990; 110 Nichols (2024061300282036500_DEV173146C52) 2017; 2017 Nichols (2024061300282036500_DEV173146C56) 2009; 136 Yang (2024061300282036500_DEV173146C68) 2012; 8 Jinek (2024061300282036500_DEV173146C28) 2012; 337 Martello (2024061300282036500_DEV173146C44) 2013; 32 Kalkan (2024061300282036500_DEV173146C74) 2019 Freshney (2024061300282036500_DEV173146C20) 1994 Leitch (2024061300282036500_DEV173146C37) 2013; 1 Marks (2024061300282036500_DEV173146C42) 2012; 149 Yagi (2024061300282036500_DEV173146C67) 2017; 548 von Meyenn (2024061300282036500_DEV173146C75) 2016; 62 Murakami (2024061300282036500_DEV173146C50) 2016; 529 McEwen (2024061300282036500_DEV173146C46) 2018 Boroviak (2024061300282036500_DEV173146C5) 2014; 16 Leeb (2024061300282036500_DEV173146C34) 2014; 14 Ying (2024061300282036500_DEV173146C70) 2008; 453 Robertson (2024061300282036500_DEV173146C58) 1987 Habibi (2024061300282036500_DEV173146C21) 2013; 13 Leeb (2024061300282036500_DEV173146C33) 2012; 139 Kolodziejczyk (2024061300282036500_DEV173146C31) 2015; 17 Blaschke (2024061300282036500_DEV173146C4) 2013; 500 Capecchi (2024061300282036500_DEV173146C9) 2005; 6 Betschinger (2024061300282036500_DEV173146C3) 2013; 153 Leitch (2024061300282036500_DEV173146C35) 2010; 137 Hayashi (2024061300282036500_DEV173146C23) 2008; 3 Nichols (2024061300282036500_DEV173146C55) 2009; 15 Yang (2024061300282036500_DEV173146C69) 2013; 154 Li (2024061300282036500_DEV173146C38) 2008; 135 Bradley (2024061300282036500_DEV173146C6) 1984; 309 Dean (2024061300282036500_DEV173146C15) 1998; 125 Williams (2024061300282036500_DEV173146C64) 1988; 336 Wray (2024061300282036500_DEV173146C66) 2011; 13 Smith (2024061300282036500_DEV173146C61) 1988; 336 Choi (2024061300282036500_DEV173146C13) 2017; 548 Hackett (2024061300282036500_DEV173146C22) 2017; 8 Martin (2024061300282036500_DEV173146C45) 1981; 78 Huurne (2024061300282036500_DEV173146C26) 2017; 21 Markoullis (2024061300282036500_DEV173146C41) 2009; 18 Li (2024061300282036500_DEV173146C39) 2017; 6 Batlle-Morera (2024061300282036500_DEV173146C2) 2008; 46 Ying (2024061300282036500_DEV173146C71) 2003; 115 Semrau (2024061300282036500_DEV173146C59) 2017; 8 Nett (2024061300282036500_DEV173146C51) 2018; 19 Cong (2024061300282036500_DEV173146C14) 2013; 339 Toyooka (2024061300282036500_DEV173146C62) 2008; 135 Villegas (2024061300282036500_DEV173146C63) 2018; 24 Chambers (2024061300282036500_DEV173146C11) 2007; 450 Miller (2024061300282036500_DEV173146C47) 2016; 143 Buehr (2024061300282036500_DEV173146C8) 2008; 135 Kumar (2024061300282036500_DEV173146C32) 2014; 516 Filipczyk (2024061300282036500_DEV173146C19) 2015; 17 Carey (2024061300282036500_DEV173146C10) 2014; 518 Leitch (2024061300282036500_DEV173146C36) 2013; 20 Evans (2024061300282036500_DEV173146C17) 1981; 292 Li (2024061300282036500_DEV173146C40) 2018; 24 Smith (2024061300282036500_DEV173146C60) 2017; 144 Ficz (2024061300282036500_DEV173146C18) 2013; 13 Kalkan (2024061300282036500_DEV173146C29) 2017; 44 Wray (2024061300282036500_DEV173146C65) 2010; 38 30975648 - Development. 2019 Apr 11;146(7):dev178970. doi: 10.1242/dev.178970. |
References_xml | – volume: 1 start-page: 66 year: 2013 ident: 2024061300282036500_DEV173146C37 article-title: Rebuilding pluripotency from primordial germ cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2013.03.004 – volume: 337 start-page: 816 year: 2012 ident: 2024061300282036500_DEV173146C28 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 13 start-page: 351 year: 2013 ident: 2024061300282036500_DEV173146C18 article-title: FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.06.004 – volume: 136 start-page: 3215 year: 2009 ident: 2024061300282036500_DEV173146C56 article-title: Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo publication-title: Development doi: 10.1242/dev.038893 – volume: 6 start-page: 507 year: 2005 ident: 2024061300282036500_DEV173146C9 article-title: Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1619 – volume: 22 start-page: 332 year: 2018 ident: 2024061300282036500_DEV173146C73 article-title: Esrrb complementation rescues development of nanog-null germ cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.12.060 – year: 2019 ident: 2024061300282036500_DEV173146C74 article-title: Three transcription factor functions empower formative transition from naïve pluripotency publication-title: Cell Stem Cell – volume: 62 start-page: 848 year: 2016 ident: 2024061300282036500_DEV173146C75 article-title: Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.04.025 – volume: 17 start-page: 471 year: 2015 ident: 2024061300282036500_DEV173146C31 article-title: Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.09.011 – volume: 309 start-page: 255 year: 1984 ident: 2024061300282036500_DEV173146C6 article-title: Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines publication-title: Nature doi: 10.1038/309255a0 – volume: 24 start-page: 257 year: 2018 ident: 2024061300282036500_DEV173146C63 article-title: Lysosomal signaling licenses embryonic stem cell differentiation via inactivation of Tfe3 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.11.021 – volume: 16 start-page: 516 year: 2014 ident: 2024061300282036500_DEV173146C5 article-title: The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification publication-title: Nat. Cell Biol. doi: 10.1038/ncb2965 – volume: 336 start-page: 684 year: 1988 ident: 2024061300282036500_DEV173146C64 article-title: Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells publication-title: Nature doi: 10.1038/336684a0 – volume: 518 start-page: 413 year: 2014 ident: 2024061300282036500_DEV173146C10 article-title: Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells publication-title: Nature doi: 10.1038/nature13981 – volume: 94 start-page: 5709 year: 1997 ident: 2024061300282036500_DEV173146C7 article-title: The origin and efficient derivation of embryonic stem cells in the mouse publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.11.5709 – volume: 21 start-page: 449 year: 2017 ident: 2024061300282036500_DEV173146C26 article-title: Distinct cell-cycle control in two different states of mouse pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.09.004 – volume: 4 start-page: a008128 year: 2012 ident: 2024061300282036500_DEV173146C53 article-title: Pluripotency in the embryo and in culture publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a008128 – volume: 125 start-page: 2273 year: 1998 ident: 2024061300282036500_DEV173146C15 article-title: Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes publication-title: Development doi: 10.1242/dev.125.12.2273 – volume: 139 start-page: 3301 year: 2012 ident: 2024061300282036500_DEV173146C33 article-title: Germline potential of parthenogenetic haploid mouse embryonic stem cells publication-title: Development doi: 10.1242/dev.083675 – volume: 338 start-page: 971 year: 2012 ident: 2024061300282036500_DEV173146C25 article-title: Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice publication-title: Science doi: 10.1126/science.1226889 – volume: 38 start-page: 1027 year: 2010 ident: 2024061300282036500_DEV173146C65 article-title: The ground state of pluripotency publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0381027 – volume: 8 start-page: 1645 year: 2017 ident: 2024061300282036500_DEV173146C22 article-title: Activation of lineage regulators and transposable elements across a pluripotent spectrum publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.05.014 – volume: 48 start-page: 317 year: 2010 ident: 2024061300282036500_DEV173146C30 article-title: Three inhibitors of FGF receptor, ERK, and GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability publication-title: Genesis doi: 10.1002/dvg.20614 – volume: 9 start-page: 77 year: 2017 ident: 2024061300282036500_DEV173146C49 article-title: NODAL secures pluripotency upon embryonic stem cell progression from the ground state publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.05.033 – volume: 149 start-page: 590 year: 2012 ident: 2024061300282036500_DEV173146C42 article-title: The transcriptional and epigenomic foundations of ground state pluripotency publication-title: Cell doi: 10.1016/j.cell.2012.03.026 – volume: 460 start-page: 118 year: 2009 ident: 2024061300282036500_DEV173146C57 article-title: A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells publication-title: Nature doi: 10.1038/nature08113 – volume: 8 start-page: e56738 year: 2013 ident: 2024061300282036500_DEV173146C48 article-title: The nonconventional MHC class II molecule DM governs diabetes susceptibility in NOD mice publication-title: PLoS ONE doi: 10.1371/journal.pone.0056738 – volume: 143 start-page: 3074 year: 2016 ident: 2024061300282036500_DEV173146C47 article-title: Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex publication-title: Development doi: 10.1242/dev.139113 – volume: 548 start-page: 219 year: 2017 ident: 2024061300282036500_DEV173146C13 article-title: Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells publication-title: Nature doi: 10.1038/nature23274 – volume: 24 start-page: 489 year: 2018 ident: 2024061300282036500_DEV173146C40 article-title: Genome-wide CRISPR-KO screen uncovers mTORC1-mediated Gsk3 regulation in naive pluripotency maintenance and dissolution publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.06.027 – volume: 516 start-page: 56 year: 2014 ident: 2024061300282036500_DEV173146C32 article-title: Deconstructing transcriptional heterogeneity in pluripotent stem cells publication-title: Nature doi: 10.1038/nature13920 – volume: 135 start-page: 1299 year: 2008 ident: 2024061300282036500_DEV173146C38 article-title: Germline competent embryonic stem cells derived from rat blastocysts publication-title: Cell doi: 10.1016/j.cell.2008.12.006 – volume: 20 start-page: 706 year: 2017 ident: 2024061300282036500_DEV173146C12 article-title: DUSP9 modulates DNA hypomethylation in female mouse pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.03.002 – volume: 15 start-page: 814 year: 2009 ident: 2024061300282036500_DEV173146C55 article-title: Validated germline-competent embryonic stem cell lines from nonobese diabetic mice publication-title: Nat. Med. doi: 10.1038/nm.1996 – volume: 32 start-page: 2561 year: 2013 ident: 2024061300282036500_DEV173146C44 article-title: Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor publication-title: EMBO J. doi: 10.1038/emboj.2013.177 – volume: 548 start-page: 224 year: 2017 ident: 2024061300282036500_DEV173146C67 article-title: Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation publication-title: Nature doi: 10.1038/nature23286 – volume: 20 start-page: 311 year: 2013 ident: 2024061300282036500_DEV173146C36 article-title: Naive pluripotency is associated with global DNA hypomethylation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2510 – volume: 450 start-page: 1230 year: 2007 ident: 2024061300282036500_DEV173146C11 article-title: Nanog safeguards pluripotency and mediates germline development publication-title: Nature doi: 10.1038/nature06403 – volume: 115 start-page: 281 year: 2003 ident: 2024061300282036500_DEV173146C71 article-title: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3 – volume: 21 start-page: 183 year: 2003 ident: 2024061300282036500_DEV173146C72 article-title: Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture publication-title: Nat. Biotechnol. doi: 10.1038/nbt780 – volume: 18 start-page: 71 year: 2009 ident: 2024061300282036500_DEV173146C41 article-title: Mycoplasma contamination of murine embryonic stem cells affects cell parameters, germline transmission and chimeric progeny publication-title: Transgenic Res. doi: 10.1007/s11248-008-9218-z – volume: 3 start-page: 391 year: 2008 ident: 2024061300282036500_DEV173146C23 article-title: Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.07.027 – volume: 110 start-page: 1341 year: 1990 ident: 2024061300282036500_DEV173146C54 article-title: Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity publication-title: Development doi: 10.1242/dev.110.4.1341 – volume: 500 start-page: 222 year: 2013 ident: 2024061300282036500_DEV173146C4 article-title: Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells publication-title: Nature doi: 10.1038/nature12362 – volume: 137 start-page: 2279 year: 2010 ident: 2024061300282036500_DEV173146C35 article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state publication-title: Development doi: 10.1242/dev.050427 – volume: 13 start-page: 838 year: 2011 ident: 2024061300282036500_DEV173146C66 article-title: Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation publication-title: Nat. Cell Biol. doi: 10.1038/ncb2267 – volume: 146 start-page: 519 year: 2011 ident: 2024061300282036500_DEV173146C24 article-title: Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells publication-title: Cell doi: 10.1016/j.cell.2011.06.052 – volume: 292 start-page: 154 year: 1981 ident: 2024061300282036500_DEV173146C17 article-title: Establishment in culture of pluripotential cells from mouse embryos publication-title: Nature doi: 10.1038/292154a0 – volume: 14 start-page: 287 year: 2017 ident: 2024061300282036500_DEV173146C1 article-title: One-step generation of conditional and reversible gene knockouts publication-title: Nat. Methods doi: 10.1038/nmeth.4156 – volume: 529 start-page: 403 year: 2016 ident: 2024061300282036500_DEV173146C50 article-title: NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers publication-title: Nature doi: 10.1038/nature16480 – volume: 135 start-page: 909 year: 2008 ident: 2024061300282036500_DEV173146C62 article-title: Identification and characterization of subpopulations in undifferentiated ES cell culture publication-title: Development doi: 10.1242/dev.017400 – volume: 153 start-page: 335 year: 2013 ident: 2024061300282036500_DEV173146C3 article-title: Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3 publication-title: Cell doi: 10.1016/j.cell.2013.03.012 – start-page: 71 volume-title: Teratocarcinomas and Embryonic Stem Cells: A Practical Approach year: 1987 ident: 2024061300282036500_DEV173146C58 article-title: Embryo-derived stem cells – volume: 46 start-page: 758 year: 2008 ident: 2024061300282036500_DEV173146C2 article-title: Parameters influencing derivation of embryonic stem cells from murine embryos publication-title: Genesis doi: 10.1002/dvg.20442 – start-page: 373373 year: 2018 ident: 2024061300282036500_DEV173146C46 article-title: Signalling pathways drive heterogeneity of ground state pluripotency publication-title: bioRxiv doi: 10.1101/373373 – volume: 135 start-page: 1287 year: 2008 ident: 2024061300282036500_DEV173146C8 article-title: Capture of authentic embryonic stem cells from rat blastocysts publication-title: Cell doi: 10.1016/j.cell.2008.12.007 – volume: 13 start-page: 360 year: 2013 ident: 2024061300282036500_DEV173146C21 article-title: Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.06.002 – volume: 6 start-page: e23468 year: 2017 ident: 2024061300282036500_DEV173146C39 article-title: A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation publication-title: eLife doi: 10.7554/eLife.23468 – volume: 14 start-page: 385 year: 2014 ident: 2024061300282036500_DEV173146C34 article-title: Genetic exploration of the exit from self-renewal using haploid embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.12.008 – volume: 154 start-page: 1370 year: 2013 ident: 2024061300282036500_DEV173146C69 article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering publication-title: Cell doi: 10.1016/j.cell.2013.08.022 – volume: 44 start-page: 1221 year: 2017 ident: 2024061300282036500_DEV173146C29 article-title: Tracking the embryonic stem cell transition from ground state pluripotency publication-title: Development doi: 10.1242/dev.142711 – volume: 78 start-page: 7634 year: 1981 ident: 2024061300282036500_DEV173146C45 article-title: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.78.12.7634 – volume: 2017 start-page: pdb.prot094086 year: 2017 ident: 2024061300282036500_DEV173146C52 article-title: Derivation of mouse embryonic stem (ES) cell lines using small-molecule inhibitors of Erk and Gsk3 signaling (2i) publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot094086 – volume: 8 start-page: e1003112 year: 2012 ident: 2024061300282036500_DEV173146C68 article-title: A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003112 – volume: 19 start-page: e45642 year: 2018 ident: 2024061300282036500_DEV173146C51 article-title: Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency publication-title: EMBO Rep. doi: 10.15252/embr.201745642 – volume: 336 start-page: 688 year: 1988 ident: 2024061300282036500_DEV173146C61 article-title: Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides publication-title: Nature doi: 10.1038/336688a0 – volume: 453 start-page: 519 year: 2008 ident: 2024061300282036500_DEV173146C70 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature doi: 10.1038/nature06968 – volume-title: Culture of Animal Cells: a Manual of Basic Technique year: 1994 ident: 2024061300282036500_DEV173146C20 – volume: 65 start-page: 120 year: 2016 ident: 2024061300282036500_DEV173146C27 article-title: A SNP in the immunoregulatory molecule CTLA-4 controls mRNA splicing in vivo but does not alter diabetes susceptibility in the NOD mouse publication-title: Diabetes doi: 10.2337/db15-1175 – volume: 17 start-page: 1235 year: 2015 ident: 2024061300282036500_DEV173146C19 article-title: Network plasticity of pluripotency transcription factors in embryonic stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb3237 – volume: 8 start-page: 1096 year: 2017 ident: 2024061300282036500_DEV173146C59 article-title: Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-01076-4 – volume: 144 start-page: 365 year: 2017 ident: 2024061300282036500_DEV173146C60 article-title: Formative pluripotency: the executive phase in a developmental continuum publication-title: Development doi: 10.1242/dev.142679 – volume: 30 start-page: 647 year: 2014 ident: 2024061300282036500_DEV173146C43 article-title: The nature of embryonic stem cells publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100913-013116 – volume: 339 start-page: 819 year: 2013 ident: 2024061300282036500_DEV173146C14 article-title: Multiplex genome engineering using CRISPR/cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 344 start-page: 1156 year: 2014 ident: 2024061300282036500_DEV173146C16 article-title: Defining an essential transcription factor program for naïve pluripotency publication-title: Science doi: 10.1126/science.1248882 – reference: 30975648 - Development. 2019 Apr 11;146(7):dev178970. doi: 10.1242/dev.178970. |
SSID | ssj0003677 |
Score | 2.552229 |
Snippet | The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Cell Culture Techniques Cell Cycle Cell Differentiation - genetics Coculture Techniques CRISPR-Cas Systems Culture Media - chemistry Embryo, Mammalian - cytology Embryonic Stem Cells - cytology Humans Karyotyping Mice Mice, Inbred C57BL Mouse Embryonic Stem Cells - cytology Neurons - cytology RNA, Small Interfering - genetics Signal Transduction Stem Cells and Regeneration |
Title | Defined conditions for propagation and manipulation of mouse embryonic stem cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30914406 https://www.proquest.com/docview/2198559015 https://pubmed.ncbi.nlm.nih.gov/PMC6451320 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60YulL0XrbemFEX6Sk5jKTSR61KqtlBaGF4kuYSU5wcZst27Ww_fWeMzO5bFtBfQnLJJlkz3c4-WbOjbHXkah1CBkElawlLlBKGeRVaIIqlTqPIc-ikBKFJ1_T8bH4ciJP-napNrtkafbLyxvzSv4HVRxDXClL9h-Q7SbFAfyN-OIREcbjX2H8AWokiZSXRo5nG9JGUYNoFNFMOGRpX5xKXLRtuqw_HVf7sAenZrGy_W-olvMe7eCfD6nqIJzIunrb5K7B3sEEJz33YSOzzr4f6tlP3_SY3PDvDy77COCLOfmGVuBZM6B6Nq6HiA8Lmi5db6qxXixWvvGX35SgPKgkiH1Ja2dIBbmGI_9GraX1u43T3m5es-BIGVDsFVzsRyrxNwygPDu1WCZIc4QIrxTRdp9lf-o2uxMr5FNElD8fdl_nJFXKl6nFR73tH7TFNttb1znKtYXH1fjZASE5use2_UqCv3NqcZ_dgmaH3XW9RVc7bHPioyZw8PvcDj5g37zG8F5jOGoMH2gMRzj4UGP4vOZWY3inMZw0hluNeciOP308OhgHvqlGUAohlgFSNpGkWugIlElknhutcpNmyPxrJNO5RgFFYWpUXWYl-Tp1lkOWyTiHypSVSh6xjWbewBPGkfklsYQwAuThqoQM6ZBSURXiEyAx1Yi9acVYlL7iPDU-mRW08kTpFyj9wkl_xF511565Ois3XvWyRaNAM0j_UzeAIijww5tJyqOWI_bYodPN08I6YmoNt-4CKrG-fqaZ_rCl1lMhqcbA7h_nfMq2ev1_xjaWi1_wHGnq0rywevcbEtmUCw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defined+conditions+for+propagation+and+manipulation+of+mouse+embryonic+stem+cells&rft.jtitle=Development+%28Cambridge%29&rft.au=Mulas%2C+Carla&rft.au=Kalkan%2C+T%C3%BCzer&rft.au=von+Meyenn%2C+Ferdinand&rft.au=Leitch%2C+Harry+G&rft.date=2019-03-26&rft.eissn=1477-9129&rft.volume=146&rft.issue=6&rft_id=info:doi/10.1242%2Fdev.173146&rft_id=info%3Apmid%2F30914406&rft.externalDocID=30914406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |