Climate adaptation in cities: What trees are suitable for urban heat management?
•We examine the effect of hardiness zone shifts on tree distribution in the US.•All Southeastern US MSAs in our study lost tree species over time.•Continuing the hardiness zone shift change pattern results in greater species loss.•Of the projected tree species lost, deciduous outnumbered coniferous...
Saved in:
Published in | Landscape and urban planning Vol. 153; pp. 74 - 82 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2046 1872-6062 |
DOI | 10.1016/j.landurbplan.2015.12.002 |
Cover
Abstract | •We examine the effect of hardiness zone shifts on tree distribution in the US.•All Southeastern US MSAs in our study lost tree species over time.•Continuing the hardiness zone shift change pattern results in greater species loss.•Of the projected tree species lost, deciduous outnumbered coniferous 3 to 1.
Vegetative enhancement in the form of tree planting has been found to be a highly effective strategy for cooling urban environments, yet as cities continue to warm, the suitability of urban environments for some tree species is changing with shifting hardiness zones. Trees are assigned to hardiness zones, which are based on the average annual minimum temperature that a species can thrive. In recent decades, human induced global warming has shifted the location of hardiness zones across the United States. Our study examines the historical range of ∼200 common US tree species and how climate change-induced shifts in hardiness zones are affecting historical tree ranges in 20 highly populated metropolitan statistical areas (MSAs) with high rates of urban heat island growth over time. MSAs are areas with at least one urban area of 50,000 or more people and adjoining territory that has a high degree of social and economic integration with the core. We found 6 of the 20 MSAs lost tree species, with the Atlanta (13.51%) and Washington DC (3.61%) MSAs suffering the greatest losses. If historical rates of hardiness zone migration continue, a simple projection exhibits >6% average tree species loss across all MSAs in the study. As hardiness zones continue to migrate northward with climate change, heat island mitigation and other environmental management strategies employing green infrastructure must identify tree species that are likely to remain well adapted to urban climates many years into the future. |
---|---|
AbstractList | Vegetative enhancement in the form of tree planting has been found to be a highly effective strategy for cooling urban environments, yet as cities continue to warm, the suitability of urban environments for some tree species is changing with shifting hardiness zones. Trees are assigned to hardiness zones, which are based on the average annual minimum temperature that a species can thrive. In recent decades, human induced global warming has shifted the location of hardiness zones across the United States. Our study examines the historical range of ∼200 common US tree species and how climate change-induced shifts in hardiness zones are affecting historical tree ranges in 20 highly populated metropolitan statistical areas (MSAs) with high rates of urban heat island growth over time. MSAs are areas with at least one urban area of 50,000 or more people and adjoining territory that has a high degree of social and economic integration with the core. We found 6 of the 20 MSAs lost tree species, with the Atlanta (13.51%) and Washington DC (3.61%) MSAs suffering the greatest losses. If historical rates of hardiness zone migration continue, a simple projection exhibits >6% average tree species loss across all MSAs in the study. As hardiness zones continue to migrate northward with climate change, heat island mitigation and other environmental management strategies employing green infrastructure must identify tree species that are likely to remain well adapted to urban climates many years into the future. •We examine the effect of hardiness zone shifts on tree distribution in the US.•All Southeastern US MSAs in our study lost tree species over time.•Continuing the hardiness zone shift change pattern results in greater species loss.•Of the projected tree species lost, deciduous outnumbered coniferous 3 to 1. Vegetative enhancement in the form of tree planting has been found to be a highly effective strategy for cooling urban environments, yet as cities continue to warm, the suitability of urban environments for some tree species is changing with shifting hardiness zones. Trees are assigned to hardiness zones, which are based on the average annual minimum temperature that a species can thrive. In recent decades, human induced global warming has shifted the location of hardiness zones across the United States. Our study examines the historical range of ∼200 common US tree species and how climate change-induced shifts in hardiness zones are affecting historical tree ranges in 20 highly populated metropolitan statistical areas (MSAs) with high rates of urban heat island growth over time. MSAs are areas with at least one urban area of 50,000 or more people and adjoining territory that has a high degree of social and economic integration with the core. We found 6 of the 20 MSAs lost tree species, with the Atlanta (13.51%) and Washington DC (3.61%) MSAs suffering the greatest losses. If historical rates of hardiness zone migration continue, a simple projection exhibits >6% average tree species loss across all MSAs in the study. As hardiness zones continue to migrate northward with climate change, heat island mitigation and other environmental management strategies employing green infrastructure must identify tree species that are likely to remain well adapted to urban climates many years into the future. Vegetative enhancement in the form of tree planting has been found to be a highly effective strategy for cooling urban environments, yet as cities continue to warm, the suitability of urban environments for some tree species is changing with shifting hardiness zones. Trees are assigned to hardiness zones, which are based on the average annual minimum temperature that a species can thrive. In recent decades, human induced global warming has shifted the location of hardiness zones across the United States. Our study examines the historical range of 200 common US tree species and how climate change-induced shifts in hardiness zones are affecting historical tree ranges in 20 highly populated metropolitan statistical areas (MSAs) with high rates of urban heat island growth over time. MSAs are areas with at least one urban area of 50,000 or more people and adjoining territory that has a high degree of social and economic integration with the core. We found 6 of the 20 MSAs lost tree species, with the Atlanta (13.51%) and Washington DC (3.61%) MSAs suffering the greatest losses. If historical rates of hardiness zone migration continue, a simple projection exhibits >6% average tree species loss across all MSAs in the study. As hardiness zones continue to migrate northward with climate change, heat island mitigation and other environmental management strategies employing green infrastructure must identify tree species that are likely to remain well adapted to urban climates many years into the future. Vegetative enhancement in the form of tree planting has been found to be a highly effective strategy for cooling urban environments, yet as cities continue to warm, the suitability of urban environments for some tree species is changing with shifting hardiness zones. Trees are assigned to hardiness zones, which are based on the average annual minimum temperature that a species can thrive. In recent decades, human induced global warming has shifted the location of hardiness zones across the United States. Our study examines the historical range of â¼200 common US tree species and how climate change-induced shifts in hardiness zones are affecting historical tree ranges in 20 highly populated metropolitan statistical areas (MSAs) with high rates of urban heat island growth over time. MSAs are areas with at least one urban area of 50,000 or more people and adjoining territory that has a high degree of social and economic integration with the core. We found 6 of the 20 MSAs lost tree species, with the Atlanta (13.51%) and Washington DC (3.61%) MSAs suffering the greatest losses. If historical rates of hardiness zone migration continue, a simple projection exhibits >6% average tree species loss across all MSAs in the study. As hardiness zones continue to migrate northward with climate change, heat island mitigation and other environmental management strategies employing green infrastructure must identify tree species that are likely to remain well adapted to urban climates many years into the future. |
Author | Stone, Brian Lanza, Kevin |
Author_xml | – sequence: 1 givenname: Kevin surname: Lanza fullname: Lanza, Kevin email: lanza.kevin@gatech.edu – sequence: 2 givenname: Brian surname: Stone fullname: Stone, Brian email: stone@gatech.edu |
BookMark | eNqNkcFu1DAQhi1UJLaFZ8DcuCT1OInjcKnQqrSVKoFEEUdrYo9br7LJYnsr8fZ4uxwQp714Lt_MeP7vnJ3Ny0yMfQBRgwB1uaknnN0-jrtSaymgq0HWQshXbAW6l5USSp6xVWGHSopWvWHnKW2EKKSCFfu2nsIWM3F0uMuYwzLzMHMbcqD0if98wsxzJEocI_G0DxnHibhfIi9LceZPVIgtzvhIW5rz1Vv22uOU6N3fesEevlw_rG-r-683d-vP95Vt2zZXZfvgaVSI2GjbSBo7Z53SoMArNQ4a0ErfOT-00I5aYXnE0OvGK-dU21ywj8exu7j82lPKZhuSpamkQMs-GdCy66AZZHMCCr1uO9n3J6BCK5AgDh-4OqI2LilF8qZk9pJfjhgmA8IcBJmN-UeQOQgyIE0RVCYM_03YxeIi_j6p9_2x1-Ni8DGGZH58L4AqXoe-EYer10eCioTnQNEkG2i25EIkm41bwgl7_gC1Z71w |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2024_112611 crossref_primary_10_1007_s12374_021_09311_8 crossref_primary_10_2174_2212717806666190204102225 crossref_primary_10_1061_JUPDDM_UPENG_4580 crossref_primary_10_1590_0103_11042019s308 crossref_primary_10_17208_jkpa_2018_02_53_1_215 crossref_primary_10_17721_1728_2748_2023_94_23_27 crossref_primary_10_3390_land13020230 crossref_primary_10_1016_j_ecolind_2017_05_042 crossref_primary_10_1016_j_jenvman_2018_05_042 crossref_primary_10_1111_risa_17645 crossref_primary_10_1016_j_ufug_2022_127732 crossref_primary_10_1016_j_ufug_2021_127016 crossref_primary_10_1016_j_scitotenv_2024_171215 crossref_primary_10_1002_eap_2149 crossref_primary_10_1002_ppp3_10245 crossref_primary_10_1007_s11027_021_09954_5 crossref_primary_10_1057_s41300_024_00206_7 crossref_primary_10_1111_nyas_15244 crossref_primary_10_3389_fevo_2021_721831 crossref_primary_10_1016_j_buildenv_2019_106542 crossref_primary_10_1016_j_jenvman_2025_124899 crossref_primary_10_7717_peerj_10577 crossref_primary_10_1016_j_trd_2025_104653 crossref_primary_10_1016_j_apgeog_2023_102938 crossref_primary_10_3390_geohazards2030014 crossref_primary_10_1016_j_jclepro_2021_125919 crossref_primary_10_1016_j_landurbplan_2020_103937 crossref_primary_10_1016_j_solener_2019_02_062 crossref_primary_10_1016_j_ufug_2021_127186 crossref_primary_10_1371_journal_pone_0299217 crossref_primary_10_1016_j_jclepro_2017_10_086 crossref_primary_10_1161_CIR_0000000000001217 crossref_primary_10_1108_PM_04_2021_0023 crossref_primary_10_1016_j_jth_2022_101490 crossref_primary_10_1016_j_landurbplan_2023_104701 crossref_primary_10_3390_ijerph191610249 crossref_primary_10_3390_atmos15010123 crossref_primary_10_1016_j_buildenv_2024_112071 crossref_primary_10_1093_forestry_cpae050 crossref_primary_10_1016_j_ijdrr_2018_01_031 crossref_primary_10_1016_j_scitotenv_2019_05_287 crossref_primary_10_17721_1728_2748_2024_97_28_33 crossref_primary_10_1139_cjb_2016_0252 crossref_primary_10_3390_urbansci7020052 crossref_primary_10_3390_su13063141 crossref_primary_10_1186_s12889_020_10128_2 crossref_primary_10_3390_f10010058 crossref_primary_10_15421_022344 crossref_primary_10_3390_f15081446 crossref_primary_10_3390_su9101884 crossref_primary_10_1016_j_ufug_2017_09_003 crossref_primary_10_1139_er_2016_0027 crossref_primary_10_3390_land12040781 |
Cites_doi | 10.1016/S0378-7788(97)00063-7 10.1126/science.1088665 10.1111/j.1752-1688.1999.tb04222.x 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 10.1023/A:1010632015572 10.1371/journal.pone.0100852 10.1007/BF00038700 10.1016/j.foreco.2007.07.023 10.2307/1934380 10.1073/pnas.0701424104 10.1016/j.landurbplan.2012.05.014 10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2 10.1175/2010JAMC2536.1 10.1111/j.1365-2486.2006.01256.x 10.1007/s11069-014-1563-z 10.1525/bio.2010.60.8.6 10.1016/0169-5347(90)90083-P 10.1073/pnas.0802891105 10.1038/nature01286 10.1016/S0038-092X(00)00089-X 10.1016/S0921-8009(99)00013-0 10.1016/j.ufug.2012.06.006 10.1038/416389a 10.1641/B571105 10.1046/j.1466-822X.2003.00042.x 10.1002/joc.1555 10.1016/j.ufug.2011.05.008 10.1126/science.1206432 10.2307/2404093 10.1038/nature01333 |
ContentType | Journal Article |
Copyright | 2015 |
Copyright_xml | – notice: 2015 |
DBID | FBQ AAYXX CITATION 7SN 7ST C1K SOI 7S9 L.6 8FD FR3 KR7 |
DOI | 10.1016/j.landurbplan.2015.12.002 |
DatabaseName | AGRIS CrossRef Ecology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Ecology Abstracts Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | AGRICOLA Ecology Abstracts Technology Research Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sociology & Social History Ecology Environmental Sciences Economics |
EISSN | 1872-6062 |
EndPage | 82 |
ExternalDocumentID | 10_1016_j_landurbplan_2015_12_002 US201600197303 S0169204615002443 |
GeographicLocations | District of Columbia Georgia USA, Washington D.C USA, Georgia, Atlanta |
GeographicLocations_xml | – name: District of Columbia – name: Georgia – name: USA, Washington D.C – name: USA, Georgia, Atlanta |
GroupedDBID | --K --M .-4 .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JO AABNK AABVA AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYOK ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABMMH ABXDB ABYKQ ACDAQ ACGFS ACHQT ACIUM ACKIV ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HMY HVGLF HZ~ IHE J1W KCYFY KOM LPU LW9 LY9 M3Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SEN SES SEW SPCBC SSA SSB SSJ SSO SSS SSZ T5K TN5 WUQ XOL Y6R ~02 ~G- ABPIF FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SN 7ST ACLOT C1K EFKBS SOI ~HD 7S9 L.6 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c444t-1569feb6aaa38c32eb5dcd68161f66b981ac2f5df9414b86a4b809783f6dd643 |
IEDL.DBID | AIKHN |
ISSN | 0169-2046 |
IngestDate | Sun Sep 28 02:12:53 EDT 2025 Sun Sep 28 07:51:54 EDT 2025 Sun Sep 28 01:31:42 EDT 2025 Thu Apr 24 23:10:42 EDT 2025 Tue Jul 01 01:45:23 EDT 2025 Wed Dec 27 19:16:24 EST 2023 Fri Feb 23 02:27:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tree species distribution Urban heat islands Hardiness zones Vegetation Heat adaptation strategy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-1569feb6aaa38c32eb5dcd68161f66b981ac2f5df9414b86a4b809783f6dd643 |
Notes | http://dx.doi.org/10.1016/j.landurbplan.2015.12.002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1808612104 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1825513923 proquest_miscellaneous_1817845277 proquest_miscellaneous_1808612104 crossref_citationtrail_10_1016_j_landurbplan_2015_12_002 crossref_primary_10_1016_j_landurbplan_2015_12_002 fao_agris_US201600197303 elsevier_sciencedirect_doi_10_1016_j_landurbplan_2015_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Landscape and urban planning |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Roy, Byrne, Pickering (bib0170) 2012; 11 Bentz, Regniere, Fettig, Hansen, Hayes, Hicke (bib0015) 2010; 60 Stone, Vargo, Habeeb (bib0195) 2012; 107 Murray, Cannell, Smith (bib0110) 1989; 26 New York City Regional Heat Island Initiative (bib0125) 2006 Theurillat, Guisan (bib0205) 2001; 50 Bolund, Hunhammar (bib0020) 1999; 29 Sakai, Weiser (bib0180) 1973; 54 Retrieved January 20, 2014 from 〈http://www.arborday.org/trees/whattree/fullonline.cfm Graham, Grimm (bib0060) 1990; 5 National Climatic Data Center (bib0120) 2013 EPA (bib0050) 2015 Stone (bib0190) 2007; 27 Nowak, Dwyer (bib0135) 2007 Akbari, Pomerantz, Taha (bib0005) 2001; 70 Cohen (bib0030) 2003; 302 Roman, Scatena (bib0155) 2011; 10 EPA (bib0055) 2013 Kelly, Goulden (bib0090) 2008; 105 Kirilenko, Sedjo (bib0095) 2007; 104 McKenney, Pedlar, Lawrence, Campbell, Hutchinson (bib0100) 2007; 57 Walther, Post, Convey, Menzel, Parmesan, Beebee (bib0225) 2002; 416 Iverson, Presad, Matthews, Peters (bib0085) 2008; 254 Staley (bib0185) 2013; 0 USGS (bib0220) 2013 Arbor Day Foundation. (n.d.). Pearson, Dawson (bib0150) 2003; 12 Oke (bib0140) 1988 Parmesan, Yohe (bib0145) 2003; 421 Rosenfeld, Akbari, Romm, Pomerantz (bib0165) 1998; 28 Hamann, Wang (bib0075) 2006; 87 Colorado State University (bib0035) 2012 NOAA (bib0130) 2013 Daly, Widrlechner, Halbleib, Smith, Gibson (bib0045) 2012; 51 National Climate Assessment (bib0115) 2014 Stone, Vargo, Liu, Habeeb, DeLucia, Trail (bib0200) 2014; 9 Chen, Hill, Ohlemuller, Roy, Thomas (bib0025) 2011; 333 Habeeb, Vargo, Stone (bib0070) 2015; 76 Root, Price, Hall, Schneider, Rosenzweig, Pounds (bib0160) 2003; 421 Groffman, Kareiva, Carter, Grimm, Lawler, Mack (bib0065) 2014 Sakai, Wardle (bib0175) 1978; 1 USDA (bib0210) 2014 Hijmans, Graham (bib0080) 2006; 12 USDA Agricultural Research Service (bib0215) 2014 Woodward, Williams (bib0230) 1987; 69 Meyer, Sale, Mulholland, Poff (bib0105) 1999; 35 Dale, Joyce, McNulty, Neilson, Ayres, Flannigan (bib0040) 2001; 51 Hijmans (10.1016/j.landurbplan.2015.12.002_bib0080) 2006; 12 Bolund (10.1016/j.landurbplan.2015.12.002_bib0020) 1999; 29 Kirilenko (10.1016/j.landurbplan.2015.12.002_bib0095) 2007; 104 NOAA (10.1016/j.landurbplan.2015.12.002_bib0130) 2013 Roy (10.1016/j.landurbplan.2015.12.002_bib0170) 2012; 11 McKenney (10.1016/j.landurbplan.2015.12.002_bib0100) 2007; 57 Rosenfeld (10.1016/j.landurbplan.2015.12.002_bib0165) 1998; 28 EPA (10.1016/j.landurbplan.2015.12.002_bib0050) 2015 EPA (10.1016/j.landurbplan.2015.12.002_bib0055) 2013 Graham (10.1016/j.landurbplan.2015.12.002_bib0060) 1990; 5 New York City Regional Heat Island Initiative (10.1016/j.landurbplan.2015.12.002_bib0125) 2006 Nowak (10.1016/j.landurbplan.2015.12.002_bib0135) 2007 Stone (10.1016/j.landurbplan.2015.12.002_bib0195) 2012; 107 Habeeb (10.1016/j.landurbplan.2015.12.002_bib0070) 2015; 76 Iverson (10.1016/j.landurbplan.2015.12.002_bib0085) 2008; 254 Chen (10.1016/j.landurbplan.2015.12.002_bib0025) 2011; 333 Akbari (10.1016/j.landurbplan.2015.12.002_bib0005) 2001; 70 Murray (10.1016/j.landurbplan.2015.12.002_bib0110) 1989; 26 Walther (10.1016/j.landurbplan.2015.12.002_bib0225) 2002; 416 Stone (10.1016/j.landurbplan.2015.12.002_bib0190) 2007; 27 Meyer (10.1016/j.landurbplan.2015.12.002_bib0105) 1999; 35 Oke (10.1016/j.landurbplan.2015.12.002_bib0140) 1988 Bentz (10.1016/j.landurbplan.2015.12.002_bib0015) 2010; 60 Woodward (10.1016/j.landurbplan.2015.12.002_bib0230) 1987; 69 Root (10.1016/j.landurbplan.2015.12.002_bib0160) 2003; 421 Groffman (10.1016/j.landurbplan.2015.12.002_bib0065) 2014 Pearson (10.1016/j.landurbplan.2015.12.002_bib0150) 2003; 12 Stone (10.1016/j.landurbplan.2015.12.002_bib0200) 2014; 9 Colorado State University (10.1016/j.landurbplan.2015.12.002_bib0035) 2012 Sakai (10.1016/j.landurbplan.2015.12.002_bib0175) 1978; 1 National Climatic Data Center (10.1016/j.landurbplan.2015.12.002_bib0120) 2013 Cohen (10.1016/j.landurbplan.2015.12.002_bib0030) 2003; 302 USDA Agricultural Research Service (10.1016/j.landurbplan.2015.12.002_bib0215) 2014 Theurillat (10.1016/j.landurbplan.2015.12.002_bib0205) 2001; 50 Staley (10.1016/j.landurbplan.2015.12.002_bib0185) 2013; 0 National Climate Assessment (10.1016/j.landurbplan.2015.12.002_bib0115) 2014 Dale (10.1016/j.landurbplan.2015.12.002_bib0040) 2001; 51 Daly (10.1016/j.landurbplan.2015.12.002_bib0045) 2012; 51 USDA (10.1016/j.landurbplan.2015.12.002_bib0210) 2014 Parmesan (10.1016/j.landurbplan.2015.12.002_bib0145) 2003; 421 Kelly (10.1016/j.landurbplan.2015.12.002_bib0090) 2008; 105 Sakai (10.1016/j.landurbplan.2015.12.002_bib0180) 1973; 54 10.1016/j.landurbplan.2015.12.002_bib0235 Roman (10.1016/j.landurbplan.2015.12.002_bib0155) 2011; 10 Hamann (10.1016/j.landurbplan.2015.12.002_bib0075) 2006; 87 USGS (10.1016/j.landurbplan.2015.12.002_bib0220) 2013 |
References_xml | – volume: 11 start-page: 351 year: 2012 end-page: 363 ident: bib0170 article-title: A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones publication-title: Urban Forestry & Urban Greening – volume: 107 start-page: 263 year: 2012 end-page: 271 ident: bib0195 article-title: Managing climate change in cities: Will climate action plans work? publication-title: Landscape and Urban Planning – year: 2012 ident: bib0035 article-title: Herbaceous plants, right plant, right place – volume: 27 start-page: 1801 year: 2007 end-page: 1807 ident: bib0190 article-title: Urban and rural temperature trends in proximity to large US cities: 1951–2000 publication-title: International Journal of Climatology – volume: 5 start-page: 289 year: 1990 end-page: 292 ident: bib0060 article-title: Effects of global climate change on the patterns of terrestrial biological communities publication-title: Trends in Ecology & Evolution – year: 2006 ident: bib0125 article-title: Mitigating New York City's heat island with urban forestry, living roofs, and light surfaces (Final report 06-06) – volume: 421 start-page: 57 year: 2003 end-page: 60 ident: bib0160 article-title: Fingerprints of global warming on wild animals and plants publication-title: Nature – year: 2014 ident: bib0215 article-title: USDA plant hardiness zone map – volume: 416 start-page: 389 year: 2002 end-page: 395 ident: bib0225 article-title: Ecological responses to recent climate change publication-title: Nature – year: 2013 ident: bib0220 article-title: Digital representations of tree species range maps from ‘atlas of United States trees’ by Elbert L. Little, Jr. (and other publications) – volume: 12 start-page: 361 year: 2003 end-page: 371 ident: bib0150 article-title: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? publication-title: Global Ecology and Biogeography – volume: 54 start-page: 118 year: 1973 end-page: 126 ident: bib0180 article-title: Freezing resistance of trees in North America with reference to tree regions publication-title: Ecology – volume: 0 start-page: 1 year: 2013 end-page: 9 ident: bib0185 article-title: Urban forests and solar power generation: Partners in urban heat island mitigation publication-title: International Journal of Low-Carbon Technologies – volume: 333 start-page: 1024 year: 2011 end-page: 1026 ident: bib0025 article-title: Rapid range shifts of species associated with high levels of climate warming publication-title: Science – volume: 87 start-page: 2773 year: 2006 end-page: 2786 ident: bib0075 article-title: Potential effects of climate change on ecosystem and tree species distribution in British Columbia publication-title: Ecology – volume: 70 start-page: 295 year: 2001 end-page: 310 ident: bib0005 article-title: Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas publication-title: Solar Energy – year: 2013 ident: bib0120 article-title: Climate data online – volume: 104 start-page: 19697 year: 2007 end-page: 19702 ident: bib0095 article-title: Climate change impacts on forestry publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 19 year: 2014 end-page: 67 ident: bib0115 article-title: Ch. 2: Our changing climate publication-title: Climate change impacts in the United States: The third national climate assessment – volume: 76 start-page: 1651 year: 2015 end-page: 1665 ident: bib0070 article-title: Rising heat wave trends in large US cities publication-title: Natural Hazards – volume: 50 start-page: 77 year: 2001 end-page: 109 ident: bib0205 article-title: Potential impact of climate change on vegetation in the European Alps: A review publication-title: Climatic Change – volume: 51 start-page: 242 year: 2012 end-page: 264 ident: bib0045 article-title: Development of a new USDA plant hardiness zone map for the United States publication-title: Journal of Applied Meteorology and Climatology – volume: 57 start-page: 929 year: 2007 end-page: 937 ident: bib0100 article-title: Beyond traditional hardiness zones: Using climate envelopes to map plant range limits publication-title: BioScience – reference: . Retrieved January 20, 2014 from 〈http://www.arborday.org/trees/whattree/fullonline.cfm〉 – year: 2013 ident: bib0130 article-title: Regional climate trends and scenarios for the U.S. national climate assessment (NOAA technical report NESDIS 142-2) – volume: 12 start-page: 2272 year: 2006 end-page: 2281 ident: bib0080 article-title: The ability of climate envelope models to predict the effect of climate change on species distributions publication-title: Global Change Biology – reference: Arbor Day Foundation. (n.d.). – volume: 10 start-page: 269 year: 2011 end-page: 274 ident: bib0155 article-title: Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA publication-title: Urban Forestry & Urban Greening – volume: 28 start-page: 51 year: 1998 end-page: 62 ident: bib0165 article-title: Cool communities: Strategies for heat island mitigation and smog reduction publication-title: Energy and Buildings – volume: 69 start-page: 189 year: 1987 end-page: 197 ident: bib0230 article-title: Climate and plant distributions at global and local scales publication-title: Vegetatio – volume: 9 start-page: 1 year: 2014 end-page: 8 ident: bib0200 article-title: Avoided heat-related mortality through climate adaptation strategies in three US cities publication-title: PLoS ONE – year: 1988 ident: bib0140 article-title: Boundary layer climates – start-page: 195 year: 2014 end-page: 219 ident: bib0065 article-title: Ch. 8: Ecosystems, biodiversity, and ecosystem services publication-title: Climate change impacts in the United States: The third national climate assessment – volume: 1 start-page: 51 year: 1978 end-page: 61 ident: bib0175 article-title: Freezing resistance of New Zealand trees and shrubs publication-title: New Zealand Journal of Ecology – year: 2014 ident: bib0210 article-title: Plant guide: Chinese privet – volume: 29 start-page: 293 year: 1999 end-page: 301 ident: bib0020 article-title: Ecosystem services in urban areas publication-title: Ecological Economics – year: 2015 ident: bib0050 article-title: Using trees and vegetation to reduce heat islands – year: 2013 ident: bib0055 article-title: ICLUS data for the national climate assessment – volume: 421 start-page: 37 year: 2003 end-page: 42 ident: bib0145 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature – year: 2007 ident: bib0135 article-title: Urban and community forestry in the Northeast – volume: 51 start-page: 723 year: 2001 end-page: 734 ident: bib0040 article-title: Climate change and forest disturbances publication-title: Bioscience – volume: 105 start-page: 11823 year: 2008 end-page: 11826 ident: bib0090 article-title: Rapid shifts in plant distribution with recent climate change publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 35 start-page: 1373 year: 1999 end-page: 1386 ident: bib0105 article-title: Impacts of climate change on aquatic ecosystem functioning and health publication-title: Journal of the American Water Resources Association – volume: 302 start-page: 1172 year: 2003 end-page: 1175 ident: bib0030 article-title: Human population: The next half century publication-title: Science – volume: 254 start-page: 390 year: 2008 end-page: 406 ident: bib0085 article-title: Estimating potential habitat for 134 eastern US tree species under six climate scenarios publication-title: Forest Ecology and Management – volume: 26 start-page: 693 year: 1989 end-page: 700 ident: bib0110 article-title: Date of budburst of fifteen tree species in Britain following climatic warming publication-title: Journal of Applied Ecology – volume: 60 start-page: 602 year: 2010 end-page: 603 ident: bib0015 article-title: Climate change and bark beetles of the western United States and Canada: Direct and indirect effects publication-title: BioScience – volume: 28 start-page: 51 issue: 1 year: 1998 ident: 10.1016/j.landurbplan.2015.12.002_bib0165 article-title: Cool communities: Strategies for heat island mitigation and smog reduction publication-title: Energy and Buildings doi: 10.1016/S0378-7788(97)00063-7 – volume: 302 start-page: 1172 year: 2003 ident: 10.1016/j.landurbplan.2015.12.002_bib0030 article-title: Human population: The next half century publication-title: Science doi: 10.1126/science.1088665 – volume: 35 start-page: 1373 issue: 6 year: 1999 ident: 10.1016/j.landurbplan.2015.12.002_bib0105 article-title: Impacts of climate change on aquatic ecosystem functioning and health publication-title: Journal of the American Water Resources Association doi: 10.1111/j.1752-1688.1999.tb04222.x – volume: 51 start-page: 723 issue: 9 year: 2001 ident: 10.1016/j.landurbplan.2015.12.002_bib0040 article-title: Climate change and forest disturbances publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 – year: 2006 ident: 10.1016/j.landurbplan.2015.12.002_bib0125 – volume: 50 start-page: 77 issue: 1 year: 2001 ident: 10.1016/j.landurbplan.2015.12.002_bib0205 article-title: Potential impact of climate change on vegetation in the European Alps: A review publication-title: Climatic Change doi: 10.1023/A:1010632015572 – volume: 1 start-page: 51 year: 1978 ident: 10.1016/j.landurbplan.2015.12.002_bib0175 article-title: Freezing resistance of New Zealand trees and shrubs publication-title: New Zealand Journal of Ecology – volume: 9 start-page: 1 issue: 6 year: 2014 ident: 10.1016/j.landurbplan.2015.12.002_bib0200 article-title: Avoided heat-related mortality through climate adaptation strategies in three US cities publication-title: PLoS ONE doi: 10.1371/journal.pone.0100852 – volume: 69 start-page: 189 year: 1987 ident: 10.1016/j.landurbplan.2015.12.002_bib0230 article-title: Climate and plant distributions at global and local scales publication-title: Vegetatio doi: 10.1007/BF00038700 – volume: 254 start-page: 390 issue: 3 year: 2008 ident: 10.1016/j.landurbplan.2015.12.002_bib0085 article-title: Estimating potential habitat for 134 eastern US tree species under six climate scenarios publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2007.07.023 – ident: 10.1016/j.landurbplan.2015.12.002_bib0235 – volume: 54 start-page: 118 issue: 1 year: 1973 ident: 10.1016/j.landurbplan.2015.12.002_bib0180 article-title: Freezing resistance of trees in North America with reference to tree regions publication-title: Ecology doi: 10.2307/1934380 – volume: 104 start-page: 19697 issue: 50 year: 2007 ident: 10.1016/j.landurbplan.2015.12.002_bib0095 article-title: Climate change impacts on forestry publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0701424104 – volume: 107 start-page: 263 year: 2012 ident: 10.1016/j.landurbplan.2015.12.002_bib0195 article-title: Managing climate change in cities: Will climate action plans work? publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2012.05.014 – volume: 87 start-page: 2773 issue: 11 year: 2006 ident: 10.1016/j.landurbplan.2015.12.002_bib0075 article-title: Potential effects of climate change on ecosystem and tree species distribution in British Columbia publication-title: Ecology doi: 10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2 – volume: 51 start-page: 242 year: 2012 ident: 10.1016/j.landurbplan.2015.12.002_bib0045 article-title: Development of a new USDA plant hardiness zone map for the United States publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2010JAMC2536.1 – year: 2012 ident: 10.1016/j.landurbplan.2015.12.002_bib0035 – volume: 12 start-page: 2272 issue: 12 year: 2006 ident: 10.1016/j.landurbplan.2015.12.002_bib0080 article-title: The ability of climate envelope models to predict the effect of climate change on species distributions publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2006.01256.x – volume: 76 start-page: 1651 issue: 3 year: 2015 ident: 10.1016/j.landurbplan.2015.12.002_bib0070 article-title: Rising heat wave trends in large US cities publication-title: Natural Hazards doi: 10.1007/s11069-014-1563-z – volume: 60 start-page: 602 issue: 8 year: 2010 ident: 10.1016/j.landurbplan.2015.12.002_bib0015 article-title: Climate change and bark beetles of the western United States and Canada: Direct and indirect effects publication-title: BioScience doi: 10.1525/bio.2010.60.8.6 – volume: 5 start-page: 289 issue: 9 year: 1990 ident: 10.1016/j.landurbplan.2015.12.002_bib0060 article-title: Effects of global climate change on the patterns of terrestrial biological communities publication-title: Trends in Ecology & Evolution doi: 10.1016/0169-5347(90)90083-P – year: 2014 ident: 10.1016/j.landurbplan.2015.12.002_bib0215 – year: 2014 ident: 10.1016/j.landurbplan.2015.12.002_bib0210 – year: 2013 ident: 10.1016/j.landurbplan.2015.12.002_bib0130 – volume: 0 start-page: 1 year: 2013 ident: 10.1016/j.landurbplan.2015.12.002_bib0185 article-title: Urban forests and solar power generation: Partners in urban heat island mitigation publication-title: International Journal of Low-Carbon Technologies – volume: 105 start-page: 11823 issue: 33 year: 2008 ident: 10.1016/j.landurbplan.2015.12.002_bib0090 article-title: Rapid shifts in plant distribution with recent climate change publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0802891105 – volume: 421 start-page: 37 year: 2003 ident: 10.1016/j.landurbplan.2015.12.002_bib0145 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature doi: 10.1038/nature01286 – year: 2013 ident: 10.1016/j.landurbplan.2015.12.002_bib0055 – year: 2015 ident: 10.1016/j.landurbplan.2015.12.002_bib0050 – year: 1988 ident: 10.1016/j.landurbplan.2015.12.002_bib0140 – volume: 70 start-page: 295 year: 2001 ident: 10.1016/j.landurbplan.2015.12.002_bib0005 article-title: Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas publication-title: Solar Energy doi: 10.1016/S0038-092X(00)00089-X – start-page: 195 year: 2014 ident: 10.1016/j.landurbplan.2015.12.002_bib0065 article-title: Ch. 8: Ecosystems, biodiversity, and ecosystem services – volume: 29 start-page: 293 issue: 2 year: 1999 ident: 10.1016/j.landurbplan.2015.12.002_bib0020 article-title: Ecosystem services in urban areas publication-title: Ecological Economics doi: 10.1016/S0921-8009(99)00013-0 – start-page: 19 year: 2014 ident: 10.1016/j.landurbplan.2015.12.002_bib0115 article-title: Ch. 2: Our changing climate – volume: 11 start-page: 351 year: 2012 ident: 10.1016/j.landurbplan.2015.12.002_bib0170 article-title: A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones publication-title: Urban Forestry & Urban Greening doi: 10.1016/j.ufug.2012.06.006 – year: 2013 ident: 10.1016/j.landurbplan.2015.12.002_bib0220 – year: 2013 ident: 10.1016/j.landurbplan.2015.12.002_bib0120 – volume: 416 start-page: 389 year: 2002 ident: 10.1016/j.landurbplan.2015.12.002_bib0225 article-title: Ecological responses to recent climate change publication-title: Nature doi: 10.1038/416389a – volume: 57 start-page: 929 year: 2007 ident: 10.1016/j.landurbplan.2015.12.002_bib0100 article-title: Beyond traditional hardiness zones: Using climate envelopes to map plant range limits publication-title: BioScience doi: 10.1641/B571105 – year: 2007 ident: 10.1016/j.landurbplan.2015.12.002_bib0135 – volume: 12 start-page: 361 issue: 5 year: 2003 ident: 10.1016/j.landurbplan.2015.12.002_bib0150 article-title: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? publication-title: Global Ecology and Biogeography doi: 10.1046/j.1466-822X.2003.00042.x – volume: 27 start-page: 1801 year: 2007 ident: 10.1016/j.landurbplan.2015.12.002_bib0190 article-title: Urban and rural temperature trends in proximity to large US cities: 1951–2000 publication-title: International Journal of Climatology doi: 10.1002/joc.1555 – volume: 10 start-page: 269 year: 2011 ident: 10.1016/j.landurbplan.2015.12.002_bib0155 article-title: Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA publication-title: Urban Forestry & Urban Greening doi: 10.1016/j.ufug.2011.05.008 – volume: 333 start-page: 1024 issue: 6045 year: 2011 ident: 10.1016/j.landurbplan.2015.12.002_bib0025 article-title: Rapid range shifts of species associated with high levels of climate warming publication-title: Science doi: 10.1126/science.1206432 – volume: 26 start-page: 693 year: 1989 ident: 10.1016/j.landurbplan.2015.12.002_bib0110 article-title: Date of budburst of fifteen tree species in Britain following climatic warming publication-title: Journal of Applied Ecology doi: 10.2307/2404093 – volume: 421 start-page: 57 year: 2003 ident: 10.1016/j.landurbplan.2015.12.002_bib0160 article-title: Fingerprints of global warming on wild animals and plants publication-title: Nature doi: 10.1038/nature01333 |
SSID | ssj0001561 |
Score | 2.418214 |
Snippet | •We examine the effect of hardiness zone shifts on tree distribution in the US.•All Southeastern US MSAs in our study lost tree species over time.•Continuing... Vegetative enhancement in the form of tree planting has been found to be a highly effective strategy for cooling urban environments, yet as cities continue to... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 74 |
SubjectTerms | cities Climate Climate change cooling District of Columbia Economics environmental management Georgia global warming Green aspects green infrastructure Hardiness zones heat Heat adaptation strategy heat island humans people planting Strategy temperature Tree species distribution Trees Urban areas Urban environments Urban heat islands Vegetation |
Title | Climate adaptation in cities: What trees are suitable for urban heat management? |
URI | https://dx.doi.org/10.1016/j.landurbplan.2015.12.002 https://www.proquest.com/docview/1808612104 https://www.proquest.com/docview/1817845277 https://www.proquest.com/docview/1825513923 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-alI29jC1babqtqDD25iVSZFkqhVFCSraxMmgLfROyJQ-Pzgn5eOhL__be-SNt2SiFvdhgdCDrdHc_SXc_AXwc6nwoMXJEzoskkp6jzXnOo4DYAcNbapSjheKPUzW9kN8u48stGLe1MJRW2fj-2qdX3rr5MmhGczAvisEZ8YgI4guPKdDIUQe2BUZ73YXt46_fp6cbh4xLlPpaQmUiEngOB3dpXpQ_uF6kc3xToldcbQ42myz_CFOd3M3-cttVLDp5BS8bEMmO636-hq1Q9uDZpCKgvu7BzuSueg2bNea77MHepjyFfWJ1YS6reUKu38DP8VWB8DUw5928PqBnRcmyinL1kBHHN6Mj7CVzi8CW62JFVVcMQS_DP3MlI7fO_mzSab68hfOTyfl4GjX3LUSZlHIV4TiZPKTKOTfS2UiENPaZVxpBYa5UajR3mchjnxvJZaqVw0dVBpIr7xHZ7EC3nJVhFxiCFke6kU4gHjPB6KH3iTHOyzjhTvdBt6Nrs4aLnK7EuLJt0tlve08xlhRjubComD6Ijei8JuR4itBRq0L7YHZZDBxPEd9FtVv3C_2uvTgTxMqH0Bid46gPB-1csGiYdNriyjBbLy3XuFokejb5WBueaBmLJHmsjaBLeBCI7_3fX7yDF9TzOkHuPXRXi3X4gIhqle5D5_MN32_s5hbNWB6Z |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_alH28jC1babovFcbeTGJFlqUxGCWkpGsbBk2hb0K25OHROSEfD_3vd2fL6cZGKezFBiOBdSfd_STd_Q7gw0AVA4GeI7KOp5FwMa45F8eRR-yA7i3T0tJG8WIqJ1fi63VyvQOjNheGwiqD7W9sem2tw5d-kGZ_UZb9S-IR4cQXnpCjEcNd2BNU1LoDe8enZ5Pp1iDjFqUpSyh1RB0ew9FdmBfFD26W2QLfFOiV1IeD4ZDlH25qt7Dzv8x27YtOnsOzACLZcfOfL2DHV114NK4JqG-7sD--y17DZmH5rrpwuE1PYR9Zk5jLGp6Q25fwbXRTInz1zDq7aC7oWVmxvKZc_cSI45vRFfaK2aVnq025pqwrhqCX4chsxciss5_bcJovr2B2Mp6NJlGotxDlQoh1hHLShc-ktXao8iH3WeJyJxWCwkLKTKvY5rxIXKFRypmSFh91GkghnUNksw-dal75A2AIWizpRliOeEx7rQbOpVpbJ5I0tqoHqpWuyQMXOZXEuDFt0NkP85tiDCnGxNygYnrAt10XDSHHQzp9blVo_phdBh3HQ7ofoNqN_Y5211xdcmLlQ2iMxnHYg6N2LhhcmHTbYis_36xMrHC3SPRs4r42capEwtP0vjacivAgED_8v1G8hyeT2cW5OT-dnr2GpzSKJljuDXTWy41_i-hqnb0Lq-cXigUgfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+adaptation+in+cities%3A+What+trees+are+suitable+for+urban+heat+management%3F&rft.jtitle=Landscape+and+urban+planning&rft.au=Lanza%2C+Kevin&rft.au=Stone%2C+Brian+Jr&rft.date=2016-09-01&rft.issn=0169-2046&rft.volume=153&rft.spage=74&rft.epage=82&rft_id=info:doi/10.1016%2Fj.landurbplan.2015.12.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2046&client=summon |