A machine learning framework to optimize optic nerve electrical stimulation for vision restoration
Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural net...
Saved in:
| Published in | Patterns (New York, N.Y.) Vol. 2; no. 7; p. 100286 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
09.07.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2666-3899 2666-3899 |
| DOI | 10.1016/j.patter.2021.100286 |
Cover
| Abstract | Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems.
•A framework to optimize optic nerve stimulation protocols has been implemented•A physiologically constrained convolutional neural network models the visual system•A genetic algorithm evolves optimal stimulations to match cortical activation•Our protocols elicit the right stimulus classes in static and dynamic scenarios
Electrical stimulation of the optic nerve can allow the restoration of lost visual functions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable approach to target selectively nerve fiber subpopulations that mediate different sensations but share similar locations in the nerve. In the present work, we use a simple computational model of the primate visual system to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce nerve stimulation patterns that exploit the convergent nature of the visual system to “correct” the representation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve interfaces.
We formulated a computational framework for the optimization of optic nerve stimulation patterns. We have implemented a model of the primate visual system, and an algorithm that allows the evolution of an optic nerve stimulation protocol that induces activation corresponding to natural visual stimuli in a given brain region and, consequently, a specified visual sensation. This could pave the way for novel machine-learning-based optimization of optic nerve stimulation to produce naturalistic sensations in blind patients. |
|---|---|
| AbstractList | Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems.Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. • A framework to optimize optic nerve stimulation protocols has been implemented • A physiologically constrained convolutional neural network models the visual system • A genetic algorithm evolves optimal stimulations to match cortical activation • Our protocols elicit the right stimulus classes in static and dynamic scenarios Electrical stimulation of the optic nerve can allow the restoration of lost visual functions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable approach to target selectively nerve fiber subpopulations that mediate different sensations but share similar locations in the nerve. In the present work, we use a simple computational model of the primate visual system to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce nerve stimulation patterns that exploit the convergent nature of the visual system to “correct” the representation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve interfaces. We formulated a computational framework for the optimization of optic nerve stimulation patterns. We have implemented a model of the primate visual system, and an algorithm that allows the evolution of an optic nerve stimulation protocol that induces activation corresponding to natural visual stimuli in a given brain region and, consequently, a specified visual sensation. This could pave the way for novel machine-learning-based optimization of optic nerve stimulation to produce naturalistic sensations in blind patients. Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. The bigger picture: Electrical stimulation of the optic nerve can allow the restoration of lost visual functions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable approach to target selectively nerve fiber subpopulations that mediate different sensations but share similar locations in the nerve. In the present work, we use a simple computational model of the primate visual system to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce nerve stimulation patterns that exploit the convergent nature of the visual system to “correct” the representation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve interfaces. Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. •A framework to optimize optic nerve stimulation protocols has been implemented•A physiologically constrained convolutional neural network models the visual system•A genetic algorithm evolves optimal stimulations to match cortical activation•Our protocols elicit the right stimulus classes in static and dynamic scenarios Electrical stimulation of the optic nerve can allow the restoration of lost visual functions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable approach to target selectively nerve fiber subpopulations that mediate different sensations but share similar locations in the nerve. In the present work, we use a simple computational model of the primate visual system to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce nerve stimulation patterns that exploit the convergent nature of the visual system to “correct” the representation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve interfaces. We formulated a computational framework for the optimization of optic nerve stimulation patterns. We have implemented a model of the primate visual system, and an algorithm that allows the evolution of an optic nerve stimulation protocol that induces activation corresponding to natural visual stimuli in a given brain region and, consequently, a specified visual sensation. This could pave the way for novel machine-learning-based optimization of optic nerve stimulation to produce naturalistic sensations in blind patients. |
| ArticleNumber | 100286 |
| Author | Zoccolan, Davide Romeni, Simone Micera, Silvestro |
| Author_xml | – sequence: 1 givenname: Simone surname: Romeni fullname: Romeni, Simone organization: Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland – sequence: 2 givenname: Davide surname: Zoccolan fullname: Zoccolan, Davide organization: Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy – sequence: 3 givenname: Silvestro orcidid: 0000-0003-4396-8217 surname: Micera fullname: Micera, Silvestro email: silvestro.micera@epfl.ch organization: Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34286301$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAQjVARLaX_AKEcuewSxx9xOCBVFR-VKnGBs2U7k60Xxw52slX765nNlqrlgHryeObNe-N5fl0chRigKN6Sak0qIj5s16OeJkjruqoJpqpaihfFSS2EWFHZtkeP4uPiLOdthRhOSCvIq-KYMsTTipwU5rwctL12AUoPOgUXNmWf9AA3Mf0qp1jGcXKDu4MlsGWAtIMSPNgpOat9mbE8ez25GMo-pnLn8j5MkKeYlvSb4mWvfYaz-_O0-Pnl84-Lb6ur718vL86vVpYxJlaEM00NZ4z0stVGcMI7kKI3tquZtL0xjaZtS2tqGjDaNJSbupcdMZJKwN7T4vLA20W9VWNyg063KmqnlkRMG6UTvsGD6qseGOdC0m6_Ciq1bKHFDYmqwbtFLn7gmsOob2-09w-EpFJ7CxRKLBaovQXqYAH2fTr0jbMZoLMQpqT9k2GeVoK7Vpu4U7JuBMojwft7ghR_z7hENbhswXsdIM5Z1ZxTWRPGW4S-e6z1IPLXXASwA8CmmHOC_rlv-PhPm3XT4iRO7PwzFwDo9M5hNVsHwULnEv4ZtML9n-APBdzmBQ |
| CitedBy_id | crossref_primary_10_1063_5_0195680 crossref_primary_10_1088_2516_1091_ac812c crossref_primary_10_1088_1741_2552_acc2e7 crossref_primary_10_1016_j_isci_2024_111321 crossref_primary_10_1016_j_mtbio_2024_101415 crossref_primary_10_1016_j_patter_2021_100304 |
| Cites_doi | 10.1073/pnas.1704856114 10.1126/scitranslmed.3006820 10.3389/fnins.2016.00028 10.1101/511535 10.1037/a0018730 10.1016/j.neuron.2012.01.010 10.1038/s41593-019-0520-2 10.1038/s41591-019-0567-3 10.1002/ana.25384 10.1126/science.287.5456.1273 10.1016/S0006-8993(98)00977-9 10.7554/eLife.58516 10.1002/cne.902920402 10.1126/scitranslmed.3008669 10.1038/s41596-020-0377-6 10.1109/TBME.1976.324593 10.1038/nn.4244 10.1073/pnas.1403112111 10.1016/j.neuropsychologia.2015.06.010 10.1126/science.abd7435 10.1523/JNEUROSCI.21-04-01340.2001 10.1088/1741-2552/abb860 10.1146/annurev-vision-082114-035447 10.1126/scirobotics.aau8892 10.1371/journal.pcbi.1006897 10.1088/1741-2560/2/1/004 10.1088/1741-2560/13/5/056007 10.1016/j.neuron.2018.08.033 10.1002/cne.903000103 10.1146/annurev.ne.19.030196.003045 10.1038/nrn2619 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.patter.2021.100286 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2666-3899 |
| ExternalDocumentID | oai_doaj_org_article_f0fe455683d342838a89e9002607428c 10.1016/j.patter.2021.100286 PMC8276026 34286301 10_1016_j_patter_2021_100286 S2666389921001197 |
| Genre | Journal Article |
| GroupedDBID | 6I. AAEDW AAFTH AAXUO ACHIH ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 NCXOZ OK1 ROL RPM 0R~ AALRI AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4446-154a3b5441f89ab6515de86fbcd248cfbb7a399323b7ebab735b2f8d1b838e4a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2666-3899 |
| IngestDate | Fri Oct 03 12:43:31 EDT 2025 Sun Oct 26 04:37:50 EDT 2025 Tue Sep 30 16:29:31 EDT 2025 Thu Oct 02 11:09:56 EDT 2025 Mon Jul 21 06:04:40 EDT 2025 Tue Jul 01 03:04:25 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Tue Jul 25 21:01:26 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | DSML 2: Proof-of-Concept: Data science output has been formulated, implemented, and tested for one domain/problem neuroprosthetics optimization vision restoration optic nerve stimulation sensory restoration convolutional neural networks genetic algorithms |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4446-154a3b5441f89ab6515de86fbcd248cfbb7a399323b7ebab735b2f8d1b838e4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
| ORCID | 0000-0003-4396-8217 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S2666389921001197/pdf |
| PMID | 34286301 |
| PQID | 2553821459 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f0fe455683d342838a89e9002607428c unpaywall_primary_10_1016_j_patter_2021_100286 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8276026 proquest_miscellaneous_2553821459 pubmed_primary_34286301 crossref_primary_10_1016_j_patter_2021_100286 crossref_citationtrail_10_1016_j_patter_2021_100286 elsevier_sciencedirect_doi_10_1016_j_patter_2021_100286 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-09 |
| PublicationDateYYYYMMDD | 2021-07-09 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Patterns (New York, N.Y.) |
| PublicationTitleAlternate | Patterns (N Y) |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Petrini, Valle, Strauss, Granata, Di Iorio, D’Anna, Cvancara, Mueller, Carpaneto, Clemente (bib3) 2019; 85 Brelén, Duret, Gérard, Delbeke, Veraart (bib7) 2005; 2 Kriegeskorte (bib17) 2015; 1 Petrini, Bumbasirevic, Valle, Ilic, Mijovic, Cvancara, Barberi, Katic, Bortolotti, Andreu (bib4) 2019; 25 Piasini, Soltuzu, Caramellino, Balasubramanian, Zoccolan (bib24) 2019 Veraart, Raftopoulos, Mortimer, Delbeke, Pins, Michaux, Vanlierde, Parrini, Wanet-Defalque (bib6) 1998; 813 Curcio, Sloan, Kalina, Hendrickson (bib14) 1990 Tan, Schiefer, Keith, Robert, Tyler, Tyler (bib2) 2014; 6 Leuba, Kraftsik (bib16) 1994; 190 Vinje, Gallant (bib25) 2000; 287 Dapello, Marques, Schrimpf, Geiger, Cox, DiCarlo (bib28) 2020 Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014) Intriguing properties of neural networks. 2nd Int. Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc. 1–10. DiCarlo, Zoccolan, Rust (bib11) 2012; 73 Curcio, Allen (bib15) 1990; 300 Sheinberg, Logothetis (bib26) 2001; 21 Hubel (bib38) 1995 Chen, Wang, Fernandez, Roelfsema (bib8) 2020; 370 Tafazoli, MacDowell, Che, Letai, Steinhardt, Buschman (bib21) 2020 Lindsey, J., Ocko, S.A., Ganguli, S., and Deny, S. (2019) A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnNs. 7th Int. Conf. Learn. Represent. ICLR 2019 1–17. Logothetis (bib12) 1996; 19 Valle, Mazzoni, Iberite, D’Anna, Strauss, Granata, Controzzi, Clemente, Rognini, Cipriani (bib10) 2018; 100 Raspopovic, Capogrosso, Petrini, Bonizzato, Rigosa, Di Pino, Carpaneto, Controzzi, Boretius, Fernandez (bib1) 2014; 6 D’Anna, Valle, Mazzoni, Strauss, Iberite, Patton, Petrini, Raspopovic, Granata, Di Iorio (bib5) 2019; 4 Richards, Lillicrap, Beaudoin, Bengio, Bogacz, Christensen, Clopath, Costa, de Berker, Ganguli (bib19) 2019; 22 Romeni, Valle, Mazzoni, Micera (bib35) 2020; 15 Choi, Brockmeier, McNiel, Von Kraus, Príncipe, Francis (bib29) 2016; 13 Potter, Wyble, Pandav, Olejarczyk (bib36) 2010; 36 Nassi, Callaway (bib13) 2009; 10 Saal, Bensmaia (bib9) 2015; 79 Yamins, DiCarlo (bib18) 2016; 19 Xiao, Rasul, Vollgraf (bib22) 2017 Dura-Bernal, Li, Neymotin, Francis, Principe, Lytton (bib30) 2016; 10 Brackbill, Rhoades, Kling, Shah, Sher, Litke, Chichilnisky (bib31) 2020; 9 Hirsch, Martinez (bib23) 2009 Saal, Delhaye, Rayhaun, Bensmaia (bib32) 2017; 114 McNeal (bib37) 1976; 23 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib33) 2014; 111 Cadena, Denfield, Walker, Gatys, Tolias, Bethge, Ecker (bib34) 2019; 15 Logothetis (10.1016/j.patter.2021.100286_bib12) 1996; 19 Dapello (10.1016/j.patter.2021.100286_bib28) 2020 Nassi (10.1016/j.patter.2021.100286_bib13) 2009; 10 Hirsch (10.1016/j.patter.2021.100286_bib23) 2009 Piasini (10.1016/j.patter.2021.100286_bib24) 2019 D’Anna (10.1016/j.patter.2021.100286_bib5) 2019; 4 Saal (10.1016/j.patter.2021.100286_bib9) 2015; 79 Xiao (10.1016/j.patter.2021.100286_bib22) 2017 Vinje (10.1016/j.patter.2021.100286_bib25) 2000; 287 10.1016/j.patter.2021.100286_bib27 Saal (10.1016/j.patter.2021.100286_bib32) 2017; 114 Romeni (10.1016/j.patter.2021.100286_bib35) 2020; 15 Cadena (10.1016/j.patter.2021.100286_bib34) 2019; 15 Dura-Bernal (10.1016/j.patter.2021.100286_bib30) 2016; 10 Kriegeskorte (10.1016/j.patter.2021.100286_bib17) 2015; 1 McNeal (10.1016/j.patter.2021.100286_bib37) 1976; 23 Curcio (10.1016/j.patter.2021.100286_bib14) 1990 Yamins (10.1016/j.patter.2021.100286_bib18) 2016; 19 Richards (10.1016/j.patter.2021.100286_bib19) 2019; 22 Leuba (10.1016/j.patter.2021.100286_bib16) 1994; 190 Hubel (10.1016/j.patter.2021.100286_bib38) 1995 Petrini (10.1016/j.patter.2021.100286_bib3) 2019; 85 Raspopovic (10.1016/j.patter.2021.100286_bib1) 2014; 6 DiCarlo (10.1016/j.patter.2021.100286_bib11) 2012; 73 Chen (10.1016/j.patter.2021.100286_bib8) 2020; 370 Yamins (10.1016/j.patter.2021.100286_bib33) 2014; 111 Tan (10.1016/j.patter.2021.100286_bib2) 2014; 6 Petrini (10.1016/j.patter.2021.100286_bib4) 2019; 25 10.1016/j.patter.2021.100286_bib20 Veraart (10.1016/j.patter.2021.100286_bib6) 1998; 813 Potter (10.1016/j.patter.2021.100286_bib36) 2010; 36 Tafazoli (10.1016/j.patter.2021.100286_bib21) 2020 Brelén (10.1016/j.patter.2021.100286_bib7) 2005; 2 Choi (10.1016/j.patter.2021.100286_bib29) 2016; 13 Sheinberg (10.1016/j.patter.2021.100286_bib26) 2001; 21 Brackbill (10.1016/j.patter.2021.100286_bib31) 2020; 9 Curcio (10.1016/j.patter.2021.100286_bib15) 1990; 300 Valle (10.1016/j.patter.2021.100286_bib10) 2018; 100 |
| References_xml | – volume: 4 year: 2019 ident: bib5 article-title: A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback publication-title: Sci. Robot. – volume: 300 start-page: 5 year: 1990 end-page: 25 ident: bib15 article-title: Topography of ganglion cells in human retina publication-title: J. Comp. Neurol. – reference: Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014) Intriguing properties of neural networks. 2nd Int. Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc. 1–10. – volume: 79 start-page: 344 year: 2015 end-page: 353 ident: bib9 article-title: Biomimetic approaches to bionic touch through a peripheral nerve interface publication-title: Neuropsychologia(Elsevier) – volume: 370 start-page: 1191 year: 2020 end-page: 1196 ident: bib8 article-title: Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex publication-title: Science – volume: 10 start-page: 360 year: 2009 end-page: 372 ident: bib13 article-title: Parallel processing strategies of the primate visual system publication-title: Nat. Rev. Neurosci. – volume: 114 start-page: E5693 year: 2017 end-page: E5702 ident: bib32 article-title: Simulating tactile signals from the whole hand with millisecond precision publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 73 start-page: 415 year: 2012 end-page: 434 ident: bib11 article-title: How does the brain solve visual object recognition? publication-title: Neuron – year: 1995 ident: bib38 article-title: Eye, Brain, and Vision – volume: 190 start-page: 351 year: 1994 end-page: 366 ident: bib16 article-title: Anatomy and Embryolo and total number of neurons of the human primary visual cortex publication-title: Anat. Embryol. (Berl) – volume: 23 start-page: 329 year: 1976 end-page: 337 ident: bib37 article-title: Analysis of a model for excitation of myelinated nerve publication-title: IEEE Trans. Biomed. Eng. BME- – volume: 10 start-page: 1 year: 2016 end-page: 17 ident: bib30 article-title: Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm publication-title: Front. Neurosci. – reference: Lindsey, J., Ocko, S.A., Ganguli, S., and Deny, S. (2019) A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnNs. 7th Int. Conf. Learn. Represent. ICLR 2019 1–17. – volume: 2 start-page: 21 year: 2005 end-page: 28 ident: bib7 article-title: Creating a meaningful visual perception in blind volunteers by optic nerve stimulation publication-title: J. Neural Eng. – volume: 15 start-page: 3129 year: 2020 end-page: 3153 ident: bib35 article-title: Tutorial: a computational framework for the design and optimization of peripheral neural interfaces publication-title: Nat. Protoc. – volume: 287 start-page: 1273 year: 2000 end-page: 1276 ident: bib25 article-title: Sparse coding and decorrelation in primary visual cortex during natural vision publication-title: Sci. (80- – volume: 22 start-page: 1761 year: 2019 end-page: 1770 ident: bib19 article-title: A deep learning framework for neuroscience publication-title: Nat. Neurosci. – volume: 15 start-page: 1 year: 2019 end-page: 27 ident: bib34 article-title: Deep convolutional models improve predictions of macaque V1 responses to natural images publication-title: Plos Comput. Biol. – year: 2020 ident: bib21 article-title: Learning to control the brain through adaptive closed-loop patterned stimulation publication-title: J. Neural Eng. – volume: 21 start-page: 1340 year: 2001 end-page: 1350 ident: bib26 article-title: Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision publication-title: J. Neurosci. – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib33 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. U S A – start-page: 1 year: 2017 end-page: 6 ident: bib22 article-title: Fashion-mniST: a novel image dataset for benchmarking machine learning algorithms publication-title: arXiv – volume: 13 year: 2016 ident: bib29 article-title: Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation publication-title: J. Neural Eng. – volume: 813 start-page: 181 year: 1998 end-page: 186 ident: bib6 article-title: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode publication-title: Brain Res. – start-page: 1 year: 2019 end-page: 42 ident: bib24 article-title: Intrinsic dynamics enhance temporal stability of stimulus representation along a visual cortical hierarchy publication-title: bioRxiv – volume: 9 start-page: 1 year: 2020 end-page: 65 ident: bib31 article-title: Reconstruction of natural images from responses of primate retinal ganglion cells publication-title: Elife – volume: 36 start-page: 1486 year: 2010 end-page: 1494 ident: bib36 article-title: Picture detection in rapid serial visual presentation: features or identity? publication-title: J. Exp. Psychol. Hum. Percept. Perform. – volume: 25 start-page: 1356 year: 2019 end-page: 1363 ident: bib4 article-title: Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain publication-title: Nat. Med. – volume: 1 start-page: 417 year: 2015 end-page: 446 ident: bib17 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Annu. Rev. Vis. Sci. – volume: 6 start-page: 1 year: 2014 end-page: 25 ident: bib2 article-title: A neural interface provides long-term stable natural touch perception publication-title: Sci. Transl. Med. – start-page: 497 year: 1990 end-page: 523 ident: bib14 article-title: Human photoreceptor topography publication-title: J. Comp. Neurol. – volume: 6 start-page: 222ra19 year: 2014 ident: bib1 article-title: Restoring natural sensory feedback in real-time bidirectional hand prostheses publication-title: Sci. Transl. Med. – volume: 85 start-page: 137 year: 2019 end-page: 154 ident: bib3 article-title: Six-month assessment of a hand prosthesis with intraneural tactile feedback publication-title: Ann. Neurol. – volume: 19 start-page: 356 year: 2016 end-page: 365 ident: bib18 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. – start-page: 1 year: 2020 end-page: 26 ident: bib28 article-title: Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations publication-title: bioRxiv – volume: 100 start-page: 37 year: 2018 end-page: 45.e7 ident: bib10 article-title: Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis publication-title: Neuron – volume: 19 start-page: 577 year: 1996 end-page: 621 ident: bib12 article-title: Visual object recognition publication-title: Annu. Rev. Neurosci. – start-page: 4307 year: 2009 end-page: 4310 ident: bib23 article-title: Visual cortical and subcortical receptive fields publication-title: Encyclopedia of Neuroscience – volume: 114 start-page: E5693 year: 2017 ident: 10.1016/j.patter.2021.100286_bib32 article-title: Simulating tactile signals from the whole hand with millisecond precision publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1704856114 – volume: 6 start-page: 222ra19 year: 2014 ident: 10.1016/j.patter.2021.100286_bib1 article-title: Restoring natural sensory feedback in real-time bidirectional hand prostheses publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3006820 – volume: 10 start-page: 1 year: 2016 ident: 10.1016/j.patter.2021.100286_bib30 article-title: Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00028 – start-page: 1 year: 2020 ident: 10.1016/j.patter.2021.100286_bib28 article-title: Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations publication-title: bioRxiv – start-page: 1 year: 2019 ident: 10.1016/j.patter.2021.100286_bib24 article-title: Intrinsic dynamics enhance temporal stability of stimulus representation along a visual cortical hierarchy publication-title: bioRxiv – ident: 10.1016/j.patter.2021.100286_bib20 doi: 10.1101/511535 – volume: 36 start-page: 1486 year: 2010 ident: 10.1016/j.patter.2021.100286_bib36 article-title: Picture detection in rapid serial visual presentation: features or identity? publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/a0018730 – start-page: 4307 year: 2009 ident: 10.1016/j.patter.2021.100286_bib23 article-title: Visual cortical and subcortical receptive fields – volume: 73 start-page: 415 year: 2012 ident: 10.1016/j.patter.2021.100286_bib11 article-title: How does the brain solve visual object recognition? publication-title: Neuron doi: 10.1016/j.neuron.2012.01.010 – volume: 22 start-page: 1761 year: 2019 ident: 10.1016/j.patter.2021.100286_bib19 article-title: A deep learning framework for neuroscience publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0520-2 – volume: 25 start-page: 1356 year: 2019 ident: 10.1016/j.patter.2021.100286_bib4 article-title: Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain publication-title: Nat. Med. doi: 10.1038/s41591-019-0567-3 – volume: 85 start-page: 137 year: 2019 ident: 10.1016/j.patter.2021.100286_bib3 article-title: Six-month assessment of a hand prosthesis with intraneural tactile feedback publication-title: Ann. Neurol. doi: 10.1002/ana.25384 – year: 1995 ident: 10.1016/j.patter.2021.100286_bib38 – volume: 287 start-page: 1273 year: 2000 ident: 10.1016/j.patter.2021.100286_bib25 article-title: Sparse coding and decorrelation in primary visual cortex during natural vision publication-title: Sci. (80- doi: 10.1126/science.287.5456.1273 – volume: 813 start-page: 181 year: 1998 ident: 10.1016/j.patter.2021.100286_bib6 article-title: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode publication-title: Brain Res. doi: 10.1016/S0006-8993(98)00977-9 – volume: 9 start-page: 1 year: 2020 ident: 10.1016/j.patter.2021.100286_bib31 article-title: Reconstruction of natural images from responses of primate retinal ganglion cells publication-title: Elife doi: 10.7554/eLife.58516 – start-page: 497 year: 1990 ident: 10.1016/j.patter.2021.100286_bib14 article-title: Human photoreceptor topography publication-title: J. Comp. Neurol. doi: 10.1002/cne.902920402 – volume: 6 start-page: 1 year: 2014 ident: 10.1016/j.patter.2021.100286_bib2 article-title: A neural interface provides long-term stable natural touch perception publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3008669 – volume: 190 start-page: 351 year: 1994 ident: 10.1016/j.patter.2021.100286_bib16 article-title: Anatomy and Embryolo and total number of neurons of the human primary visual cortex publication-title: Anat. Embryol. (Berl) – volume: 15 start-page: 3129 year: 2020 ident: 10.1016/j.patter.2021.100286_bib35 article-title: Tutorial: a computational framework for the design and optimization of peripheral neural interfaces publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0377-6 – volume: 23 start-page: 329 year: 1976 ident: 10.1016/j.patter.2021.100286_bib37 article-title: Analysis of a model for excitation of myelinated nerve publication-title: IEEE Trans. Biomed. Eng. BME- doi: 10.1109/TBME.1976.324593 – volume: 19 start-page: 356 year: 2016 ident: 10.1016/j.patter.2021.100286_bib18 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4244 – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.patter.2021.100286_bib33 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1403112111 – volume: 79 start-page: 344 year: 2015 ident: 10.1016/j.patter.2021.100286_bib9 article-title: Biomimetic approaches to bionic touch through a peripheral nerve interface publication-title: Neuropsychologia(Elsevier) doi: 10.1016/j.neuropsychologia.2015.06.010 – volume: 370 start-page: 1191 year: 2020 ident: 10.1016/j.patter.2021.100286_bib8 article-title: Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex publication-title: Science doi: 10.1126/science.abd7435 – volume: 21 start-page: 1340 year: 2001 ident: 10.1016/j.patter.2021.100286_bib26 article-title: Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-04-01340.2001 – year: 2020 ident: 10.1016/j.patter.2021.100286_bib21 article-title: Learning to control the brain through adaptive closed-loop patterned stimulation publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abb860 – start-page: 1 year: 2017 ident: 10.1016/j.patter.2021.100286_bib22 article-title: Fashion-mniST: a novel image dataset for benchmarking machine learning algorithms publication-title: arXiv – volume: 1 start-page: 417 year: 2015 ident: 10.1016/j.patter.2021.100286_bib17 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Annu. Rev. Vis. Sci. doi: 10.1146/annurev-vision-082114-035447 – volume: 4 year: 2019 ident: 10.1016/j.patter.2021.100286_bib5 article-title: A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau8892 – volume: 15 start-page: 1 year: 2019 ident: 10.1016/j.patter.2021.100286_bib34 article-title: Deep convolutional models improve predictions of macaque V1 responses to natural images publication-title: Plos Comput. Biol. doi: 10.1371/journal.pcbi.1006897 – volume: 2 start-page: 21 year: 2005 ident: 10.1016/j.patter.2021.100286_bib7 article-title: Creating a meaningful visual perception in blind volunteers by optic nerve stimulation publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/1/004 – volume: 13 year: 2016 ident: 10.1016/j.patter.2021.100286_bib29 article-title: Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/5/056007 – volume: 100 start-page: 37 year: 2018 ident: 10.1016/j.patter.2021.100286_bib10 article-title: Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis publication-title: Neuron doi: 10.1016/j.neuron.2018.08.033 – volume: 300 start-page: 5 year: 1990 ident: 10.1016/j.patter.2021.100286_bib15 article-title: Topography of ganglion cells in human retina publication-title: J. Comp. Neurol. doi: 10.1002/cne.903000103 – ident: 10.1016/j.patter.2021.100286_bib27 – volume: 19 start-page: 577 year: 1996 ident: 10.1016/j.patter.2021.100286_bib12 article-title: Visual object recognition publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.19.030196.003045 – volume: 10 start-page: 360 year: 2009 ident: 10.1016/j.patter.2021.100286_bib13 article-title: Parallel processing strategies of the primate visual system publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2619 |
| SSID | ssj0002511961 |
| Score | 2.208347 |
| Snippet | Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 100286 |
| SubjectTerms | convolutional neural networks genetic algorithms neuroprosthetics optic nerve stimulation optimization sensory restoration vision restoration |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCywIxCu8ZCTWAInzsMeCqBADE5W6WXZsQ1GbVtAKwa_nzk6qVh3KwBY577vL-Tvl_H2EXBUaMK3geZxbw-JMsDxWeQU1j3GJLhk3qfFdvs_FYy976uf9Bakv7AkL9MDBcDfu1tkMabKYYUgOxhUXVngqLKjqeIXZ95aLhWIKczACZ-HJUmECKmIkkWvXzfnmroknr4TyME08CSkupV6Ylzx9_9L0tAo_V7sot2b1RH1_qeFwYYrq7pKdBlvSTninPbJh632iO3TkGyYtbRQiXqlrO7LodEzHkDRGgx_rNypaYwskDeo46EAKOWDUaHxRQLg0rEanH16Sxg8fkF734eX-MW6EFeIqg_IvBtikmEb1MceF0qiGbiwvnK5MmvHKaV0qBC4p06XVCnyW69Rxk2iwv4VzD8lmPa7tMaFCGJz0ncmYxlpLJGkFAxqApFPCJBFhrVll1bCOo_jFULbtZe8yOEOiM2RwRkTi-VmTwLqx5vg79Nj8WOTM9gMQSbKJJLkukiJStv6WDfwIsAIuNVhz-8s2PCR8nfjLRdV2PPuUULAxjmTwIiJHIVzmD4kPUUB-hfsuBdLSWyzvqQdvngGcpyVKh0Xkeh5yf7LTyX_Y6ZRs4yV9z7I4I5vTj5k9B2Q21Rf-I_wFn9U0Ew priority: 102 providerName: Directory of Open Access Journals |
| Title | A machine learning framework to optimize optic nerve electrical stimulation for vision restoration |
| URI | https://dx.doi.org/10.1016/j.patter.2021.100286 https://www.ncbi.nlm.nih.gov/pubmed/34286301 https://www.proquest.com/docview/2553821459 https://pubmed.ncbi.nlm.nih.gov/PMC8276026 http://www.cell.com/article/S2666389921001197/pdf https://doaj.org/article/f0fe455683d342838a89e9002607428c |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-3899 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511961 issn: 2666-3899 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2666-3899 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511961 issn: 2666-3899 databaseCode: AKRWK dateStart: 20200410 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central Free customDbUrl: eissn: 2666-3899 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511961 issn: 2666-3899 databaseCode: RPM dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4t3QNceIhXeFRG4pouifOwjwWxWnFYIaDScrLs2F4KbVKVVoj99czYSbVVD7vcGsduHjPxfGONvw_gbWUQ00pRpqWzPC0kL1NdNpjzWJ-Zmgub21Dle16dzYpPF-XFEQzChVRVSSvWYY7u393JVwwiFFhlnkWdrJOV9XfguCoRfo_geHb-efqdROSwW0r9hi1yoY5rFXgqMRPMs8A3Srumr4WgwNS_F4kOkeZhweTdbbvSf__oxeJaNDp9AF-GPT2xCOXXZLsxk-bqkOLx9g_6EO732JRNY79HcOTax2CmbBkKLh3rFSYumR8qutimYx1OOsv5lQs_GtZSCSWL6jrkAAznkGWvEcYQIbO4m52tg6RNaH4Cs9OP3z6cpb0wQ9oUmD6mCLs0N6Re5oXUhtTUrROVN43NC9F4Y2pNwCfnpnZGo81Lk3thMyO4cDj2KYzarnXPgUlpCTR4W3BDuZrM8gYbDAJRr6XNEuCDrVTTs5aTeMZCDeVpP1W0sCILq2jhBNLdqFVk7bih_3tyg11f4twODd36UvXWUf6ddwURtnHLiaZOaCGdDKRsNR43CdSDE6kevkRYgn81v-HybwafU_h1k1_o1nXb3woTPi6ITF4m8Cz64O4m6SYqnJ_xunveufcU-2fa-Y_AIC7ymqTHEpjs_PhW7-nF_w54CffoKNQ3y1cw2qy37jWiuI0Zh9WPcVheG_ff8D9brUg9 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6V9AAXHuK15SEjcd2UXe_DPgZEVXGoEBCpnCx7bZeUZDcKiSr665mxd6NGObTcss44-5hZzzfR-PsA3lcGMa0UZVo6y9NC8jLVZYM1j_WZqbmwuQ1dvmfV6bT4cl6eH8AgXEhdlfSPdVij-2d3_B2TCCVWmWdRJ-t4af09OKxKhN8jOJyefZ38JBE5NEvJbtgiF_q4loGnEivBPAt8o7Rr-kYKCkz9O5loH2nuN0ze37RL_fdKz-c3stHJI_g27OmJTSi_x5u1GTfX-xSPd7_Rx_Cwx6ZsEu2ewIFrn4KZsEVouHSsV5i4YH7o6GLrjnW46Cxm1y58aFhLLZQsqutQADBcQxa9RhhDhMzibna2CpI2YfgZTE8-__h0mvbCDGlTYPmYIuzS3JB6mRdSG1JTt05U3jQ2L0Tjjak1AZ-cm9oZjT4vTe6FzYzgwuHc5zBqu9a9BCalJdDgbcEN1WoyyxscMAhEvZY2S4APvlJNz1pO4hlzNbSnXaroYUUeVtHDCaTbWcvI2nGL_UcKg60tcW6HgW51oXrvKP_Bu4II27jlRFMntJBOBlK2Go-bBOohiFQPXyIswZ-a3XL6d0PMKXy7KS5067rNH4UFHxdEJi8TeBFjcHuRdBEVrs943p3o3LmL3W_a2a_AIC7ymqTHEhhv4_hOz-nofye8ggd0FPqb5WsYrVcb9wZR3Nq87d_bfwosRjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+framework+to+optimize+optic+nerve+electrical+stimulation+for+vision+restoration&rft.jtitle=Patterns+%28New+York%2C+N.Y.%29&rft.au=Simone+Romeni&rft.au=Davide+Zoccolan&rft.au=Silvestro+Micera&rft.date=2021-07-09&rft.pub=Elsevier&rft.issn=2666-3899&rft.eissn=2666-3899&rft.volume=2&rft.issue=7&rft.spage=100286&rft_id=info:doi/10.1016%2Fj.patter.2021.100286&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f0fe455683d342838a89e9002607428c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3899&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3899&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3899&client=summon |