A machine learning framework to optimize optic nerve electrical stimulation for vision restoration

Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural net...

Full description

Saved in:
Bibliographic Details
Published inPatterns (New York, N.Y.) Vol. 2; no. 7; p. 100286
Main Authors Romeni, Simone, Zoccolan, Davide, Micera, Silvestro
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 09.07.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2666-3899
2666-3899
DOI10.1016/j.patter.2021.100286

Cover

Abstract Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. •A framework to optimize optic nerve stimulation protocols has been implemented•A physiologically constrained convolutional neural network models the visual system•A genetic algorithm evolves optimal stimulations to match cortical activation•Our protocols elicit the right stimulus classes in static and dynamic scenarios Electrical stimulation of the optic nerve can allow the restoration of lost visual functions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable approach to target selectively nerve fiber subpopulations that mediate different sensations but share similar locations in the nerve. In the present work, we use a simple computational model of the primate visual system to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce nerve stimulation patterns that exploit the convergent nature of the visual system to “correct” the representation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve interfaces. We formulated a computational framework for the optimization of optic nerve stimulation patterns. We have implemented a model of the primate visual system, and an algorithm that allows the evolution of an optic nerve stimulation protocol that induces activation corresponding to natural visual stimuli in a given brain region and, consequently, a specified visual sensation. This could pave the way for novel machine-learning-based optimization of optic nerve stimulation to produce naturalistic sensations in blind patients.
AbstractList Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems.Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems.
Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems.
Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. • A framework to optimize optic nerve stimulation protocols has been implemented • A physiologically constrained convolutional neural network models the visual system • A genetic algorithm evolves optimal stimulations to match cortical activation • Our protocols elicit the right stimulus classes in static and dynamic scenarios Electrical stimulation of the optic nerve can allow the restoration of lost visual functions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable approach to target selectively nerve fiber subpopulations that mediate different sensations but share similar locations in the nerve. In the present work, we use a simple computational model of the primate visual system to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce nerve stimulation patterns that exploit the convergent nature of the visual system to “correct” the representation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve interfaces. We formulated a computational framework for the optimization of optic nerve stimulation patterns. We have implemented a model of the primate visual system, and an algorithm that allows the evolution of an optic nerve stimulation protocol that induces activation corresponding to natural visual stimuli in a given brain region and, consequently, a specified visual sensation. This could pave the way for novel machine-learning-based optimization of optic nerve stimulation to produce naturalistic sensations in blind patients.
Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. The bigger picture: Electrical stimulation of the optic nerve can allow the restoration of lost visual functions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable approach to target selectively nerve fiber subpopulations that mediate different sensations but share similar locations in the nerve. In the present work, we use a simple computational model of the primate visual system to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce nerve stimulation patterns that exploit the convergent nature of the visual system to “correct” the representation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve interfaces.
Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems. •A framework to optimize optic nerve stimulation protocols has been implemented•A physiologically constrained convolutional neural network models the visual system•A genetic algorithm evolves optimal stimulations to match cortical activation•Our protocols elicit the right stimulus classes in static and dynamic scenarios Electrical stimulation of the optic nerve can allow the restoration of lost visual functions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable approach to target selectively nerve fiber subpopulations that mediate different sensations but share similar locations in the nerve. In the present work, we use a simple computational model of the primate visual system to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce nerve stimulation patterns that exploit the convergent nature of the visual system to “correct” the representation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve interfaces. We formulated a computational framework for the optimization of optic nerve stimulation patterns. We have implemented a model of the primate visual system, and an algorithm that allows the evolution of an optic nerve stimulation protocol that induces activation corresponding to natural visual stimuli in a given brain region and, consequently, a specified visual sensation. This could pave the way for novel machine-learning-based optimization of optic nerve stimulation to produce naturalistic sensations in blind patients.
ArticleNumber 100286
Author Zoccolan, Davide
Romeni, Simone
Micera, Silvestro
Author_xml – sequence: 1
  givenname: Simone
  surname: Romeni
  fullname: Romeni, Simone
  organization: Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 2
  givenname: Davide
  surname: Zoccolan
  fullname: Zoccolan, Davide
  organization: Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
– sequence: 3
  givenname: Silvestro
  orcidid: 0000-0003-4396-8217
  surname: Micera
  fullname: Micera, Silvestro
  email: silvestro.micera@epfl.ch
  organization: Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34286301$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVARLaX_AKEcuewSxx9xOCBVFR-VKnGBs2U7k60Xxw52slX765nNlqrlgHryeObNe-N5fl0chRigKN6Sak0qIj5s16OeJkjruqoJpqpaihfFSS2EWFHZtkeP4uPiLOdthRhOSCvIq-KYMsTTipwU5rwctL12AUoPOgUXNmWf9AA3Mf0qp1jGcXKDu4MlsGWAtIMSPNgpOat9mbE8ez25GMo-pnLn8j5MkKeYlvSb4mWvfYaz-_O0-Pnl84-Lb6ur718vL86vVpYxJlaEM00NZ4z0stVGcMI7kKI3tquZtL0xjaZtS2tqGjDaNJSbupcdMZJKwN7T4vLA20W9VWNyg063KmqnlkRMG6UTvsGD6qseGOdC0m6_Ciq1bKHFDYmqwbtFLn7gmsOob2-09w-EpFJ7CxRKLBaovQXqYAH2fTr0jbMZoLMQpqT9k2GeVoK7Vpu4U7JuBMojwft7ghR_z7hENbhswXsdIM5Z1ZxTWRPGW4S-e6z1IPLXXASwA8CmmHOC_rlv-PhPm3XT4iRO7PwzFwDo9M5hNVsHwULnEv4ZtML9n-APBdzmBQ
CitedBy_id crossref_primary_10_1063_5_0195680
crossref_primary_10_1088_2516_1091_ac812c
crossref_primary_10_1088_1741_2552_acc2e7
crossref_primary_10_1016_j_isci_2024_111321
crossref_primary_10_1016_j_mtbio_2024_101415
crossref_primary_10_1016_j_patter_2021_100304
Cites_doi 10.1073/pnas.1704856114
10.1126/scitranslmed.3006820
10.3389/fnins.2016.00028
10.1101/511535
10.1037/a0018730
10.1016/j.neuron.2012.01.010
10.1038/s41593-019-0520-2
10.1038/s41591-019-0567-3
10.1002/ana.25384
10.1126/science.287.5456.1273
10.1016/S0006-8993(98)00977-9
10.7554/eLife.58516
10.1002/cne.902920402
10.1126/scitranslmed.3008669
10.1038/s41596-020-0377-6
10.1109/TBME.1976.324593
10.1038/nn.4244
10.1073/pnas.1403112111
10.1016/j.neuropsychologia.2015.06.010
10.1126/science.abd7435
10.1523/JNEUROSCI.21-04-01340.2001
10.1088/1741-2552/abb860
10.1146/annurev-vision-082114-035447
10.1126/scirobotics.aau8892
10.1371/journal.pcbi.1006897
10.1088/1741-2560/2/1/004
10.1088/1741-2560/13/5/056007
10.1016/j.neuron.2018.08.033
10.1002/cne.903000103
10.1146/annurev.ne.19.030196.003045
10.1038/nrn2619
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.patter.2021.100286
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2666-3899
ExternalDocumentID oai_doaj_org_article_f0fe455683d342838a89e9002607428c
10.1016/j.patter.2021.100286
PMC8276026
34286301
10_1016_j_patter_2021_100286
S2666389921001197
Genre Journal Article
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ACHIH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
RPM
0R~
AALRI
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4446-154a3b5441f89ab6515de86fbcd248cfbb7a399323b7ebab735b2f8d1b838e4a3
IEDL.DBID UNPAY
ISSN 2666-3899
IngestDate Fri Oct 03 12:43:31 EDT 2025
Sun Oct 26 04:37:50 EDT 2025
Tue Sep 30 16:29:31 EDT 2025
Thu Oct 02 11:09:56 EDT 2025
Mon Jul 21 06:04:40 EDT 2025
Tue Jul 01 03:04:25 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Tue Jul 25 21:01:26 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords DSML 2: Proof-of-Concept: Data science output has been formulated, implemented, and tested for one domain/problem
neuroprosthetics
optimization
vision restoration
optic nerve stimulation
sensory restoration
convolutional neural networks
genetic algorithms
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4446-154a3b5441f89ab6515de86fbcd248cfbb7a399323b7ebab735b2f8d1b838e4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ORCID 0000-0003-4396-8217
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S2666389921001197/pdf
PMID 34286301
PQID 2553821459
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f0fe455683d342838a89e9002607428c
unpaywall_primary_10_1016_j_patter_2021_100286
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8276026
proquest_miscellaneous_2553821459
pubmed_primary_34286301
crossref_primary_10_1016_j_patter_2021_100286
crossref_citationtrail_10_1016_j_patter_2021_100286
elsevier_sciencedirect_doi_10_1016_j_patter_2021_100286
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-09
PublicationDateYYYYMMDD 2021-07-09
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Patterns (New York, N.Y.)
PublicationTitleAlternate Patterns (N Y)
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Petrini, Valle, Strauss, Granata, Di Iorio, D’Anna, Cvancara, Mueller, Carpaneto, Clemente (bib3) 2019; 85
Brelén, Duret, Gérard, Delbeke, Veraart (bib7) 2005; 2
Kriegeskorte (bib17) 2015; 1
Petrini, Bumbasirevic, Valle, Ilic, Mijovic, Cvancara, Barberi, Katic, Bortolotti, Andreu (bib4) 2019; 25
Piasini, Soltuzu, Caramellino, Balasubramanian, Zoccolan (bib24) 2019
Veraart, Raftopoulos, Mortimer, Delbeke, Pins, Michaux, Vanlierde, Parrini, Wanet-Defalque (bib6) 1998; 813
Curcio, Sloan, Kalina, Hendrickson (bib14) 1990
Tan, Schiefer, Keith, Robert, Tyler, Tyler (bib2) 2014; 6
Leuba, Kraftsik (bib16) 1994; 190
Vinje, Gallant (bib25) 2000; 287
Dapello, Marques, Schrimpf, Geiger, Cox, DiCarlo (bib28) 2020
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014) Intriguing properties of neural networks. 2nd Int. Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc. 1–10.
DiCarlo, Zoccolan, Rust (bib11) 2012; 73
Curcio, Allen (bib15) 1990; 300
Sheinberg, Logothetis (bib26) 2001; 21
Hubel (bib38) 1995
Chen, Wang, Fernandez, Roelfsema (bib8) 2020; 370
Tafazoli, MacDowell, Che, Letai, Steinhardt, Buschman (bib21) 2020
Lindsey, J., Ocko, S.A., Ganguli, S., and Deny, S. (2019) A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnNs. 7th Int. Conf. Learn. Represent. ICLR 2019 1–17.
Logothetis (bib12) 1996; 19
Valle, Mazzoni, Iberite, D’Anna, Strauss, Granata, Controzzi, Clemente, Rognini, Cipriani (bib10) 2018; 100
Raspopovic, Capogrosso, Petrini, Bonizzato, Rigosa, Di Pino, Carpaneto, Controzzi, Boretius, Fernandez (bib1) 2014; 6
D’Anna, Valle, Mazzoni, Strauss, Iberite, Patton, Petrini, Raspopovic, Granata, Di Iorio (bib5) 2019; 4
Richards, Lillicrap, Beaudoin, Bengio, Bogacz, Christensen, Clopath, Costa, de Berker, Ganguli (bib19) 2019; 22
Romeni, Valle, Mazzoni, Micera (bib35) 2020; 15
Choi, Brockmeier, McNiel, Von Kraus, Príncipe, Francis (bib29) 2016; 13
Potter, Wyble, Pandav, Olejarczyk (bib36) 2010; 36
Nassi, Callaway (bib13) 2009; 10
Saal, Bensmaia (bib9) 2015; 79
Yamins, DiCarlo (bib18) 2016; 19
Xiao, Rasul, Vollgraf (bib22) 2017
Dura-Bernal, Li, Neymotin, Francis, Principe, Lytton (bib30) 2016; 10
Brackbill, Rhoades, Kling, Shah, Sher, Litke, Chichilnisky (bib31) 2020; 9
Hirsch, Martinez (bib23) 2009
Saal, Delhaye, Rayhaun, Bensmaia (bib32) 2017; 114
McNeal (bib37) 1976; 23
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib33) 2014; 111
Cadena, Denfield, Walker, Gatys, Tolias, Bethge, Ecker (bib34) 2019; 15
Logothetis (10.1016/j.patter.2021.100286_bib12) 1996; 19
Dapello (10.1016/j.patter.2021.100286_bib28) 2020
Nassi (10.1016/j.patter.2021.100286_bib13) 2009; 10
Hirsch (10.1016/j.patter.2021.100286_bib23) 2009
Piasini (10.1016/j.patter.2021.100286_bib24) 2019
D’Anna (10.1016/j.patter.2021.100286_bib5) 2019; 4
Saal (10.1016/j.patter.2021.100286_bib9) 2015; 79
Xiao (10.1016/j.patter.2021.100286_bib22) 2017
Vinje (10.1016/j.patter.2021.100286_bib25) 2000; 287
10.1016/j.patter.2021.100286_bib27
Saal (10.1016/j.patter.2021.100286_bib32) 2017; 114
Romeni (10.1016/j.patter.2021.100286_bib35) 2020; 15
Cadena (10.1016/j.patter.2021.100286_bib34) 2019; 15
Dura-Bernal (10.1016/j.patter.2021.100286_bib30) 2016; 10
Kriegeskorte (10.1016/j.patter.2021.100286_bib17) 2015; 1
McNeal (10.1016/j.patter.2021.100286_bib37) 1976; 23
Curcio (10.1016/j.patter.2021.100286_bib14) 1990
Yamins (10.1016/j.patter.2021.100286_bib18) 2016; 19
Richards (10.1016/j.patter.2021.100286_bib19) 2019; 22
Leuba (10.1016/j.patter.2021.100286_bib16) 1994; 190
Hubel (10.1016/j.patter.2021.100286_bib38) 1995
Petrini (10.1016/j.patter.2021.100286_bib3) 2019; 85
Raspopovic (10.1016/j.patter.2021.100286_bib1) 2014; 6
DiCarlo (10.1016/j.patter.2021.100286_bib11) 2012; 73
Chen (10.1016/j.patter.2021.100286_bib8) 2020; 370
Yamins (10.1016/j.patter.2021.100286_bib33) 2014; 111
Tan (10.1016/j.patter.2021.100286_bib2) 2014; 6
Petrini (10.1016/j.patter.2021.100286_bib4) 2019; 25
10.1016/j.patter.2021.100286_bib20
Veraart (10.1016/j.patter.2021.100286_bib6) 1998; 813
Potter (10.1016/j.patter.2021.100286_bib36) 2010; 36
Tafazoli (10.1016/j.patter.2021.100286_bib21) 2020
Brelén (10.1016/j.patter.2021.100286_bib7) 2005; 2
Choi (10.1016/j.patter.2021.100286_bib29) 2016; 13
Sheinberg (10.1016/j.patter.2021.100286_bib26) 2001; 21
Brackbill (10.1016/j.patter.2021.100286_bib31) 2020; 9
Curcio (10.1016/j.patter.2021.100286_bib15) 1990; 300
Valle (10.1016/j.patter.2021.100286_bib10) 2018; 100
References_xml – volume: 4
  year: 2019
  ident: bib5
  article-title: A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback
  publication-title: Sci. Robot.
– volume: 300
  start-page: 5
  year: 1990
  end-page: 25
  ident: bib15
  article-title: Topography of ganglion cells in human retina
  publication-title: J. Comp. Neurol.
– reference: Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014) Intriguing properties of neural networks. 2nd Int. Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc. 1–10.
– volume: 79
  start-page: 344
  year: 2015
  end-page: 353
  ident: bib9
  article-title: Biomimetic approaches to bionic touch through a peripheral nerve interface
  publication-title: Neuropsychologia(Elsevier)
– volume: 370
  start-page: 1191
  year: 2020
  end-page: 1196
  ident: bib8
  article-title: Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex
  publication-title: Science
– volume: 10
  start-page: 360
  year: 2009
  end-page: 372
  ident: bib13
  article-title: Parallel processing strategies of the primate visual system
  publication-title: Nat. Rev. Neurosci.
– volume: 114
  start-page: E5693
  year: 2017
  end-page: E5702
  ident: bib32
  article-title: Simulating tactile signals from the whole hand with millisecond precision
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 73
  start-page: 415
  year: 2012
  end-page: 434
  ident: bib11
  article-title: How does the brain solve visual object recognition?
  publication-title: Neuron
– year: 1995
  ident: bib38
  article-title: Eye, Brain, and Vision
– volume: 190
  start-page: 351
  year: 1994
  end-page: 366
  ident: bib16
  article-title: Anatomy and Embryolo and total number of neurons of the human primary visual cortex
  publication-title: Anat. Embryol. (Berl)
– volume: 23
  start-page: 329
  year: 1976
  end-page: 337
  ident: bib37
  article-title: Analysis of a model for excitation of myelinated nerve
  publication-title: IEEE Trans. Biomed. Eng. BME-
– volume: 10
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib30
  article-title: Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm
  publication-title: Front. Neurosci.
– reference: Lindsey, J., Ocko, S.A., Ganguli, S., and Deny, S. (2019) A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnNs. 7th Int. Conf. Learn. Represent. ICLR 2019 1–17.
– volume: 2
  start-page: 21
  year: 2005
  end-page: 28
  ident: bib7
  article-title: Creating a meaningful visual perception in blind volunteers by optic nerve stimulation
  publication-title: J. Neural Eng.
– volume: 15
  start-page: 3129
  year: 2020
  end-page: 3153
  ident: bib35
  article-title: Tutorial: a computational framework for the design and optimization of peripheral neural interfaces
  publication-title: Nat. Protoc.
– volume: 287
  start-page: 1273
  year: 2000
  end-page: 1276
  ident: bib25
  article-title: Sparse coding and decorrelation in primary visual cortex during natural vision
  publication-title: Sci. (80-
– volume: 22
  start-page: 1761
  year: 2019
  end-page: 1770
  ident: bib19
  article-title: A deep learning framework for neuroscience
  publication-title: Nat. Neurosci.
– volume: 15
  start-page: 1
  year: 2019
  end-page: 27
  ident: bib34
  article-title: Deep convolutional models improve predictions of macaque V1 responses to natural images
  publication-title: Plos Comput. Biol.
– year: 2020
  ident: bib21
  article-title: Learning to control the brain through adaptive closed-loop patterned stimulation
  publication-title: J. Neural Eng.
– volume: 21
  start-page: 1340
  year: 2001
  end-page: 1350
  ident: bib26
  article-title: Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision
  publication-title: J. Neurosci.
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bib33
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. U S A
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib22
  article-title: Fashion-mniST: a novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv
– volume: 13
  year: 2016
  ident: bib29
  article-title: Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
  publication-title: J. Neural Eng.
– volume: 813
  start-page: 181
  year: 1998
  end-page: 186
  ident: bib6
  article-title: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode
  publication-title: Brain Res.
– start-page: 1
  year: 2019
  end-page: 42
  ident: bib24
  article-title: Intrinsic dynamics enhance temporal stability of stimulus representation along a visual cortical hierarchy
  publication-title: bioRxiv
– volume: 9
  start-page: 1
  year: 2020
  end-page: 65
  ident: bib31
  article-title: Reconstruction of natural images from responses of primate retinal ganglion cells
  publication-title: Elife
– volume: 36
  start-page: 1486
  year: 2010
  end-page: 1494
  ident: bib36
  article-title: Picture detection in rapid serial visual presentation: features or identity?
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
– volume: 25
  start-page: 1356
  year: 2019
  end-page: 1363
  ident: bib4
  article-title: Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain
  publication-title: Nat. Med.
– volume: 1
  start-page: 417
  year: 2015
  end-page: 446
  ident: bib17
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Annu. Rev. Vis. Sci.
– volume: 6
  start-page: 1
  year: 2014
  end-page: 25
  ident: bib2
  article-title: A neural interface provides long-term stable natural touch perception
  publication-title: Sci. Transl. Med.
– start-page: 497
  year: 1990
  end-page: 523
  ident: bib14
  article-title: Human photoreceptor topography
  publication-title: J. Comp. Neurol.
– volume: 6
  start-page: 222ra19
  year: 2014
  ident: bib1
  article-title: Restoring natural sensory feedback in real-time bidirectional hand prostheses
  publication-title: Sci. Transl. Med.
– volume: 85
  start-page: 137
  year: 2019
  end-page: 154
  ident: bib3
  article-title: Six-month assessment of a hand prosthesis with intraneural tactile feedback
  publication-title: Ann. Neurol.
– volume: 19
  start-page: 356
  year: 2016
  end-page: 365
  ident: bib18
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
– start-page: 1
  year: 2020
  end-page: 26
  ident: bib28
  article-title: Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations
  publication-title: bioRxiv
– volume: 100
  start-page: 37
  year: 2018
  end-page: 45.e7
  ident: bib10
  article-title: Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis
  publication-title: Neuron
– volume: 19
  start-page: 577
  year: 1996
  end-page: 621
  ident: bib12
  article-title: Visual object recognition
  publication-title: Annu. Rev. Neurosci.
– start-page: 4307
  year: 2009
  end-page: 4310
  ident: bib23
  article-title: Visual cortical and subcortical receptive fields
  publication-title: Encyclopedia of Neuroscience
– volume: 114
  start-page: E5693
  year: 2017
  ident: 10.1016/j.patter.2021.100286_bib32
  article-title: Simulating tactile signals from the whole hand with millisecond precision
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1704856114
– volume: 6
  start-page: 222ra19
  year: 2014
  ident: 10.1016/j.patter.2021.100286_bib1
  article-title: Restoring natural sensory feedback in real-time bidirectional hand prostheses
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3006820
– volume: 10
  start-page: 1
  year: 2016
  ident: 10.1016/j.patter.2021.100286_bib30
  article-title: Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00028
– start-page: 1
  year: 2020
  ident: 10.1016/j.patter.2021.100286_bib28
  article-title: Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations
  publication-title: bioRxiv
– start-page: 1
  year: 2019
  ident: 10.1016/j.patter.2021.100286_bib24
  article-title: Intrinsic dynamics enhance temporal stability of stimulus representation along a visual cortical hierarchy
  publication-title: bioRxiv
– ident: 10.1016/j.patter.2021.100286_bib20
  doi: 10.1101/511535
– volume: 36
  start-page: 1486
  year: 2010
  ident: 10.1016/j.patter.2021.100286_bib36
  article-title: Picture detection in rapid serial visual presentation: features or identity?
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/a0018730
– start-page: 4307
  year: 2009
  ident: 10.1016/j.patter.2021.100286_bib23
  article-title: Visual cortical and subcortical receptive fields
– volume: 73
  start-page: 415
  year: 2012
  ident: 10.1016/j.patter.2021.100286_bib11
  article-title: How does the brain solve visual object recognition?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.01.010
– volume: 22
  start-page: 1761
  year: 2019
  ident: 10.1016/j.patter.2021.100286_bib19
  article-title: A deep learning framework for neuroscience
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0520-2
– volume: 25
  start-page: 1356
  year: 2019
  ident: 10.1016/j.patter.2021.100286_bib4
  article-title: Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0567-3
– volume: 85
  start-page: 137
  year: 2019
  ident: 10.1016/j.patter.2021.100286_bib3
  article-title: Six-month assessment of a hand prosthesis with intraneural tactile feedback
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25384
– year: 1995
  ident: 10.1016/j.patter.2021.100286_bib38
– volume: 287
  start-page: 1273
  year: 2000
  ident: 10.1016/j.patter.2021.100286_bib25
  article-title: Sparse coding and decorrelation in primary visual cortex during natural vision
  publication-title: Sci. (80-
  doi: 10.1126/science.287.5456.1273
– volume: 813
  start-page: 181
  year: 1998
  ident: 10.1016/j.patter.2021.100286_bib6
  article-title: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(98)00977-9
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.patter.2021.100286_bib31
  article-title: Reconstruction of natural images from responses of primate retinal ganglion cells
  publication-title: Elife
  doi: 10.7554/eLife.58516
– start-page: 497
  year: 1990
  ident: 10.1016/j.patter.2021.100286_bib14
  article-title: Human photoreceptor topography
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902920402
– volume: 6
  start-page: 1
  year: 2014
  ident: 10.1016/j.patter.2021.100286_bib2
  article-title: A neural interface provides long-term stable natural touch perception
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3008669
– volume: 190
  start-page: 351
  year: 1994
  ident: 10.1016/j.patter.2021.100286_bib16
  article-title: Anatomy and Embryolo and total number of neurons of the human primary visual cortex
  publication-title: Anat. Embryol. (Berl)
– volume: 15
  start-page: 3129
  year: 2020
  ident: 10.1016/j.patter.2021.100286_bib35
  article-title: Tutorial: a computational framework for the design and optimization of peripheral neural interfaces
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0377-6
– volume: 23
  start-page: 329
  year: 1976
  ident: 10.1016/j.patter.2021.100286_bib37
  article-title: Analysis of a model for excitation of myelinated nerve
  publication-title: IEEE Trans. Biomed. Eng. BME-
  doi: 10.1109/TBME.1976.324593
– volume: 19
  start-page: 356
  year: 2016
  ident: 10.1016/j.patter.2021.100286_bib18
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4244
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.patter.2021.100286_bib33
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1403112111
– volume: 79
  start-page: 344
  year: 2015
  ident: 10.1016/j.patter.2021.100286_bib9
  article-title: Biomimetic approaches to bionic touch through a peripheral nerve interface
  publication-title: Neuropsychologia(Elsevier)
  doi: 10.1016/j.neuropsychologia.2015.06.010
– volume: 370
  start-page: 1191
  year: 2020
  ident: 10.1016/j.patter.2021.100286_bib8
  article-title: Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex
  publication-title: Science
  doi: 10.1126/science.abd7435
– volume: 21
  start-page: 1340
  year: 2001
  ident: 10.1016/j.patter.2021.100286_bib26
  article-title: Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-04-01340.2001
– year: 2020
  ident: 10.1016/j.patter.2021.100286_bib21
  article-title: Learning to control the brain through adaptive closed-loop patterned stimulation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abb860
– start-page: 1
  year: 2017
  ident: 10.1016/j.patter.2021.100286_bib22
  article-title: Fashion-mniST: a novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv
– volume: 1
  start-page: 417
  year: 2015
  ident: 10.1016/j.patter.2021.100286_bib17
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Annu. Rev. Vis. Sci.
  doi: 10.1146/annurev-vision-082114-035447
– volume: 4
  year: 2019
  ident: 10.1016/j.patter.2021.100286_bib5
  article-title: A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aau8892
– volume: 15
  start-page: 1
  year: 2019
  ident: 10.1016/j.patter.2021.100286_bib34
  article-title: Deep convolutional models improve predictions of macaque V1 responses to natural images
  publication-title: Plos Comput. Biol.
  doi: 10.1371/journal.pcbi.1006897
– volume: 2
  start-page: 21
  year: 2005
  ident: 10.1016/j.patter.2021.100286_bib7
  article-title: Creating a meaningful visual perception in blind volunteers by optic nerve stimulation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/1/004
– volume: 13
  year: 2016
  ident: 10.1016/j.patter.2021.100286_bib29
  article-title: Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/5/056007
– volume: 100
  start-page: 37
  year: 2018
  ident: 10.1016/j.patter.2021.100286_bib10
  article-title: Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.08.033
– volume: 300
  start-page: 5
  year: 1990
  ident: 10.1016/j.patter.2021.100286_bib15
  article-title: Topography of ganglion cells in human retina
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903000103
– ident: 10.1016/j.patter.2021.100286_bib27
– volume: 19
  start-page: 577
  year: 1996
  ident: 10.1016/j.patter.2021.100286_bib12
  article-title: Visual object recognition
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.19.030196.003045
– volume: 10
  start-page: 360
  year: 2009
  ident: 10.1016/j.patter.2021.100286_bib13
  article-title: Parallel processing strategies of the primate visual system
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2619
SSID ssj0002511961
Score 2.208347
Snippet Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100286
SubjectTerms convolutional neural networks
genetic algorithms
neuroprosthetics
optic nerve stimulation
optimization
sensory restoration
vision restoration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCywIxCu8ZCTWAInzsMeCqBADE5W6WXZsQ1GbVtAKwa_nzk6qVh3KwBY577vL-Tvl_H2EXBUaMK3geZxbw-JMsDxWeQU1j3GJLhk3qfFdvs_FYy976uf9Bakv7AkL9MDBcDfu1tkMabKYYUgOxhUXVngqLKjqeIXZ95aLhWIKczACZ-HJUmECKmIkkWvXzfnmroknr4TyME08CSkupV6Ylzx9_9L0tAo_V7sot2b1RH1_qeFwYYrq7pKdBlvSTninPbJh632iO3TkGyYtbRQiXqlrO7LodEzHkDRGgx_rNypaYwskDeo46EAKOWDUaHxRQLg0rEanH16Sxg8fkF734eX-MW6EFeIqg_IvBtikmEb1MceF0qiGbiwvnK5MmvHKaV0qBC4p06XVCnyW69Rxk2iwv4VzD8lmPa7tMaFCGJz0ncmYxlpLJGkFAxqApFPCJBFhrVll1bCOo_jFULbtZe8yOEOiM2RwRkTi-VmTwLqx5vg79Nj8WOTM9gMQSbKJJLkukiJStv6WDfwIsAIuNVhz-8s2PCR8nfjLRdV2PPuUULAxjmTwIiJHIVzmD4kPUUB-hfsuBdLSWyzvqQdvngGcpyVKh0Xkeh5yf7LTyX_Y6ZRs4yV9z7I4I5vTj5k9B2Q21Rf-I_wFn9U0Ew
  priority: 102
  providerName: Directory of Open Access Journals
Title A machine learning framework to optimize optic nerve electrical stimulation for vision restoration
URI https://dx.doi.org/10.1016/j.patter.2021.100286
https://www.ncbi.nlm.nih.gov/pubmed/34286301
https://www.proquest.com/docview/2553821459
https://pubmed.ncbi.nlm.nih.gov/PMC8276026
http://www.cell.com/article/S2666389921001197/pdf
https://doaj.org/article/f0fe455683d342838a89e9002607428c
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-3899
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511961
  issn: 2666-3899
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2666-3899
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511961
  issn: 2666-3899
  databaseCode: AKRWK
  dateStart: 20200410
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central Free
  customDbUrl:
  eissn: 2666-3899
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511961
  issn: 2666-3899
  databaseCode: RPM
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4t3QNceIhXeFRG4pouifOwjwWxWnFYIaDScrLs2F4KbVKVVoj99czYSbVVD7vcGsduHjPxfGONvw_gbWUQ00pRpqWzPC0kL1NdNpjzWJ-Zmgub21Dle16dzYpPF-XFEQzChVRVSSvWYY7u393JVwwiFFhlnkWdrJOV9XfguCoRfo_geHb-efqdROSwW0r9hi1yoY5rFXgqMRPMs8A3Srumr4WgwNS_F4kOkeZhweTdbbvSf__oxeJaNDp9AF-GPT2xCOXXZLsxk-bqkOLx9g_6EO732JRNY79HcOTax2CmbBkKLh3rFSYumR8qutimYx1OOsv5lQs_GtZSCSWL6jrkAAznkGWvEcYQIbO4m52tg6RNaH4Cs9OP3z6cpb0wQ9oUmD6mCLs0N6Re5oXUhtTUrROVN43NC9F4Y2pNwCfnpnZGo81Lk3thMyO4cDj2KYzarnXPgUlpCTR4W3BDuZrM8gYbDAJRr6XNEuCDrVTTs5aTeMZCDeVpP1W0sCILq2jhBNLdqFVk7bih_3tyg11f4twODd36UvXWUf6ddwURtnHLiaZOaCGdDKRsNR43CdSDE6kevkRYgn81v-HybwafU_h1k1_o1nXb3woTPi6ITF4m8Cz64O4m6SYqnJ_xunveufcU-2fa-Y_AIC7ymqTHEpjs_PhW7-nF_w54CffoKNQ3y1cw2qy37jWiuI0Zh9WPcVheG_ff8D9brUg9
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6V9AAXHuK15SEjcd2UXe_DPgZEVXGoEBCpnCx7bZeUZDcKiSr665mxd6NGObTcss44-5hZzzfR-PsA3lcGMa0UZVo6y9NC8jLVZYM1j_WZqbmwuQ1dvmfV6bT4cl6eH8AgXEhdlfSPdVij-2d3_B2TCCVWmWdRJ-t4af09OKxKhN8jOJyefZ38JBE5NEvJbtgiF_q4loGnEivBPAt8o7Rr-kYKCkz9O5loH2nuN0ze37RL_fdKz-c3stHJI_g27OmJTSi_x5u1GTfX-xSPd7_Rx_Cwx6ZsEu2ewIFrn4KZsEVouHSsV5i4YH7o6GLrjnW46Cxm1y58aFhLLZQsqutQADBcQxa9RhhDhMzibna2CpI2YfgZTE8-__h0mvbCDGlTYPmYIuzS3JB6mRdSG1JTt05U3jQ2L0Tjjak1AZ-cm9oZjT4vTe6FzYzgwuHc5zBqu9a9BCalJdDgbcEN1WoyyxscMAhEvZY2S4APvlJNz1pO4hlzNbSnXaroYUUeVtHDCaTbWcvI2nGL_UcKg60tcW6HgW51oXrvKP_Bu4II27jlRFMntJBOBlK2Go-bBOohiFQPXyIswZ-a3XL6d0PMKXy7KS5067rNH4UFHxdEJi8TeBFjcHuRdBEVrs943p3o3LmL3W_a2a_AIC7ymqTHEhhv4_hOz-nofye8ggd0FPqb5WsYrVcb9wZR3Nq87d_bfwosRjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+framework+to+optimize+optic+nerve+electrical+stimulation+for+vision+restoration&rft.jtitle=Patterns+%28New+York%2C+N.Y.%29&rft.au=Simone+Romeni&rft.au=Davide+Zoccolan&rft.au=Silvestro+Micera&rft.date=2021-07-09&rft.pub=Elsevier&rft.issn=2666-3899&rft.eissn=2666-3899&rft.volume=2&rft.issue=7&rft.spage=100286&rft_id=info:doi/10.1016%2Fj.patter.2021.100286&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f0fe455683d342838a89e9002607428c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3899&client=summon