A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data

Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 45; no. 17; pp. e26783 - n/a
Main Authors Bi, Yuda, Abrol, Anees, Fu, Zening, Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.26783

Cover

Abstract Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross‐attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross‐attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI‐based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high‐dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space. The MultiViT model combines structural and functional neuroimaging data for the prediction of schizophrenia and integrates vision transformers with cross‐attention layers in order to preserve mutual information. The pipeline generates highly interpretable cross‐attention‐based brain saliency maps and emphasizes functional network connectivity patterns related to the disorder.
AbstractList Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross‐attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross‐attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI‐based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high‐dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space.
Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross‐attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross‐attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI‐based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high‐dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space. The MultiViT model combines structural and functional neuroimaging data for the prediction of schizophrenia and integrates vision transformers with cross‐attention layers in order to preserve mutual information. The pipeline generates highly interpretable cross‐attention‐based brain saliency maps and emphasizes functional network connectivity patterns related to the disorder.
Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross‐attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross‐attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI‐based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high‐dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space. The MultiViT model combines structural and functional neuroimaging data for the prediction of schizophrenia and integrates vision transformers with cross‐attention layers in order to preserve mutual information. The pipeline generates highly interpretable cross‐attention‐based brain saliency maps and emphasizes functional network connectivity patterns related to the disorder.
Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning-based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross-attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross-attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI-based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high-dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space.Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning-based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross-attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross-attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI-based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high-dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space.
Author Bi, Yuda
Calhoun, Vince D.
Abrol, Anees
Fu, Zening
AuthorAffiliation 1 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory Atlanta Georgia USA
AuthorAffiliation_xml – name: 1 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory Atlanta Georgia USA
Author_xml – sequence: 1
  givenname: Yuda
  orcidid: 0000-0003-0385-8363
  surname: Bi
  fullname: Bi, Yuda
  email: ybi3@gsu.edu
  organization: Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory
– sequence: 2
  givenname: Anees
  orcidid: 0000-0001-9223-5314
  surname: Abrol
  fullname: Abrol, Anees
  organization: Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory
– sequence: 3
  givenname: Zening
  surname: Fu
  fullname: Fu, Zening
  organization: Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory
– sequence: 4
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39600159$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB-w4A-gSGwAKa0dO068qkoFFKmIDawtxxnfunLsix-t7r_Ht7e8KtHVjOXvjM6cOUR7PnhA6CXBxwTj7uRqWo47Poz0CTogWAwtJoLubXvet4INZB8dpnSNMSE9Js_QPhW8PnpxgFZnzVJctkuYlWtubLLBNzkqn0yIC8Smlsb6DHEdIavJQWPKHRRM7bzOta9K5ecm5Vh0LrE-PZQY7KJW1q-aWWX1HD01yiV4cV-P0PePH76dX7SXXz99Pj-7bDVjjLbDNBgz9kYPfGJEA-8mAYIT4CC6WZtZMzN2fOzmeZp7QagxWg-9AQpAMWX0CL3bzS1-rTa3yjm5jtVI3EiC5TYtWdOSd2lV-HQHr8u0wKzB183_CIKy8t8fb6_kKtzImqOoroY64c39hBh-FEhZLjZpcE55CCVJSihlHAsmKvr6AXodSqzZbSlG-5H1vKvUq78t_fby62IVeLsDdAwpRTCP7nfygNU2q-3F6jbWPaa4tQ42_x8tL95_2Sl-ArS2yCY
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110554
Cites_doi 10.1016/j.nicl.2020.102375
10.1016/j.dsp.2023.104229
10.3389/fpsyt.2020.00588
10.3390/rs13030516
10.1016/j.nicl.2022.103140
10.1016/j.biopsych.2015.02.017
10.1109/TPAMI.2022.3152247
10.1109/ICCV48922.2021.00717
10.2174/156802612805289890
10.3390/electronics12051218
10.3389/fnhum.2012.00145
10.1016/j.nicl.2020.102531
10.1038/s41598-020-74399-w
10.1016/j.schres.2019.07.034
10.1177/0963721410377601
10.1038/s41598-021-82098-3
10.1176/appi.ajp.159.2.244
10.1007/978-3-031-15937-4_65
10.1002/hbm.24797
10.1001/archpsyc.56.10.905
10.1016/j.artmed.2019.06.003
10.1016/j.media.2022.102430
10.1109/TIP.2022.3193288
10.1007/s40846-023-00801-3
10.1109/ISBI52829.2022.9761584
10.1016/j.pnpbp.2017.12.017
10.1016/j.ebiom.2019.08.023
10.1038/s41467-020-20655-6
10.31887/DCNS.2006.8.1/ldelisi
10.1093/schbul/sbu177
10.1007/s11760-022-02229-9
10.1007/978-3-031-16919-9_4
10.1093/schbul/sbv060
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC.
2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC.
– notice: 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.26783
DatabaseName Wiley Online Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Bi et al
EISSN 1097-0193
EndPage n/a
ExternalDocumentID 10.1002/hbm.26783
PMC11599617
39600159
10_1002_hbm_26783
HBM26783
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 2316421
– fundername: National Science Foundation
  grantid: 2316421
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAFWJ
AAMMB
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
PHGZM
PHGZT
PUEGO
RIWAO
RJQFR
SAMSI
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4443-7b7ff85fc76b41ce62b9e961e6e92dcfdc4f82682ddbd5913ffcc75fe3ee30343
IEDL.DBID BENPR
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 04:06:32 EDT 2025
Tue Sep 30 17:06:48 EDT 2025
Thu Oct 02 06:25:21 EDT 2025
Tue Oct 07 06:14:34 EDT 2025
Wed Feb 19 02:03:59 EST 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Oct 01 01:55:57 EDT 2025
Wed Jan 22 17:12:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords data fusion
vision transformer
neuroimaging
Language English
License Attribution
2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4443-7b7ff85fc76b41ce62b9e961e6e92dcfdc4f82682ddbd5913ffcc75fe3ee30343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9223-5314
0000-0003-0385-8363
OpenAccessLink https://www.proquest.com/docview/3143584562?pq-origsite=%requestingapplication%&accountid=15518
PMID 39600159
PQID 3143584562
PQPubID 996345
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_hbm_26783
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11599617
proquest_miscellaneous_3133460949
proquest_journals_3143584562
pubmed_primary_39600159
crossref_primary_10_1002_hbm_26783
crossref_citationtrail_10_1002_hbm_26783
wiley_primary_10_1002_hbm_26783_HBM26783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 1, 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 78
2023; 12
2023; 17
2020; 41
2010; 19
2019; 98
2021; 29
2023; 143
2022; 45
2002; 159
2020; 11
2018; 83
2012; 12
2021; 13
2023; 43
2017; 30
2021; 12
2021; 11
2023
2022
2021
2020
2022; 8
2015; 41
2019; 47
2020; 28
1999; 56
2022; 79
2019
2022; 35
2018
2019; 212
2022; 31
2012; 6
e_1_2_9_30_1
Zhou Y. (e_1_2_9_45_1) 2023
e_1_2_9_31_1
e_1_2_9_11_1
Gheini M. (e_1_2_9_13_1) 2021
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_32_1
e_1_2_9_12_1
Lee K.‐H. (e_1_2_9_21_1) 2018
Zhao H. (e_1_2_9_44_1) 2020
Dosovitskiy A. (e_1_2_9_8_1) 2020
Wei X. (e_1_2_9_38_1) 2020
Meng X. (e_1_2_9_24_1) 2022
Vaswani A. (e_1_2_9_36_1) 2017
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_16_1
Sukhbaatar S. (e_1_2_9_33_1) 2019
Touvron H. (e_1_2_9_35_1) 2021
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 12
  start-page: 353
  issue: 1
  year: 2021
  article-title: Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
  publication-title: Nature Communications
– volume: 41
  start-page: 1133
  issue: 5
  year: 2015
  end-page: 1142
  article-title: Patterns of gray matter abnormalities in schizophrenia based on an international mega‐analysis
  publication-title: Schizophrenia Bulletin
– volume: 17
  start-page: 267
  issue: 1
  year: 2023
  end-page: 275
  article-title: Diagnosis of schizophrenia using brain resting‐state fmri with activity maps based on deep learning
  publication-title: Signal, Image and Video Processing
– volume: 43
  start-page: 291
  issue: 3
  year: 2023
  end-page: 302
  article-title: Explainable deep‐learning‐based diagnosis of Alzheimer's disease using multimodal input fusion of pet and mri images
  publication-title: Journal of Medical and Biological Engineering
– volume: 83
  start-page: 27
  year: 2018
  end-page: 32
  article-title: Structural and functional brain abnormalities in schizophrenia: A cross‐sectional study at different stages of the disease
  publication-title: Progress in Neuro‐Psychopharmacology and Biological Psychiatry
– volume: 143
  year: 2023
  article-title: Efficient multimodel method based on transformers and coatnet for Alzheimer's diagnosis
  publication-title: Digital Signal Processing
– start-page: 10 076
  year: 2020
  end-page: 10 085
– volume: 45
  start-page: 87
  issue: 1
  year: 2022
  end-page: 110
  article-title: A survey on vision transformer
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 11
  start-page: 588
  year: 2020
  article-title: Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: A systematic review
  publication-title: Frontiers in Psychiatry
– volume: 28
  year: 2020
  article-title: Neuromark: An automated and adaptive ica based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage: Clinical
– volume: 6
  year: 2012
  article-title: High classification accuracy for schizophrenia with rest and task fMRI data
  publication-title: Frontiers in Human Neuroscience
– year: 2022
  article-title: Multi‐model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from fMRI data
  publication-title: bioRxiv, 38, 103434
– start-page: 7262
  year: 2021
  end-page: 7272
– volume: 47
  start-page: 543
  year: 2019
  end-page: 552
  article-title: Discriminating schizophrenia using recurrent neural network applied on time courses of multi‐site fMRI data
  publication-title: eBioMedicine
– volume: 212
  start-page: 186
  year: 2019
  end-page: 195
  article-title: Classification of schizophrenia and normal controls using 3d convolutional neural network and outcome visualization
  publication-title: Schizophrenia Research
– start-page: 1
  year: 2022
  end-page: 4
– volume: 12
  start-page: 1218
  issue: 5
  year: 2023
  article-title: Pixel‐level fusion approach with vision transformer for early detection of alzheimer's disease
  publication-title: Electronics
– volume: 35
  year: 2022
  article-title: Involvement of cerebellar and subcortical connector hubs in schizophrenia
  publication-title: NeuroImage: Clinical
– volume: 98
  start-page: 10
  year: 2019
  end-page: 17
  article-title: 3D‐CNN based discrimination of schizophrenia using resting‐state fMRI
  publication-title: Artificial Intelligence in Medicine
– volume: 30
  year: 2017
– volume: 159
  start-page: 244
  issue: 2
  year: 2002
  end-page: 250
  article-title: Volume changes in gray matter in patients with schizophrenia
  publication-title: American Journal of Psychiatry
– start-page: 10 941
  year: 2020
  end-page: 10 950
– start-page: 36
  year: 2022
  end-page: 48
– volume: 56
  start-page: 905
  issue: 10
  year: 1999
  end-page: 911
  article-title: Reduced gray matter volume in schizophrenia
  publication-title: Archives of General Psychiatry
– volume: 19
  start-page: 226
  issue: 4
  year: 2010
  end-page: 231
  article-title: Structural and functional brain abnormalities in schizophrenia
  publication-title: Current Directions in Psychological Science
– start-page: 10 347
  year: 2021
  end-page: 10 357
– volume: 11
  start-page: 2660
  issue: 1
  year: 2021
  article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease
  publication-title: Scientific Reports
– volume: 79
  year: 2022
  article-title: Sspnet: An interpretable 3D‐CNN for classification of schizophrenia using phase maps of resting‐state complex‐valued fMRI data
  publication-title: Medical Image Analysis
– start-page: 201
  year: 2018
  end-page: 216
– volume: 78
  start-page: 794
  issue: 11
  year: 2015
  end-page: 804
  article-title: In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia
  publication-title: Biological Psychiatry
– year: 2019
  article-title: Augmenting self‐attention with persistent memory
  publication-title: arXiv
– volume: 41
  start-page: 172
  issue: 1
  year: 2020
  end-page: 184
  article-title: Generalizability of machine learning for classification of schizophrenia based on resting‐state functional MRI data
  publication-title: Human Brain Mapping
– year: 2022
– year: 2020
– volume: 11
  start-page: 3254
  issue: 1
  year: 2021
  article-title: Multimodal deep learning models for early detection of alzheimer's disease stage
  publication-title: Scientific Reports
– year: 2021
  article-title: Cross‐attention is all you need: Adapting pretrained transformers for machine translation
  publication-title: arXiv
– volume: 13
  issue: 3
  year: 2021
  article-title: Vision transformers for remote sensing image classification
  publication-title: Remote Sensing
– volume: 31
  start-page: 5134
  year: 2022
  end-page: 5149
  article-title: Matr: Multimodal medical image fusion via multiscale adaptive transformer
  publication-title: IEEE Transactions on Image Processing
– volume: 12
  start-page: 2415
  issue: 21
  year: 2012
  end-page: 2425
  article-title: Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging
  publication-title: Current Topics in Medicinal Chemistry
– year: 2020
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: arXiv
– volume: 29
  year: 2021
  article-title: Temporal‐thalamic and cingulo‐opercular connectivity in people with schizophrenia
  publication-title: NeuroImage: Clinical
– start-page: 42 531
  year: 2023
  end-page: 42 542
– volume: 8
  start-page: 71
  issue: 1
  year: 2022
  end-page: 78
  article-title: Understanding structural brain changes in schizophrenia
  publication-title: Dialogues in Clinical Neuroscience
– volume: 41
  start-page: 1326
  issue: 6
  year: 2015
  end-page: 1335
  article-title: Disintegration of sensorimotor brain networks in schizophrenia
  publication-title: Schizophrenia Bulletin
– ident: e_1_2_9_10_1
  doi: 10.1016/j.nicl.2020.102375
– year: 2019
  ident: e_1_2_9_33_1
  article-title: Augmenting self‐attention with persistent memory
  publication-title: arXiv
– start-page: 201
  volume-title: Proceedings of the European conference on computer vision (ECCV)
  year: 2018
  ident: e_1_2_9_21_1
– start-page: 10 941
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  year: 2020
  ident: e_1_2_9_38_1
– year: 2021
  ident: e_1_2_9_13_1
  article-title: Cross‐attention is all you need: Adapting pretrained transformers for machine translation
  publication-title: arXiv
– ident: e_1_2_9_18_1
  doi: 10.1016/j.dsp.2023.104229
– ident: e_1_2_9_30_1
  doi: 10.3389/fpsyt.2020.00588
– ident: e_1_2_9_3_1
  doi: 10.3390/rs13030516
– start-page: 10 076
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  year: 2020
  ident: e_1_2_9_44_1
– start-page: 42 531
  volume-title: International conference on machine learning
  year: 2023
  ident: e_1_2_9_45_1
– ident: e_1_2_9_40_1
  doi: 10.1016/j.nicl.2022.103140
– ident: e_1_2_9_32_1
  doi: 10.1016/j.biopsych.2015.02.017
– ident: e_1_2_9_16_1
  doi: 10.1109/TPAMI.2022.3152247
– year: 2022
  ident: e_1_2_9_24_1
  article-title: Multi‐model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from fMRI data
  publication-title: bioRxiv, 38, 103434
– ident: e_1_2_9_31_1
  doi: 10.1109/ICCV48922.2021.00717
– ident: e_1_2_9_42_1
  doi: 10.2174/156802612805289890
– ident: e_1_2_9_25_1
  doi: 10.3390/electronics12051218
– volume-title: Advances in neural information processing systems
  year: 2017
  ident: e_1_2_9_36_1
– ident: e_1_2_9_9_1
  doi: 10.3389/fnhum.2012.00145
– ident: e_1_2_9_4_1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.nicl.2020.102531
– ident: e_1_2_9_37_1
  doi: 10.1038/s41598-020-74399-w
– ident: e_1_2_9_27_1
  doi: 10.1016/j.schres.2019.07.034
– ident: e_1_2_9_19_1
  doi: 10.1177/0963721410377601
– ident: e_1_2_9_11_1
  doi: 10.1038/s41598-021-82098-3
– ident: e_1_2_9_17_1
  doi: 10.1176/appi.ajp.159.2.244
– ident: e_1_2_9_22_1
  doi: 10.1007/978-3-031-15937-4_65
– start-page: 10 347
  volume-title: International conference on machine learning
  year: 2021
  ident: e_1_2_9_35_1
– ident: e_1_2_9_5_1
  doi: 10.1002/hbm.24797
– year: 2020
  ident: e_1_2_9_8_1
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: arXiv
– ident: e_1_2_9_15_1
  doi: 10.1001/archpsyc.56.10.905
– ident: e_1_2_9_28_1
  doi: 10.1016/j.artmed.2019.06.003
– ident: e_1_2_9_23_1
  doi: 10.1016/j.media.2022.102430
– ident: e_1_2_9_34_1
  doi: 10.1109/TIP.2022.3193288
– ident: e_1_2_9_26_1
  doi: 10.1007/s40846-023-00801-3
– ident: e_1_2_9_39_1
  doi: 10.1109/ISBI52829.2022.9761584
– ident: e_1_2_9_43_1
  doi: 10.1016/j.pnpbp.2017.12.017
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ebiom.2019.08.023
– ident: e_1_2_9_2_1
  doi: 10.1038/s41467-020-20655-6
– ident: e_1_2_9_7_1
  doi: 10.31887/DCNS.2006.8.1/ldelisi
– ident: e_1_2_9_14_1
  doi: 10.1093/schbul/sbu177
– ident: e_1_2_9_12_1
  doi: 10.1007/s11760-022-02229-9
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-031-16919-9_4
– ident: e_1_2_9_20_1
  doi: 10.1093/schbul/sbv060
SSID ssj0011501
Score 2.5056884
Snippet Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e26783
SubjectTerms Accuracy
Adult
Algorithms
Alzheimer's disease
Artificial intelligence
Biomarkers
Brain
Brain - diagnostic imaging
Brain mapping
Brain research
Computer vision
data fusion
Data integration
Datasets
Deep Learning
Diagnosis
Disorders
Female
Functional magnetic resonance imaging
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Gray Matter - diagnostic imaging
Humans
Image processing
Information processing
Localization
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Male
Medical imaging
Medical research
Mental disorders
Multimodal Imaging - methods
Neural networks
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
Neuroimaging - standards
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - physiopathology
Sensory integration
Structure-function relationships
Substantia grisea
vision transformer
Wavelet transforms
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4anQS8bLBxCQzkAUJ7SWl8S_JYEFOF1IkHKo2nKL5tFW06Qatp_HqOncsIg4mnRPLJzT7O-Y79-TPAm5ExUmY6jYUqdcwpd3GuqIw5o1rLxLAycHOmJ3Iy459OxekWHLZrYfrz9_TduVoOKf5Q2R3YlgLh9gC2Zyefx1_DLKYUcd4kVSOvKopopFUP-v3afsy5ASRv8iHvbaqL8uqyXCz6mDUEnePd66U7Ndfk23CzVkP98w8lx1u_5wHsNJCTjGsfeQhbttqD_XGF6fbyirwlgQQaRtf34O60mWvfh7MxCWzD5crg1fUadLJuca79TvBA5h1nUS0scZtgtHLEh8t6lJGUlSG1Sq1X-CBBQHO-DJsjEc9PfQSz449fPkziZluGWHPOWZyq1LlMOJ1KxRNtJVW5zWVipc2p0c5o7jBpyagxyog8Yc5pnQpnmbUYMDl7DINqVdmnQBKKoYILmzHHeGpHmfF4RXgMZDXlIoKjtuEK3WiW-60zFkWttkwLrM8i1GcErzrTi1qo429GB23rF01f_VEwDxkznwlGcNgVYy_zUydlZVcbb8MYl5gK5xE8qZ2lewrLPWgUWJL13Kgz8Are_ZJqfh6UvBGOY76ZpBG87jzutrc_Cr74b4ti8n4aTp791w2fw32KGK1m5xzAAH3BvkCMtVYvm172C1sdJAc
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPQAXHi2PQEHmIdRLthu_kojTgqhWSMsBUakHpCh-0RW72YruCpVfz9hOjJYCQpwSyRMlcWY83zifPwO8GBsjZaXLXKhW55xyl9eKypwzqrUsDGsDN2f2Xk5P-LtTcboDr4a1MFEfIk24-cgI47UP8FZdHP0UDT1TyxHFodYrfRZMhnLqQ5KO8kAnFFuYYvMaR-BBVWhMj9KV27noCsC8ypO8vunO28tv7WKxjWVDMjq-BZ-G14gclC-jzVqN9PdfFB7_8z1vw80epJJJ9Ko7sGO7PdifdFigLy_JSxJoo2E-fg-uzfq_8_vweUICP3G5Mnh1XLVO1gMytl8JHsg8sRzVwhK3CUYrR3yCjfOSpO0Mibq2XhOEBMnN-TJsp0Q8o_UunBy__fhmmvcbOeSac87yUpXOVcLpUipeaCupqm0tCyttTY12RnOHZU5FjVFG1AVzTutSOMusxRTL2T3Y7VadfQCkoJhcuLAVc4yXdlwZj3CER01WUy4yOBw-aaN7lXO_2caiifrMtMH-bEJ_ZvAsmZ5HaY_fGR0MftH00X3RMA8yK187ZvA0NWNc-p8tbWdXG2_DGJdYPNcZ3I9ulO7Cag8zBbZUWw6WDLzm93ZLNz8L2t_o11ihFmUGz5Mv_u3pD4Nr_dmimb6ehZOH_276CG5QhHaR1HMAu-gQ9jFCs7V6EmLwB1G0N3Q
  priority: 102
  providerName: Wiley-Blackwell
Title A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26783
https://www.ncbi.nlm.nih.gov/pubmed/39600159
https://www.proquest.com/docview/3143584562
https://www.proquest.com/docview/3133460949
https://pubmed.ncbi.nlm.nih.gov/PMC11599617
https://doi.org/10.1002/hbm.26783
UnpaywallVersion publishedVersion
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central (Free)
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_aFLa9lK3dVndd0D4YffEaS7JsP4yRjpYwSAhlgezJWF9tILGzrWH0v99J_hihW19kY53xh06630mn3wG8H2gtRKqSMJaFCjnlNswkFSFnVCkRaVb42JzxRIxm_Os8nu_ApN0L48Iq2zHRD9S6Um6O_Iw5w546vP55_SN0WaPc6mqbQqNoUivoT55ibBf2qGPG6sHe-cVketWtKyD88S4YGt4ww3G55Roa0LMbufpIcehm2xbqHuy8Hz35eFOui7vfxXK5jXC9ibp8CvsNtiTDWhmewY4pD-BwWKJfvbojH4iP9vTT6AfwaNwsqh_C9ZD4sMJVpfHuerM5uW0BrflJ8EAWXXCiXBpiN16ossTZxXo6kRSlJjUdraPyIJ4pc7HyWZCIC0R9DrPLi29fRmGTfyFUnHMWJjKxNo2tSoTkkTKCysxkIjLCZFQrqxW36J2kVGup4yxi1iqVxNYwY9AycvYCemVVmiMgEUWbwGOTMst4YgapdsAkdmDHKMrjAE7bf56rhpzc5chY5jWtMs2xeXLfPAG87UTXNSPHv4RO2obLm075K_-rQgG86aqxO7k1kqI01cbJMMYF-rxZAC_rdu6ewjKHDmOsSbc0oBNwVN3bNeXixlN2o-KhYxklAbzrlOWhtz_1avR_iXx0PvYnxw9_6Ct4QhGF1fE3J9BDJTCvEUXdyj7sUj7FMpkn_aab9P2MhCuvKF6bTabD738ACKYjOA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB5RkEpfKo4eobR1T_GSsrEdJ3lA1dKClsKuqgok3kLiA1baTbaFFdo_x2_r2DnQipY3nhLJk3PGnm_s8TcAHztKCRHLyA_zTPqccuMnORU-Z1RKESiWudyc_kD0TviP0_B0AW6avTA2rbIZE91ArUpp58i3mXXsscXrXye_fVs1yq6uNiU0srq0gtpxFGP1xo5DPbvGEO5y5-A76vsTpft7x996fl1lwJecc-ZHeWRMHBoZiZwHUguaJzoRgRY6oUoaJblBDB5TpXIVJgEzRsooNJppjeM_Z3jfR7DEGU8w-Fva3Rv8_NWuYyDcciEfOno_QT_QcBt16PZFPv5C0VWweY94B-bezdZcnhaTbHadjUbziNq5xP0VeFpjWdKtjG8VFnSxBuvdAuP48Yx8Ji671E3br8Hjfr2Ivw7nXeLSGMelwqurze3kqgHQ-g_BAxm2yZD5SBMzdUKlIdYPV9OXJCsUqehvLXUIccycw7GrukRs4uszOHkQTTyHxaIs9EsgAUUfxEMdM8N4pDuxskAotOBKS8pDD7aaf57Kmgzd1uQYpRWNM01RPalTjwfvW9FJxQDyL6HNRnFpPQhcprcm68G7thm7r12TyQpdTq0MY1xgjJ148KLSc_sUllg0GmJLPGcBrYClBp9vKYYXjiIcDQ8D2SDy4ENrLPe9_ZYzo_9LpL3dvjvZuP9D38Jy77h_lB4dDA5fwROKCLDK_dmERTQI_RoR3FX-pu4mBM4eumf-BZoqXLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhUuCFoehgLLU70siXfXa_uAUKBEKSUVByrl5tr7oJESO9BGVf4av47Z9QNFhd56iqUdO7ZnZueb3c8zAK_7WkuZqJhGRa6oYMLStGCSCs6UkqHmuefmjI_k6Fh8mUSTDfjdfgvjaJXtnOgnal0pt0be4y6wJw6v92xDi_i2P_yw-EldBym309q206hN5NCsLjB9O3t_sI-6fsPY8PP3TyPadBigSgjBaVzE1iaRVbEsRKiMZEVqUhkaaVKmldVKWMTfCdO60FEacmuViiNruDE49wuO170BN2POU0cnjCddsueAlk_2MMTTFCNAW9Woz3qnxfwdwyDB12PhJYB7mad5a1ku8tVFPputY2kfDId34U6DYsmgNrt7sGHKbdgZlJjBz1fkLfG8Ur9gvw1b42b7fgd-DIgnMM4rjWfXn7WT8xY6m18Ef8i0o0EWM0Ps0gtVlrgIXC9ckrzUpC5864qGEF-Tczr3_ZaIo7zeh-Nr0cMD2Cyr0jwCEjKMPiIyCbdcxKafaAeBIgerjGIiCmCvfeeZasqgu24cs6wu4MwyVE_m1RPAy050Udf--JfQbqu4rHH_s-yvsQbwohtGx3W7MXlpqqWT4VxIzK7TAB7Weu7-hacOh0Y4kqxZQCfgioKvj5TTU18cHA0PU9gwDuBVZyxX3f2eN6P_S2Sjj2N_8PjqB30OW-iP2deDo8MncJsh9KtJP7uwifZgniJ0Oy-eeR8hcHLdTvkHH0taSg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4anQS8bLBxCQzkAUJ7SWl8S_JYEFOF1IkHKo2nKL5tFW06Qatp_HqOncsIg4mnRPLJzT7O-Y79-TPAm5ExUmY6jYUqdcwpd3GuqIw5o1rLxLAycHOmJ3Iy459OxekWHLZrYfrz9_TduVoOKf5Q2R3YlgLh9gC2Zyefx1_DLKYUcd4kVSOvKopopFUP-v3afsy5ASRv8iHvbaqL8uqyXCz6mDUEnePd66U7Ndfk23CzVkP98w8lx1u_5wHsNJCTjGsfeQhbttqD_XGF6fbyirwlgQQaRtf34O60mWvfh7MxCWzD5crg1fUadLJuca79TvBA5h1nUS0scZtgtHLEh8t6lJGUlSG1Sq1X-CBBQHO-DJsjEc9PfQSz449fPkziZluGWHPOWZyq1LlMOJ1KxRNtJVW5zWVipc2p0c5o7jBpyagxyog8Yc5pnQpnmbUYMDl7DINqVdmnQBKKoYILmzHHeGpHmfF4RXgMZDXlIoKjtuEK3WiW-60zFkWttkwLrM8i1GcErzrTi1qo429GB23rF01f_VEwDxkznwlGcNgVYy_zUydlZVcbb8MYl5gK5xE8qZ2lewrLPWgUWJL13Kgz8Are_ZJqfh6UvBGOY76ZpBG87jzutrc_Cr74b4ti8n4aTp791w2fw32KGK1m5xzAAH3BvkCMtVYvm172C1sdJAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multimodal+vision+transformer+for+interpretable+fusion+of+functional+and+structural+neuroimaging+data&rft.jtitle=Human+brain+mapping&rft.au=Bi%2C+Yuda&rft.au=Abrol%2C+Anees&rft.au=Fu%2C+Zening&rft.au=Calhoun%2C+Vince+D&rft.date=2024-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=45&rft.issue=17&rft_id=info:doi/10.1002%2Fhbm.26783&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon