A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging...
Saved in:
| Published in | Human brain mapping Vol. 45; no. 17; pp. e26783 - n/a |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1065-9471 1097-0193 1097-0193 |
| DOI | 10.1002/hbm.26783 |
Cover
| Abstract | Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross‐attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross‐attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI‐based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high‐dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space.
The MultiViT model combines structural and functional neuroimaging data for the prediction of schizophrenia and integrates vision transformers with cross‐attention layers in order to preserve mutual information. The pipeline generates highly interpretable cross‐attention‐based brain saliency maps and emphasizes functional network connectivity patterns related to the disorder. |
|---|---|
| AbstractList | Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross‐attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross‐attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI‐based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high‐dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space. Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross‐attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross‐attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI‐based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high‐dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space. The MultiViT model combines structural and functional neuroimaging data for the prediction of schizophrenia and integrates vision transformers with cross‐attention layers in order to preserve mutual information. The pipeline generates highly interpretable cross‐attention‐based brain saliency maps and emphasizes functional network connectivity patterns related to the disorder. Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning‐based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross‐attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross‐attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI‐based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high‐dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space. The MultiViT model combines structural and functional neuroimaging data for the prediction of schizophrenia and integrates vision transformers with cross‐attention layers in order to preserve mutual information. The pipeline generates highly interpretable cross‐attention‐based brain saliency maps and emphasizes functional network connectivity patterns related to the disorder. Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning-based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross-attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross-attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI-based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high-dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space.Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning-based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross-attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross-attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI-based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high-dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space. |
| Author | Bi, Yuda Calhoun, Vince D. Abrol, Anees Fu, Zening |
| AuthorAffiliation | 1 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory Atlanta Georgia USA |
| AuthorAffiliation_xml | – name: 1 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory Atlanta Georgia USA |
| Author_xml | – sequence: 1 givenname: Yuda orcidid: 0000-0003-0385-8363 surname: Bi fullname: Bi, Yuda email: ybi3@gsu.edu organization: Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory – sequence: 2 givenname: Anees orcidid: 0000-0001-9223-5314 surname: Abrol fullname: Abrol, Anees organization: Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory – sequence: 3 givenname: Zening surname: Fu fullname: Fu, Zening organization: Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory – sequence: 4 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39600159$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1TAQhS1URB-w4A-gSGwAKa0dO068qkoFFKmIDawtxxnfunLsix-t7r_Ht7e8KtHVjOXvjM6cOUR7PnhA6CXBxwTj7uRqWo47Poz0CTogWAwtJoLubXvet4INZB8dpnSNMSE9Js_QPhW8PnpxgFZnzVJctkuYlWtubLLBNzkqn0yIC8Smlsb6DHEdIavJQWPKHRRM7bzOta9K5ecm5Vh0LrE-PZQY7KJW1q-aWWX1HD01yiV4cV-P0PePH76dX7SXXz99Pj-7bDVjjLbDNBgz9kYPfGJEA-8mAYIT4CC6WZtZMzN2fOzmeZp7QagxWg-9AQpAMWX0CL3bzS1-rTa3yjm5jtVI3EiC5TYtWdOSd2lV-HQHr8u0wKzB183_CIKy8t8fb6_kKtzImqOoroY64c39hBh-FEhZLjZpcE55CCVJSihlHAsmKvr6AXodSqzZbSlG-5H1vKvUq78t_fby62IVeLsDdAwpRTCP7nfygNU2q-3F6jbWPaa4tQ42_x8tL95_2Sl-ArS2yCY |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110554 |
| Cites_doi | 10.1016/j.nicl.2020.102375 10.1016/j.dsp.2023.104229 10.3389/fpsyt.2020.00588 10.3390/rs13030516 10.1016/j.nicl.2022.103140 10.1016/j.biopsych.2015.02.017 10.1109/TPAMI.2022.3152247 10.1109/ICCV48922.2021.00717 10.2174/156802612805289890 10.3390/electronics12051218 10.3389/fnhum.2012.00145 10.1016/j.nicl.2020.102531 10.1038/s41598-020-74399-w 10.1016/j.schres.2019.07.034 10.1177/0963721410377601 10.1038/s41598-021-82098-3 10.1176/appi.ajp.159.2.244 10.1007/978-3-031-15937-4_65 10.1002/hbm.24797 10.1001/archpsyc.56.10.905 10.1016/j.artmed.2019.06.003 10.1016/j.media.2022.102430 10.1109/TIP.2022.3193288 10.1007/s40846-023-00801-3 10.1109/ISBI52829.2022.9761584 10.1016/j.pnpbp.2017.12.017 10.1016/j.ebiom.2019.08.023 10.1038/s41467-020-20655-6 10.31887/DCNS.2006.8.1/ldelisi 10.1093/schbul/sbu177 10.1007/s11760-022-02229-9 10.1007/978-3-031-16919-9_4 10.1093/schbul/sbv060 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by Wiley Periodicals LLC. 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC. – notice: 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/hbm.26783 |
| DatabaseName | Wiley Online Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Chemoreception Abstracts ProQuest Central (New) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Bi et al |
| EISSN | 1097-0193 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/hbm.26783 PMC11599617 39600159 10_1002_hbm_26783 HBM26783 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 2316421 – fundername: National Science Foundation grantid: 2316421 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ AAFWJ AAMMB AANHP AAYXX ABEML ABJNI ACBWZ ACRPL ACSCC ACYXJ ADNMO AEFGJ AFPKN AGQPQ AGXDD AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN BFHJK CITATION EJD FEDTE GAKWD HF~ HVGLF LW6 M6M PHGZM PHGZT PUEGO RIWAO RJQFR SAMSI WXSBR CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4443-7b7ff85fc76b41ce62b9e961e6e92dcfdc4f82682ddbd5913ffcc75fe3ee30343 |
| IEDL.DBID | BENPR |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Sun Oct 26 04:06:32 EDT 2025 Tue Sep 30 17:06:48 EDT 2025 Thu Oct 02 06:25:21 EDT 2025 Tue Oct 07 06:14:34 EDT 2025 Wed Feb 19 02:03:59 EST 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Oct 01 01:55:57 EDT 2025 Wed Jan 22 17:12:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | data fusion vision transformer neuroimaging |
| Language | English |
| License | Attribution 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4443-7b7ff85fc76b41ce62b9e961e6e92dcfdc4f82682ddbd5913ffcc75fe3ee30343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9223-5314 0000-0003-0385-8363 |
| OpenAccessLink | https://www.proquest.com/docview/3143584562?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 39600159 |
| PQID | 3143584562 |
| PQPubID | 996345 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1002_hbm_26783 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11599617 proquest_miscellaneous_3133460949 proquest_journals_3143584562 pubmed_primary_39600159 crossref_primary_10_1002_hbm_26783 crossref_citationtrail_10_1002_hbm_26783 wiley_primary_10_1002_hbm_26783_HBM26783 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 1, 2024 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 1, 2024 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2015; 78 2023; 12 2023; 17 2020; 41 2010; 19 2019; 98 2021; 29 2023; 143 2022; 45 2002; 159 2020; 11 2018; 83 2012; 12 2021; 13 2023; 43 2017; 30 2021; 12 2021; 11 2023 2022 2021 2020 2022; 8 2015; 41 2019; 47 2020; 28 1999; 56 2022; 79 2019 2022; 35 2018 2019; 212 2022; 31 2012; 6 e_1_2_9_30_1 Zhou Y. (e_1_2_9_45_1) 2023 e_1_2_9_31_1 e_1_2_9_11_1 Gheini M. (e_1_2_9_13_1) 2021 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_32_1 e_1_2_9_12_1 Lee K.‐H. (e_1_2_9_21_1) 2018 Zhao H. (e_1_2_9_44_1) 2020 Dosovitskiy A. (e_1_2_9_8_1) 2020 Wei X. (e_1_2_9_38_1) 2020 Meng X. (e_1_2_9_24_1) 2022 Vaswani A. (e_1_2_9_36_1) 2017 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_16_1 Sukhbaatar S. (e_1_2_9_33_1) 2019 Touvron H. (e_1_2_9_35_1) 2021 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 12 start-page: 353 issue: 1 year: 2021 article-title: Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning publication-title: Nature Communications – volume: 41 start-page: 1133 issue: 5 year: 2015 end-page: 1142 article-title: Patterns of gray matter abnormalities in schizophrenia based on an international mega‐analysis publication-title: Schizophrenia Bulletin – volume: 17 start-page: 267 issue: 1 year: 2023 end-page: 275 article-title: Diagnosis of schizophrenia using brain resting‐state fmri with activity maps based on deep learning publication-title: Signal, Image and Video Processing – volume: 43 start-page: 291 issue: 3 year: 2023 end-page: 302 article-title: Explainable deep‐learning‐based diagnosis of Alzheimer's disease using multimodal input fusion of pet and mri images publication-title: Journal of Medical and Biological Engineering – volume: 83 start-page: 27 year: 2018 end-page: 32 article-title: Structural and functional brain abnormalities in schizophrenia: A cross‐sectional study at different stages of the disease publication-title: Progress in Neuro‐Psychopharmacology and Biological Psychiatry – volume: 143 year: 2023 article-title: Efficient multimodel method based on transformers and coatnet for Alzheimer's diagnosis publication-title: Digital Signal Processing – start-page: 10 076 year: 2020 end-page: 10 085 – volume: 45 start-page: 87 issue: 1 year: 2022 end-page: 110 article-title: A survey on vision transformer publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 11 start-page: 588 year: 2020 article-title: Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: A systematic review publication-title: Frontiers in Psychiatry – volume: 28 year: 2020 article-title: Neuromark: An automated and adaptive ica based pipeline to identify reproducible fMRI markers of brain disorders publication-title: NeuroImage: Clinical – volume: 6 year: 2012 article-title: High classification accuracy for schizophrenia with rest and task fMRI data publication-title: Frontiers in Human Neuroscience – year: 2022 article-title: Multi‐model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from fMRI data publication-title: bioRxiv, 38, 103434 – start-page: 7262 year: 2021 end-page: 7272 – volume: 47 start-page: 543 year: 2019 end-page: 552 article-title: Discriminating schizophrenia using recurrent neural network applied on time courses of multi‐site fMRI data publication-title: eBioMedicine – volume: 212 start-page: 186 year: 2019 end-page: 195 article-title: Classification of schizophrenia and normal controls using 3d convolutional neural network and outcome visualization publication-title: Schizophrenia Research – start-page: 1 year: 2022 end-page: 4 – volume: 12 start-page: 1218 issue: 5 year: 2023 article-title: Pixel‐level fusion approach with vision transformer for early detection of alzheimer's disease publication-title: Electronics – volume: 35 year: 2022 article-title: Involvement of cerebellar and subcortical connector hubs in schizophrenia publication-title: NeuroImage: Clinical – volume: 98 start-page: 10 year: 2019 end-page: 17 article-title: 3D‐CNN based discrimination of schizophrenia using resting‐state fMRI publication-title: Artificial Intelligence in Medicine – volume: 30 year: 2017 – volume: 159 start-page: 244 issue: 2 year: 2002 end-page: 250 article-title: Volume changes in gray matter in patients with schizophrenia publication-title: American Journal of Psychiatry – start-page: 10 941 year: 2020 end-page: 10 950 – start-page: 36 year: 2022 end-page: 48 – volume: 56 start-page: 905 issue: 10 year: 1999 end-page: 911 article-title: Reduced gray matter volume in schizophrenia publication-title: Archives of General Psychiatry – volume: 19 start-page: 226 issue: 4 year: 2010 end-page: 231 article-title: Structural and functional brain abnormalities in schizophrenia publication-title: Current Directions in Psychological Science – start-page: 10 347 year: 2021 end-page: 10 357 – volume: 11 start-page: 2660 issue: 1 year: 2021 article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease publication-title: Scientific Reports – volume: 79 year: 2022 article-title: Sspnet: An interpretable 3D‐CNN for classification of schizophrenia using phase maps of resting‐state complex‐valued fMRI data publication-title: Medical Image Analysis – start-page: 201 year: 2018 end-page: 216 – volume: 78 start-page: 794 issue: 11 year: 2015 end-page: 804 article-title: In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia publication-title: Biological Psychiatry – year: 2019 article-title: Augmenting self‐attention with persistent memory publication-title: arXiv – volume: 41 start-page: 172 issue: 1 year: 2020 end-page: 184 article-title: Generalizability of machine learning for classification of schizophrenia based on resting‐state functional MRI data publication-title: Human Brain Mapping – year: 2022 – year: 2020 – volume: 11 start-page: 3254 issue: 1 year: 2021 article-title: Multimodal deep learning models for early detection of alzheimer's disease stage publication-title: Scientific Reports – year: 2021 article-title: Cross‐attention is all you need: Adapting pretrained transformers for machine translation publication-title: arXiv – volume: 13 issue: 3 year: 2021 article-title: Vision transformers for remote sensing image classification publication-title: Remote Sensing – volume: 31 start-page: 5134 year: 2022 end-page: 5149 article-title: Matr: Multimodal medical image fusion via multiscale adaptive transformer publication-title: IEEE Transactions on Image Processing – volume: 12 start-page: 2415 issue: 21 year: 2012 end-page: 2425 article-title: Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging publication-title: Current Topics in Medicinal Chemistry – year: 2020 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: arXiv – volume: 29 year: 2021 article-title: Temporal‐thalamic and cingulo‐opercular connectivity in people with schizophrenia publication-title: NeuroImage: Clinical – start-page: 42 531 year: 2023 end-page: 42 542 – volume: 8 start-page: 71 issue: 1 year: 2022 end-page: 78 article-title: Understanding structural brain changes in schizophrenia publication-title: Dialogues in Clinical Neuroscience – volume: 41 start-page: 1326 issue: 6 year: 2015 end-page: 1335 article-title: Disintegration of sensorimotor brain networks in schizophrenia publication-title: Schizophrenia Bulletin – ident: e_1_2_9_10_1 doi: 10.1016/j.nicl.2020.102375 – year: 2019 ident: e_1_2_9_33_1 article-title: Augmenting self‐attention with persistent memory publication-title: arXiv – start-page: 201 volume-title: Proceedings of the European conference on computer vision (ECCV) year: 2018 ident: e_1_2_9_21_1 – start-page: 10 941 volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition year: 2020 ident: e_1_2_9_38_1 – year: 2021 ident: e_1_2_9_13_1 article-title: Cross‐attention is all you need: Adapting pretrained transformers for machine translation publication-title: arXiv – ident: e_1_2_9_18_1 doi: 10.1016/j.dsp.2023.104229 – ident: e_1_2_9_30_1 doi: 10.3389/fpsyt.2020.00588 – ident: e_1_2_9_3_1 doi: 10.3390/rs13030516 – start-page: 10 076 volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition year: 2020 ident: e_1_2_9_44_1 – start-page: 42 531 volume-title: International conference on machine learning year: 2023 ident: e_1_2_9_45_1 – ident: e_1_2_9_40_1 doi: 10.1016/j.nicl.2022.103140 – ident: e_1_2_9_32_1 doi: 10.1016/j.biopsych.2015.02.017 – ident: e_1_2_9_16_1 doi: 10.1109/TPAMI.2022.3152247 – year: 2022 ident: e_1_2_9_24_1 article-title: Multi‐model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from fMRI data publication-title: bioRxiv, 38, 103434 – ident: e_1_2_9_31_1 doi: 10.1109/ICCV48922.2021.00717 – ident: e_1_2_9_42_1 doi: 10.2174/156802612805289890 – ident: e_1_2_9_25_1 doi: 10.3390/electronics12051218 – volume-title: Advances in neural information processing systems year: 2017 ident: e_1_2_9_36_1 – ident: e_1_2_9_9_1 doi: 10.3389/fnhum.2012.00145 – ident: e_1_2_9_4_1 – ident: e_1_2_9_6_1 doi: 10.1016/j.nicl.2020.102531 – ident: e_1_2_9_37_1 doi: 10.1038/s41598-020-74399-w – ident: e_1_2_9_27_1 doi: 10.1016/j.schres.2019.07.034 – ident: e_1_2_9_19_1 doi: 10.1177/0963721410377601 – ident: e_1_2_9_11_1 doi: 10.1038/s41598-021-82098-3 – ident: e_1_2_9_17_1 doi: 10.1176/appi.ajp.159.2.244 – ident: e_1_2_9_22_1 doi: 10.1007/978-3-031-15937-4_65 – start-page: 10 347 volume-title: International conference on machine learning year: 2021 ident: e_1_2_9_35_1 – ident: e_1_2_9_5_1 doi: 10.1002/hbm.24797 – year: 2020 ident: e_1_2_9_8_1 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: arXiv – ident: e_1_2_9_15_1 doi: 10.1001/archpsyc.56.10.905 – ident: e_1_2_9_28_1 doi: 10.1016/j.artmed.2019.06.003 – ident: e_1_2_9_23_1 doi: 10.1016/j.media.2022.102430 – ident: e_1_2_9_34_1 doi: 10.1109/TIP.2022.3193288 – ident: e_1_2_9_26_1 doi: 10.1007/s40846-023-00801-3 – ident: e_1_2_9_39_1 doi: 10.1109/ISBI52829.2022.9761584 – ident: e_1_2_9_43_1 doi: 10.1016/j.pnpbp.2017.12.017 – ident: e_1_2_9_41_1 doi: 10.1016/j.ebiom.2019.08.023 – ident: e_1_2_9_2_1 doi: 10.1038/s41467-020-20655-6 – ident: e_1_2_9_7_1 doi: 10.31887/DCNS.2006.8.1/ldelisi – ident: e_1_2_9_14_1 doi: 10.1093/schbul/sbu177 – ident: e_1_2_9_12_1 doi: 10.1007/s11760-022-02229-9 – ident: e_1_2_9_29_1 doi: 10.1007/978-3-031-16919-9_4 – ident: e_1_2_9_20_1 doi: 10.1093/schbul/sbv060 |
| SSID | ssj0011501 |
| Score | 2.5056884 |
| Snippet | Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e26783 |
| SubjectTerms | Accuracy Adult Algorithms Alzheimer's disease Artificial intelligence Biomarkers Brain Brain - diagnostic imaging Brain mapping Brain research Computer vision data fusion Data integration Datasets Deep Learning Diagnosis Disorders Female Functional magnetic resonance imaging Functional Neuroimaging - methods Functional Neuroimaging - standards Gray Matter - diagnostic imaging Humans Image processing Information processing Localization Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Male Medical imaging Medical research Mental disorders Multimodal Imaging - methods Neural networks Neurodegenerative diseases Neuroimaging Neuroimaging - methods Neuroimaging - standards Schizophrenia Schizophrenia - diagnostic imaging Schizophrenia - physiopathology Sensory integration Structure-function relationships Substantia grisea vision transformer Wavelet transforms Young Adult |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4anQS8bLBxCQzkAUJ7SWl8S_JYEFOF1IkHKo2nKL5tFW06Qatp_HqOncsIg4mnRPLJzT7O-Y79-TPAm5ExUmY6jYUqdcwpd3GuqIw5o1rLxLAycHOmJ3Iy459OxekWHLZrYfrz9_TduVoOKf5Q2R3YlgLh9gC2Zyefx1_DLKYUcd4kVSOvKopopFUP-v3afsy5ASRv8iHvbaqL8uqyXCz6mDUEnePd66U7Ndfk23CzVkP98w8lx1u_5wHsNJCTjGsfeQhbttqD_XGF6fbyirwlgQQaRtf34O60mWvfh7MxCWzD5crg1fUadLJuca79TvBA5h1nUS0scZtgtHLEh8t6lJGUlSG1Sq1X-CBBQHO-DJsjEc9PfQSz449fPkziZluGWHPOWZyq1LlMOJ1KxRNtJVW5zWVipc2p0c5o7jBpyagxyog8Yc5pnQpnmbUYMDl7DINqVdmnQBKKoYILmzHHeGpHmfF4RXgMZDXlIoKjtuEK3WiW-60zFkWttkwLrM8i1GcErzrTi1qo429GB23rF01f_VEwDxkznwlGcNgVYy_zUydlZVcbb8MYl5gK5xE8qZ2lewrLPWgUWJL13Kgz8Are_ZJqfh6UvBGOY76ZpBG87jzutrc_Cr74b4ti8n4aTp791w2fw32KGK1m5xzAAH3BvkCMtVYvm172C1sdJAc priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPQAXHi2PQEHmIdRLthu_kojTgqhWSMsBUakHpCh-0RW72YruCpVfz9hOjJYCQpwSyRMlcWY83zifPwO8GBsjZaXLXKhW55xyl9eKypwzqrUsDGsDN2f2Xk5P-LtTcboDr4a1MFEfIk24-cgI47UP8FZdHP0UDT1TyxHFodYrfRZMhnLqQ5KO8kAnFFuYYvMaR-BBVWhMj9KV27noCsC8ypO8vunO28tv7WKxjWVDMjq-BZ-G14gclC-jzVqN9PdfFB7_8z1vw80epJJJ9Ko7sGO7PdifdFigLy_JSxJoo2E-fg-uzfq_8_vweUICP3G5Mnh1XLVO1gMytl8JHsg8sRzVwhK3CUYrR3yCjfOSpO0Mibq2XhOEBMnN-TJsp0Q8o_UunBy__fhmmvcbOeSac87yUpXOVcLpUipeaCupqm0tCyttTY12RnOHZU5FjVFG1AVzTutSOMusxRTL2T3Y7VadfQCkoJhcuLAVc4yXdlwZj3CER01WUy4yOBw-aaN7lXO_2caiifrMtMH-bEJ_ZvAsmZ5HaY_fGR0MftH00X3RMA8yK187ZvA0NWNc-p8tbWdXG2_DGJdYPNcZ3I9ulO7Cag8zBbZUWw6WDLzm93ZLNz8L2t_o11ihFmUGz5Mv_u3pD4Nr_dmimb6ehZOH_276CG5QhHaR1HMAu-gQ9jFCs7V6EmLwB1G0N3Q priority: 102 providerName: Wiley-Blackwell |
| Title | A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26783 https://www.ncbi.nlm.nih.gov/pubmed/39600159 https://www.proquest.com/docview/3143584562 https://www.proquest.com/docview/3133460949 https://pubmed.ncbi.nlm.nih.gov/PMC11599617 https://doi.org/10.1002/hbm.26783 |
| UnpaywallVersion | publishedVersion |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central (Free) customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 7X7 dateStart: 20210801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_aFLa9lK3dVndd0D4YffEaS7JsP4yRjpYwSAhlgezJWF9tILGzrWH0v99J_hihW19kY53xh06630mn3wG8H2gtRKqSMJaFCjnlNswkFSFnVCkRaVb42JzxRIxm_Os8nu_ApN0L48Iq2zHRD9S6Um6O_Iw5w546vP55_SN0WaPc6mqbQqNoUivoT55ibBf2qGPG6sHe-cVketWtKyD88S4YGt4ww3G55Roa0LMbufpIcehm2xbqHuy8Hz35eFOui7vfxXK5jXC9ibp8CvsNtiTDWhmewY4pD-BwWKJfvbojH4iP9vTT6AfwaNwsqh_C9ZD4sMJVpfHuerM5uW0BrflJ8EAWXXCiXBpiN16ossTZxXo6kRSlJjUdraPyIJ4pc7HyWZCIC0R9DrPLi29fRmGTfyFUnHMWJjKxNo2tSoTkkTKCysxkIjLCZFQrqxW36J2kVGup4yxi1iqVxNYwY9AycvYCemVVmiMgEUWbwGOTMst4YgapdsAkdmDHKMrjAE7bf56rhpzc5chY5jWtMs2xeXLfPAG87UTXNSPHv4RO2obLm075K_-rQgG86aqxO7k1kqI01cbJMMYF-rxZAC_rdu6ewjKHDmOsSbc0oBNwVN3bNeXixlN2o-KhYxklAbzrlOWhtz_1avR_iXx0PvYnxw9_6Ct4QhGF1fE3J9BDJTCvEUXdyj7sUj7FMpkn_aab9P2MhCuvKF6bTabD738ACKYjOA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB5RkEpfKo4eobR1T_GSsrEdJ3lA1dKClsKuqgok3kLiA1baTbaFFdo_x2_r2DnQipY3nhLJk3PGnm_s8TcAHztKCRHLyA_zTPqccuMnORU-Z1RKESiWudyc_kD0TviP0_B0AW6avTA2rbIZE91ArUpp58i3mXXsscXrXye_fVs1yq6uNiU0srq0gtpxFGP1xo5DPbvGEO5y5-A76vsTpft7x996fl1lwJecc-ZHeWRMHBoZiZwHUguaJzoRgRY6oUoaJblBDB5TpXIVJgEzRsooNJppjeM_Z3jfR7DEGU8w-Fva3Rv8_NWuYyDcciEfOno_QT_QcBt16PZFPv5C0VWweY94B-bezdZcnhaTbHadjUbziNq5xP0VeFpjWdKtjG8VFnSxBuvdAuP48Yx8Ji671E3br8Hjfr2Ivw7nXeLSGMelwqurze3kqgHQ-g_BAxm2yZD5SBMzdUKlIdYPV9OXJCsUqehvLXUIccycw7GrukRs4uszOHkQTTyHxaIs9EsgAUUfxEMdM8N4pDuxskAotOBKS8pDD7aaf57Kmgzd1uQYpRWNM01RPalTjwfvW9FJxQDyL6HNRnFpPQhcprcm68G7thm7r12TyQpdTq0MY1xgjJ148KLSc_sUllg0GmJLPGcBrYClBp9vKYYXjiIcDQ8D2SDy4ENrLPe9_ZYzo_9LpL3dvjvZuP9D38Jy77h_lB4dDA5fwROKCLDK_dmERTQI_RoR3FX-pu4mBM4eumf-BZoqXLA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhUuCFoehgLLU70siXfXa_uAUKBEKSUVByrl5tr7oJESO9BGVf4av47Z9QNFhd56iqUdO7ZnZueb3c8zAK_7WkuZqJhGRa6oYMLStGCSCs6UkqHmuefmjI_k6Fh8mUSTDfjdfgvjaJXtnOgnal0pt0be4y6wJw6v92xDi_i2P_yw-EldBym309q206hN5NCsLjB9O3t_sI-6fsPY8PP3TyPadBigSgjBaVzE1iaRVbEsRKiMZEVqUhkaaVKmldVKWMTfCdO60FEacmuViiNruDE49wuO170BN2POU0cnjCddsueAlk_2MMTTFCNAW9Woz3qnxfwdwyDB12PhJYB7mad5a1ku8tVFPputY2kfDId34U6DYsmgNrt7sGHKbdgZlJjBz1fkLfG8Ur9gvw1b42b7fgd-DIgnMM4rjWfXn7WT8xY6m18Ef8i0o0EWM0Ps0gtVlrgIXC9ckrzUpC5864qGEF-Tczr3_ZaIo7zeh-Nr0cMD2Cyr0jwCEjKMPiIyCbdcxKafaAeBIgerjGIiCmCvfeeZasqgu24cs6wu4MwyVE_m1RPAy050Udf--JfQbqu4rHH_s-yvsQbwohtGx3W7MXlpqqWT4VxIzK7TAB7Weu7-hacOh0Y4kqxZQCfgioKvj5TTU18cHA0PU9gwDuBVZyxX3f2eN6P_S2Sjj2N_8PjqB30OW-iP2deDo8MncJsh9KtJP7uwifZgniJ0Oy-eeR8hcHLdTvkHH0taSg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4anQS8bLBxCQzkAUJ7SWl8S_JYEFOF1IkHKo2nKL5tFW06Qatp_HqOncsIg4mnRPLJzT7O-Y79-TPAm5ExUmY6jYUqdcwpd3GuqIw5o1rLxLAycHOmJ3Iy459OxekWHLZrYfrz9_TduVoOKf5Q2R3YlgLh9gC2Zyefx1_DLKYUcd4kVSOvKopopFUP-v3afsy5ASRv8iHvbaqL8uqyXCz6mDUEnePd66U7Ndfk23CzVkP98w8lx1u_5wHsNJCTjGsfeQhbttqD_XGF6fbyirwlgQQaRtf34O60mWvfh7MxCWzD5crg1fUadLJuca79TvBA5h1nUS0scZtgtHLEh8t6lJGUlSG1Sq1X-CBBQHO-DJsjEc9PfQSz449fPkziZluGWHPOWZyq1LlMOJ1KxRNtJVW5zWVipc2p0c5o7jBpyagxyog8Yc5pnQpnmbUYMDl7DINqVdmnQBKKoYILmzHHeGpHmfF4RXgMZDXlIoKjtuEK3WiW-60zFkWttkwLrM8i1GcErzrTi1qo429GB23rF01f_VEwDxkznwlGcNgVYy_zUydlZVcbb8MYl5gK5xE8qZ2lewrLPWgUWJL13Kgz8Are_ZJqfh6UvBGOY76ZpBG87jzutrc_Cr74b4ti8n4aTp791w2fw32KGK1m5xzAAH3BvkCMtVYvm172C1sdJAc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multimodal+vision+transformer+for+interpretable+fusion+of+functional+and+structural+neuroimaging+data&rft.jtitle=Human+brain+mapping&rft.au=Bi%2C+Yuda&rft.au=Abrol%2C+Anees&rft.au=Fu%2C+Zening&rft.au=Calhoun%2C+Vince+D&rft.date=2024-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=45&rft.issue=17&rft_id=info:doi/10.1002%2Fhbm.26783&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |