Metabolic profile‐based subgroups can identify differences in brain volumes and brain iron deposition
Aims To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia. Materials and methods Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the assoc...
Saved in:
| Published in | Diabetes, obesity & metabolism Vol. 25; no. 1; pp. 121 - 131 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2023
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1462-8902 1463-1326 1463-1326 |
| DOI | 10.1111/dom.14853 |
Cover
| Abstract | Aims
To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia.
Materials and methods
Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self‐organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition.
Results
In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high‐density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized −0.20, 95% confidence interval [CI] −0.24 to −0.16), HV (βstandardized −0.09, 95% CI −0.13 to −0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C‐reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized −0.15, 95% CI −0.16 to −0.14) and HV (βstandardized −0.11, 95% CI −0.12 to −0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP).
Conclusions
Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations. |
|---|---|
| AbstractList | Aims
To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia.
Materials and methods
Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self‐organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition.
Results
In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high‐density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized −0.20, 95% confidence interval [CI] −0.24 to −0.16), HV (βstandardized −0.09, 95% CI −0.13 to −0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C‐reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized −0.15, 95% CI −0.16 to −0.14) and HV (βstandardized −0.11, 95% CI −0.12 to −0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP).
Conclusions
Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations. To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia.AIMSTo evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia.Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self-organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition.MATERIALS AND METHODSUsing data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self-organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition.In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high-density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized -0.20, 95% confidence interval [CI] -0.24 to -0.16), HV (βstandardized -0.09, 95% CI -0.13 to -0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C-reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized -0.15, 95% CI -0.16 to -0.14) and HV (βstandardized -0.11, 95% CI -0.12 to -0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP).RESULTSIn metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high-density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized -0.20, 95% confidence interval [CI] -0.24 to -0.16), HV (βstandardized -0.09, 95% CI -0.13 to -0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C-reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized -0.15, 95% CI -0.16 to -0.14) and HV (βstandardized -0.11, 95% CI -0.12 to -0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP).Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations.CONCLUSIONSMetabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations. To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia. Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self-organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition. In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high-density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (β -0.20, 95% confidence interval [CI] -0.24 to -0.16), HV (β -0.09, 95% CI -0.13 to -0.04), WMH volume (β 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (β 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C-reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (β 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (β -0.15, 95% CI -0.16 to -0.14) and HV (β -0.11, 95% CI -0.12 to -0.10), and between BP and WMH volume (β 0.13, 95% CI 0.12 to 0.14 for diastolic BP). Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations. AimsTo evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia.Materials and methodsUsing data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self‐organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition.ResultsIn metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high‐density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized −0.20, 95% confidence interval [CI] −0.24 to −0.16), HV (βstandardized −0.09, 95% CI −0.13 to −0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C‐reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized −0.15, 95% CI −0.16 to −0.14) and HV (βstandardized −0.11, 95% CI −0.12 to −0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP).ConclusionsMetabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations. |
| Author | Mulugeta, Anwar Lumsden, Amanda L. Hyppönen, Elina Mäkinen, Ville‐Petteri |
| AuthorAffiliation | 2 South Australian Health and Medical Research Institute Adelaide Australia 4 Computational Systems Biology Program, Precision Medicine Theme South Australian Health and Medical Research Institute Adelaide Australia 1 Australian Centre for Precision Health, Unit of Clinical and Health Sciences University of South Australia Adelaide Australia 3 Department of Pharmacology and Clinical Pharmacy College of Health Sciences Addis Ababa Ethiopia |
| AuthorAffiliation_xml | – name: 2 South Australian Health and Medical Research Institute Adelaide Australia – name: 4 Computational Systems Biology Program, Precision Medicine Theme South Australian Health and Medical Research Institute Adelaide Australia – name: 1 Australian Centre for Precision Health, Unit of Clinical and Health Sciences University of South Australia Adelaide Australia – name: 3 Department of Pharmacology and Clinical Pharmacy College of Health Sciences Addis Ababa Ethiopia |
| Author_xml | – sequence: 1 givenname: Amanda L. orcidid: 0000-0002-0214-6498 surname: Lumsden fullname: Lumsden, Amanda L. email: amanda.lumsden@unisa.edu.au organization: South Australian Health and Medical Research Institute – sequence: 2 givenname: Anwar orcidid: 0000-0002-8018-3454 surname: Mulugeta fullname: Mulugeta, Anwar organization: College of Health Sciences – sequence: 3 givenname: Ville‐Petteri orcidid: 0000-0002-7262-2656 surname: Mäkinen fullname: Mäkinen, Ville‐Petteri organization: South Australian Health and Medical Research Institute – sequence: 4 givenname: Elina orcidid: 0000-0003-3670-9399 surname: Hyppönen fullname: Hyppönen, Elina organization: South Australian Health and Medical Research Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36053807$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAQxy3UirYLB14AReICSGn9tbFzqlD5qtSqFzhbjj1ZXDl2sJNWe-MReEaeBLe7tFCJ-mBb49_8NfMfH6CdEAMg9ILgQ1LWkY3DIeFyyZ6gfcIbVhNGm53bO61li-keOsj5EmPMmRRP0R5r8JJJLPbR6hwm3UXvTDWm2DsPv3787HQGW-W5W6U4j7kyOlTOQphcv66s63tIEAzkyoWqS7rsV9HPQwnoYLcRl2KoLIwxu8nF8Azt9tpneL49F-jrxw9fTj7XZxefTk_endWGc85qTlvcYUGB90zTRoDuu5ZyaKkGyQxpsbRLaAnmuLPMCMsbCyA6DpwKgQ1boLcb3TmMen2tvVdjcoNOa0WwunFLFbfUrVsFPt7A49wNYE3pMOn7hKid-vcluG9qFa-KVMsbWdxcoNdbhRS_z5AnNbhswHsdIM5ZUYFbwRpCZUFfPUAv45xCMaNQXGJZ6l8W6uXfJd3V8mdiBXizAUyKOSfoH-3v6AFr3KRvxlG6cf6xjOvyE9b_l1bvL843Gb8Bi_7HTw |
| CitedBy_id | crossref_primary_10_1186_s12967_024_05868_3 crossref_primary_10_1111_acel_14125 crossref_primary_10_1111_dom_16292 crossref_primary_10_1186_s12877_023_04534_5 crossref_primary_10_3390_jcm13082381 |
| Cites_doi | 10.1148/radiol.2020192541 10.1152/japplphysiol.00690.2017 10.2337/dc17‐1185 10.1021/acschemneuro.8b00194 10.3390/brainsci11080999 10.1186/s13195‐020‐00687‐2 10.1016/j.neurobiolaging.2021.02.010 10.1371/journal.pmed.1001779 10.1002/gps.5332 10.1186/s13024‐020‐00376‐6 10.1016/j.neuroimage.2017.10.034 10.1016/j.neurobiolaging.2008.08.008 10.1016/j.jalz.2016.03.003 10.1186/s12877‐020‐01789‐0 10.1017/S0029665112002753 10.1212/WNL.0b013e3181a26b30 10.1093/ije/dyy113 10.1038/nn.4393 10.1016/j.neurobiolaging.2021.06.016 10.1080/00207454.2018.1503182 10.1093/ajcn/nqac107 10.1017/s1041610208006790 10.3390/nu10091243 10.1017/s1041610217002393 10.3389/fnagi.2021.630409 10.2337/dc14‐0664 10.1016/j.exger.2015.01.049 10.2174/156720510790274392 10.3389/fendo.2020.595962 10.3945/jn.115.214197 10.1038/s41598‐022‐12198‐1 10.1039/d1fo03574f 10.1001/archneur.60.2.213 10.1016/j.arr.2021.101445 10.1161/STROKEAHA.114.007706 10.3233/JAD‐190713 10.1093/aje/kwx246 10.1523/JNEUROSCI.1402‐13.2013 10.1016/j.clnu.2020.04.027 10.1136/bmj.308.6937.1125 10.1016/j.psyneuen.2019.04.011 10.1093/eurheartj/ehaa756 10.1212/WNL.0000000000003430 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 7X8 5PM ADTOC UNPAY |
| DOI | 10.1111/dom.14853 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | Lumsden et al |
| EISSN | 1463-1326 |
| EndPage | 131 |
| ExternalDocumentID | 10.1111/dom.14853 PMC10946804 36053807 10_1111_dom_14853 DOM14853 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Health and Medical Research Council funderid: GNT1157281 – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: Medical Research Council grantid: MC_QA137853 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 24P 29F 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4443-4290b072e4f3a267eafb924e92ae83c1908d5e91040bd3c7d46dee7b4e42770c3 |
| IEDL.DBID | DR2 |
| ISSN | 1462-8902 1463-1326 |
| IngestDate | Wed Oct 29 11:59:25 EDT 2025 Thu Aug 21 18:34:48 EDT 2025 Thu Oct 02 10:49:46 EDT 2025 Tue Oct 07 06:35:14 EDT 2025 Mon Jul 21 06:07:56 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Oct 01 03:36:42 EDT 2025 Wed Jan 22 16:22:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | self-organizing map brain iron metabolic profiling brain volume white matter hyperintensities |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4443-4290b072e4f3a267eafb924e92ae83c1908d5e91040bd3c7d46dee7b4e42770c3 |
| Notes | Funding information E.H. received grant funding from the National Health and Medical Research Council Australia (GNT1157281) which supported this research. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information E.H. received grant funding from the National Health and Medical Research Council Australia (GNT1157281) which supported this research. |
| ORCID | 0000-0003-3670-9399 0000-0002-8018-3454 0000-0002-0214-6498 0000-0002-7262-2656 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.14853 |
| PMID | 36053807 |
| PQID | 2748087705 |
| PQPubID | 1006516 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1111_dom_14853 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10946804 proquest_miscellaneous_2709736128 proquest_journals_2748087705 pubmed_primary_36053807 crossref_primary_10_1111_dom_14853 crossref_citationtrail_10_1111_dom_14853 wiley_primary_10_1111_dom_14853_DOM14853 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
| PublicationTitle | Diabetes, obesity & metabolism |
| PublicationTitleAlternate | Diabetes Obes Metab |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | 2017; 40 2015; 12 2018; 166 2010; 31 2021; 42 2016; 19 2021; 102 2020; 20 2021; 106 2015; 145 2018; 125 2020; 15 2020; 35 2005 2020; 12 2020; 11 2019; 106 2019; 129 2021; 71 2022; 116 2016; 12 2015; 46 2021; 13 2018; 9 2021; 11 2013; 33 2020; 73 2009; 72 2020; 296 2015; 63 2013; 72 2019; 48 2022; 12 2016; 87 2014; 37 2022; 13 2018; 30 1994; 15 2017; 186 2008; 20 2003; 60 1994; 308 2018; 10 2021; 40 2010; 7 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Bartzokis G (e_1_2_9_44_1) 1994; 15 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 145 start-page: 1817 issue: 8 year: 2015 end-page: 1823 article-title: Higher serum 25‐hydroxyvitamin D and lower plasma glucose are associated with larger gray matter volume but not with white matter or Total brain volume in Dutch community‐dwelling older adults publication-title: J Nutr – volume: 71 year: 2021 article-title: Relationship between obesity and structural brain abnormality: accumulated evidence from observational studies publication-title: Ageing Res Rev – volume: 42 start-page: 750 issue: 7 year: 2021 end-page: 757 article-title: Midlife blood pressure is associated with the severity of white matter hyperintensities: analysis of the UK Biobank cohort study publication-title: Eur Heart J – volume: 31 start-page: 1077 issue: 7 year: 2010 end-page: 1088 article-title: Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal publication-title: Neurobiol Aging – year: 2005 – volume: 106 start-page: 183 year: 2021 end-page: 196 article-title: Healthy dietary intake moderates the effects of age on brain iron concentration and working memory performance publication-title: Neurobiol Aging – volume: 60 start-page: 213 issue: 2 year: 2003 end-page: 220 article-title: Higher estrogen levels are not associated with larger hippocampi and better memory performance publication-title: Arch Neurol – volume: 9 start-page: 1849 issue: 7 year: 2018 end-page: 1857 article-title: Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer's disease publication-title: ACS Chem Nerosci – volume: 72 start-page: 1436 issue: 16 year: 2009 end-page: 1440 article-title: Brain iron homeostasis and neurodegenerative disease publication-title: Neurology – volume: 19 start-page: 1523 issue: 11 year: 2016 end-page: 1536 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat Neurosci – volume: 12 issue: 3 year: 2015 article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med – volume: 13 year: 2021 article-title: Association between gamma‐glutamyl transferase and mild cognitive impairment in Chinese women publication-title: Front Aging Neurosci – volume: 30 start-page: 981 issue: 7 year: 2018 end-page: 990 article-title: Gamma‐Glutamyltransferase (GGT) as a biomarker of cognitive decline at the end of life: contrasting age and time to death trajectories publication-title: Int Psychogeriatr – volume: 40 start-page: 1514 issue: 11 year: 2017 end-page: 1521 article-title: Diabetes, prediabetes, and brain volumes and subclinical cerebrovascular disease on MRI: the atherosclerosis risk in communities neurocognitive study (ARIC‐NCS) publication-title: Diabetes Care – volume: 116 start-page: 531 year: 2022 end-page: 540 article-title: Vitamin D and brain health: an observational and Mendelian randomization study publication-title: Am J Clin Nutr – volume: 37 start-page: 3076 issue: 11 year: 2014 end-page: 3083 article-title: Brain iron overload, insulin resistance, and cognitive performance in obese subjects: a preliminary MRI case‐control study publication-title: Diabetes Care – volume: 106 start-page: 284 year: 2019 end-page: 292 article-title: Polygenic risk for circulating reproductive hormone levels and their influence on hippocampal volume and depression susceptibility publication-title: Psychoneuroendocrinology – volume: 12 start-page: 8590 issue: 1 year: 2022 article-title: Cross‐sectional metabolic subgroups and 10‐year follow‐up of cardiometabolic multimorbidity in the UK Biobank publication-title: Sci Rep – volume: 15 start-page: 1129 issue: 6 year: 1994 end-page: 1138 article-title: In vivo MR evaluation of age‐related increases in brain iron publication-title: AJNR Am J Neuroradiol – volume: 40 start-page: 72 issue: 1 year: 2021 end-page: 78 article-title: Associations of vitamin D deficiency with MRI markers of brain health in a community sample publication-title: Clin Nutr – volume: 46 start-page: 248 issue: 1 year: 2015 end-page: 251 article-title: 25‐Hydroxyvitamin D status is associated with chronic cerebral small vessel disease publication-title: Stroke – volume: 125 start-page: 320 issue: 2 year: 2018 end-page: 327 article-title: Contribution of structural brain phenotypes to the variance in resting energy expenditure in healthy Caucasian subjects publication-title: J Appl Physiol (1985) – volume: 12 start-page: 931 issue: 9 year: 2016 end-page: 941 article-title: Gamma glutamyltransferase and risk of future dementia in middle‐aged to older Finnish men: a new prospective cohort study publication-title: Alzheimers Dement – volume: 129 start-page: 49 issue: 1 year: 2019 end-page: 54 article-title: 25‐Hydroxy vitamin D level is associated with total MRI burden of cerebral small vessel disease in ischemic stroke patients publication-title: Int J Neurosci – volume: 15 start-page: 30 issue: 1 year: 2020 article-title: Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances publication-title: Mol Neurodegener – volume: 33 start-page: 18008 issue: 46 year: 2013 end-page: 18014 article-title: Changes in brain function occur years before the onset of cognitive impairment publication-title: J Neurosci – volume: 166 start-page: 400 year: 2018 end-page: 424 article-title: Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank publication-title: Neuroimage – volume: 20 start-page: 815 issue: 4 year: 2008 end-page: 823 article-title: Serum elevated gamma glutamyltransferase levels may be a marker for oxidative stress in Alzheimer's disease publication-title: Int Psychogeriatr – volume: 63 start-page: 41 year: 2015 end-page: 47 article-title: Vitamin D and white matter abnormalities in older adults: a quantitative volumetric analysis of brain MRI publication-title: Exp Gerontol – volume: 186 start-page: 1026 issue: 9 year: 2017 end-page: 1034 article-title: Comparison of sociodemographic and health‐related characteristics of UK biobank participants with those of the general population publication-title: Am J Epidemiol – volume: 72 start-page: 160 issue: 1 year: 2013 end-page: 165 article-title: Weight loss and Alzheimer's disease: temporal and aetiologic connections publication-title: Proc Nutr Soc – volume: 35 start-page: 1105 issue: 10 year: 2020 end-page: 1114 article-title: Gamma‐glutamyl transferase variability and risk of dementia: a nationwide study publication-title: Int J Geriatr Psychiatry – volume: 11 year: 2020 article-title: Relationship between type 2 diabetes and white matter hyperintensity: a systematic review publication-title: Front Endocrinol (Lausanne) – volume: 13 start-page: 6665 issue: 12 year: 2022 end-page: 6673 article-title: Are micronutrient levels and supplements causally associated with the risk of Alzheimer's disease? A two‐sample Mendelian randomization analysis publication-title: Food Funct – volume: 20 start-page: 391 issue: 1 year: 2020 article-title: Effects of kidney function, serum albumin and hemoglobin on dementia severity in the oldest old people with newly diagnosed Alzheimer's disease in a residential aged care facility: a cross‐sectional study publication-title: BMC Geriatr – volume: 10 issue: 9 year: 2018 article-title: Serum parathyroid hormone, 25‐hydroxyvitamin D, and risk of Alzheimer's disease: a Mendelian randomization study publication-title: Nutrients – volume: 102 start-page: 161 year: 2021 end-page: 169 article-title: Unlocking the causal link of metabolically different adiposity subtypes with brain volumes and the risks of dementia and stroke: a Mendelian randomization study publication-title: Neurobiol Aging – volume: 87 start-page: 2567 issue: 24 year: 2016 end-page: 2574 article-title: Genetically decreased vitamin D and risk of Alzheimer disease publication-title: Neurology – volume: 296 year: 2020 article-title: Cross‐sectional and longitudinal assessment of brain iron level in Alzheimer disease using 3‐T MRI publication-title: Radiology – volume: 48 start-page: 369 issue: 2 year: 2019 end-page: 374 article-title: Numero: a statistical framework to define multivariable subgroups in complex population‐based datasets publication-title: Int J Epidemiol – volume: 73 start-page: 609 issue: 2 year: 2020 end-page: 618 article-title: Circulating vitamin D levels and Alzheimer's disease: a Mendelian randomization study in the IGAP and UK biobank publication-title: J Alzheimers Dis – volume: 12 start-page: 116 issue: 1 year: 2020 article-title: Energy intake and expenditure in patients with Alzheimer's disease and mild cognitive impairment: the NUDAD project publication-title: Alzheimers Res Ther – volume: 11 issue: 8 year: 2021 article-title: Obesity and gray matter volume assessed by neuroimaging: a systematic review publication-title: Brain Sci – volume: 7 start-page: 91 issue: 1 year: 2010 end-page: 96 article-title: Serum albumin concentration and cognitive impairment publication-title: Curr Alzheimer Res – volume: 308 start-page: 1125 issue: 6937 year: 1994 end-page: 1128 article-title: Widening inequality of health in northern England, 1981‐91 publication-title: BMJ – ident: e_1_2_9_10_1 doi: 10.1148/radiol.2020192541 – ident: e_1_2_9_42_1 doi: 10.1152/japplphysiol.00690.2017 – volume: 15 start-page: 1129 issue: 6 year: 1994 ident: e_1_2_9_44_1 article-title: In vivo MR evaluation of age‐related increases in brain iron publication-title: AJNR Am J Neuroradiol – ident: e_1_2_9_17_1 doi: 10.2337/dc17‐1185 – ident: e_1_2_9_11_1 doi: 10.1021/acschemneuro.8b00194 – ident: e_1_2_9_13_1 doi: 10.3390/brainsci11080999 – ident: e_1_2_9_40_1 doi: 10.1186/s13195‐020‐00687‐2 – ident: e_1_2_9_15_1 doi: 10.1016/j.neurobiolaging.2021.02.010 – ident: e_1_2_9_5_1 doi: 10.1371/journal.pmed.1001779 – ident: e_1_2_9_31_1 doi: 10.1002/gps.5332 – ident: e_1_2_9_43_1 doi: 10.1186/s13024‐020‐00376‐6 – ident: e_1_2_9_9_1 doi: 10.1016/j.neuroimage.2017.10.034 – ident: e_1_2_9_2_1 doi: 10.1016/j.neurobiolaging.2008.08.008 – ident: e_1_2_9_32_1 doi: 10.1016/j.jalz.2016.03.003 – ident: e_1_2_9_37_1 doi: 10.1186/s12877‐020‐01789‐0 – ident: e_1_2_9_7_1 – ident: e_1_2_9_41_1 doi: 10.1017/S0029665112002753 – ident: e_1_2_9_45_1 doi: 10.1212/WNL.0b013e3181a26b30 – ident: e_1_2_9_8_1 doi: 10.1093/ije/dyy113 – ident: e_1_2_9_6_1 doi: 10.1038/nn.4393 – ident: e_1_2_9_46_1 doi: 10.1016/j.neurobiolaging.2021.06.016 – ident: e_1_2_9_39_1 – ident: e_1_2_9_24_1 doi: 10.1080/00207454.2018.1503182 – ident: e_1_2_9_25_1 doi: 10.1093/ajcn/nqac107 – ident: e_1_2_9_34_1 doi: 10.1017/s1041610208006790 – ident: e_1_2_9_27_1 doi: 10.3390/nu10091243 – ident: e_1_2_9_33_1 doi: 10.1017/s1041610217002393 – ident: e_1_2_9_30_1 doi: 10.3389/fnagi.2021.630409 – ident: e_1_2_9_18_1 doi: 10.2337/dc14‐0664 – ident: e_1_2_9_23_1 doi: 10.1016/j.exger.2015.01.049 – ident: e_1_2_9_38_1 doi: 10.2174/156720510790274392 – ident: e_1_2_9_16_1 doi: 10.3389/fendo.2020.595962 – ident: e_1_2_9_20_1 doi: 10.3945/jn.115.214197 – ident: e_1_2_9_4_1 doi: 10.1038/s41598‐022‐12198‐1 – ident: e_1_2_9_29_1 doi: 10.1039/d1fo03574f – ident: e_1_2_9_35_1 doi: 10.1001/archneur.60.2.213 – ident: e_1_2_9_14_1 doi: 10.1016/j.arr.2021.101445 – ident: e_1_2_9_22_1 doi: 10.1161/STROKEAHA.114.007706 – ident: e_1_2_9_28_1 doi: 10.3233/JAD‐190713 – ident: e_1_2_9_47_1 doi: 10.1093/aje/kwx246 – ident: e_1_2_9_3_1 doi: 10.1523/JNEUROSCI.1402‐13.2013 – ident: e_1_2_9_21_1 doi: 10.1016/j.clnu.2020.04.027 – ident: e_1_2_9_12_1 doi: 10.1136/bmj.308.6937.1125 – ident: e_1_2_9_36_1 doi: 10.1016/j.psyneuen.2019.04.011 – ident: e_1_2_9_19_1 doi: 10.1093/eurheartj/ehaa756 – ident: e_1_2_9_26_1 doi: 10.1212/WNL.0000000000003430 |
| SSID | ssj0004387 |
| Score | 2.4109418 |
| Snippet | Aims
To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors... To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated... AimsTo evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 121 |
| SubjectTerms | Apolipoprotein B Atrophy Biomarkers Blood pressure Body mass index Brain - diagnostic imaging brain iron brain volume Cholesterol Cystatin C Dementia Dementia disorders Hippocampus Humans Hypertension Iron metabolic profiling Metabolic rate Metabolism Metabolome Neural networks Neuroimaging Original Risk factors self‐organizing map Substantia alba Substantia grisea Triglycerides white matter hyperintensities |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbKVgIuvB8pBU2BQy-p8pjMZI8VbVUhbdsDK5VTNA8HVizZit0IlRM_gd_YX4InmYSmhYpblDivGTv-nLE_A7wdl5pguY5DZZPMkWpjqCJUYSlLk-aJkbzhKZgcicMpf3-ana7BVlcLc3n93mXc2MVXMmbyKbdgXWQEt0ewPj062f3YVg2RNfu8Qi7SkCIr4dmDBucOfc41IHk9H_JOXZ2p8-9qPh9i1sbpHNz_U7rT5pp82alXesf8uMLkeOP7PIB7HnKy3VZHHsIaVo_g9sQvqj-GTxNckSrMZ4b5Dt4XP38572bZstZN2ceS0QywWVPUW56zrqsKfWPYrGLatZlg7XduyVRl_R5XQccsdnlhT2B6sP_h3WHo-y-EhnOehuSqIh3JBHmZqkRIVKWmcA3HicI8NQQlcpsh4Q0eaZsaabmwiFJz5ImUkUmfwqhaVPgcGAphYxmX4yxPuECKo3gcjy1GimeWTg9gu5uhwnhyctcjY150QQoNXNEMXACve9GzlpHjb0Kb3TQX3iiXBQXgueM_jLIAtvrDZE5ujURVuKidjOMvItiXB_Cs1Yr-LimFfo6fP4B8oC-9gKPqHh6pZp8byu6YomiRRzyAN71q3fT0243S_Vui2DueNBsb_3XBF3A3IXDW_jrahNHqW40vCUyt9CtvTr8Be7Mb_w priority: 102 providerName: Unpaywall |
| Title | Metabolic profile‐based subgroups can identify differences in brain volumes and brain iron deposition |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.14853 https://www.ncbi.nlm.nih.gov/pubmed/36053807 https://www.proquest.com/docview/2748087705 https://www.proquest.com/docview/2709736128 https://pubmed.ncbi.nlm.nih.gov/PMC10946804 https://doi.org/10.1111/dom.14853 |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1462-8902 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1463-1326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004387 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXKO9AWZnHoZdUie3EiThVQFUhbakQKxUJKbLjCaxYshXZCJUTP4HfyC9h7DxgKSDELUomSmLP4xtn_A3Ao7wyBMtNHGrLE0eqjaGOUIeVqkqR8VJJz1MwPUwPZvL5cXK8AY-HvTAdP8S44OYsw_trZ-DaND8ZuV1-IDOnaEP-NxapT6de_qCOksI3xyNHQBafuyqeraGKZ7xzPRadAZhn6yQvtvWJPv2kF4t1LOuD0f4VeDN8RleD8n63XZnd8vMvDI__-Z1bcLkHqWyv06qrsIH1Nbgw7X_DX4e3U1yR8izmJet7fn_78tXFQ8ua1viNIg2jOWNzvw24OmVDHxbySmxeM-MaU7DOMzZM17Y_4_bcMYtDJdkNmO0_e_XkIOw7NoSllFKEFNwiEymOshKapwp1ZSjBw5xrzERJ4COzCRJCkZGxolRWphZRGYmSKxWV4iZs1ssabwPDNLWxiqs8ybhMkTIvGce5xUjLxNLtAewMc1eUPZ2566qxKIa0hgau8AMXwINR9KTj8Pid0PagAEVvxk1BKXvmGBOjJID742UyQPdXRde4bJ2MYzwioJgFcKvTl_EpgpJFx-gfQLamSaOAI_dev1LP33mS75jy7jSLZAAPR6X729vveB36s0Tx9MXUH9z5d9G7cIkTputWnLZhc_WxxXuEwVZmAue4PJp4k5vA-dnh0d7r74beMgk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RkEovFfSZQqn7OHCJlDiOnUhcqha0bQntASRukR1PykpLFnV3VXHrT-hv5Jcwdh5lRal6i-KxEnk8nm9szzcA7_LaECw3cagtTx2pNoY6Qh3Wqq6SjFdKeJ6C4kiOTsTn0_R0Bfb6XJiWH2LYcHOW4ddrZ-BuQ_qGldvpOdk5uZt7sCZkLF3oxcW3P1mRiS-PR0sB2Xzu7vFs9Pd4hq7L3ugWxLx9U3J90Vzoy596MllGs94dHWzAww5Hsvet4jdhBZtHcL_oTsofw_cC56TfybhiXVnuq1-_ncuybLYwPpdjxmhY2dhn6taXrC-VQgsHGzfMuNoRrF28Zkw3tnvj0uKYxf6y1xM4Odg__jAKu6IKYSWESELyP5GJFEdRJ5pLhbo2FINhzjVmSUX4ILMpEogQkbFJpayQFlEZgYIrFVXJU1htpg0-B4ZS2ljFdZ5mXEik4EjEcW4x0iK11D2A3X5wy6pjHHeFLyZlH3mQHkqvhwDeDKIXLc3G34S2ew2VnaXNSoqqM0dqGKUBvB6ayUbcwYducLpwMo6UiLBcFsCzVqHDVxKK5xzpfgDZkqoHAce_vdzSjM88D3dMobHMIhHA22FW_Ovvd_18uVui_Pi18A8v_l_0FayPjovD8vDT0ZcteMAJgrUbRNuwOv-xwJcEmeZmx1vGNTXcEuk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FIAUuEHZDgGY55OLIS9vdlrgghlFYJiBEpFyQ1UsZRgyeETMWCic-gW_kS6huLzAEEOJm2WXZbVd1vequegVwv6g0wXIdh8ommSPVxlBFqMJKVCaViRHc8xRMDvL9Q_70KDvagAd9LUzLDzEsuDnL8PO1M3Bc2OonK7fzD2Tn5G5OwWmeFdIl9I1e_SCP4qlvj0dTAdl84fJ4tvs8nuHWdW90AmKezJQ809QLdfxJzWbraNa7o_F5eNMPpM1Ceb_XrPSe-fwLx-P_jnQbznU4lT1sFesCbGB9EbYm3U78JXg7wRXpz2xqWNf2-9uXr84lWrZstK8VWTL6bWzqK4GrY9a3YqGJiU1rpl1vCtZOjkumatudcWV3zGKfTHYZDsePXz_aD7umDaHhnKch-bdIRyJBXqUqyQWqSlOMh0WiUKaG8Ie0GRJI4ZG2qRGW5xZRaI48ESIy6RXYrOc1XgOGeW5jEVdFJhOeIwVfPI4Li5HimaXbA9jtf15pOkZz11hjVvaRDX240n-4AO4OoouWxuN3Qju9BpSdJS9LitqlI02MsgDuDJfJBt3Giqpx3jgZR3pEWFEGcLVVmOEpKcWLjtQ_ALmmSoOA4_dev1JP33me75hC71xGPIB7g9b97e13vRL9WaIcvZj4g-v_Lnobtl6OxuXzJwfPbsDZhBBeu_60A5urjw3eJES20re84X0HJOQzJw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbKVgIuvB8pBU2BQy-p8pjMZI8VbVUhbdsDK5VTNA8HVizZit0IlRM_gd_YX4InmYSmhYpblDivGTv-nLE_A7wdl5pguY5DZZPMkWpjqCJUYSlLk-aJkbzhKZgcicMpf3-ana7BVlcLc3n93mXc2MVXMmbyKbdgXWQEt0ewPj062f3YVg2RNfu8Qi7SkCIr4dmDBucOfc41IHk9H_JOXZ2p8-9qPh9i1sbpHNz_U7rT5pp82alXesf8uMLkeOP7PIB7HnKy3VZHHsIaVo_g9sQvqj-GTxNckSrMZ4b5Dt4XP38572bZstZN2ceS0QywWVPUW56zrqsKfWPYrGLatZlg7XduyVRl_R5XQccsdnlhT2B6sP_h3WHo-y-EhnOehuSqIh3JBHmZqkRIVKWmcA3HicI8NQQlcpsh4Q0eaZsaabmwiFJz5ImUkUmfwqhaVPgcGAphYxmX4yxPuECKo3gcjy1GimeWTg9gu5uhwnhyctcjY150QQoNXNEMXACve9GzlpHjb0Kb3TQX3iiXBQXgueM_jLIAtvrDZE5ujURVuKidjOMvItiXB_Cs1Yr-LimFfo6fP4B8oC-9gKPqHh6pZp8byu6YomiRRzyAN71q3fT0243S_Vui2DueNBsb_3XBF3A3IXDW_jrahNHqW40vCUyt9CtvTr8Be7Mb_w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+profile%E2%80%90based+subgroups+can+identify+differences+in+brain+volumes+and+brain+iron+deposition&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Lumsden%2C+Amanda+L.&rft.au=Mulugeta%2C+Anwar&rft.au=M%C3%A4kinen%2C+Ville%E2%80%90Petteri&rft.au=Hypp%C3%B6nen%2C+Elina&rft.date=2023-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=25&rft.issue=1&rft.spage=121&rft.epage=131&rft_id=info:doi/10.1111%2Fdom.14853&rft_id=info%3Apmid%2F36053807&rft.externalDocID=PMC10946804 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon |