Metabolic profile‐based subgroups can identify differences in brain volumes and brain iron deposition

Aims To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia. Materials and methods Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the assoc...

Full description

Saved in:
Bibliographic Details
Published inDiabetes, obesity & metabolism Vol. 25; no. 1; pp. 121 - 131
Main Authors Lumsden, Amanda L., Mulugeta, Anwar, Mäkinen, Ville‐Petteri, Hyppönen, Elina
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1462-8902
1463-1326
1463-1326
DOI10.1111/dom.14853

Cover

Abstract Aims To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia. Materials and methods Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self‐organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition. Results In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high‐density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized −0.20, 95% confidence interval [CI] −0.24 to −0.16), HV (βstandardized −0.09, 95% CI −0.13 to −0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C‐reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized −0.15, 95% CI −0.16 to −0.14) and HV (βstandardized −0.11, 95% CI −0.12 to −0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP). Conclusions Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations.
AbstractList Aims To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia. Materials and methods Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self‐organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition. Results In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high‐density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized −0.20, 95% confidence interval [CI] −0.24 to −0.16), HV (βstandardized −0.09, 95% CI −0.13 to −0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C‐reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized −0.15, 95% CI −0.16 to −0.14) and HV (βstandardized −0.11, 95% CI −0.12 to −0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP). Conclusions Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations.
To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia.AIMSTo evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia.Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self-organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition.MATERIALS AND METHODSUsing data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self-organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition.In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high-density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized -0.20, 95% confidence interval [CI] -0.24 to -0.16), HV (βstandardized -0.09, 95% CI -0.13 to -0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C-reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized -0.15, 95% CI -0.16 to -0.14) and HV (βstandardized -0.11, 95% CI -0.12 to -0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP).RESULTSIn metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high-density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized -0.20, 95% confidence interval [CI] -0.24 to -0.16), HV (βstandardized -0.09, 95% CI -0.13 to -0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C-reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized -0.15, 95% CI -0.16 to -0.14) and HV (βstandardized -0.11, 95% CI -0.12 to -0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP).Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations.CONCLUSIONSMetabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations.
To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia. Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self-organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition. In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high-density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (β -0.20, 95% confidence interval [CI] -0.24 to -0.16), HV (β -0.09, 95% CI -0.13 to -0.04), WMH volume (β 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (β 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C-reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (β 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (β -0.15, 95% CI -0.16 to -0.14) and HV (β -0.11, 95% CI -0.12 to -0.10), and between BP and WMH volume (β 0.13, 95% CI 0.12 to 0.14 for diastolic BP). Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations.
AimsTo evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia.Materials and methodsUsing data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self‐organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition.ResultsIn metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high‐density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (βstandardized −0.20, 95% confidence interval [CI] −0.24 to −0.16), HV (βstandardized −0.09, 95% CI −0.13 to −0.04), WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C‐reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized −0.15, 95% CI −0.16 to −0.14) and HV (βstandardized −0.11, 95% CI −0.12 to −0.10), and between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP).ConclusionsMetabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations.
Author Mulugeta, Anwar
Lumsden, Amanda L.
Hyppönen, Elina
Mäkinen, Ville‐Petteri
AuthorAffiliation 2 South Australian Health and Medical Research Institute Adelaide Australia
4 Computational Systems Biology Program, Precision Medicine Theme South Australian Health and Medical Research Institute Adelaide Australia
1 Australian Centre for Precision Health, Unit of Clinical and Health Sciences University of South Australia Adelaide Australia
3 Department of Pharmacology and Clinical Pharmacy College of Health Sciences Addis Ababa Ethiopia
AuthorAffiliation_xml – name: 2 South Australian Health and Medical Research Institute Adelaide Australia
– name: 4 Computational Systems Biology Program, Precision Medicine Theme South Australian Health and Medical Research Institute Adelaide Australia
– name: 1 Australian Centre for Precision Health, Unit of Clinical and Health Sciences University of South Australia Adelaide Australia
– name: 3 Department of Pharmacology and Clinical Pharmacy College of Health Sciences Addis Ababa Ethiopia
Author_xml – sequence: 1
  givenname: Amanda L.
  orcidid: 0000-0002-0214-6498
  surname: Lumsden
  fullname: Lumsden, Amanda L.
  email: amanda.lumsden@unisa.edu.au
  organization: South Australian Health and Medical Research Institute
– sequence: 2
  givenname: Anwar
  orcidid: 0000-0002-8018-3454
  surname: Mulugeta
  fullname: Mulugeta, Anwar
  organization: College of Health Sciences
– sequence: 3
  givenname: Ville‐Petteri
  orcidid: 0000-0002-7262-2656
  surname: Mäkinen
  fullname: Mäkinen, Ville‐Petteri
  organization: South Australian Health and Medical Research Institute
– sequence: 4
  givenname: Elina
  orcidid: 0000-0003-3670-9399
  surname: Hyppönen
  fullname: Hyppönen, Elina
  organization: South Australian Health and Medical Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36053807$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxy3UirYLB14AReICSGn9tbFzqlD5qtSqFzhbjj1ZXDl2sJNWe-MReEaeBLe7tFCJ-mBb49_8NfMfH6CdEAMg9ILgQ1LWkY3DIeFyyZ6gfcIbVhNGm53bO61li-keOsj5EmPMmRRP0R5r8JJJLPbR6hwm3UXvTDWm2DsPv3787HQGW-W5W6U4j7kyOlTOQphcv66s63tIEAzkyoWqS7rsV9HPQwnoYLcRl2KoLIwxu8nF8Azt9tpneL49F-jrxw9fTj7XZxefTk_endWGc85qTlvcYUGB90zTRoDuu5ZyaKkGyQxpsbRLaAnmuLPMCMsbCyA6DpwKgQ1boLcb3TmMen2tvVdjcoNOa0WwunFLFbfUrVsFPt7A49wNYE3pMOn7hKid-vcluG9qFa-KVMsbWdxcoNdbhRS_z5AnNbhswHsdIM5ZUYFbwRpCZUFfPUAv45xCMaNQXGJZ6l8W6uXfJd3V8mdiBXizAUyKOSfoH-3v6AFr3KRvxlG6cf6xjOvyE9b_l1bvL843Gb8Bi_7HTw
CitedBy_id crossref_primary_10_1186_s12967_024_05868_3
crossref_primary_10_1111_acel_14125
crossref_primary_10_1111_dom_16292
crossref_primary_10_1186_s12877_023_04534_5
crossref_primary_10_3390_jcm13082381
Cites_doi 10.1148/radiol.2020192541
10.1152/japplphysiol.00690.2017
10.2337/dc17‐1185
10.1021/acschemneuro.8b00194
10.3390/brainsci11080999
10.1186/s13195‐020‐00687‐2
10.1016/j.neurobiolaging.2021.02.010
10.1371/journal.pmed.1001779
10.1002/gps.5332
10.1186/s13024‐020‐00376‐6
10.1016/j.neuroimage.2017.10.034
10.1016/j.neurobiolaging.2008.08.008
10.1016/j.jalz.2016.03.003
10.1186/s12877‐020‐01789‐0
10.1017/S0029665112002753
10.1212/WNL.0b013e3181a26b30
10.1093/ije/dyy113
10.1038/nn.4393
10.1016/j.neurobiolaging.2021.06.016
10.1080/00207454.2018.1503182
10.1093/ajcn/nqac107
10.1017/s1041610208006790
10.3390/nu10091243
10.1017/s1041610217002393
10.3389/fnagi.2021.630409
10.2337/dc14‐0664
10.1016/j.exger.2015.01.049
10.2174/156720510790274392
10.3389/fendo.2020.595962
10.3945/jn.115.214197
10.1038/s41598‐022‐12198‐1
10.1039/d1fo03574f
10.1001/archneur.60.2.213
10.1016/j.arr.2021.101445
10.1161/STROKEAHA.114.007706
10.3233/JAD‐190713
10.1093/aje/kwx246
10.1523/JNEUROSCI.1402‐13.2013
10.1016/j.clnu.2020.04.027
10.1136/bmj.308.6937.1125
10.1016/j.psyneuen.2019.04.011
10.1093/eurheartj/ehaa756
10.1212/WNL.0000000000003430
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/dom.14853
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Lumsden et al
EISSN 1463-1326
EndPage 131
ExternalDocumentID 10.1111/dom.14853
PMC10946804
36053807
10_1111_dom_14853
DOM14853
Genre article
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council
  funderid: GNT1157281
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_QA137853
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
24P
29F
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4443-4290b072e4f3a267eafb924e92ae83c1908d5e91040bd3c7d46dee7b4e42770c3
IEDL.DBID DR2
ISSN 1462-8902
1463-1326
IngestDate Wed Oct 29 11:59:25 EDT 2025
Thu Aug 21 18:34:48 EDT 2025
Thu Oct 02 10:49:46 EDT 2025
Tue Oct 07 06:35:14 EDT 2025
Mon Jul 21 06:07:56 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Oct 01 03:36:42 EDT 2025
Wed Jan 22 16:22:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords self-organizing map
brain iron
metabolic profiling
brain volume
white matter hyperintensities
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4443-4290b072e4f3a267eafb924e92ae83c1908d5e91040bd3c7d46dee7b4e42770c3
Notes Funding information
E.H. received grant funding from the National Health and Medical Research Council Australia (GNT1157281) which supported this research.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information E.H. received grant funding from the National Health and Medical Research Council Australia (GNT1157281) which supported this research.
ORCID 0000-0003-3670-9399
0000-0002-8018-3454
0000-0002-0214-6498
0000-0002-7262-2656
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.14853
PMID 36053807
PQID 2748087705
PQPubID 1006516
PageCount 11
ParticipantIDs unpaywall_primary_10_1111_dom_14853
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10946804
proquest_miscellaneous_2709736128
proquest_journals_2748087705
pubmed_primary_36053807
crossref_primary_10_1111_dom_14853
crossref_citationtrail_10_1111_dom_14853
wiley_primary_10_1111_dom_14853_DOM14853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Diabetes, obesity & metabolism
PublicationTitleAlternate Diabetes Obes Metab
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2017; 40
2015; 12
2018; 166
2010; 31
2021; 42
2016; 19
2021; 102
2020; 20
2021; 106
2015; 145
2018; 125
2020; 15
2020; 35
2005
2020; 12
2020; 11
2019; 106
2019; 129
2021; 71
2022; 116
2016; 12
2015; 46
2021; 13
2018; 9
2021; 11
2013; 33
2020; 73
2009; 72
2020; 296
2015; 63
2013; 72
2019; 48
2022; 12
2016; 87
2014; 37
2022; 13
2018; 30
1994; 15
2017; 186
2008; 20
2003; 60
1994; 308
2018; 10
2021; 40
2010; 7
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Bartzokis G (e_1_2_9_44_1) 1994; 15
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 145
  start-page: 1817
  issue: 8
  year: 2015
  end-page: 1823
  article-title: Higher serum 25‐hydroxyvitamin D and lower plasma glucose are associated with larger gray matter volume but not with white matter or Total brain volume in Dutch community‐dwelling older adults
  publication-title: J Nutr
– volume: 71
  year: 2021
  article-title: Relationship between obesity and structural brain abnormality: accumulated evidence from observational studies
  publication-title: Ageing Res Rev
– volume: 42
  start-page: 750
  issue: 7
  year: 2021
  end-page: 757
  article-title: Midlife blood pressure is associated with the severity of white matter hyperintensities: analysis of the UK Biobank cohort study
  publication-title: Eur Heart J
– volume: 31
  start-page: 1077
  issue: 7
  year: 2010
  end-page: 1088
  article-title: Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal
  publication-title: Neurobiol Aging
– year: 2005
– volume: 106
  start-page: 183
  year: 2021
  end-page: 196
  article-title: Healthy dietary intake moderates the effects of age on brain iron concentration and working memory performance
  publication-title: Neurobiol Aging
– volume: 60
  start-page: 213
  issue: 2
  year: 2003
  end-page: 220
  article-title: Higher estrogen levels are not associated with larger hippocampi and better memory performance
  publication-title: Arch Neurol
– volume: 9
  start-page: 1849
  issue: 7
  year: 2018
  end-page: 1857
  article-title: Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer's disease
  publication-title: ACS Chem Nerosci
– volume: 72
  start-page: 1436
  issue: 16
  year: 2009
  end-page: 1440
  article-title: Brain iron homeostasis and neurodegenerative disease
  publication-title: Neurology
– volume: 19
  start-page: 1523
  issue: 11
  year: 2016
  end-page: 1536
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat Neurosci
– volume: 12
  issue: 3
  year: 2015
  article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med
– volume: 13
  year: 2021
  article-title: Association between gamma‐glutamyl transferase and mild cognitive impairment in Chinese women
  publication-title: Front Aging Neurosci
– volume: 30
  start-page: 981
  issue: 7
  year: 2018
  end-page: 990
  article-title: Gamma‐Glutamyltransferase (GGT) as a biomarker of cognitive decline at the end of life: contrasting age and time to death trajectories
  publication-title: Int Psychogeriatr
– volume: 40
  start-page: 1514
  issue: 11
  year: 2017
  end-page: 1521
  article-title: Diabetes, prediabetes, and brain volumes and subclinical cerebrovascular disease on MRI: the atherosclerosis risk in communities neurocognitive study (ARIC‐NCS)
  publication-title: Diabetes Care
– volume: 116
  start-page: 531
  year: 2022
  end-page: 540
  article-title: Vitamin D and brain health: an observational and Mendelian randomization study
  publication-title: Am J Clin Nutr
– volume: 37
  start-page: 3076
  issue: 11
  year: 2014
  end-page: 3083
  article-title: Brain iron overload, insulin resistance, and cognitive performance in obese subjects: a preliminary MRI case‐control study
  publication-title: Diabetes Care
– volume: 106
  start-page: 284
  year: 2019
  end-page: 292
  article-title: Polygenic risk for circulating reproductive hormone levels and their influence on hippocampal volume and depression susceptibility
  publication-title: Psychoneuroendocrinology
– volume: 12
  start-page: 8590
  issue: 1
  year: 2022
  article-title: Cross‐sectional metabolic subgroups and 10‐year follow‐up of cardiometabolic multimorbidity in the UK Biobank
  publication-title: Sci Rep
– volume: 15
  start-page: 1129
  issue: 6
  year: 1994
  end-page: 1138
  article-title: In vivo MR evaluation of age‐related increases in brain iron
  publication-title: AJNR Am J Neuroradiol
– volume: 40
  start-page: 72
  issue: 1
  year: 2021
  end-page: 78
  article-title: Associations of vitamin D deficiency with MRI markers of brain health in a community sample
  publication-title: Clin Nutr
– volume: 46
  start-page: 248
  issue: 1
  year: 2015
  end-page: 251
  article-title: 25‐Hydroxyvitamin D status is associated with chronic cerebral small vessel disease
  publication-title: Stroke
– volume: 125
  start-page: 320
  issue: 2
  year: 2018
  end-page: 327
  article-title: Contribution of structural brain phenotypes to the variance in resting energy expenditure in healthy Caucasian subjects
  publication-title: J Appl Physiol (1985)
– volume: 12
  start-page: 931
  issue: 9
  year: 2016
  end-page: 941
  article-title: Gamma glutamyltransferase and risk of future dementia in middle‐aged to older Finnish men: a new prospective cohort study
  publication-title: Alzheimers Dement
– volume: 129
  start-page: 49
  issue: 1
  year: 2019
  end-page: 54
  article-title: 25‐Hydroxy vitamin D level is associated with total MRI burden of cerebral small vessel disease in ischemic stroke patients
  publication-title: Int J Neurosci
– volume: 15
  start-page: 30
  issue: 1
  year: 2020
  article-title: Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances
  publication-title: Mol Neurodegener
– volume: 33
  start-page: 18008
  issue: 46
  year: 2013
  end-page: 18014
  article-title: Changes in brain function occur years before the onset of cognitive impairment
  publication-title: J Neurosci
– volume: 166
  start-page: 400
  year: 2018
  end-page: 424
  article-title: Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank
  publication-title: Neuroimage
– volume: 20
  start-page: 815
  issue: 4
  year: 2008
  end-page: 823
  article-title: Serum elevated gamma glutamyltransferase levels may be a marker for oxidative stress in Alzheimer's disease
  publication-title: Int Psychogeriatr
– volume: 63
  start-page: 41
  year: 2015
  end-page: 47
  article-title: Vitamin D and white matter abnormalities in older adults: a quantitative volumetric analysis of brain MRI
  publication-title: Exp Gerontol
– volume: 186
  start-page: 1026
  issue: 9
  year: 2017
  end-page: 1034
  article-title: Comparison of sociodemographic and health‐related characteristics of UK biobank participants with those of the general population
  publication-title: Am J Epidemiol
– volume: 72
  start-page: 160
  issue: 1
  year: 2013
  end-page: 165
  article-title: Weight loss and Alzheimer's disease: temporal and aetiologic connections
  publication-title: Proc Nutr Soc
– volume: 35
  start-page: 1105
  issue: 10
  year: 2020
  end-page: 1114
  article-title: Gamma‐glutamyl transferase variability and risk of dementia: a nationwide study
  publication-title: Int J Geriatr Psychiatry
– volume: 11
  year: 2020
  article-title: Relationship between type 2 diabetes and white matter hyperintensity: a systematic review
  publication-title: Front Endocrinol (Lausanne)
– volume: 13
  start-page: 6665
  issue: 12
  year: 2022
  end-page: 6673
  article-title: Are micronutrient levels and supplements causally associated with the risk of Alzheimer's disease? A two‐sample Mendelian randomization analysis
  publication-title: Food Funct
– volume: 20
  start-page: 391
  issue: 1
  year: 2020
  article-title: Effects of kidney function, serum albumin and hemoglobin on dementia severity in the oldest old people with newly diagnosed Alzheimer's disease in a residential aged care facility: a cross‐sectional study
  publication-title: BMC Geriatr
– volume: 10
  issue: 9
  year: 2018
  article-title: Serum parathyroid hormone, 25‐hydroxyvitamin D, and risk of Alzheimer's disease: a Mendelian randomization study
  publication-title: Nutrients
– volume: 102
  start-page: 161
  year: 2021
  end-page: 169
  article-title: Unlocking the causal link of metabolically different adiposity subtypes with brain volumes and the risks of dementia and stroke: a Mendelian randomization study
  publication-title: Neurobiol Aging
– volume: 87
  start-page: 2567
  issue: 24
  year: 2016
  end-page: 2574
  article-title: Genetically decreased vitamin D and risk of Alzheimer disease
  publication-title: Neurology
– volume: 296
  year: 2020
  article-title: Cross‐sectional and longitudinal assessment of brain iron level in Alzheimer disease using 3‐T MRI
  publication-title: Radiology
– volume: 48
  start-page: 369
  issue: 2
  year: 2019
  end-page: 374
  article-title: Numero: a statistical framework to define multivariable subgroups in complex population‐based datasets
  publication-title: Int J Epidemiol
– volume: 73
  start-page: 609
  issue: 2
  year: 2020
  end-page: 618
  article-title: Circulating vitamin D levels and Alzheimer's disease: a Mendelian randomization study in the IGAP and UK biobank
  publication-title: J Alzheimers Dis
– volume: 12
  start-page: 116
  issue: 1
  year: 2020
  article-title: Energy intake and expenditure in patients with Alzheimer's disease and mild cognitive impairment: the NUDAD project
  publication-title: Alzheimers Res Ther
– volume: 11
  issue: 8
  year: 2021
  article-title: Obesity and gray matter volume assessed by neuroimaging: a systematic review
  publication-title: Brain Sci
– volume: 7
  start-page: 91
  issue: 1
  year: 2010
  end-page: 96
  article-title: Serum albumin concentration and cognitive impairment
  publication-title: Curr Alzheimer Res
– volume: 308
  start-page: 1125
  issue: 6937
  year: 1994
  end-page: 1128
  article-title: Widening inequality of health in northern England, 1981‐91
  publication-title: BMJ
– ident: e_1_2_9_10_1
  doi: 10.1148/radiol.2020192541
– ident: e_1_2_9_42_1
  doi: 10.1152/japplphysiol.00690.2017
– volume: 15
  start-page: 1129
  issue: 6
  year: 1994
  ident: e_1_2_9_44_1
  article-title: In vivo MR evaluation of age‐related increases in brain iron
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_9_17_1
  doi: 10.2337/dc17‐1185
– ident: e_1_2_9_11_1
  doi: 10.1021/acschemneuro.8b00194
– ident: e_1_2_9_13_1
  doi: 10.3390/brainsci11080999
– ident: e_1_2_9_40_1
  doi: 10.1186/s13195‐020‐00687‐2
– ident: e_1_2_9_15_1
  doi: 10.1016/j.neurobiolaging.2021.02.010
– ident: e_1_2_9_5_1
  doi: 10.1371/journal.pmed.1001779
– ident: e_1_2_9_31_1
  doi: 10.1002/gps.5332
– ident: e_1_2_9_43_1
  doi: 10.1186/s13024‐020‐00376‐6
– ident: e_1_2_9_9_1
  doi: 10.1016/j.neuroimage.2017.10.034
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neurobiolaging.2008.08.008
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jalz.2016.03.003
– ident: e_1_2_9_37_1
  doi: 10.1186/s12877‐020‐01789‐0
– ident: e_1_2_9_7_1
– ident: e_1_2_9_41_1
  doi: 10.1017/S0029665112002753
– ident: e_1_2_9_45_1
  doi: 10.1212/WNL.0b013e3181a26b30
– ident: e_1_2_9_8_1
  doi: 10.1093/ije/dyy113
– ident: e_1_2_9_6_1
  doi: 10.1038/nn.4393
– ident: e_1_2_9_46_1
  doi: 10.1016/j.neurobiolaging.2021.06.016
– ident: e_1_2_9_39_1
– ident: e_1_2_9_24_1
  doi: 10.1080/00207454.2018.1503182
– ident: e_1_2_9_25_1
  doi: 10.1093/ajcn/nqac107
– ident: e_1_2_9_34_1
  doi: 10.1017/s1041610208006790
– ident: e_1_2_9_27_1
  doi: 10.3390/nu10091243
– ident: e_1_2_9_33_1
  doi: 10.1017/s1041610217002393
– ident: e_1_2_9_30_1
  doi: 10.3389/fnagi.2021.630409
– ident: e_1_2_9_18_1
  doi: 10.2337/dc14‐0664
– ident: e_1_2_9_23_1
  doi: 10.1016/j.exger.2015.01.049
– ident: e_1_2_9_38_1
  doi: 10.2174/156720510790274392
– ident: e_1_2_9_16_1
  doi: 10.3389/fendo.2020.595962
– ident: e_1_2_9_20_1
  doi: 10.3945/jn.115.214197
– ident: e_1_2_9_4_1
  doi: 10.1038/s41598‐022‐12198‐1
– ident: e_1_2_9_29_1
  doi: 10.1039/d1fo03574f
– ident: e_1_2_9_35_1
  doi: 10.1001/archneur.60.2.213
– ident: e_1_2_9_14_1
  doi: 10.1016/j.arr.2021.101445
– ident: e_1_2_9_22_1
  doi: 10.1161/STROKEAHA.114.007706
– ident: e_1_2_9_28_1
  doi: 10.3233/JAD‐190713
– ident: e_1_2_9_47_1
  doi: 10.1093/aje/kwx246
– ident: e_1_2_9_3_1
  doi: 10.1523/JNEUROSCI.1402‐13.2013
– ident: e_1_2_9_21_1
  doi: 10.1016/j.clnu.2020.04.027
– ident: e_1_2_9_12_1
  doi: 10.1136/bmj.308.6937.1125
– ident: e_1_2_9_36_1
  doi: 10.1016/j.psyneuen.2019.04.011
– ident: e_1_2_9_19_1
  doi: 10.1093/eurheartj/ehaa756
– ident: e_1_2_9_26_1
  doi: 10.1212/WNL.0000000000003430
SSID ssj0004387
Score 2.4109418
Snippet Aims To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors...
To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated...
AimsTo evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121
SubjectTerms Apolipoprotein B
Atrophy
Biomarkers
Blood pressure
Body mass index
Brain - diagnostic imaging
brain iron
brain volume
Cholesterol
Cystatin C
Dementia
Dementia disorders
Hippocampus
Humans
Hypertension
Iron
metabolic profiling
Metabolic rate
Metabolism
Metabolome
Neural networks
Neuroimaging
Original
Risk factors
self‐organizing map
Substantia alba
Substantia grisea
Triglycerides
white matter hyperintensities
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbKVgIuvB8pBU2BQy-p8pjMZI8VbVUhbdsDK5VTNA8HVizZit0IlRM_gd_YX4InmYSmhYpblDivGTv-nLE_A7wdl5pguY5DZZPMkWpjqCJUYSlLk-aJkbzhKZgcicMpf3-ana7BVlcLc3n93mXc2MVXMmbyKbdgXWQEt0ewPj062f3YVg2RNfu8Qi7SkCIr4dmDBucOfc41IHk9H_JOXZ2p8-9qPh9i1sbpHNz_U7rT5pp82alXesf8uMLkeOP7PIB7HnKy3VZHHsIaVo_g9sQvqj-GTxNckSrMZ4b5Dt4XP38572bZstZN2ceS0QywWVPUW56zrqsKfWPYrGLatZlg7XduyVRl_R5XQccsdnlhT2B6sP_h3WHo-y-EhnOehuSqIh3JBHmZqkRIVKWmcA3HicI8NQQlcpsh4Q0eaZsaabmwiFJz5ImUkUmfwqhaVPgcGAphYxmX4yxPuECKo3gcjy1GimeWTg9gu5uhwnhyctcjY150QQoNXNEMXACve9GzlpHjb0Kb3TQX3iiXBQXgueM_jLIAtvrDZE5ujURVuKidjOMvItiXB_Cs1Yr-LimFfo6fP4B8oC-9gKPqHh6pZp8byu6YomiRRzyAN71q3fT0243S_Vui2DueNBsb_3XBF3A3IXDW_jrahNHqW40vCUyt9CtvTr8Be7Mb_w
  priority: 102
  providerName: Unpaywall
Title Metabolic profile‐based subgroups can identify differences in brain volumes and brain iron deposition
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.14853
https://www.ncbi.nlm.nih.gov/pubmed/36053807
https://www.proquest.com/docview/2748087705
https://www.proquest.com/docview/2709736128
https://pubmed.ncbi.nlm.nih.gov/PMC10946804
https://doi.org/10.1111/dom.14853
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1462-8902
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1463-1326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004387
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXKO9AWZnHoZdUie3EiThVQFUhbakQKxUJKbLjCaxYshXZCJUTP4HfyC9h7DxgKSDELUomSmLP4xtn_A3Ao7wyBMtNHGrLE0eqjaGOUIeVqkqR8VJJz1MwPUwPZvL5cXK8AY-HvTAdP8S44OYsw_trZ-DaND8ZuV1-IDOnaEP-NxapT6de_qCOksI3xyNHQBafuyqeraGKZ7xzPRadAZhn6yQvtvWJPv2kF4t1LOuD0f4VeDN8RleD8n63XZnd8vMvDI__-Z1bcLkHqWyv06qrsIH1Nbgw7X_DX4e3U1yR8izmJet7fn_78tXFQ8ua1viNIg2jOWNzvw24OmVDHxbySmxeM-MaU7DOMzZM17Y_4_bcMYtDJdkNmO0_e_XkIOw7NoSllFKEFNwiEymOshKapwp1ZSjBw5xrzERJ4COzCRJCkZGxolRWphZRGYmSKxWV4iZs1ssabwPDNLWxiqs8ybhMkTIvGce5xUjLxNLtAewMc1eUPZ2566qxKIa0hgau8AMXwINR9KTj8Pid0PagAEVvxk1BKXvmGBOjJID742UyQPdXRde4bJ2MYzwioJgFcKvTl_EpgpJFx-gfQLamSaOAI_dev1LP33mS75jy7jSLZAAPR6X729vveB36s0Tx9MXUH9z5d9G7cIkTputWnLZhc_WxxXuEwVZmAue4PJp4k5vA-dnh0d7r74beMgk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RkEovFfSZQqn7OHCJlDiOnUhcqha0bQntASRukR1PykpLFnV3VXHrT-hv5Jcwdh5lRal6i-KxEnk8nm9szzcA7_LaECw3cagtTx2pNoY6Qh3Wqq6SjFdKeJ6C4kiOTsTn0_R0Bfb6XJiWH2LYcHOW4ddrZ-BuQ_qGldvpOdk5uZt7sCZkLF3oxcW3P1mRiS-PR0sB2Xzu7vFs9Pd4hq7L3ugWxLx9U3J90Vzoy596MllGs94dHWzAww5Hsvet4jdhBZtHcL_oTsofw_cC56TfybhiXVnuq1-_ncuybLYwPpdjxmhY2dhn6taXrC-VQgsHGzfMuNoRrF28Zkw3tnvj0uKYxf6y1xM4Odg__jAKu6IKYSWESELyP5GJFEdRJ5pLhbo2FINhzjVmSUX4ILMpEogQkbFJpayQFlEZgYIrFVXJU1htpg0-B4ZS2ljFdZ5mXEik4EjEcW4x0iK11D2A3X5wy6pjHHeFLyZlH3mQHkqvhwDeDKIXLc3G34S2ew2VnaXNSoqqM0dqGKUBvB6ayUbcwYducLpwMo6UiLBcFsCzVqHDVxKK5xzpfgDZkqoHAce_vdzSjM88D3dMobHMIhHA22FW_Ovvd_18uVui_Pi18A8v_l_0FayPjovD8vDT0ZcteMAJgrUbRNuwOv-xwJcEmeZmx1vGNTXcEuk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FIAUuEHZDgGY55OLIS9vdlrgghlFYJiBEpFyQ1UsZRgyeETMWCic-gW_kS6huLzAEEOJm2WXZbVd1vequegVwv6g0wXIdh8ommSPVxlBFqMJKVCaViRHc8xRMDvL9Q_70KDvagAd9LUzLDzEsuDnL8PO1M3Bc2OonK7fzD2Tn5G5OwWmeFdIl9I1e_SCP4qlvj0dTAdl84fJ4tvs8nuHWdW90AmKezJQ809QLdfxJzWbraNa7o_F5eNMPpM1Ceb_XrPSe-fwLx-P_jnQbznU4lT1sFesCbGB9EbYm3U78JXg7wRXpz2xqWNf2-9uXr84lWrZstK8VWTL6bWzqK4GrY9a3YqGJiU1rpl1vCtZOjkumatudcWV3zGKfTHYZDsePXz_aD7umDaHhnKch-bdIRyJBXqUqyQWqSlOMh0WiUKaG8Ie0GRJI4ZG2qRGW5xZRaI48ESIy6RXYrOc1XgOGeW5jEVdFJhOeIwVfPI4Li5HimaXbA9jtf15pOkZz11hjVvaRDX240n-4AO4OoouWxuN3Qju9BpSdJS9LitqlI02MsgDuDJfJBt3Giqpx3jgZR3pEWFEGcLVVmOEpKcWLjtQ_ALmmSoOA4_dev1JP33me75hC71xGPIB7g9b97e13vRL9WaIcvZj4g-v_Lnobtl6OxuXzJwfPbsDZhBBeu_60A5urjw3eJES20re84X0HJOQzJw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbKVgIuvB8pBU2BQy-p8pjMZI8VbVUhbdsDK5VTNA8HVizZit0IlRM_gd_YX4InmYSmhYpblDivGTv-nLE_A7wdl5pguY5DZZPMkWpjqCJUYSlLk-aJkbzhKZgcicMpf3-ana7BVlcLc3n93mXc2MVXMmbyKbdgXWQEt0ewPj062f3YVg2RNfu8Qi7SkCIr4dmDBucOfc41IHk9H_JOXZ2p8-9qPh9i1sbpHNz_U7rT5pp82alXesf8uMLkeOP7PIB7HnKy3VZHHsIaVo_g9sQvqj-GTxNckSrMZ4b5Dt4XP38572bZstZN2ceS0QywWVPUW56zrqsKfWPYrGLatZlg7XduyVRl_R5XQccsdnlhT2B6sP_h3WHo-y-EhnOehuSqIh3JBHmZqkRIVKWmcA3HicI8NQQlcpsh4Q0eaZsaabmwiFJz5ImUkUmfwqhaVPgcGAphYxmX4yxPuECKo3gcjy1GimeWTg9gu5uhwnhyctcjY150QQoNXNEMXACve9GzlpHjb0Kb3TQX3iiXBQXgueM_jLIAtvrDZE5ujURVuKidjOMvItiXB_Cs1Yr-LimFfo6fP4B8oC-9gKPqHh6pZp8byu6YomiRRzyAN71q3fT0243S_Vui2DueNBsb_3XBF3A3IXDW_jrahNHqW40vCUyt9CtvTr8Be7Mb_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+profile%E2%80%90based+subgroups+can+identify+differences+in+brain+volumes+and+brain+iron+deposition&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Lumsden%2C+Amanda+L.&rft.au=Mulugeta%2C+Anwar&rft.au=M%C3%A4kinen%2C+Ville%E2%80%90Petteri&rft.au=Hypp%C3%B6nen%2C+Elina&rft.date=2023-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=25&rft.issue=1&rft.spage=121&rft.epage=131&rft_id=info:doi/10.1111%2Fdom.14853&rft_id=info%3Apmid%2F36053807&rft.externalDocID=PMC10946804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon