Multiporphyrin Arrays on Cyclophosphazene Scaffolds: Synthesis and Studies

The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5‐(4‐hydroxyphenyl)‐10,15,20‐tri(p‐tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 18; no. 28; pp. 8835 - 8846
Main Authors Pareek, Yogita, Ravikanth, Mangalampalli
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 09.07.2012
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
1521-3765
DOI10.1002/chem.201200273

Cover

Abstract The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5‐(4‐hydroxyphenyl)‐10,15,20‐tri(p‐tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S2 cores) in THF in the presence of Cs2CO3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring‐current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground‐ and excited‐state characteristics. CuII and NiII derivatives of hexaporphyrin and octaporphyrin arrays containing N4 porphyrin units and N3S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the NiII derivatives of hexa‐ and octaporphyrin arrays containing N4 porphyrin units. Electrochemical studies indicated that CuII and NiII ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units. A series of multiporphyrin and multimetalloporphyrin arrays on cyclotri‐ and cyclotetraphosphazene scaffolds were synthesized (see figure). These arrays were characterized by means of spectroscopic, photophysical, and electrochemical studies.
AbstractList The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N sub(3)P sub(3)Cl sub(6) and N sub(4)P sub(4)Cl sub(8), respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N sub(4) core) or with its thiaporphyrin analogues (N sub(3)S and N sub(2)S sub(2) cores) in THF in the presence of Cs sub(2)CO sub(3) under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The super(1)HNMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the super(1)HNMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. Cu super(II) and Ni super(II) derivatives of hexaporphyrin and octaporphyrin arrays containing N sub(4) porphyrin units and N sub(3)S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the Ni super(II) derivatives of hexa- and octaporphyrin arrays containing N sub(4) porphyrin units. Electrochemical studies indicated that Cu super(II) and Ni super(II) ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units. A series of multiporphyrin and multimetalloporphyrin arrays on cyclotri- and cyclotetraphosphazene scaffolds were synthesized (see figure). These arrays were characterized by means of spectroscopic, photophysical, and electrochemical studies.
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S2 cores) in THF in the presence of Cs2CO3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1HNMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1HNMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. CuII and NiII derivatives of hexaporphyrin and octaporphyrin arrays containing N4 porphyrin units and N3S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the NiII derivatives of hexa- and octaporphyrin arrays containing N4 porphyrin units. Electrochemical studies indicated that CuII and NiII ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units.
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N 3 P 3 Cl 6 and N 4 P 4 Cl 8 , respectively, with 5‐(4‐hydroxyphenyl)‐10,15,20‐tri( p ‐tolyl)porphyrin (N 4 core) or with its thiaporphyrin analogues (N 3 S and N 2 S 2 cores) in THF in the presence of Cs 2 CO 3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1 H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1 H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring‐current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground‐ and excited‐state characteristics. Cu II and Ni II derivatives of hexaporphyrin and octaporphyrin arrays containing N 4 porphyrin units and N 3 S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the Ni II derivatives of hexa‐ and octaporphyrin arrays containing N 4 porphyrin units. Electrochemical studies indicated that Cu II and Ni II ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units.
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N(3)P(3)Cl(6) and N(4)P(4)Cl(8), respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N(4) core) or with its thiaporphyrin analogues (N(3)S and N(2)S(2) cores) in THF in the presence of Cs(2)CO(3) under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The (1)H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the (1)H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. Cu(II) and Ni(II) derivatives of hexaporphyrin and octaporphyrin arrays containing N(4) porphyrin units and N(3)S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the Ni(II) derivatives of hexa- and octaporphyrin arrays containing N(4) porphyrin units. Electrochemical studies indicated that Cu(II) and Ni(II) ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units.The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N(3)P(3)Cl(6) and N(4)P(4)Cl(8), respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N(4) core) or with its thiaporphyrin analogues (N(3)S and N(2)S(2) cores) in THF in the presence of Cs(2)CO(3) under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The (1)H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the (1)H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. Cu(II) and Ni(II) derivatives of hexaporphyrin and octaporphyrin arrays containing N(4) porphyrin units and N(3)S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the Ni(II) derivatives of hexa- and octaporphyrin arrays containing N(4) porphyrin units. Electrochemical studies indicated that Cu(II) and Ni(II) ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units.
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5‐(4‐hydroxyphenyl)‐10,15,20‐tri(p‐tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S2 cores) in THF in the presence of Cs2CO3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring‐current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground‐ and excited‐state characteristics. CuII and NiII derivatives of hexaporphyrin and octaporphyrin arrays containing N4 porphyrin units and N3S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the NiII derivatives of hexa‐ and octaporphyrin arrays containing N4 porphyrin units. Electrochemical studies indicated that CuII and NiII ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units. A series of multiporphyrin and multimetalloporphyrin arrays on cyclotri‐ and cyclotetraphosphazene scaffolds were synthesized (see figure). These arrays were characterized by means of spectroscopic, photophysical, and electrochemical studies.
Author Ravikanth, Mangalampalli
Pareek, Yogita
Author_xml – sequence: 1
  givenname: Yogita
  surname: Pareek
  fullname: Pareek, Yogita
  organization: Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)
– sequence: 2
  givenname: Mangalampalli
  surname: Ravikanth
  fullname: Ravikanth, Mangalampalli
  email: ravikanth@chem.iitb.ac.in
  organization: Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22688884$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq0KVBbaa49VpF56ydZfsZ3e6IpCK5YeFtTeLMcfimnWDnaiNv31DVpACAkxl9FIzzMj-z0EeyEGC8A7BJcIQvxJt3a7xBDheeDkFVigCqOScFbtgQWsKS9ZReoDcJjzNYSwZoS8BgcYMzEXXYDv67EbfB9T307Jh-I4JTXlIoZiNeku9m3Mfav-2WCLjVbOxc7kz8VmCkNrs8-FCqbYDKPxNr8B-0512b6960fg6uvJ5eqsPP9x-m11fF5qSikpkTENdKqB2DjssODEaGYr6KhtKLGisVWNIcNMYcdYpQSDtdYNNwYzjTUmR-Djbm-f4s1o8yC3PmvbdSrYOGaJBIRU0Jqxl1GISUUYEmJGPzxBr-OYwvwQiThjvKaIopl6f0eNzdYa2Se_VWmS9x86A3QH6BRzTtZJ7Qc1-BiGpHw3X5S3ucnb3ORDbrO2fKLdb35WqHfCH9_Z6QVars5O1o_dcuf6PNi_D65KvyXjhFfy58WpXAsOf0HB5RfyH6mzuMA
CODEN CEUJED
CitedBy_id crossref_primary_10_1016_j_comche_2012_07_001
crossref_primary_10_1016_j_jorganchem_2012_10_043
crossref_primary_10_1021_acs_chemrev_6b00496
crossref_primary_10_1039_C4DT01741B
crossref_primary_10_1021_acsami_8b13594
crossref_primary_10_1002_slct_202004431
crossref_primary_10_1039_c3cp54269f
crossref_primary_10_1016_j_ica_2023_121487
crossref_primary_10_1021_ic501821v
crossref_primary_10_1039_D4CC01405G
crossref_primary_10_1016_j_dyepig_2022_110683
crossref_primary_10_1016_j_poly_2016_04_046
crossref_primary_10_1039_c3ra45444d
crossref_primary_10_1021_ic501569e
crossref_primary_10_1002_ejoc_201500131
crossref_primary_10_1016_j_jfluchem_2013_05_020
crossref_primary_10_1016_j_ica_2013_03_001
crossref_primary_10_1016_j_jorganchem_2012_09_005
crossref_primary_10_1016_j_pmatsci_2024_101232
crossref_primary_10_1002_cplu_201500386
crossref_primary_10_1016_j_dyepig_2016_02_035
crossref_primary_10_1016_j_jfluchem_2014_07_022
crossref_primary_10_1016_j_jorganchem_2014_06_025
crossref_primary_10_1039_C2NJ40762K
crossref_primary_10_1016_j_jphotochemrev_2022_100553
Cites_doi 10.1021/ja00248a067
10.1039/b002699i
10.1002/1521-3765(20000717)6:14<2544::AID-CHEM2544>3.0.CO;2-J
10.1021/ja9815632
10.1021/cr00002a002
10.1016/S0020-1693(00)83086-8
10.1038/374517a0
10.1021/ar970264z
10.1021/jo9803683
10.1021/cr800247a
10.1093/oso/9780195131192.001.0001
10.1021/ar9901319
10.1021/ic901920y
10.1021/jo040178u
10.1039/dt9930000119
10.1021/ar9601555
10.1021/ja991730d
10.1021/ja0445746
10.1021/ic00080a004
10.1021/ar030242e
10.1039/b004872k
10.1016/j.ica.2011.01.109
10.1002/jhet.5570150205
10.1002/chem.19970030216
10.1021/ja043748g
10.1021/ja00481a040
10.1021/ic00317a030
10.1021/cr0000426
10.1016/S0898-8838(02)53005-1
10.1039/b618854k
10.1021/ar950110o
10.1016/S0969-2126(96)00063-9
10.1055/s-2001-18073
10.1021/ic000202w
10.1039/b817941g
10.1021/jp064001a
10.1021/ja021476g
10.1021/ja9716315
10.1002/ejoc.200901070
10.1021/ic00093a020
10.1021/ic200977n
10.1021/ic00305a032
10.1016/S1387-7003(02)00319-2
10.1021/cr8002483
10.1002/chem.200802413
10.1021/ic00316a015
ContentType Journal Article
Copyright Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201200273
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Materials Research Database
CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 8846
ExternalDocumentID 3957855091
22688884
10_1002_chem_201200273
CHEM201200273
ark_67375_WNG_M870X087_B
Genre article
Journal Article
GrantInformation_xml – fundername: IIT‐Bombay
– fundername: Department of Science and Technology (DST)
– fundername: Board of Research in Nuclear Sciences (BRNS)
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4443-1ddb0fab02df2f2873dc6e50f4eb43e8be5920626a2f665a8609ccb7dd26c2c23
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 09:42:01 EDT 2025
Fri Jul 11 12:38:29 EDT 2025
Tue Oct 07 06:29:15 EDT 2025
Thu Apr 03 07:08:14 EDT 2025
Thu Oct 16 04:27:54 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Wed Jan 22 16:25:54 EST 2025
Sun Sep 21 06:18:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4443-1ddb0fab02df2f2873dc6e50f4eb43e8be5920626a2f665a8609ccb7dd26c2c23
Notes ark:/67375/WNG-M870X087-B
ArticleID:CHEM201200273
IIT-Bombay
Board of Research in Nuclear Sciences (BRNS)
Department of Science and Technology (DST)
istex:C4B55F9C291EB32F49C3B10016DAB275F2FF047D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 22688884
PQID 1766794141
PQPubID 986340
PageCount 12
ParticipantIDs proquest_miscellaneous_1800484966
proquest_miscellaneous_1023536188
proquest_journals_1766794141
pubmed_primary_22688884
crossref_citationtrail_10_1002_chem_201200273
crossref_primary_10_1002_chem_201200273
wiley_primary_10_1002_chem_201200273_CHEM201200273
istex_primary_ark_67375_WNG_M870X087_B
PublicationCentury 2000
PublicationDate July 9, 2012
PublicationDateYYYYMMDD 2012-07-09
PublicationDate_xml – month: 07
  year: 2012
  text: July 9, 2012
  day: 09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2012
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References J. E. Mark, H. R. Allcock, R. West, Inorganic Polymers, Oxford University Press, New York, second edition, 2005, pp. 62.
R. P. Pandian, T. K. Chandrashekar, J. Chem. Soc. Dalton Trans. 1993, 119-125.
J.-Y. Tung, B.-C. Liau, S. Elango, J.-H. Chen, H.-Y. Hsieh, F.-L. Liao, S.-L. Wang, L.-P. Hwang, Inorg. Chem. Commun. 2002, 5, 150-155
G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs, Nature 1995, 374, 517-521
I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 2009, 109, 1659-1713.
R. G. Little, J. Heterocycl. Chem. 1978, 15, 203-208.
I. Gupta, M. Ravikanth, J. Org. Chem. 2004, 69, 6796-6811.
R. W. Wagner, J. Seth, S.-I. Yang, D. Kim, D. F. Bocian, D. Holten, J. S. Lindsey, J. Org. Chem. 1998, 63, 5042-5049
V. Chandrasekhar, S. Nagendran, R. Azhakar, M. R. Kumar, A. Srinivasan, K. Ray, T. K. Chandrashekar, C. Madhavaiah, S. Verma, U. D. Priyakumar, G. N. Sastry, J. Am. Chem. Soc. 2005, 127, 2410-2411.
C. W. Allen, Chem. Rev. 1991, 91, 119-135
K. Takada, D. J. Díaz, H. D. Abruña, I. Cuadrado, C. Casado, B. Alonso, M. Morán, J. Losada, J. Am. Chem. Soc. 1997, 119, 10763-10773.
H. Shinokubo, A. Osuka, Chem. Commun. 2009, 1011-1021
H.-E. Song, C. Kirmaier, J. K. Schwartz, E. Hindin, L. Yu, D. F. Bocian, J. S. Lindsey, D. Holten, J. Phys. Chem. B 2006, 110, 19131-19139
V. Chandrasekhar, S. Nagendran, Chem. Soc. Rev. 2001, 30, 193-203
J. Lisowski, M. Grzeszczuk, L. Latos-Grażyński, Inorg. Chim. Acta 1989, 161, 153-163
P. D. Beer, Acc. Chem. Res. 1998, 31, 71-80
D. Kim, A. Osuka, Acc. Chem. Res. 2004, 37, 735-745
L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1989, 28, 3328-3331.
P. J. Chmielewski, L. Latos-Grażyński, M. M. Olmstead, A. L. Balch, Chem. Eur. J. 1997, 3, 268-278
R. P. Pandian, T. K. Chandrashekar, Inorg. Chem. 1994, 33, 3317-3324
T. Pullerits, V. Sundstrom, Acc. Chem. Res. 1996, 29, 381-389.
J. B. Flanagan, S. Margel, A. J. Bard, F. Anson, J. Am. Chem. Soc. 1978, 100, 4248-4253.
M. R. Rao, A. Ghosh, M. Ravikanth, Inorg. Chim. Acta 2011, 372, 206.
J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure 1996, 4, 581-597
L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1989, 28, 1183-1188
Y. Nakamura, N. Aratani, A. Osuka, Chem. Soc. Rev. 2007, 36, 831-845
D. Astruc, Acc. Chem. Res. 2000, 33, 287-298
M. R. Rao, G. Gayatri, A. Kumar, G. N. Sastry, M. Ravikanth, Chem. Eur. J. 2009, 15, 3488-3496
H. A. M. Biemans, A. E. Rowan, A. Verhoeven, P. Vanoppen, L. Latterini, J. Foekema, A. P. H. J. Schenning, E. W. Meijer, F. C. de Schryver, R. J. M. Nolte, J. Am. Chem. Soc. 1998, 120, 11054-11060.
L. Latos-Grażyński, The Porphyrin Handbook (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, New York, 2000, vol. 2, pp. 361-416.
C. M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 2009, 109, 1630-1658
V. Chandrasekhar, V. Krishan, Adv. Inorg. Chem. 2002, 53, 159-211
N. Aratani, A. Tsuda, A. Osuka, Synlett 2001, 11, 1663-1674
H. S. Cho, H. Rhee, J. K. Song, C.-K. Min, M. Takase, N. Aratani, S. Cho, A. Osuka, T. Joo, D. Kim, J. Am. Chem. Soc. 2003, 125, 5849-5860
C.-H. Chuang, C.-K. Ou, S.-T. Liu, A. Kumar, W.-M. Ching, P.-C. Chiang, M. A. C. D. Rosa, C.-H. Hung, Inorg. Chem. 2011, 50, 11947-11957
A. K. Burrell, D. L. Officer, P. G. Plieger, D. C. W. Reid, Chem. Rev. 2001, 101, 2751-2796
V. S. Shetti, M. Ravikanth, Inorg. Chem. 2010, 49, 2692-2700.
S. Nlate, J. Ruiz, V. Sartor, R. Navarro, J.-C. Blais, D. Astruc, Chem. Eur. J. 2000, 6, 2544-2553
V. S. Shetti, M. Ravikanth, Eur. J. Org. Chem. 2010, 494-508.
K. Sugiura, Y. Fujimoto, Y. Sakata, Chem. Commun. 2000, 1105-1106
P. Chmielewski, M. Grzeszczuk, L. Latos-Grażyński, J. Lisowski, Inorg. Chem. 1989, 28, 3546-3552
D. Holten, D. F. Bocian, J. S. Lindsey, Acc. Chem. Res. 2002, 35, 57-69.
J. Li, A. Ambroise, S.-I. Yang, J. R. Diers, J. Seth, C. R. Wack, D. F. Bocian, D. Holten, J. S. Lindsey, J. Am. Chem. Soc. 1999, 121, 8927-8940
O. Shoji, S. Okada, A. Satake, Y. Kobuke, J. Am. Chem. Soc. 2005, 127, 2201-2210
L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, J. Am. Chem. Soc. 1987, 109, 4428-4429
A. Gebauer, J. A. R. Schmidt, A. Arnold, Inorg. Chem. 2000, 39, 3424-3427
L. Latos-Grażyński, J. Lisowski, P. Chmielewski, M. Grzeszczuk, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1994, 33, 192-197
2001; 101
1997; 119
2000; 6
2002; 53
2010
2004; 69
1987; 109
2002; 5
2002; 35
2009
1999; 121
2006; 110
1989; 161
2005
1978; 15
1993
1995; 374
1998; 63
2011; 372
1997; 3
2007; 36
1989; 28
1996; 29
2010; 49
2000; 39
2000
2004; 37
2000; 33
2005; 127
2011; 50
1994; 33
1978; 100
1991; 91
2001; 11
1996; 4
2003; 125
2009; 109
1998; 31
2009; 15
2001; 30
1998; 120
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
Latos‐Grażyński L. (e_1_2_6_34_2) 2000
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
Mark J. E. (e_1_2_6_30_2) 2005
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: C.-H. Chuang, C.-K. Ou, S.-T. Liu, A. Kumar, W.-M. Ching, P.-C. Chiang, M. A. C. D. Rosa, C.-H. Hung, Inorg. Chem. 2011, 50, 11947-11957;
– reference: S. Nlate, J. Ruiz, V. Sartor, R. Navarro, J.-C. Blais, D. Astruc, Chem. Eur. J. 2000, 6, 2544-2553;
– reference: I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 2009, 109, 1659-1713.
– reference: L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1989, 28, 3328-3331.
– reference: P. Chmielewski, M. Grzeszczuk, L. Latos-Grażyński, J. Lisowski, Inorg. Chem. 1989, 28, 3546-3552;
– reference: J. Li, A. Ambroise, S.-I. Yang, J. R. Diers, J. Seth, C. R. Wack, D. F. Bocian, D. Holten, J. S. Lindsey, J. Am. Chem. Soc. 1999, 121, 8927-8940;
– reference: R. P. Pandian, T. K. Chandrashekar, Inorg. Chem. 1994, 33, 3317-3324;
– reference: C. M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 2009, 109, 1630-1658;
– reference: D. Kim, A. Osuka, Acc. Chem. Res. 2004, 37, 735-745;
– reference: L. Latos-Grażyński, The Porphyrin Handbook (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, New York, 2000, vol. 2, pp. 361-416.
– reference: K. Takada, D. J. Díaz, H. D. Abruña, I. Cuadrado, C. Casado, B. Alonso, M. Morán, J. Losada, J. Am. Chem. Soc. 1997, 119, 10763-10773.
– reference: N. Aratani, A. Tsuda, A. Osuka, Synlett 2001, 11, 1663-1674;
– reference: C. W. Allen, Chem. Rev. 1991, 91, 119-135;
– reference: K. Sugiura, Y. Fujimoto, Y. Sakata, Chem. Commun. 2000, 1105-1106;
– reference: V. Chandrasekhar, S. Nagendran, R. Azhakar, M. R. Kumar, A. Srinivasan, K. Ray, T. K. Chandrashekar, C. Madhavaiah, S. Verma, U. D. Priyakumar, G. N. Sastry, J. Am. Chem. Soc. 2005, 127, 2410-2411.
– reference: I. Gupta, M. Ravikanth, J. Org. Chem. 2004, 69, 6796-6811.
– reference: J.-Y. Tung, B.-C. Liau, S. Elango, J.-H. Chen, H.-Y. Hsieh, F.-L. Liao, S.-L. Wang, L.-P. Hwang, Inorg. Chem. Commun. 2002, 5, 150-155;
– reference: H. A. M. Biemans, A. E. Rowan, A. Verhoeven, P. Vanoppen, L. Latterini, J. Foekema, A. P. H. J. Schenning, E. W. Meijer, F. C. de Schryver, R. J. M. Nolte, J. Am. Chem. Soc. 1998, 120, 11054-11060.
– reference: G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs, Nature 1995, 374, 517-521;
– reference: V. S. Shetti, M. Ravikanth, Inorg. Chem. 2010, 49, 2692-2700.
– reference: D. Astruc, Acc. Chem. Res. 2000, 33, 287-298;
– reference: H. S. Cho, H. Rhee, J. K. Song, C.-K. Min, M. Takase, N. Aratani, S. Cho, A. Osuka, T. Joo, D. Kim, J. Am. Chem. Soc. 2003, 125, 5849-5860;
– reference: P. J. Chmielewski, L. Latos-Grażyński, M. M. Olmstead, A. L. Balch, Chem. Eur. J. 1997, 3, 268-278;
– reference: H.-E. Song, C. Kirmaier, J. K. Schwartz, E. Hindin, L. Yu, D. F. Bocian, J. S. Lindsey, D. Holten, J. Phys. Chem. B 2006, 110, 19131-19139;
– reference: M. R. Rao, A. Ghosh, M. Ravikanth, Inorg. Chim. Acta 2011, 372, 206.
– reference: J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure 1996, 4, 581-597;
– reference: R. G. Little, J. Heterocycl. Chem. 1978, 15, 203-208.
– reference: H. Shinokubo, A. Osuka, Chem. Commun. 2009, 1011-1021;
– reference: A. Gebauer, J. A. R. Schmidt, A. Arnold, Inorg. Chem. 2000, 39, 3424-3427;
– reference: L. Latos-Grażyński, J. Lisowski, P. Chmielewski, M. Grzeszczuk, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1994, 33, 192-197;
– reference: V. S. Shetti, M. Ravikanth, Eur. J. Org. Chem. 2010, 494-508.
– reference: T. Pullerits, V. Sundstrom, Acc. Chem. Res. 1996, 29, 381-389.
– reference: M. R. Rao, G. Gayatri, A. Kumar, G. N. Sastry, M. Ravikanth, Chem. Eur. J. 2009, 15, 3488-3496;
– reference: V. Chandrasekhar, V. Krishan, Adv. Inorg. Chem. 2002, 53, 159-211;
– reference: D. Holten, D. F. Bocian, J. S. Lindsey, Acc. Chem. Res. 2002, 35, 57-69.
– reference: P. D. Beer, Acc. Chem. Res. 1998, 31, 71-80;
– reference: R. W. Wagner, J. Seth, S.-I. Yang, D. Kim, D. F. Bocian, D. Holten, J. S. Lindsey, J. Org. Chem. 1998, 63, 5042-5049;
– reference: L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1989, 28, 1183-1188;
– reference: R. P. Pandian, T. K. Chandrashekar, J. Chem. Soc. Dalton Trans. 1993, 119-125.
– reference: Y. Nakamura, N. Aratani, A. Osuka, Chem. Soc. Rev. 2007, 36, 831-845;
– reference: J. B. Flanagan, S. Margel, A. J. Bard, F. Anson, J. Am. Chem. Soc. 1978, 100, 4248-4253.
– reference: O. Shoji, S. Okada, A. Satake, Y. Kobuke, J. Am. Chem. Soc. 2005, 127, 2201-2210;
– reference: V. Chandrasekhar, S. Nagendran, Chem. Soc. Rev. 2001, 30, 193-203;
– reference: L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, J. Am. Chem. Soc. 1987, 109, 4428-4429;
– reference: J. Lisowski, M. Grzeszczuk, L. Latos-Grażyński, Inorg. Chim. Acta 1989, 161, 153-163;
– reference: J. E. Mark, H. R. Allcock, R. West, Inorganic Polymers, Oxford University Press, New York, second edition, 2005, pp. 62.
– reference: A. K. Burrell, D. L. Officer, P. G. Plieger, D. C. W. Reid, Chem. Rev. 2001, 101, 2751-2796;
– volume: 63
  start-page: 5042
  year: 1998
  end-page: 5049
  publication-title: J. Org. Chem.
– volume: 50
  start-page: 11947
  year: 2011
  end-page: 11957
  publication-title: Inorg. Chem.
– start-page: 494
  year: 2010
  end-page: 508
  publication-title: Eur. J. Org. Chem.
– volume: 119
  start-page: 10763
  year: 1997
  end-page: 10773
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2544
  year: 2000
  end-page: 2553
  publication-title: Chem. Eur. J.
– volume: 15
  start-page: 203
  year: 1978
  end-page: 208
  publication-title: J. Heterocycl. Chem.
– volume: 15
  start-page: 3488
  year: 2009
  end-page: 3496
  publication-title: Chem. Eur. J.
– start-page: 1011
  year: 2009
  end-page: 1021
  publication-title: Chem. Commun.
– volume: 28
  start-page: 3328
  year: 1989
  end-page: 3331
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 2692
  year: 2010
  end-page: 2700
  publication-title: Inorg. Chem.
– start-page: 119
  year: 1993
  end-page: 125
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 5
  start-page: 150
  year: 2002
  end-page: 155
  publication-title: Inorg. Chem. Commun.
– volume: 28
  start-page: 1183
  year: 1989
  end-page: 1188
  publication-title: Inorg. Chem.
– volume: 33
  start-page: 287
  year: 2000
  end-page: 298
  publication-title: Acc. Chem. Res.
– volume: 53
  start-page: 159
  year: 2002
  end-page: 211
  publication-title: Adv. Inorg. Chem.
– volume: 161
  start-page: 153
  year: 1989
  end-page: 163
  publication-title: Inorg. Chim. Acta
– volume: 374
  start-page: 517
  year: 1995
  end-page: 521
  publication-title: Nature
– volume: 121
  start-page: 8927
  year: 1999
  end-page: 8940
  publication-title: J. Am. Chem. Soc.
– volume: 101
  start-page: 2751
  year: 2001
  end-page: 2796
  publication-title: Chem. Rev.
– volume: 33
  start-page: 3317
  year: 1994
  end-page: 3324
  publication-title: Inorg. Chem.
– volume: 127
  start-page: 2201
  year: 2005
  end-page: 2210
  publication-title: J. Am. Chem. Soc.
– start-page: 2
  year: 2000
  end-page: 416
– volume: 372
  start-page: 206
  year: 2011
  publication-title: Inorg. Chim. Acta
– volume: 110
  start-page: 19131
  year: 2006
  end-page: 19139
  publication-title: J. Phys. Chem. B
– volume: 109
  start-page: 1659
  year: 2009
  end-page: 1713
  publication-title: Chem. Rev.
– volume: 30
  start-page: 193
  year: 2001
  end-page: 203
  publication-title: Chem. Soc. Rev.
– volume: 37
  start-page: 735
  year: 2004
  end-page: 745
  publication-title: Acc. Chem. Res.
– volume: 33
  start-page: 192
  year: 1994
  end-page: 197
  publication-title: Inorg. Chem.
– volume: 28
  start-page: 3546
  year: 1989
  end-page: 3552
  publication-title: Inorg. Chem.
– volume: 100
  start-page: 4248
  year: 1978
  end-page: 4253
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 831
  year: 2007
  end-page: 845
  publication-title: Chem. Soc. Rev.
– volume: 31
  start-page: 71
  year: 1998
  end-page: 80
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 1663
  year: 2001
  end-page: 1674
  publication-title: Synlett
– volume: 35
  start-page: 57
  year: 2002
  end-page: 69
  publication-title: Acc. Chem. Res.
– volume: 109
  start-page: 1630
  year: 2009
  end-page: 1658
  publication-title: Chem. Rev.
– start-page: 62
  year: 2005
– volume: 91
  start-page: 119
  year: 1991
  end-page: 135
  publication-title: Chem. Rev.
– volume: 29
  start-page: 381
  year: 1996
  end-page: 389
  publication-title: Acc. Chem. Res.
– volume: 125
  start-page: 5849
  year: 2003
  end-page: 5860
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 2410
  year: 2005
  end-page: 2411
  publication-title: J. Am. Chem. Soc.
– volume: 69
  start-page: 6796
  year: 2004
  end-page: 6811
  publication-title: J. Org. Chem.
– volume: 3
  start-page: 268
  year: 1997
  end-page: 278
  publication-title: Chem. Eur. J.
– volume: 109
  start-page: 4428
  year: 1987
  end-page: 4429
  publication-title: J. Am. Chem. Soc.
– start-page: 1105
  year: 2000
  end-page: 1106
  publication-title: Chem. Commun.
– volume: 4
  start-page: 581
  year: 1996
  end-page: 597
  publication-title: Structure
– volume: 120
  start-page: 11054
  year: 1998
  end-page: 11060
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 3424
  year: 2000
  end-page: 3427
  publication-title: Inorg. Chem.
– ident: e_1_2_6_44_2
– ident: e_1_2_6_38_2
  doi: 10.1021/ja00248a067
– ident: e_1_2_6_16_2
  doi: 10.1039/b002699i
– ident: e_1_2_6_52_2
  doi: 10.1002/1521-3765(20000717)6:14<2544::AID-CHEM2544>3.0.CO;2-J
– ident: e_1_2_6_21_2
  doi: 10.1021/ja9815632
– ident: e_1_2_6_29_2
  doi: 10.1021/cr00002a002
– start-page: 2
  volume-title: The Porphyrin Handbook
  year: 2000
  ident: e_1_2_6_34_2
– ident: e_1_2_6_46_2
  doi: 10.1016/S0020-1693(00)83086-8
– ident: e_1_2_6_8_2
– ident: e_1_2_6_9_2
  doi: 10.1038/374517a0
– ident: e_1_2_6_49_2
– ident: e_1_2_6_7_2
  doi: 10.1021/ar970264z
– ident: e_1_2_6_35_2
– ident: e_1_2_6_12_2
– ident: e_1_2_6_13_2
  doi: 10.1021/jo9803683
– ident: e_1_2_6_20_2
  doi: 10.1021/cr800247a
– start-page: 62
  volume-title: Inorganic Polymers
  year: 2005
  ident: e_1_2_6_30_2
  doi: 10.1093/oso/9780195131192.001.0001
– ident: e_1_2_6_51_2
  doi: 10.1021/ar9901319
– ident: e_1_2_6_32_2
  doi: 10.1021/ic901920y
– ident: e_1_2_6_33_2
  doi: 10.1021/jo040178u
– ident: e_1_2_6_48_2
  doi: 10.1039/dt9930000119
– ident: e_1_2_6_50_2
  doi: 10.1021/ar9601555
– ident: e_1_2_6_14_2
  doi: 10.1021/ja991730d
– ident: e_1_2_6_18_2
  doi: 10.1021/ja0445746
– ident: e_1_2_6_42_2
  doi: 10.1021/ic00080a004
– ident: e_1_2_6_6_2
  doi: 10.1021/ar030242e
– ident: e_1_2_6_27_2
  doi: 10.1039/b004872k
– ident: e_1_2_6_25_2
  doi: 10.1016/j.ica.2011.01.109
– ident: e_1_2_6_31_2
  doi: 10.1002/jhet.5570150205
– ident: e_1_2_6_40_2
  doi: 10.1002/chem.19970030216
– ident: e_1_2_6_22_2
  doi: 10.1021/ja043748g
– ident: e_1_2_6_54_2
  doi: 10.1021/ja00481a040
– ident: e_1_2_6_47_2
  doi: 10.1021/ic00317a030
– ident: e_1_2_6_4_2
  doi: 10.1021/cr0000426
– ident: e_1_2_6_28_2
  doi: 10.1016/S0898-8838(02)53005-1
– ident: e_1_2_6_2_2
  doi: 10.1039/b618854k
– ident: e_1_2_6_11_2
  doi: 10.1021/ar950110o
– ident: e_1_2_6_10_2
  doi: 10.1016/S0969-2126(96)00063-9
– ident: e_1_2_6_5_2
  doi: 10.1055/s-2001-18073
– ident: e_1_2_6_36_2
  doi: 10.1021/ic000202w
– ident: e_1_2_6_3_2
  doi: 10.1039/b817941g
– ident: e_1_2_6_26_2
– ident: e_1_2_6_23_2
– ident: e_1_2_6_15_2
  doi: 10.1021/jp064001a
– ident: e_1_2_6_17_2
  doi: 10.1021/ja021476g
– ident: e_1_2_6_53_2
  doi: 10.1021/ja9716315
– ident: e_1_2_6_55_2
  doi: 10.1002/ejoc.200901070
– ident: e_1_2_6_1_2
– ident: e_1_2_6_45_2
  doi: 10.1021/ic00093a020
– ident: e_1_2_6_37_2
  doi: 10.1021/ic200977n
– ident: e_1_2_6_39_2
  doi: 10.1021/ic00305a032
– ident: e_1_2_6_41_2
  doi: 10.1016/S1387-7003(02)00319-2
– ident: e_1_2_6_19_2
  doi: 10.1021/cr8002483
– ident: e_1_2_6_24_2
  doi: 10.1002/chem.200802413
– ident: e_1_2_6_43_2
  doi: 10.1021/ic00316a015
SSID ssj0009633
Score 2.1826146
Snippet The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N3P3Cl6...
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N 3 P 3...
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating...
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N3P3Cl6...
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8835
SubjectTerms Arrays
Chemistry
cyclophosphazenes
Derivatives
Electrochemistry
Mass spectra
Mass spectroscopy
metalation
multiporphyrin arrays
NMR spectroscopy
Nuclear magnetic resonance
porphyrinoids
Porphyrins
Scaffolds
Spectra
Spectrum analysis
Title Multiporphyrin Arrays on Cyclophosphazene Scaffolds: Synthesis and Studies
URI https://api.istex.fr/ark:/67375/WNG-M870X087-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201200273
https://www.ncbi.nlm.nih.gov/pubmed/22688884
https://www.proquest.com/docview/1766794141
https://www.proquest.com/docview/1023536188
https://www.proquest.com/docview/1800484966
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3765
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0947-6539
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL70dKQUFCcEqbOI7j9FZWlKpSe6BU7M3yU626SlabXanbX8_YeZRFPCTIKVHGUuyZ-Tzj2N8AvDNVaqlB4y1zViXUOpMoJ11SmVLlmeKSS7_ecXLKjs7p8bSY_nCKv-OHGBfcvGcEvPYOLlW7d0sain3yJ8kzEihZEISznIWc6sstfxRaV1dLnpaJ52AdWBtTsrfZfGNWuusH-PpXIedmBBumoMOHIIeP73aeXO2ulmpX3_zE6_g_vXsED_r4ND7oDOox3LH1E7g3GcrCPYXjcGQXo3bUz-KyRsmFXLdxU8eTtZ4184umnV_IG4TQ-ExL55qZaffjs3WNkWZ72cayNnG_efEZnB9--jo5SvqCDImm1FOZGqNSJ1VKjCMOc63caGaL1FGraG65skVFUkyRJHGMFZKztNJalcYQpokm-XPYqpvavoRYMQSG1CpTckt1YWRFi8A1nyNyF5WKIBkUInTPVu6LZsxEx7NMhB8hMY5QBB9G-XnH0_FbyfdBv6OYXFz53W1lIb6dfhYnCGDTlJfiYwQ7gwGI3rFb4fk0EcIymkXwdnyNKvD_WWRtmxXKeA6hnGWc_0GGe-ykmGxG8KIzrvGDMCLmeNEISDCRv3RIePKM8Wn7Xxq9gvv-PmxDrnZga7lY2dcYbC3Vm-BQ3wEs0h8l
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3o9AgSAhOKVNHMdxuMGKspTuHmgrerP8VKuuktVmV2L76xnnVS3iIUFuScZS7BmPv3HG3wC8NkVsqUHjzVNWRNQ6EyknXVSYXKWJ4pJLv98xmbLxKT08y_psQn8WpuWHGDbc_Mxo_LWf4H5Dev-aNRQ75Y-SJ6ThZLkJ25RhsOJx0ddrBim0r7aaPM0jz8La8zbGZH-z_ca6tO2H-PuvQOcmhm0WoYM7oPrPb3NPLvdWS7Wnr35idvyv_t2F2x1EDd-3NnUPbtjyPuyM-spwD-CwObWLwB1VtLgoUXIh13VYleForWfV_Lyq5-fyCr1oeKylc9XM1O_C43WJYLO-qENZmrDLX3wIpwcfT0bjqKvJEGlKPZupMSp2UsXEOOIw3EqNZjaLHbWKppYrmxUkxihJEsdYJjmLC61VbgxhmmiSPoKtsirtEwgVQ98QW2VybqnOjCxo1tDNp-i8s0IFEPUaEbojLPd1M2aipVomwo-QGEYogLeD_Lyl6vit5JtGwYOYXFz6BLc8E9-mn8QEfdhZzHPxIYDd3gJEN7dr4Sk10YslNAng1fAaVeB_tcjSViuU8TRCKUs4_4MM9-6TYrwZwOPWuoYPQlDM8aIBkMZG_tIh4fkzhrun_9LoJeyMTyZH4ujz9MszuOWfN1nJxS5sLRcr-xyx11K9aGbXDy4AI0Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BKwEv3EegQJAQPKV1HCdxeIMtSyl0hShV-2b5VKuuktVmV2L76xnnqhZxSJC3JGMp9sx8HjvjbwBemoJYZtB48yQrImadiZSTLipMrpJYccml3-84mGR7R2z_JO2zCf1ZmJYfYthw857R4LV3cDszbueSNRQ75Y-Sx7ThZLkKmywtuM_q2_16ySCF9tVWk2d55FlYe95GQnfW26_NS5t-iL__Kuhcj2GbSWh8C1T_-W3uyfn2cqG29cVPzI7_1b_bcLMLUcO3rU3dgSu2vAvXR31luHuw35zaxcAdVTQ_K1FyLld1WJXhaKWn1ey0qmen8gJRNDzU0rlqauo34eGqxGCzPqtDWZqwy1-8D0fj999Ge1FXkyHSjHk2U2MUcVIRahx1uNxKjM5sShyziiWWK5sWlOAqSVKXZankGSm0VrkxNNNU0-QBbJRVaR9BqDLEBmKVybllOjWyYGlDN58geKeFCiDqNSJ0R1ju62ZMRUu1TIUfITGMUACvB_lZS9XxW8lXjYIHMTk_9wlueSqOJx_EAWLYCeG5eBfAVm8BovPtWnhKTUSxmMUBvBheowr8rxZZ2mqJMp5GKMlizv8gwz18MlxvBvCwta7hgzAo5nixAGhjI3_pkPD8GcPd439p9Byufdkdi88fJ5-ewA3_uElKLrZgYzFf2qcYei3Us8a5fgCk3iLK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiporphyrin+Arrays+on+Cyclophosphazene+Scaffolds%3A+Synthesis+and+Studies&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Pareek%2C+Yogita&rft.au=Ravikanth%2C+Mangalampalli&rft.date=2012-07-09&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=18&rft.issue=28&rft.spage=8835&rft.epage=8846&rft_id=info:doi/10.1002%2Fchem.201200273&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_M870X087_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon