Multiporphyrin Arrays on Cyclophosphazene Scaffolds: Synthesis and Studies
The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5‐(4‐hydroxyphenyl)‐10,15,20‐tri(p‐tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S...
Saved in:
| Published in | Chemistry : a European journal Vol. 18; no. 28; pp. 8835 - 8846 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Weinheim
WILEY-VCH Verlag
09.07.2012
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0947-6539 1521-3765 1521-3765 |
| DOI | 10.1002/chem.201200273 |
Cover
| Abstract | The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5‐(4‐hydroxyphenyl)‐10,15,20‐tri(p‐tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S2 cores) in THF in the presence of Cs2CO3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring‐current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground‐ and excited‐state characteristics. CuII and NiII derivatives of hexaporphyrin and octaporphyrin arrays containing N4 porphyrin units and N3S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the NiII derivatives of hexa‐ and octaporphyrin arrays containing N4 porphyrin units. Electrochemical studies indicated that CuII and NiII ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units.
A series of multiporphyrin and multimetalloporphyrin arrays on cyclotri‐ and cyclotetraphosphazene scaffolds were synthesized (see figure). These arrays were characterized by means of spectroscopic, photophysical, and electrochemical studies. |
|---|---|
| AbstractList | The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N sub(3)P sub(3)Cl sub(6) and N sub(4)P sub(4)Cl sub(8), respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N sub(4) core) or with its thiaporphyrin analogues (N sub(3)S and N sub(2)S sub(2) cores) in THF in the presence of Cs sub(2)CO sub(3) under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The super(1)HNMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the super(1)HNMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. Cu super(II) and Ni super(II) derivatives of hexaporphyrin and octaporphyrin arrays containing N sub(4) porphyrin units and N sub(3)S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the Ni super(II) derivatives of hexa- and octaporphyrin arrays containing N sub(4) porphyrin units. Electrochemical studies indicated that Cu super(II) and Ni super(II) ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units. A series of multiporphyrin and multimetalloporphyrin arrays on cyclotri- and cyclotetraphosphazene scaffolds were synthesized (see figure). These arrays were characterized by means of spectroscopic, photophysical, and electrochemical studies. The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S2 cores) in THF in the presence of Cs2CO3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1HNMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1HNMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. CuII and NiII derivatives of hexaporphyrin and octaporphyrin arrays containing N4 porphyrin units and N3S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the NiII derivatives of hexa- and octaporphyrin arrays containing N4 porphyrin units. Electrochemical studies indicated that CuII and NiII ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units. The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N 3 P 3 Cl 6 and N 4 P 4 Cl 8 , respectively, with 5‐(4‐hydroxyphenyl)‐10,15,20‐tri( p ‐tolyl)porphyrin (N 4 core) or with its thiaporphyrin analogues (N 3 S and N 2 S 2 cores) in THF in the presence of Cs 2 CO 3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1 H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1 H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring‐current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground‐ and excited‐state characteristics. Cu II and Ni II derivatives of hexaporphyrin and octaporphyrin arrays containing N 4 porphyrin units and N 3 S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the Ni II derivatives of hexa‐ and octaporphyrin arrays containing N 4 porphyrin units. Electrochemical studies indicated that Cu II and Ni II ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units. The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N(3)P(3)Cl(6) and N(4)P(4)Cl(8), respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N(4) core) or with its thiaporphyrin analogues (N(3)S and N(2)S(2) cores) in THF in the presence of Cs(2)CO(3) under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The (1)H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the (1)H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. Cu(II) and Ni(II) derivatives of hexaporphyrin and octaporphyrin arrays containing N(4) porphyrin units and N(3)S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the Ni(II) derivatives of hexa- and octaporphyrin arrays containing N(4) porphyrin units. Electrochemical studies indicated that Cu(II) and Ni(II) ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units.The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N(3)P(3)Cl(6) and N(4)P(4)Cl(8), respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N(4) core) or with its thiaporphyrin analogues (N(3)S and N(2)S(2) cores) in THF in the presence of Cs(2)CO(3) under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The (1)H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the (1)H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. Cu(II) and Ni(II) derivatives of hexaporphyrin and octaporphyrin arrays containing N(4) porphyrin units and N(3)S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the Ni(II) derivatives of hexa- and octaporphyrin arrays containing N(4) porphyrin units. Electrochemical studies indicated that Cu(II) and Ni(II) ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units. The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5‐(4‐hydroxyphenyl)‐10,15,20‐tri(p‐tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S2 cores) in THF in the presence of Cs2CO3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring‐current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground‐ and excited‐state characteristics. CuII and NiII derivatives of hexaporphyrin and octaporphyrin arrays containing N4 porphyrin units and N3S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the NiII derivatives of hexa‐ and octaporphyrin arrays containing N4 porphyrin units. Electrochemical studies indicated that CuII and NiII ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units. A series of multiporphyrin and multimetalloporphyrin arrays on cyclotri‐ and cyclotetraphosphazene scaffolds were synthesized (see figure). These arrays were characterized by means of spectroscopic, photophysical, and electrochemical studies. |
| Author | Ravikanth, Mangalampalli Pareek, Yogita |
| Author_xml | – sequence: 1 givenname: Yogita surname: Pareek fullname: Pareek, Yogita organization: Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India) – sequence: 2 givenname: Mangalampalli surname: Ravikanth fullname: Ravikanth, Mangalampalli email: ravikanth@chem.iitb.ac.in organization: Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22688884$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1P3DAQhq0KVBbaa49VpF56ydZfsZ3e6IpCK5YeFtTeLMcfimnWDnaiNv31DVpACAkxl9FIzzMj-z0EeyEGC8A7BJcIQvxJt3a7xBDheeDkFVigCqOScFbtgQWsKS9ZReoDcJjzNYSwZoS8BgcYMzEXXYDv67EbfB9T307Jh-I4JTXlIoZiNeku9m3Mfav-2WCLjVbOxc7kz8VmCkNrs8-FCqbYDKPxNr8B-0512b6960fg6uvJ5eqsPP9x-m11fF5qSikpkTENdKqB2DjssODEaGYr6KhtKLGisVWNIcNMYcdYpQSDtdYNNwYzjTUmR-Djbm-f4s1o8yC3PmvbdSrYOGaJBIRU0Jqxl1GISUUYEmJGPzxBr-OYwvwQiThjvKaIopl6f0eNzdYa2Se_VWmS9x86A3QH6BRzTtZJ7Qc1-BiGpHw3X5S3ucnb3ORDbrO2fKLdb35WqHfCH9_Z6QVars5O1o_dcuf6PNi_D65KvyXjhFfy58WpXAsOf0HB5RfyH6mzuMA |
| CODEN | CEUJED |
| CitedBy_id | crossref_primary_10_1016_j_comche_2012_07_001 crossref_primary_10_1016_j_jorganchem_2012_10_043 crossref_primary_10_1021_acs_chemrev_6b00496 crossref_primary_10_1039_C4DT01741B crossref_primary_10_1021_acsami_8b13594 crossref_primary_10_1002_slct_202004431 crossref_primary_10_1039_c3cp54269f crossref_primary_10_1016_j_ica_2023_121487 crossref_primary_10_1021_ic501821v crossref_primary_10_1039_D4CC01405G crossref_primary_10_1016_j_dyepig_2022_110683 crossref_primary_10_1016_j_poly_2016_04_046 crossref_primary_10_1039_c3ra45444d crossref_primary_10_1021_ic501569e crossref_primary_10_1002_ejoc_201500131 crossref_primary_10_1016_j_jfluchem_2013_05_020 crossref_primary_10_1016_j_ica_2013_03_001 crossref_primary_10_1016_j_jorganchem_2012_09_005 crossref_primary_10_1016_j_pmatsci_2024_101232 crossref_primary_10_1002_cplu_201500386 crossref_primary_10_1016_j_dyepig_2016_02_035 crossref_primary_10_1016_j_jfluchem_2014_07_022 crossref_primary_10_1016_j_jorganchem_2014_06_025 crossref_primary_10_1039_C2NJ40762K crossref_primary_10_1016_j_jphotochemrev_2022_100553 |
| Cites_doi | 10.1021/ja00248a067 10.1039/b002699i 10.1002/1521-3765(20000717)6:14<2544::AID-CHEM2544>3.0.CO;2-J 10.1021/ja9815632 10.1021/cr00002a002 10.1016/S0020-1693(00)83086-8 10.1038/374517a0 10.1021/ar970264z 10.1021/jo9803683 10.1021/cr800247a 10.1093/oso/9780195131192.001.0001 10.1021/ar9901319 10.1021/ic901920y 10.1021/jo040178u 10.1039/dt9930000119 10.1021/ar9601555 10.1021/ja991730d 10.1021/ja0445746 10.1021/ic00080a004 10.1021/ar030242e 10.1039/b004872k 10.1016/j.ica.2011.01.109 10.1002/jhet.5570150205 10.1002/chem.19970030216 10.1021/ja043748g 10.1021/ja00481a040 10.1021/ic00317a030 10.1021/cr0000426 10.1016/S0898-8838(02)53005-1 10.1039/b618854k 10.1021/ar950110o 10.1016/S0969-2126(96)00063-9 10.1055/s-2001-18073 10.1021/ic000202w 10.1039/b817941g 10.1021/jp064001a 10.1021/ja021476g 10.1021/ja9716315 10.1002/ejoc.200901070 10.1021/ic00093a020 10.1021/ic200977n 10.1021/ic00305a032 10.1016/S1387-7003(02)00319-2 10.1021/cr8002483 10.1002/chem.200802413 10.1021/ic00316a015 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/chem.201200273 |
| DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database Materials Research Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 8846 |
| ExternalDocumentID | 3957855091 22688884 10_1002_chem_201200273 CHEM201200273 ark_67375_WNG_M870X087_B |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: IIT‐Bombay – fundername: Department of Science and Technology (DST) – fundername: Board of Research in Nuclear Sciences (BRNS) |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGC RWI WRC AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4443-1ddb0fab02df2f2873dc6e50f4eb43e8be5920626a2f665a8609ccb7dd26c2c23 |
| IEDL.DBID | DR2 |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Fri Jul 11 09:42:01 EDT 2025 Fri Jul 11 12:38:29 EDT 2025 Tue Oct 07 06:29:15 EDT 2025 Thu Apr 03 07:08:14 EDT 2025 Thu Oct 16 04:27:54 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Wed Jan 22 16:25:54 EST 2025 Sun Sep 21 06:18:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4443-1ddb0fab02df2f2873dc6e50f4eb43e8be5920626a2f665a8609ccb7dd26c2c23 |
| Notes | ark:/67375/WNG-M870X087-B ArticleID:CHEM201200273 IIT-Bombay Board of Research in Nuclear Sciences (BRNS) Department of Science and Technology (DST) istex:C4B55F9C291EB32F49C3B10016DAB275F2FF047D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 22688884 |
| PQID | 1766794141 |
| PQPubID | 986340 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1800484966 proquest_miscellaneous_1023536188 proquest_journals_1766794141 pubmed_primary_22688884 crossref_citationtrail_10_1002_chem_201200273 crossref_primary_10_1002_chem_201200273 wiley_primary_10_1002_chem_201200273_CHEM201200273 istex_primary_ark_67375_WNG_M870X087_B |
| PublicationCentury | 2000 |
| PublicationDate | July 9, 2012 |
| PublicationDateYYYYMMDD | 2012-07-09 |
| PublicationDate_xml | – month: 07 year: 2012 text: July 9, 2012 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chem. Eur. J |
| PublicationYear | 2012 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | J. E. Mark, H. R. Allcock, R. West, Inorganic Polymers, Oxford University Press, New York, second edition, 2005, pp. 62. R. P. Pandian, T. K. Chandrashekar, J. Chem. Soc. Dalton Trans. 1993, 119-125. J.-Y. Tung, B.-C. Liau, S. Elango, J.-H. Chen, H.-Y. Hsieh, F.-L. Liao, S.-L. Wang, L.-P. Hwang, Inorg. Chem. Commun. 2002, 5, 150-155 G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs, Nature 1995, 374, 517-521 I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 2009, 109, 1659-1713. R. G. Little, J. Heterocycl. Chem. 1978, 15, 203-208. I. Gupta, M. Ravikanth, J. Org. Chem. 2004, 69, 6796-6811. R. W. Wagner, J. Seth, S.-I. Yang, D. Kim, D. F. Bocian, D. Holten, J. S. Lindsey, J. Org. Chem. 1998, 63, 5042-5049 V. Chandrasekhar, S. Nagendran, R. Azhakar, M. R. Kumar, A. Srinivasan, K. Ray, T. K. Chandrashekar, C. Madhavaiah, S. Verma, U. D. Priyakumar, G. N. Sastry, J. Am. Chem. Soc. 2005, 127, 2410-2411. C. W. Allen, Chem. Rev. 1991, 91, 119-135 K. Takada, D. J. Díaz, H. D. Abruña, I. Cuadrado, C. Casado, B. Alonso, M. Morán, J. Losada, J. Am. Chem. Soc. 1997, 119, 10763-10773. H. Shinokubo, A. Osuka, Chem. Commun. 2009, 1011-1021 H.-E. Song, C. Kirmaier, J. K. Schwartz, E. Hindin, L. Yu, D. F. Bocian, J. S. Lindsey, D. Holten, J. Phys. Chem. B 2006, 110, 19131-19139 V. Chandrasekhar, S. Nagendran, Chem. Soc. Rev. 2001, 30, 193-203 J. Lisowski, M. Grzeszczuk, L. Latos-Grażyński, Inorg. Chim. Acta 1989, 161, 153-163 P. D. Beer, Acc. Chem. Res. 1998, 31, 71-80 D. Kim, A. Osuka, Acc. Chem. Res. 2004, 37, 735-745 L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1989, 28, 3328-3331. P. J. Chmielewski, L. Latos-Grażyński, M. M. Olmstead, A. L. Balch, Chem. Eur. J. 1997, 3, 268-278 R. P. Pandian, T. K. Chandrashekar, Inorg. Chem. 1994, 33, 3317-3324 T. Pullerits, V. Sundstrom, Acc. Chem. Res. 1996, 29, 381-389. J. B. Flanagan, S. Margel, A. J. Bard, F. Anson, J. Am. Chem. Soc. 1978, 100, 4248-4253. M. R. Rao, A. Ghosh, M. Ravikanth, Inorg. Chim. Acta 2011, 372, 206. J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure 1996, 4, 581-597 L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1989, 28, 1183-1188 Y. Nakamura, N. Aratani, A. Osuka, Chem. Soc. Rev. 2007, 36, 831-845 D. Astruc, Acc. Chem. Res. 2000, 33, 287-298 M. R. Rao, G. Gayatri, A. Kumar, G. N. Sastry, M. Ravikanth, Chem. Eur. J. 2009, 15, 3488-3496 H. A. M. Biemans, A. E. Rowan, A. Verhoeven, P. Vanoppen, L. Latterini, J. Foekema, A. P. H. J. Schenning, E. W. Meijer, F. C. de Schryver, R. J. M. Nolte, J. Am. Chem. Soc. 1998, 120, 11054-11060. L. Latos-Grażyński, The Porphyrin Handbook (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, New York, 2000, vol. 2, pp. 361-416. C. M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 2009, 109, 1630-1658 V. Chandrasekhar, V. Krishan, Adv. Inorg. Chem. 2002, 53, 159-211 N. Aratani, A. Tsuda, A. Osuka, Synlett 2001, 11, 1663-1674 H. S. Cho, H. Rhee, J. K. Song, C.-K. Min, M. Takase, N. Aratani, S. Cho, A. Osuka, T. Joo, D. Kim, J. Am. Chem. Soc. 2003, 125, 5849-5860 C.-H. Chuang, C.-K. Ou, S.-T. Liu, A. Kumar, W.-M. Ching, P.-C. Chiang, M. A. C. D. Rosa, C.-H. Hung, Inorg. Chem. 2011, 50, 11947-11957 A. K. Burrell, D. L. Officer, P. G. Plieger, D. C. W. Reid, Chem. Rev. 2001, 101, 2751-2796 V. S. Shetti, M. Ravikanth, Inorg. Chem. 2010, 49, 2692-2700. S. Nlate, J. Ruiz, V. Sartor, R. Navarro, J.-C. Blais, D. Astruc, Chem. Eur. J. 2000, 6, 2544-2553 V. S. Shetti, M. Ravikanth, Eur. J. Org. Chem. 2010, 494-508. K. Sugiura, Y. Fujimoto, Y. Sakata, Chem. Commun. 2000, 1105-1106 P. Chmielewski, M. Grzeszczuk, L. Latos-Grażyński, J. Lisowski, Inorg. Chem. 1989, 28, 3546-3552 D. Holten, D. F. Bocian, J. S. Lindsey, Acc. Chem. Res. 2002, 35, 57-69. J. Li, A. Ambroise, S.-I. Yang, J. R. Diers, J. Seth, C. R. Wack, D. F. Bocian, D. Holten, J. S. Lindsey, J. Am. Chem. Soc. 1999, 121, 8927-8940 O. Shoji, S. Okada, A. Satake, Y. Kobuke, J. Am. Chem. Soc. 2005, 127, 2201-2210 L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, J. Am. Chem. Soc. 1987, 109, 4428-4429 A. Gebauer, J. A. R. Schmidt, A. Arnold, Inorg. Chem. 2000, 39, 3424-3427 L. Latos-Grażyński, J. Lisowski, P. Chmielewski, M. Grzeszczuk, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1994, 33, 192-197 2001; 101 1997; 119 2000; 6 2002; 53 2010 2004; 69 1987; 109 2002; 5 2002; 35 2009 1999; 121 2006; 110 1989; 161 2005 1978; 15 1993 1995; 374 1998; 63 2011; 372 1997; 3 2007; 36 1989; 28 1996; 29 2010; 49 2000; 39 2000 2004; 37 2000; 33 2005; 127 2011; 50 1994; 33 1978; 100 1991; 91 2001; 11 1996; 4 2003; 125 2009; 109 1998; 31 2009; 15 2001; 30 1998; 120 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 Latos‐Grażyński L. (e_1_2_6_34_2) 2000 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 Mark J. E. (e_1_2_6_30_2) 2005 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
| References_xml | – reference: C.-H. Chuang, C.-K. Ou, S.-T. Liu, A. Kumar, W.-M. Ching, P.-C. Chiang, M. A. C. D. Rosa, C.-H. Hung, Inorg. Chem. 2011, 50, 11947-11957; – reference: S. Nlate, J. Ruiz, V. Sartor, R. Navarro, J.-C. Blais, D. Astruc, Chem. Eur. J. 2000, 6, 2544-2553; – reference: I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 2009, 109, 1659-1713. – reference: L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1989, 28, 3328-3331. – reference: P. Chmielewski, M. Grzeszczuk, L. Latos-Grażyński, J. Lisowski, Inorg. Chem. 1989, 28, 3546-3552; – reference: J. Li, A. Ambroise, S.-I. Yang, J. R. Diers, J. Seth, C. R. Wack, D. F. Bocian, D. Holten, J. S. Lindsey, J. Am. Chem. Soc. 1999, 121, 8927-8940; – reference: R. P. Pandian, T. K. Chandrashekar, Inorg. Chem. 1994, 33, 3317-3324; – reference: C. M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 2009, 109, 1630-1658; – reference: D. Kim, A. Osuka, Acc. Chem. Res. 2004, 37, 735-745; – reference: L. Latos-Grażyński, The Porphyrin Handbook (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, New York, 2000, vol. 2, pp. 361-416. – reference: K. Takada, D. J. Díaz, H. D. Abruña, I. Cuadrado, C. Casado, B. Alonso, M. Morán, J. Losada, J. Am. Chem. Soc. 1997, 119, 10763-10773. – reference: N. Aratani, A. Tsuda, A. Osuka, Synlett 2001, 11, 1663-1674; – reference: C. W. Allen, Chem. Rev. 1991, 91, 119-135; – reference: K. Sugiura, Y. Fujimoto, Y. Sakata, Chem. Commun. 2000, 1105-1106; – reference: V. Chandrasekhar, S. Nagendran, R. Azhakar, M. R. Kumar, A. Srinivasan, K. Ray, T. K. Chandrashekar, C. Madhavaiah, S. Verma, U. D. Priyakumar, G. N. Sastry, J. Am. Chem. Soc. 2005, 127, 2410-2411. – reference: I. Gupta, M. Ravikanth, J. Org. Chem. 2004, 69, 6796-6811. – reference: J.-Y. Tung, B.-C. Liau, S. Elango, J.-H. Chen, H.-Y. Hsieh, F.-L. Liao, S.-L. Wang, L.-P. Hwang, Inorg. Chem. Commun. 2002, 5, 150-155; – reference: H. A. M. Biemans, A. E. Rowan, A. Verhoeven, P. Vanoppen, L. Latterini, J. Foekema, A. P. H. J. Schenning, E. W. Meijer, F. C. de Schryver, R. J. M. Nolte, J. Am. Chem. Soc. 1998, 120, 11054-11060. – reference: G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs, Nature 1995, 374, 517-521; – reference: V. S. Shetti, M. Ravikanth, Inorg. Chem. 2010, 49, 2692-2700. – reference: D. Astruc, Acc. Chem. Res. 2000, 33, 287-298; – reference: H. S. Cho, H. Rhee, J. K. Song, C.-K. Min, M. Takase, N. Aratani, S. Cho, A. Osuka, T. Joo, D. Kim, J. Am. Chem. Soc. 2003, 125, 5849-5860; – reference: P. J. Chmielewski, L. Latos-Grażyński, M. M. Olmstead, A. L. Balch, Chem. Eur. J. 1997, 3, 268-278; – reference: H.-E. Song, C. Kirmaier, J. K. Schwartz, E. Hindin, L. Yu, D. F. Bocian, J. S. Lindsey, D. Holten, J. Phys. Chem. B 2006, 110, 19131-19139; – reference: M. R. Rao, A. Ghosh, M. Ravikanth, Inorg. Chim. Acta 2011, 372, 206. – reference: J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure 1996, 4, 581-597; – reference: R. G. Little, J. Heterocycl. Chem. 1978, 15, 203-208. – reference: H. Shinokubo, A. Osuka, Chem. Commun. 2009, 1011-1021; – reference: A. Gebauer, J. A. R. Schmidt, A. Arnold, Inorg. Chem. 2000, 39, 3424-3427; – reference: L. Latos-Grażyński, J. Lisowski, P. Chmielewski, M. Grzeszczuk, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1994, 33, 192-197; – reference: V. S. Shetti, M. Ravikanth, Eur. J. Org. Chem. 2010, 494-508. – reference: T. Pullerits, V. Sundstrom, Acc. Chem. Res. 1996, 29, 381-389. – reference: M. R. Rao, G. Gayatri, A. Kumar, G. N. Sastry, M. Ravikanth, Chem. Eur. J. 2009, 15, 3488-3496; – reference: V. Chandrasekhar, V. Krishan, Adv. Inorg. Chem. 2002, 53, 159-211; – reference: D. Holten, D. F. Bocian, J. S. Lindsey, Acc. Chem. Res. 2002, 35, 57-69. – reference: P. D. Beer, Acc. Chem. Res. 1998, 31, 71-80; – reference: R. W. Wagner, J. Seth, S.-I. Yang, D. Kim, D. F. Bocian, D. Holten, J. S. Lindsey, J. Org. Chem. 1998, 63, 5042-5049; – reference: L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, Inorg. Chem. 1989, 28, 1183-1188; – reference: R. P. Pandian, T. K. Chandrashekar, J. Chem. Soc. Dalton Trans. 1993, 119-125. – reference: Y. Nakamura, N. Aratani, A. Osuka, Chem. Soc. Rev. 2007, 36, 831-845; – reference: J. B. Flanagan, S. Margel, A. J. Bard, F. Anson, J. Am. Chem. Soc. 1978, 100, 4248-4253. – reference: O. Shoji, S. Okada, A. Satake, Y. Kobuke, J. Am. Chem. Soc. 2005, 127, 2201-2210; – reference: V. Chandrasekhar, S. Nagendran, Chem. Soc. Rev. 2001, 30, 193-203; – reference: L. Latos-Grażyński, J. Lisowski, M. M. Olmstead, A. L. Balch, J. Am. Chem. Soc. 1987, 109, 4428-4429; – reference: J. Lisowski, M. Grzeszczuk, L. Latos-Grażyński, Inorg. Chim. Acta 1989, 161, 153-163; – reference: J. E. Mark, H. R. Allcock, R. West, Inorganic Polymers, Oxford University Press, New York, second edition, 2005, pp. 62. – reference: A. K. Burrell, D. L. Officer, P. G. Plieger, D. C. W. Reid, Chem. Rev. 2001, 101, 2751-2796; – volume: 63 start-page: 5042 year: 1998 end-page: 5049 publication-title: J. Org. Chem. – volume: 50 start-page: 11947 year: 2011 end-page: 11957 publication-title: Inorg. Chem. – start-page: 494 year: 2010 end-page: 508 publication-title: Eur. J. Org. Chem. – volume: 119 start-page: 10763 year: 1997 end-page: 10773 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2544 year: 2000 end-page: 2553 publication-title: Chem. Eur. J. – volume: 15 start-page: 203 year: 1978 end-page: 208 publication-title: J. Heterocycl. Chem. – volume: 15 start-page: 3488 year: 2009 end-page: 3496 publication-title: Chem. Eur. J. – start-page: 1011 year: 2009 end-page: 1021 publication-title: Chem. Commun. – volume: 28 start-page: 3328 year: 1989 end-page: 3331 publication-title: Inorg. Chem. – volume: 49 start-page: 2692 year: 2010 end-page: 2700 publication-title: Inorg. Chem. – start-page: 119 year: 1993 end-page: 125 publication-title: J. Chem. Soc. Dalton Trans. – volume: 5 start-page: 150 year: 2002 end-page: 155 publication-title: Inorg. Chem. Commun. – volume: 28 start-page: 1183 year: 1989 end-page: 1188 publication-title: Inorg. Chem. – volume: 33 start-page: 287 year: 2000 end-page: 298 publication-title: Acc. Chem. Res. – volume: 53 start-page: 159 year: 2002 end-page: 211 publication-title: Adv. Inorg. Chem. – volume: 161 start-page: 153 year: 1989 end-page: 163 publication-title: Inorg. Chim. Acta – volume: 374 start-page: 517 year: 1995 end-page: 521 publication-title: Nature – volume: 121 start-page: 8927 year: 1999 end-page: 8940 publication-title: J. Am. Chem. Soc. – volume: 101 start-page: 2751 year: 2001 end-page: 2796 publication-title: Chem. Rev. – volume: 33 start-page: 3317 year: 1994 end-page: 3324 publication-title: Inorg. Chem. – volume: 127 start-page: 2201 year: 2005 end-page: 2210 publication-title: J. Am. Chem. Soc. – start-page: 2 year: 2000 end-page: 416 – volume: 372 start-page: 206 year: 2011 publication-title: Inorg. Chim. Acta – volume: 110 start-page: 19131 year: 2006 end-page: 19139 publication-title: J. Phys. Chem. B – volume: 109 start-page: 1659 year: 2009 end-page: 1713 publication-title: Chem. Rev. – volume: 30 start-page: 193 year: 2001 end-page: 203 publication-title: Chem. Soc. Rev. – volume: 37 start-page: 735 year: 2004 end-page: 745 publication-title: Acc. Chem. Res. – volume: 33 start-page: 192 year: 1994 end-page: 197 publication-title: Inorg. Chem. – volume: 28 start-page: 3546 year: 1989 end-page: 3552 publication-title: Inorg. Chem. – volume: 100 start-page: 4248 year: 1978 end-page: 4253 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 831 year: 2007 end-page: 845 publication-title: Chem. Soc. Rev. – volume: 31 start-page: 71 year: 1998 end-page: 80 publication-title: Acc. Chem. Res. – volume: 11 start-page: 1663 year: 2001 end-page: 1674 publication-title: Synlett – volume: 35 start-page: 57 year: 2002 end-page: 69 publication-title: Acc. Chem. Res. – volume: 109 start-page: 1630 year: 2009 end-page: 1658 publication-title: Chem. Rev. – start-page: 62 year: 2005 – volume: 91 start-page: 119 year: 1991 end-page: 135 publication-title: Chem. Rev. – volume: 29 start-page: 381 year: 1996 end-page: 389 publication-title: Acc. Chem. Res. – volume: 125 start-page: 5849 year: 2003 end-page: 5860 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 2410 year: 2005 end-page: 2411 publication-title: J. Am. Chem. Soc. – volume: 69 start-page: 6796 year: 2004 end-page: 6811 publication-title: J. Org. Chem. – volume: 3 start-page: 268 year: 1997 end-page: 278 publication-title: Chem. Eur. J. – volume: 109 start-page: 4428 year: 1987 end-page: 4429 publication-title: J. Am. Chem. Soc. – start-page: 1105 year: 2000 end-page: 1106 publication-title: Chem. Commun. – volume: 4 start-page: 581 year: 1996 end-page: 597 publication-title: Structure – volume: 120 start-page: 11054 year: 1998 end-page: 11060 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 3424 year: 2000 end-page: 3427 publication-title: Inorg. Chem. – ident: e_1_2_6_44_2 – ident: e_1_2_6_38_2 doi: 10.1021/ja00248a067 – ident: e_1_2_6_16_2 doi: 10.1039/b002699i – ident: e_1_2_6_52_2 doi: 10.1002/1521-3765(20000717)6:14<2544::AID-CHEM2544>3.0.CO;2-J – ident: e_1_2_6_21_2 doi: 10.1021/ja9815632 – ident: e_1_2_6_29_2 doi: 10.1021/cr00002a002 – start-page: 2 volume-title: The Porphyrin Handbook year: 2000 ident: e_1_2_6_34_2 – ident: e_1_2_6_46_2 doi: 10.1016/S0020-1693(00)83086-8 – ident: e_1_2_6_8_2 – ident: e_1_2_6_9_2 doi: 10.1038/374517a0 – ident: e_1_2_6_49_2 – ident: e_1_2_6_7_2 doi: 10.1021/ar970264z – ident: e_1_2_6_35_2 – ident: e_1_2_6_12_2 – ident: e_1_2_6_13_2 doi: 10.1021/jo9803683 – ident: e_1_2_6_20_2 doi: 10.1021/cr800247a – start-page: 62 volume-title: Inorganic Polymers year: 2005 ident: e_1_2_6_30_2 doi: 10.1093/oso/9780195131192.001.0001 – ident: e_1_2_6_51_2 doi: 10.1021/ar9901319 – ident: e_1_2_6_32_2 doi: 10.1021/ic901920y – ident: e_1_2_6_33_2 doi: 10.1021/jo040178u – ident: e_1_2_6_48_2 doi: 10.1039/dt9930000119 – ident: e_1_2_6_50_2 doi: 10.1021/ar9601555 – ident: e_1_2_6_14_2 doi: 10.1021/ja991730d – ident: e_1_2_6_18_2 doi: 10.1021/ja0445746 – ident: e_1_2_6_42_2 doi: 10.1021/ic00080a004 – ident: e_1_2_6_6_2 doi: 10.1021/ar030242e – ident: e_1_2_6_27_2 doi: 10.1039/b004872k – ident: e_1_2_6_25_2 doi: 10.1016/j.ica.2011.01.109 – ident: e_1_2_6_31_2 doi: 10.1002/jhet.5570150205 – ident: e_1_2_6_40_2 doi: 10.1002/chem.19970030216 – ident: e_1_2_6_22_2 doi: 10.1021/ja043748g – ident: e_1_2_6_54_2 doi: 10.1021/ja00481a040 – ident: e_1_2_6_47_2 doi: 10.1021/ic00317a030 – ident: e_1_2_6_4_2 doi: 10.1021/cr0000426 – ident: e_1_2_6_28_2 doi: 10.1016/S0898-8838(02)53005-1 – ident: e_1_2_6_2_2 doi: 10.1039/b618854k – ident: e_1_2_6_11_2 doi: 10.1021/ar950110o – ident: e_1_2_6_10_2 doi: 10.1016/S0969-2126(96)00063-9 – ident: e_1_2_6_5_2 doi: 10.1055/s-2001-18073 – ident: e_1_2_6_36_2 doi: 10.1021/ic000202w – ident: e_1_2_6_3_2 doi: 10.1039/b817941g – ident: e_1_2_6_26_2 – ident: e_1_2_6_23_2 – ident: e_1_2_6_15_2 doi: 10.1021/jp064001a – ident: e_1_2_6_17_2 doi: 10.1021/ja021476g – ident: e_1_2_6_53_2 doi: 10.1021/ja9716315 – ident: e_1_2_6_55_2 doi: 10.1002/ejoc.200901070 – ident: e_1_2_6_1_2 – ident: e_1_2_6_45_2 doi: 10.1021/ic00093a020 – ident: e_1_2_6_37_2 doi: 10.1021/ic200977n – ident: e_1_2_6_39_2 doi: 10.1021/ic00305a032 – ident: e_1_2_6_41_2 doi: 10.1016/S1387-7003(02)00319-2 – ident: e_1_2_6_19_2 doi: 10.1021/cr8002483 – ident: e_1_2_6_24_2 doi: 10.1002/chem.200802413 – ident: e_1_2_6_43_2 doi: 10.1021/ic00316a015 |
| SSID | ssj0009633 |
| Score | 2.1826146 |
| Snippet | The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N3P3Cl6... The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa‐ and octaporphyrin arrays by treating N 3 P 3... The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating... The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N3P3Cl6... The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8835 |
| SubjectTerms | Arrays Chemistry cyclophosphazenes Derivatives Electrochemistry Mass spectra Mass spectroscopy metalation multiporphyrin arrays NMR spectroscopy Nuclear magnetic resonance porphyrinoids Porphyrins Scaffolds Spectra Spectrum analysis |
| Title | Multiporphyrin Arrays on Cyclophosphazene Scaffolds: Synthesis and Studies |
| URI | https://api.istex.fr/ark:/67375/WNG-M870X087-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201200273 https://www.ncbi.nlm.nih.gov/pubmed/22688884 https://www.proquest.com/docview/1766794141 https://www.proquest.com/docview/1023536188 https://www.proquest.com/docview/1800484966 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3765 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0947-6539 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL70dKQUFCcEqbOI7j9FZWlKpSe6BU7M3yU626SlabXanbX8_YeZRFPCTIKVHGUuyZ-Tzj2N8AvDNVaqlB4y1zViXUOpMoJ11SmVLlmeKSS7_ecXLKjs7p8bSY_nCKv-OHGBfcvGcEvPYOLlW7d0sain3yJ8kzEihZEISznIWc6sstfxRaV1dLnpaJ52AdWBtTsrfZfGNWuusH-PpXIedmBBumoMOHIIeP73aeXO2ulmpX3_zE6_g_vXsED_r4ND7oDOox3LH1E7g3GcrCPYXjcGQXo3bUz-KyRsmFXLdxU8eTtZ4184umnV_IG4TQ-ExL55qZaffjs3WNkWZ72cayNnG_efEZnB9--jo5SvqCDImm1FOZGqNSJ1VKjCMOc63caGaL1FGraG65skVFUkyRJHGMFZKztNJalcYQpokm-XPYqpvavoRYMQSG1CpTckt1YWRFi8A1nyNyF5WKIBkUInTPVu6LZsxEx7NMhB8hMY5QBB9G-XnH0_FbyfdBv6OYXFz53W1lIb6dfhYnCGDTlJfiYwQ7gwGI3rFb4fk0EcIymkXwdnyNKvD_WWRtmxXKeA6hnGWc_0GGe-ykmGxG8KIzrvGDMCLmeNEISDCRv3RIePKM8Wn7Xxq9gvv-PmxDrnZga7lY2dcYbC3Vm-BQ3wEs0h8l |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3o9AgSAhOKVNHMdxuMGKspTuHmgrerP8VKuuktVmV2L76xnnVS3iIUFuScZS7BmPv3HG3wC8NkVsqUHjzVNWRNQ6EyknXVSYXKWJ4pJLv98xmbLxKT08y_psQn8WpuWHGDbc_Mxo_LWf4H5Dev-aNRQ75Y-SJ6ThZLkJ25RhsOJx0ddrBim0r7aaPM0jz8La8zbGZH-z_ca6tO2H-PuvQOcmhm0WoYM7oPrPb3NPLvdWS7Wnr35idvyv_t2F2x1EDd-3NnUPbtjyPuyM-spwD-CwObWLwB1VtLgoUXIh13VYleForWfV_Lyq5-fyCr1oeKylc9XM1O_C43WJYLO-qENZmrDLX3wIpwcfT0bjqKvJEGlKPZupMSp2UsXEOOIw3EqNZjaLHbWKppYrmxUkxihJEsdYJjmLC61VbgxhmmiSPoKtsirtEwgVQ98QW2VybqnOjCxo1tDNp-i8s0IFEPUaEbojLPd1M2aipVomwo-QGEYogLeD_Lyl6vit5JtGwYOYXFz6BLc8E9-mn8QEfdhZzHPxIYDd3gJEN7dr4Sk10YslNAng1fAaVeB_tcjSViuU8TRCKUs4_4MM9-6TYrwZwOPWuoYPQlDM8aIBkMZG_tIh4fkzhrun_9LoJeyMTyZH4ujz9MszuOWfN1nJxS5sLRcr-xyx11K9aGbXDy4AI0Y |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BKwEv3EegQJAQPKV1HCdxeIMtSyl0hShV-2b5VKuuktVmV2L76xnnqhZxSJC3JGMp9sx8HjvjbwBemoJYZtB48yQrImadiZSTLipMrpJYccml3-84mGR7R2z_JO2zCf1ZmJYfYthw857R4LV3cDszbueSNRQ75Y-Sx7ThZLkKmywtuM_q2_16ySCF9tVWk2d55FlYe95GQnfW26_NS5t-iL__Kuhcj2GbSWh8C1T_-W3uyfn2cqG29cVPzI7_1b_bcLMLUcO3rU3dgSu2vAvXR31luHuw35zaxcAdVTQ_K1FyLld1WJXhaKWn1ey0qmen8gJRNDzU0rlqauo34eGqxGCzPqtDWZqwy1-8D0fj999Ge1FXkyHSjHk2U2MUcVIRahx1uNxKjM5sShyziiWWK5sWlOAqSVKXZankGSm0VrkxNNNU0-QBbJRVaR9BqDLEBmKVybllOjWyYGlDN58geKeFCiDqNSJ0R1ju62ZMRUu1TIUfITGMUACvB_lZS9XxW8lXjYIHMTk_9wlueSqOJx_EAWLYCeG5eBfAVm8BovPtWnhKTUSxmMUBvBheowr8rxZZ2mqJMp5GKMlizv8gwz18MlxvBvCwta7hgzAo5nixAGhjI3_pkPD8GcPd439p9Byufdkdi88fJ5-ewA3_uElKLrZgYzFf2qcYei3Us8a5fgCk3iLK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiporphyrin+Arrays+on+Cyclophosphazene+Scaffolds%3A+Synthesis+and+Studies&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Pareek%2C+Yogita&rft.au=Ravikanth%2C+Mangalampalli&rft.date=2012-07-09&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=18&rft.issue=28&rft.spage=8835&rft.epage=8846&rft_id=info:doi/10.1002%2Fchem.201200273&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_M870X087_B |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |