A Parallel Algorithm Framework for Feature Extraction of EEG Signals on MPI
In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch me...
Saved in:
| Published in | Computational and mathematical methods in medicine Vol. 2020; no. 2020; pp. 1 - 10 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1748-670X 1748-6718 1748-6718 |
| DOI | 10.1155/2020/9812019 |
Cover
| Abstract | In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum. |
|---|---|
| AbstractList | In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum. In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum. In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum.In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum. In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into overlapping data segments. Then, the PSD of segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum. |
| Author | Xiong, Qi Zhang, Xinman Wang, Wenfeng Gu, Yuhong |
| AuthorAffiliation | 4 Shihezi Medical School, Shihezi 832000, China 1 School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710000, China 2 International College, Hunan University of Arts and Sciences, Changde 415000, China 3 School of Electronic and Electrical Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| AuthorAffiliation_xml | – name: 4 Shihezi Medical School, Shihezi 832000, China – name: 2 International College, Hunan University of Arts and Sciences, Changde 415000, China – name: 1 School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710000, China – name: 3 School of Electronic and Electrical Engineering, Shanghai Institute of Technology, Shanghai 200235, China |
| Author_xml | – sequence: 1 fullname: Gu, Yuhong – sequence: 2 fullname: Wang, Wenfeng – sequence: 3 fullname: Zhang, Xinman – sequence: 4 fullname: Xiong, Qi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32774445$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1vEzEQxS3Uin7AjTPyEYku9dfG6wtSVCWloohKgMTNGrzjxLC7Dt7dpv3v6yihpUioJ9vj37x5fj4ie13skJBXnL3jvCxPBRPs1FRcMG6ekUOuVVVMNK_27vfs-wE56vufjJVcl_w5OZBCa6VUeUg-TukVJGgabOi0WcQUhmVL5wlaXMf0i_qY6BxhGBPS2c2QwA0hdjR6Opud0y9h0UHT01z5dHXxguz7fMKXu_WYfJvPvp59KC4_n1-cTS8Lp5QcCu-Z87XWyByTykvlJrXmDo0pHWoGII2TAjQaqaQrRWmgBqiMrCRinSWOSbHVHbsV3K6zebtKoYV0azmzm1DsJhS7CyXz77f8avzRYu2wy-946IkQ7OObLiztIl5bLcxEaZYF3uwEUvw9Yj_YNvQOmwY6jGNvhZKiyplzkdHXf8-6H_In8QycbAGXYt8n9E95F__gLgyw-YPsNDT_a3q7bVqGroZ1eGrEzjJmBj080FyaSc79Dq7Etyk |
| CitedBy_id | crossref_primary_10_1007_s00366_020_01277_4 crossref_primary_10_1016_j_eti_2021_101439 crossref_primary_10_1155_2021_6315010 crossref_primary_10_1016_j_knosys_2020_106437 crossref_primary_10_1007_s11276_021_02746_4 crossref_primary_10_1016_j_knosys_2020_106510 crossref_primary_10_1007_s41870_024_01924_9 crossref_primary_10_1007_s11036_022_01923_9 crossref_primary_10_1109_ACCESS_2020_3028600 crossref_primary_10_3390_en14041196 crossref_primary_10_35860_iarej_1231288 crossref_primary_10_1007_s10668_020_01053_w crossref_primary_10_1007_s00366_021_01289_8 crossref_primary_10_1016_j_eswa_2020_113974 crossref_primary_10_1016_j_knosys_2020_106425 crossref_primary_10_1016_j_egyr_2020_12_013 crossref_primary_10_1109_JSEN_2024_3515210 crossref_primary_10_3390_s21010280 crossref_primary_10_1016_j_measen_2023_100823 crossref_primary_10_3390_en14051331 crossref_primary_10_1007_s10973_021_10696_4 crossref_primary_10_1007_s11063_023_11185_5 crossref_primary_10_1155_2021_7737199 crossref_primary_10_1007_s11571_023_10010_y crossref_primary_10_3390_su13063198 crossref_primary_10_1016_j_neucom_2020_10_038 crossref_primary_10_1109_TNSRE_2023_3242280 crossref_primary_10_1109_ACCESS_2020_3024108 crossref_primary_10_1007_s10973_020_10452_0 crossref_primary_10_1016_j_knosys_2020_106728 crossref_primary_10_1016_j_micpro_2021_104094 crossref_primary_10_1155_2022_6454550 crossref_primary_10_1016_j_eswa_2024_123196 crossref_primary_10_1016_j_measurement_2020_108837 crossref_primary_10_1007_s11633_022_1335_2 crossref_primary_10_1038_s41598_025_93047_9 crossref_primary_10_1007_s11042_024_19467_3 crossref_primary_10_3390_brainsci11111525 crossref_primary_10_1016_j_eswa_2020_114369 crossref_primary_10_1016_j_eswa_2020_114122 crossref_primary_10_1016_j_health_2023_100296 crossref_primary_10_1007_s00366_021_01282_1 crossref_primary_10_1007_s10586_024_04994_3 crossref_primary_10_1007_s10973_021_10693_7 crossref_primary_10_3390_su15021506 crossref_primary_10_1016_j_bspc_2022_103966 crossref_primary_10_3390_w13020241 crossref_primary_10_1002_int_22658 crossref_primary_10_3390_su13042336 crossref_primary_10_32604_cmc_2022_027856 |
| Cites_doi | 10.1109/proc.1978.10837 10.1063/1.5006511 10.1631/fitee.1601509 10.1049/el.2017.3970 10.1109/tnsre.2008.926694 10.1140/epjst/e2018-700098-x 10.1109/tbme.2019.2913928 10.1109/tcsi.2009.2017125 10.1109/tcsi.2013.2246251 10.3390/e21090849 10.3390/s18010029 10.1109/tcsii.2010.2048373 10.1109/tnsre.2018.2817498 10.1109/tvlsi.2011.2147338 10.1016/j.neucom.2014.10.038 10.1109/tcsi.2013.2264711 10.1016/j.procs.2015.07.286 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Qi Xiong et al. Copyright © 2020 Qi Xiong et al. 2020 |
| Copyright_xml | – notice: Copyright © 2020 Qi Xiong et al. – notice: Copyright © 2020 Qi Xiong et al. 2020 |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2020/9812019 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1748-6718 |
| Editor | Jiang, Yi-Zhang |
| Editor_xml | – sequence: 1 givenname: Yi-Zhang surname: Jiang fullname: Jiang, Yi-Zhang |
| EndPage | 10 |
| ExternalDocumentID | 10.1155/2020/9812019 PMC7296470 32774445 10_1155_2020_9812019 1139689 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Scientific Research Project of Education Department of Hunan Province grantid: 17A148 – fundername: Natural Science Foundation of Hunan Province grantid: S2019JJSSLH0130 – fundername: National Natural Science Foundation of China grantid: 61673316; 11601339 |
| GroupedDBID | --- 0R~ 24P 29F 2DF 4.4 53G 5GY 5VS 6J9 7X7 88E 8FE 8FG 8FI 8FJ AAFWJ AAMMB ABDBF ABJCF ABUWG ACCMX ACGFO ACIPV ACIWK ACUHS ADBBV ADJCN ADRAZ AEFGJ AENEX AFKRA AFKVX AGXDD AHFXO AHMBA AIAGR AIDQK AIDYY AJWEG ALMA_UNASSIGNED_HOLDINGS AOIJS AWYRJ BAWUL BCNDV BENPR BGLVJ BPHCQ BVXVI CAG CCPQU COF CS3 DIK EAD EAP EAS EBC EBD EBS EJD EMK EMOBN EPL EST ESX F5P FYUFA GX1 H13 HCIFZ HF~ HMCUK HYE INR IPNFZ J.P J9A KQ8 L6V M1P M48 M4Z M7S ML~ O5R O5S OK1 P2P PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO REM RIG RNS RPM SV3 TFW TUS TWF UKHRP 3YN AAJEY GROUPED_DOAJ IAO IEA IHR INH ITC RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c443t-ff0cfd77e0c034f34c6d71ce995ce70aa39c32a7e9343c5259adaa89383eed443 |
| IEDL.DBID | M48 |
| ISSN | 1748-670X 1748-6718 |
| IngestDate | Sun Oct 26 03:48:07 EDT 2025 Tue Sep 30 16:57:51 EDT 2025 Thu Oct 02 03:18:15 EDT 2025 Thu Apr 03 06:58:00 EDT 2025 Wed Oct 01 00:53:29 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Sun Jun 02 18:51:15 EDT 2024 Thu Sep 25 15:27:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2020 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 Copyright © 2020 Qi Xiong et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c443t-ff0cfd77e0c034f34c6d71ce995ce70aa39c32a7e9343c5259adaa89383eed443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Guest Editor: Yi-Zhang Jiang |
| ORCID | 0000-0001-7709-3143 0000-0003-1424-4076 0000-0002-4381-7796 0000-0003-0396-4836 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cmmm/2020/9812019.pdf |
| PMID | 32774445 |
| PQID | 2432867112 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1155_2020_9812019 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7296470 proquest_miscellaneous_2432867112 pubmed_primary_32774445 crossref_primary_10_1155_2020_9812019 crossref_citationtrail_10_1155_2020_9812019 hindawi_primary_10_1155_2020_9812019 emarefa_primary_1139689 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: United States |
| PublicationTitle | Computational and mathematical methods in medicine |
| PublicationTitleAlternate | Comput Math Methods Med |
| PublicationYear | 2020 |
| Publisher | Hindawi Publishing Corporation Hindawi |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi |
| References | 11 12 13 14 (21) 2004; 16 18 19 1 2 3 4 5 6 7 8 9 20 10 |
| References_xml | – ident: 13 doi: 10.1109/proc.1978.10837 – ident: 5 doi: 10.1063/1.5006511 – ident: 3 doi: 10.1631/fitee.1601509 – ident: 9 doi: 10.1049/el.2017.3970 – ident: 7 doi: 10.1109/tnsre.2008.926694 – ident: 6 doi: 10.1140/epjst/e2018-700098-x – ident: 1 doi: 10.1109/tbme.2019.2913928 – ident: 19 doi: 10.1109/tcsi.2009.2017125 – ident: 20 doi: 10.1109/tcsi.2013.2246251 – ident: 4 doi: 10.3390/e21090849 – ident: 8 doi: 10.3390/s18010029 – ident: 18 doi: 10.1109/tcsii.2010.2048373 – ident: 11 doi: 10.1109/tnsre.2018.2817498 – volume: 16 start-page: 1938 issue: 9 year: 2004 ident: 21 publication-title: Acta Simulata Systematica Sinica – ident: 14 doi: 10.1109/tvlsi.2011.2147338 – ident: 2 doi: 10.1016/j.neucom.2014.10.038 – ident: 12 doi: 10.1109/tcsi.2013.2264711 – ident: 10 doi: 10.1016/j.procs.2015.07.286 |
| SSID | ssj0051751 |
| Score | 2.4333398 |
| Snippet | In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref hindawi emarefa |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Big Data Brain - physiology Brain-Computer Interfaces - statistics & numerical data Databases, Factual - statistics & numerical data Electroencephalography - instrumentation Electroencephalography - statistics & numerical data Fourier Analysis Humans Pattern Recognition, Automated - statistics & numerical data Programming Languages Signal Processing, Computer-Assisted |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA468PIi3p03IqgvUkybpGkfRTanMhF1sLeSJqkbzE7mxvTfe7K20zlvb21zkrQ5ac93ek6-IHQYg98jtUkcLj3qMENiJxRE2ehjHPqKxUbb9c71G7_WYFdN3sxJkl6mQ_hg7ax7Tk5DMETE0nvOBr7N3LqrNYsPLgcL6GbrHgPHF6RZ5Ld_qTtheebMk4QDMEdzLev8DtvfQczpTMmFQfos34ay0_lkhqrLaCnHj_gsU_gKmjHpKpqv5xHyNXR9hm9lz26QAkKdxy74_q0nXC1SsDBgVGxh36BncOW138vWNeBugiuVC3zffrR8yhiu1G8v11GjWnk4rzn5hgmOYoz2nSQhKtFCGKIIZQllytfCVSYMuTKCSElDRT0pTEgZVRw8H6mlBMQSUDCV0MQGKqXd1GwhLAgnMTEaALhmWqsg5BpqcaZdlwaKltFJMZiRytnE7aYWnWjkVXAe2aGP8qEvo6Ox9HPGovGD3Gaulw8xgKh-ACWHuZ7-aOCgUGIE74kNfsjUdAcvkceoZ7n8XA86yZQ6bol6AIIZ42UkJtQ9FrAc3JMlabs14uIWNmwtSBkdjyfGrze4_b_n2EGL9jT717OLSv3ewOwB-unH-6O5_w6kwPjo priority: 102 providerName: Hindawi Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELaWrhZ44VygXDLSwgtK143tOJF4qVDLAuqqElQqDyhybGdb0SRVmmiBX8-4cbqUW7wl8cTnOPNN5jBCRwnoPVKb1OPSpx4zJPEiQZS1PiZRoFhitI13Hp8GJ1P2ZsZne-hFGwujbYr4Qup1b2510vPF5mvt5nV9rLIss_o6OY5AMgE86a10egntBxyQeAftT08ngw9NDGToBYLMLq77Yev3zvlOFTsS6cBkEi5ATB24DvwKev7sQXmlzlfyy7lcLr8TT6Pr6GM7sMYr5VOvrpKe-vpDzsf_HfkNdM3hVjxoGO0m2jP5LXR57Czzt9HbAZ7I0h7MAkTLs6JcVPMMj1rXLwzYGFu4WZcGDz9XZRNPgYsUD4ev8LvFmW0ew5Px5PUhmo6G71-eeO6gBk8xRisvTYlKtRCGKEJZSpkKtOgrE0VcGUGkpJGivhQmoowqDhqX1FICUgopiGio4g7q5EVu7iEsCCcJMRqAv2ZaqzDiGt7iTPf7NFS0i563ixUrl8XcHqaxjDfaDOexnaPYzVEXPd1Sr5rsHb-hu-vW_YIMoHEQQsmRW46_VPCkZZIY9qc1usjcFPU69hn1bQ7Bvg-NNEyzrYn6AL4Z410kdthpS2Bzf--W5Iv5Jge4sOZyQbro2Zbx_tjB-_9K-ABdtbfNX6aHqFOVtXkEuKtKHrvt9Q0IWiXe priority: 102 providerName: Unpaywall |
| Title | A Parallel Algorithm Framework for Feature Extraction of EEG Signals on MPI |
| URI | https://search.emarefa.net/detail/BIM-1139689 https://dx.doi.org/10.1155/2020/9812019 https://www.ncbi.nlm.nih.gov/pubmed/32774445 https://www.proquest.com/docview/2432867112 https://pubmed.ncbi.nlm.nih.gov/PMC7296470 https://downloads.hindawi.com/journals/cmmm/2020/9812019.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2020 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1748-6718 dateEnd: 20230629 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: ABDBF dateStart: 20060301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: GX1 dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1748-6718 dateEnd: 20250531 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: M48 dateStart: 20060301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: 24P dateStart: 19970101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGpgEviO-Vj8pIgxeU4cR2HD8gVKF2BdSpAiqFp8ixnbVSlm5Zqm3_PefmAwobvERRfHGSO1u_3-XsO4T2U_B7lLGZx1VAPWZJ6klBtIs-pjLULLXG7XeeHIXjGfsc83gLtdVGGwWeX-vauXpSszI_uDy7-gAT_v16wnPu_HfyTgJSEZf_cwcwSroiDhPWxRM4gKRfb42MvFCQuF0C_8fdG-C0a08UnABi7c6df3yxuI6F_r2Y8s6qOFVXFyrPf0Oq0X10r6GYeFCPiQdoyxYP0e1JE0R_hL4M8FSVroYKCOXHy3JRzU_wqF2lhYHGYscMV6XFw8uqrLc-4GWGh8ND_G1x7FSH4cpk-ukxmo2G3z-OvaamgqcZo5WXZURnRghLNKEso0yHRvjaSsm1FUQpKjUNlLCSMqo5OEfKKAWkJqKAptDFE7RdLAu7h7AgnKTEGuDohhmjI8kN3MWZ8X0aadpDb1tlJrpJOO7qXuTJ2vHgPHGqTxrV99DrTvq0TrRxg9zTxi6_xIDFhhG07Dd2-k8Hr1ojJjCVXHxEFXa5Ok8CRgOX7s8P4CG1UbueaAA8mTHeQ2LD3J2AS9O92VIs5ut03cJFtgXpoTfdwPjnCz678Qufo7tOsP4D9AJtV-XKvgROVKV9dOsw9vvrQQ_Hr-O4j3ZmR9PBj5_3rAbz |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELaWrhZ44VygXDLSwgtK143tOJF4qVDLAuqqElQqDyhybGdb0SRVmmiBX8-4cbqUW7wl8cTnOPNN5jBCRwnoPVKb1OPSpx4zJPEiQZS1PiZRoFhitI13Hp8GJ1P2ZsZne-hFGwujbYr4Qup1b2510vPF5mvt5nV9rLIss_o6OY5AMgE86a10egntBxyQeAftT08ngw9NDGToBYLMLq77Yev3zvlOFTsS6cBkEi5ATB24DvwKev7sQXmlzlfyy7lcLr8TT6Pr6GM7sMYr5VOvrpKe-vpDzsf_HfkNdM3hVjxoGO0m2jP5LXR57Czzt9HbAZ7I0h7MAkTLs6JcVPMMj1rXLwzYGFu4WZcGDz9XZRNPgYsUD4ev8LvFmW0ew5Px5PUhmo6G71-eeO6gBk8xRisvTYlKtRCGKEJZSpkKtOgrE0VcGUGkpJGivhQmoowqDhqX1FICUgopiGio4g7q5EVu7iEsCCcJMRqAv2ZaqzDiGt7iTPf7NFS0i563ixUrl8XcHqaxjDfaDOexnaPYzVEXPd1Sr5rsHb-hu-vW_YIMoHEQQsmRW46_VPCkZZIY9qc1usjcFPU69hn1bQ7Bvg-NNEyzrYn6AL4Z410kdthpS2Bzf--W5Iv5Jge4sOZyQbro2Zbx_tjB-_9K-ABdtbfNX6aHqFOVtXkEuKtKHrvt9Q0IWiXe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parallel+Algorithm+Framework+for+Feature+Extraction+of+EEG+Signals+on+MPI&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Gu%2C+Yuhong&rft.au=Wang%2C+Wenfeng&rft.au=Zhang%2C+Xinman&rft.au=Xiong%2C+Qi&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2020%2F9812019&rft.externalDBID=ADJCN&rft.externalDocID=1139689 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon |