A Parallel Algorithm Framework for Feature Extraction of EEG Signals on MPI

In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch me...

Full description

Saved in:
Bibliographic Details
Published inComputational and mathematical methods in medicine Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Gu, Yuhong, Wang, Wenfeng, Zhang, Xinman, Xiong, Qi
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
Subjects
Online AccessGet full text
ISSN1748-670X
1748-6718
1748-6718
DOI10.1155/2020/9812019

Cover

Abstract In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum.
AbstractList In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum.
In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum.
In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum.In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into N overlapping data segments. Then, the PSD of N segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum.
In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of brain signal processing. At present, the Welch method has been wildly used to estimate the power spectrum. However, the traditional Welch method takes a lot of time especially for the large dataset. In view of this, we added the MPI into the traditional Welch method and developed it into a reusable master-slave parallel framework. As long as the EEG data of any format are converted into the text file of a specified format, the power spectrum features can be extracted quickly by this parallel framework. In the proposed parallel framework, the EEG signals recorded by a channel are divided into overlapping data segments. Then, the PSD of segments are computed by some nodes in parallel. The results are collected and summarized by the master node. The final PSD results of each channel are saved in the text file, which can be read and analyzed by Microsoft Excel. This framework can be implemented not only on the clusters but also on the desktop computer. In the experiment, we deploy this framework on a desktop computer with a 4-core Intel CPU. It took only a few minutes to extract the power spectrum features from the 2.85 GB EEG dataset, seven times faster than using Python. This framework makes it easy for users, who do not have any parallel programming experience in constructing the parallel algorithms to extract the EEG power spectrum.
Author Xiong, Qi
Zhang, Xinman
Wang, Wenfeng
Gu, Yuhong
AuthorAffiliation 4 Shihezi Medical School, Shihezi 832000, China
1 School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710000, China
2 International College, Hunan University of Arts and Sciences, Changde 415000, China
3 School of Electronic and Electrical Engineering, Shanghai Institute of Technology, Shanghai 200235, China
AuthorAffiliation_xml – name: 4 Shihezi Medical School, Shihezi 832000, China
– name: 2 International College, Hunan University of Arts and Sciences, Changde 415000, China
– name: 1 School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710000, China
– name: 3 School of Electronic and Electrical Engineering, Shanghai Institute of Technology, Shanghai 200235, China
Author_xml – sequence: 1
  fullname: Gu, Yuhong
– sequence: 2
  fullname: Wang, Wenfeng
– sequence: 3
  fullname: Zhang, Xinman
– sequence: 4
  fullname: Xiong, Qi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32774445$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vEzEQxS3Uin7AjTPyEYku9dfG6wtSVCWloohKgMTNGrzjxLC7Dt7dpv3v6yihpUioJ9vj37x5fj4ie13skJBXnL3jvCxPBRPs1FRcMG6ekUOuVVVMNK_27vfs-wE56vufjJVcl_w5OZBCa6VUeUg-TukVJGgabOi0WcQUhmVL5wlaXMf0i_qY6BxhGBPS2c2QwA0hdjR6Opud0y9h0UHT01z5dHXxguz7fMKXu_WYfJvPvp59KC4_n1-cTS8Lp5QcCu-Z87XWyByTykvlJrXmDo0pHWoGII2TAjQaqaQrRWmgBqiMrCRinSWOSbHVHbsV3K6zebtKoYV0azmzm1DsJhS7CyXz77f8avzRYu2wy-946IkQ7OObLiztIl5bLcxEaZYF3uwEUvw9Yj_YNvQOmwY6jGNvhZKiyplzkdHXf8-6H_In8QycbAGXYt8n9E95F__gLgyw-YPsNDT_a3q7bVqGroZ1eGrEzjJmBj080FyaSc79Dq7Etyk
CitedBy_id crossref_primary_10_1007_s00366_020_01277_4
crossref_primary_10_1016_j_eti_2021_101439
crossref_primary_10_1155_2021_6315010
crossref_primary_10_1016_j_knosys_2020_106437
crossref_primary_10_1007_s11276_021_02746_4
crossref_primary_10_1016_j_knosys_2020_106510
crossref_primary_10_1007_s41870_024_01924_9
crossref_primary_10_1007_s11036_022_01923_9
crossref_primary_10_1109_ACCESS_2020_3028600
crossref_primary_10_3390_en14041196
crossref_primary_10_35860_iarej_1231288
crossref_primary_10_1007_s10668_020_01053_w
crossref_primary_10_1007_s00366_021_01289_8
crossref_primary_10_1016_j_eswa_2020_113974
crossref_primary_10_1016_j_knosys_2020_106425
crossref_primary_10_1016_j_egyr_2020_12_013
crossref_primary_10_1109_JSEN_2024_3515210
crossref_primary_10_3390_s21010280
crossref_primary_10_1016_j_measen_2023_100823
crossref_primary_10_3390_en14051331
crossref_primary_10_1007_s10973_021_10696_4
crossref_primary_10_1007_s11063_023_11185_5
crossref_primary_10_1155_2021_7737199
crossref_primary_10_1007_s11571_023_10010_y
crossref_primary_10_3390_su13063198
crossref_primary_10_1016_j_neucom_2020_10_038
crossref_primary_10_1109_TNSRE_2023_3242280
crossref_primary_10_1109_ACCESS_2020_3024108
crossref_primary_10_1007_s10973_020_10452_0
crossref_primary_10_1016_j_knosys_2020_106728
crossref_primary_10_1016_j_micpro_2021_104094
crossref_primary_10_1155_2022_6454550
crossref_primary_10_1016_j_eswa_2024_123196
crossref_primary_10_1016_j_measurement_2020_108837
crossref_primary_10_1007_s11633_022_1335_2
crossref_primary_10_1038_s41598_025_93047_9
crossref_primary_10_1007_s11042_024_19467_3
crossref_primary_10_3390_brainsci11111525
crossref_primary_10_1016_j_eswa_2020_114369
crossref_primary_10_1016_j_eswa_2020_114122
crossref_primary_10_1016_j_health_2023_100296
crossref_primary_10_1007_s00366_021_01282_1
crossref_primary_10_1007_s10586_024_04994_3
crossref_primary_10_1007_s10973_021_10693_7
crossref_primary_10_3390_su15021506
crossref_primary_10_1016_j_bspc_2022_103966
crossref_primary_10_3390_w13020241
crossref_primary_10_1002_int_22658
crossref_primary_10_3390_su13042336
crossref_primary_10_32604_cmc_2022_027856
Cites_doi 10.1109/proc.1978.10837
10.1063/1.5006511
10.1631/fitee.1601509
10.1049/el.2017.3970
10.1109/tnsre.2008.926694
10.1140/epjst/e2018-700098-x
10.1109/tbme.2019.2913928
10.1109/tcsi.2009.2017125
10.1109/tcsi.2013.2246251
10.3390/e21090849
10.3390/s18010029
10.1109/tcsii.2010.2048373
10.1109/tnsre.2018.2817498
10.1109/tvlsi.2011.2147338
10.1016/j.neucom.2014.10.038
10.1109/tcsi.2013.2264711
10.1016/j.procs.2015.07.286
ContentType Journal Article
Copyright Copyright © 2020 Qi Xiong et al.
Copyright © 2020 Qi Xiong et al. 2020
Copyright_xml – notice: Copyright © 2020 Qi Xiong et al.
– notice: Copyright © 2020 Qi Xiong et al. 2020
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2020/9812019
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Jiang, Yi-Zhang
Editor_xml – sequence: 1
  givenname: Yi-Zhang
  surname: Jiang
  fullname: Jiang, Yi-Zhang
EndPage 10
ExternalDocumentID 10.1155/2020/9812019
PMC7296470
32774445
10_1155_2020_9812019
1139689
Genre Journal Article
GrantInformation_xml – fundername: Scientific Research Project of Education Department of Hunan Province
  grantid: 17A148
– fundername: Natural Science Foundation of Hunan Province
  grantid: S2019JJSSLH0130
– fundername: National Natural Science Foundation of China
  grantid: 61673316; 11601339
GroupedDBID ---
0R~
24P
29F
2DF
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FG
8FI
8FJ
AAFWJ
AAMMB
ABDBF
ABJCF
ABUWG
ACCMX
ACGFO
ACIPV
ACIWK
ACUHS
ADBBV
ADJCN
ADRAZ
AEFGJ
AENEX
AFKRA
AFKVX
AGXDD
AHFXO
AHMBA
AIAGR
AIDQK
AIDYY
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AWYRJ
BAWUL
BCNDV
BENPR
BGLVJ
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMK
EMOBN
EPL
EST
ESX
F5P
FYUFA
GX1
H13
HCIFZ
HF~
HMCUK
HYE
INR
IPNFZ
J.P
J9A
KQ8
L6V
M1P
M48
M4Z
M7S
ML~
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
REM
RIG
RNS
RPM
SV3
TFW
TUS
TWF
UKHRP
3YN
AAJEY
GROUPED_DOAJ
IAO
IEA
IHR
INH
ITC
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c443t-ff0cfd77e0c034f34c6d71ce995ce70aa39c32a7e9343c5259adaa89383eed443
IEDL.DBID M48
ISSN 1748-670X
1748-6718
IngestDate Sun Oct 26 03:48:07 EDT 2025
Tue Sep 30 16:57:51 EDT 2025
Thu Oct 02 03:18:15 EDT 2025
Thu Apr 03 06:58:00 EDT 2025
Wed Oct 01 00:53:29 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Sun Jun 02 18:51:15 EDT 2024
Thu Sep 25 15:27:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
Copyright © 2020 Qi Xiong et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-ff0cfd77e0c034f34c6d71ce995ce70aa39c32a7e9343c5259adaa89383eed443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Guest Editor: Yi-Zhang Jiang
ORCID 0000-0001-7709-3143
0000-0003-1424-4076
0000-0002-4381-7796
0000-0003-0396-4836
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cmmm/2020/9812019.pdf
PMID 32774445
PQID 2432867112
PQPubID 23479
PageCount 10
ParticipantIDs unpaywall_primary_10_1155_2020_9812019
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7296470
proquest_miscellaneous_2432867112
pubmed_primary_32774445
crossref_primary_10_1155_2020_9812019
crossref_citationtrail_10_1155_2020_9812019
hindawi_primary_10_1155_2020_9812019
emarefa_primary_1139689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
PublicationTitle Computational and mathematical methods in medicine
PublicationTitleAlternate Comput Math Methods Med
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
References 11
12
13
14
(21) 2004; 16
18
19
1
2
3
4
5
6
7
8
9
20
10
References_xml – ident: 13
  doi: 10.1109/proc.1978.10837
– ident: 5
  doi: 10.1063/1.5006511
– ident: 3
  doi: 10.1631/fitee.1601509
– ident: 9
  doi: 10.1049/el.2017.3970
– ident: 7
  doi: 10.1109/tnsre.2008.926694
– ident: 6
  doi: 10.1140/epjst/e2018-700098-x
– ident: 1
  doi: 10.1109/tbme.2019.2913928
– ident: 19
  doi: 10.1109/tcsi.2009.2017125
– ident: 20
  doi: 10.1109/tcsi.2013.2246251
– ident: 4
  doi: 10.3390/e21090849
– ident: 8
  doi: 10.3390/s18010029
– ident: 18
  doi: 10.1109/tcsii.2010.2048373
– ident: 11
  doi: 10.1109/tnsre.2018.2817498
– volume: 16
  start-page: 1938
  issue: 9
  year: 2004
  ident: 21
  publication-title: Acta Simulata Systematica Sinica
– ident: 14
  doi: 10.1109/tvlsi.2011.2147338
– ident: 2
  doi: 10.1016/j.neucom.2014.10.038
– ident: 12
  doi: 10.1109/tcsi.2013.2264711
– ident: 10
  doi: 10.1016/j.procs.2015.07.286
SSID ssj0051751
Score 2.4333398
Snippet In this paper, we present a parallel framework based on MPI for a large dataset to extract power spectrum features of EEG signals so as to improve the speed of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Big Data
Brain - physiology
Brain-Computer Interfaces - statistics & numerical data
Databases, Factual - statistics & numerical data
Electroencephalography - instrumentation
Electroencephalography - statistics & numerical data
Fourier Analysis
Humans
Pattern Recognition, Automated - statistics & numerical data
Programming Languages
Signal Processing, Computer-Assisted
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA468PIi3p03IqgvUkybpGkfRTanMhF1sLeSJqkbzE7mxvTfe7K20zlvb21zkrQ5ac93ek6-IHQYg98jtUkcLj3qMENiJxRE2ehjHPqKxUbb9c71G7_WYFdN3sxJkl6mQ_hg7ax7Tk5DMETE0nvOBr7N3LqrNYsPLgcL6GbrHgPHF6RZ5Ld_qTtheebMk4QDMEdzLev8DtvfQczpTMmFQfos34ay0_lkhqrLaCnHj_gsU_gKmjHpKpqv5xHyNXR9hm9lz26QAkKdxy74_q0nXC1SsDBgVGxh36BncOW138vWNeBugiuVC3zffrR8yhiu1G8v11GjWnk4rzn5hgmOYoz2nSQhKtFCGKIIZQllytfCVSYMuTKCSElDRT0pTEgZVRw8H6mlBMQSUDCV0MQGKqXd1GwhLAgnMTEaALhmWqsg5BpqcaZdlwaKltFJMZiRytnE7aYWnWjkVXAe2aGP8qEvo6Ox9HPGovGD3Gaulw8xgKh-ACWHuZ7-aOCgUGIE74kNfsjUdAcvkceoZ7n8XA86yZQ6bol6AIIZ42UkJtQ9FrAc3JMlabs14uIWNmwtSBkdjyfGrze4_b_n2EGL9jT717OLSv3ewOwB-unH-6O5_w6kwPjo
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELaWrhZ44VygXDLSwgtK143tOJF4qVDLAuqqElQqDyhybGdb0SRVmmiBX8-4cbqUW7wl8cTnOPNN5jBCRwnoPVKb1OPSpx4zJPEiQZS1PiZRoFhitI13Hp8GJ1P2ZsZne-hFGwujbYr4Qup1b2510vPF5mvt5nV9rLIss_o6OY5AMgE86a10egntBxyQeAftT08ngw9NDGToBYLMLq77Yev3zvlOFTsS6cBkEi5ATB24DvwKev7sQXmlzlfyy7lcLr8TT6Pr6GM7sMYr5VOvrpKe-vpDzsf_HfkNdM3hVjxoGO0m2jP5LXR57Czzt9HbAZ7I0h7MAkTLs6JcVPMMj1rXLwzYGFu4WZcGDz9XZRNPgYsUD4ev8LvFmW0ew5Px5PUhmo6G71-eeO6gBk8xRisvTYlKtRCGKEJZSpkKtOgrE0VcGUGkpJGivhQmoowqDhqX1FICUgopiGio4g7q5EVu7iEsCCcJMRqAv2ZaqzDiGt7iTPf7NFS0i563ixUrl8XcHqaxjDfaDOexnaPYzVEXPd1Sr5rsHb-hu-vW_YIMoHEQQsmRW46_VPCkZZIY9qc1usjcFPU69hn1bQ7Bvg-NNEyzrYn6AL4Z410kdthpS2Bzf--W5Iv5Jge4sOZyQbro2Zbx_tjB-_9K-ABdtbfNX6aHqFOVtXkEuKtKHrvt9Q0IWiXe
  priority: 102
  providerName: Unpaywall
Title A Parallel Algorithm Framework for Feature Extraction of EEG Signals on MPI
URI https://search.emarefa.net/detail/BIM-1139689
https://dx.doi.org/10.1155/2020/9812019
https://www.ncbi.nlm.nih.gov/pubmed/32774445
https://www.proquest.com/docview/2432867112
https://pubmed.ncbi.nlm.nih.gov/PMC7296470
https://downloads.hindawi.com/journals/cmmm/2020/9812019.pdf
UnpaywallVersion publishedVersion
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1748-6718
  dateEnd: 20230629
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: ABDBF
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 20250531
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: M48
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: 24P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGpgEviO-Vj8pIgxeU4cR2HD8gVKF2BdSpAiqFp8ixnbVSlm5Zqm3_PefmAwobvERRfHGSO1u_3-XsO4T2U_B7lLGZx1VAPWZJ6klBtIs-pjLULLXG7XeeHIXjGfsc83gLtdVGGwWeX-vauXpSszI_uDy7-gAT_v16wnPu_HfyTgJSEZf_cwcwSroiDhPWxRM4gKRfb42MvFCQuF0C_8fdG-C0a08UnABi7c6df3yxuI6F_r2Y8s6qOFVXFyrPf0Oq0X10r6GYeFCPiQdoyxYP0e1JE0R_hL4M8FSVroYKCOXHy3JRzU_wqF2lhYHGYscMV6XFw8uqrLc-4GWGh8ND_G1x7FSH4cpk-ukxmo2G3z-OvaamgqcZo5WXZURnRghLNKEso0yHRvjaSsm1FUQpKjUNlLCSMqo5OEfKKAWkJqKAptDFE7RdLAu7h7AgnKTEGuDohhmjI8kN3MWZ8X0aadpDb1tlJrpJOO7qXuTJ2vHgPHGqTxrV99DrTvq0TrRxg9zTxi6_xIDFhhG07Dd2-k8Hr1ojJjCVXHxEFXa5Ok8CRgOX7s8P4CG1UbueaAA8mTHeQ2LD3J2AS9O92VIs5ut03cJFtgXpoTfdwPjnCz678Qufo7tOsP4D9AJtV-XKvgROVKV9dOsw9vvrQQ_Hr-O4j3ZmR9PBj5_3rAbz
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELaWrhZ44VygXDLSwgtK143tOJF4qVDLAuqqElQqDyhybGdb0SRVmmiBX8-4cbqUW7wl8cTnOPNN5jBCRwnoPVKb1OPSpx4zJPEiQZS1PiZRoFhitI13Hp8GJ1P2ZsZne-hFGwujbYr4Qup1b2510vPF5mvt5nV9rLIss_o6OY5AMgE86a10egntBxyQeAftT08ngw9NDGToBYLMLq77Yev3zvlOFTsS6cBkEi5ATB24DvwKev7sQXmlzlfyy7lcLr8TT6Pr6GM7sMYr5VOvrpKe-vpDzsf_HfkNdM3hVjxoGO0m2jP5LXR57Czzt9HbAZ7I0h7MAkTLs6JcVPMMj1rXLwzYGFu4WZcGDz9XZRNPgYsUD4ev8LvFmW0ew5Px5PUhmo6G71-eeO6gBk8xRisvTYlKtRCGKEJZSpkKtOgrE0VcGUGkpJGivhQmoowqDhqX1FICUgopiGio4g7q5EVu7iEsCCcJMRqAv2ZaqzDiGt7iTPf7NFS0i563ixUrl8XcHqaxjDfaDOexnaPYzVEXPd1Sr5rsHb-hu-vW_YIMoHEQQsmRW46_VPCkZZIY9qc1usjcFPU69hn1bQ7Bvg-NNEyzrYn6AL4Z410kdthpS2Bzf--W5Iv5Jge4sOZyQbro2Zbx_tjB-_9K-ABdtbfNX6aHqFOVtXkEuKtKHrvt9Q0IWiXe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parallel+Algorithm+Framework+for+Feature+Extraction+of+EEG+Signals+on+MPI&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Gu%2C+Yuhong&rft.au=Wang%2C+Wenfeng&rft.au=Zhang%2C+Xinman&rft.au=Xiong%2C+Qi&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2020%2F9812019&rft.externalDBID=ADJCN&rft.externalDocID=1139689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon