Vibrational spectroscopy of protonated amine-water clusters: tuning Fermi resonance and lighting up dark states
Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated...
Saved in:
| Published in | Physical chemistry chemical physics : PCCP Vol. 22; no. 38; pp. 2235 - 2246 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Royal Society of Chemistry
07.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1463-9076 1463-9084 1463-9084 |
| DOI | 10.1039/d0cp03229h |
Cover
| Abstract | Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine-water clusters, including the NH
4
+
ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm
−1
uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of
ab initio
anharmonic algorithms and demonstrated how one N-H
+
stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine-water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia.
The H-bonded NH stretching fundamentals of protonated amine-water clusters pass through the "Fermi resonance window" formed by bending overtones, generating split bands due to anharmonic couplings. |
|---|---|
| AbstractList | Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine-water clusters, including the NH
4
+
ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm
−1
uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of
ab initio
anharmonic algorithms and demonstrated how one N-H
+
stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine-water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia.
The H-bonded NH stretching fundamentals of protonated amine-water clusters pass through the "Fermi resonance window" formed by bending overtones, generating split bands due to anharmonic couplings. Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine–water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine–water clusters, including the NH 4 + ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm −1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N–H + stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine–water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia. Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine–water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine–water clusters, including the NH4+ ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm−1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N–H+ stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine–water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia. Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine-water clusters, including the NH4+ ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm-1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N-H+ stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine-water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia.Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine-water clusters, including the NH4+ ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm-1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N-H+ stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine-water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia. |
| Author | Lin, Chih-Kai Kuo, Jer-Lai Huang, Qian-Rui Shishido, Ryunosuke Fujii, Asuka |
| AuthorAffiliation | Department of Chemistry Tohoku University Institute of Atomic and Molecular Sciences Graduate School of Science Academia Sinica |
| AuthorAffiliation_xml | – name: Academia Sinica – name: Department of Chemistry – name: Graduate School of Science – name: Institute of Atomic and Molecular Sciences – name: Tohoku University |
| Author_xml | – sequence: 1 givenname: Chih-Kai surname: Lin fullname: Lin, Chih-Kai – sequence: 2 givenname: Ryunosuke surname: Shishido fullname: Shishido, Ryunosuke – sequence: 3 givenname: Qian-Rui surname: Huang fullname: Huang, Qian-Rui – sequence: 4 givenname: Asuka surname: Fujii fullname: Fujii, Asuka – sequence: 5 givenname: Jer-Lai surname: Kuo fullname: Kuo, Jer-Lai |
| BookMark | eNp9kUFLAzEQhYNUsK1evAsRLyKsJpvsNutNqrVCQQ_qdUmzSZu6TdYki_Tfm7ZSoYinefC-NzBveqBjrJEAnGJ0jREpbiokGkTStJgfgC6mOUkKxGhnpwf5Eeh5v0AI4QyTLrDveup40NbwGvpGiuCsF7ZZQatg42yIRpAV5EttZPIVtYOibn2c_haG1mgzgyPplho66SNshITcVLDWs3lYm20DK-4-oA8x7I_BoeK1lyc_sw_eRg-vw3EyeX58Gt5NEkEpCYnCVExzShWiaVoNKsmUwihXiBPFVLbWggumMBtknJEsV4WgGc0LwgYEM0n64HK7N97w2UofyqX2QtY1N9K2vkxphAuMMxrRiz10YVsX-9hQjKUoZSRSV1tKxIK8k6psnF5ytyoxKtfdl_do-LLpfhxhtAcLHTYtB8d1_XfkbBtxXuxW_74z-uf_-WVTKfINxA6esQ |
| CitedBy_id | crossref_primary_10_1021_acs_jpca_4c01834 crossref_primary_10_1039_D0CP03519J crossref_primary_10_1039_D2CP00663D crossref_primary_10_3390_molecules27010038 crossref_primary_10_1039_D3CP05659G crossref_primary_10_1039_D1CP04451F crossref_primary_10_1021_acs_jpclett_0c03197 crossref_primary_10_1021_acs_jpca_1c00068 crossref_primary_10_1063_5_0044703 crossref_primary_10_1039_D0CS01602K crossref_primary_10_1016_j_ica_2023_121449 crossref_primary_10_1134_S1061934822140039 crossref_primary_10_1016_j_molstruc_2022_133560 crossref_primary_10_1039_D4NR01416B crossref_primary_10_1021_acs_jpclett_1c00748 crossref_primary_10_1039_D4CP00458B |
| Cites_doi | 10.1063/1.1843816 10.1016/j.chemphys.2013.05.009 10.1016/j.chemphys.2012.07.012 10.1126/science.1253788 10.1063/1.448178 10.1063/1.5086095 10.1016/j.cplett.2010.10.062 10.1002/anie.201003662 10.1021/acs.jpca.5b10554 10.1063/1.448462 10.1039/C7CP03847J 10.1126/science.1096466 10.1021/jp075289m 10.1063/1.5090031 10.1021/jp302030d 10.1063/1.4972581 10.1021/acs.jpclett.8b00738 10.1063/1.2806181 10.1063/1.4767776 10.1146/annurev.pc.41.100190.004203 10.1038/s41592-019-0686-2 10.1039/C6CP06326H 10.1137/1.9780898719628 10.1039/B412281J 10.1021/jp3026144 10.1039/C8CP02151A 10.1016/S0168-1176(97)00111-0 10.1021/acs.jpca.0c00241 10.1021/acs.jpca.9b11977 10.1039/C5CP01487E 10.1021/jp044155v 10.1080/0144235X.2012.760836 10.1021/acs.jpca.8b04446 10.1007/s002140050379 10.1039/C6CP05537K 10.1063/1.462100 10.1039/C9CP02787D 10.1063/1.1927522 10.1126/science.1138962 10.1021/ja9802908 10.1021/jp104931t 10.1126/science.1096037 10.1126/science.1113094 10.1039/C0SC00604A 10.1021/jp100778s 10.1039/C6CP00309E 10.1063/1.457305 10.1039/C8CP00533H 10.1021/ja990033i 10.1021/acs.jpca.9b01578 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2020 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1039/d0cp03229h |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1463-9084 |
| EndPage | 2246 |
| ExternalDocumentID | 10_1039_D0CP03229H d0cp03229h |
| GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c443t-f14cb644f0422d7de8ff106f0a3f8f5f106cac8f1875a8356f9c45469387318e3 |
| ISSN | 1463-9076 1463-9084 |
| IngestDate | Fri Jul 11 08:17:53 EDT 2025 Mon Jun 30 04:53:47 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Tue Jul 01 00:53:47 EDT 2025 Sat Jan 08 03:54:58 EST 2022 Wed Nov 11 00:36:17 EST 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 38 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c443t-f14cb644f0422d7de8ff106f0a3f8f5f106cac8f1875a8356f9c45469387318e3 |
| Notes | 10.1039/d0cp03229h Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5566-6238 0000-0002-0550-0181 0000-0001-5384-9241 0000-0002-6854-9636 |
| PQID | 2448820283 |
| PQPubID | 2047499 |
| PageCount | 12 |
| ParticipantIDs | rsc_primary_d0cp03229h crossref_primary_10_1039_D0CP03229H crossref_citationtrail_10_1039_D0CP03229H proquest_miscellaneous_2446991154 proquest_journals_2448820283 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20201007 |
| PublicationDateYYYYMMDD | 2020-10-07 |
| PublicationDate_xml | – month: 10 year: 2020 text: 20201007 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Physical chemistry chemical physics : PCCP |
| PublicationYear | 2020 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Tan (D0CP03229H-(cit38)/*[position()=1]) 2019; 150 Voss (D0CP03229H-(cit26)/*[position()=1]) 2018; 9 Dübal (D0CP03229H-(cit58)/*[position()=1]) 1984; 81 Light (D0CP03229H-(cit52)/*[position()=1]) 2000 Quack (D0CP03229H-(cit59)/*[position()=1]) 1990; 41 Bing (D0CP03229H-(cit21)/*[position()=1]) 2010; 114 Bing (D0CP03229H-(cit23)/*[position()=1]) 2013; 421 Lin (D0CP03229H-(cit4)/*[position()=1]) 2005; 7 Diken (D0CP03229H-(cit8)/*[position()=1]) 2005; 109 Miyazaki (D0CP03229H-(cit6)/*[position()=1]) 2004; 304 Liao (D0CP03229H-(cit37)/*[position()=1]) 2017; 19 Mizuse (D0CP03229H-(cit11)/*[position()=1]) 2011; 2 Headrick (D0CP03229H-(cit9)/*[position()=1]) 2005; 308 Shishido (D0CP03229H-(cit24)/*[position()=1]) 2015; 17 Tan (D0CP03229H-(cit47)/*[position()=1]) 2016; 18 Yeh (D0CP03229H-(cit1)/*[position()=1]) 1989; 91 Liao (D0CP03229H-(cit49)/*[position()=1]) 2017; 19 Fujii (D0CP03229H-(cit14)/*[position()=1]) 2013; 32 Hammer (D0CP03229H-(cit16)/*[position()=1]) 2005; 122 Huang (D0CP03229H-(cit40)/*[position()=1]) 2018; 20 Carter (D0CP03229H-(cit56)/*[position()=1]) 1998; 100 Chatterjee (D0CP03229H-(cit32)/*[position()=1]) 2019; 21 Mizuse (D0CP03229H-(cit10)/*[position()=1]) 2010; 49 Douberly (D0CP03229H-(cit19)/*[position()=1]) 2010; 114 McDonald II (D0CP03229H-(cit36)/*[position()=1]) 2016; 145 Atkins (D0CP03229H-(cit42)/*[position()=1]) 2005 McCunn (D0CP03229H-(cit18)/*[position()=1]) 2008; 112 Huang (D0CP03229H-(cit45)/*[position()=1]) 2020 Mizuse (D0CP03229H-(cit13)/*[position()=1]) 2013; 419 Zhang (D0CP03229H-(cit41)/*[position()=1]) 2019; 150 Virtanen (D0CP03229H-(cit54)/*[position()=1]) 2020; 17 Wang (D0CP03229H-(cit2)/*[position()=1]) 1998; 120 Tsuge (D0CP03229H-(cit33)/*[position()=1]) 2020; 124 Colbert (D0CP03229H-(cit51)/*[position()=1]) 1992; 96 Yagi (D0CP03229H-(cit57)/*[position()=1]) 2012; 137 Dopfer (D0CP03229H-(cit20)/*[position()=1]) 1997; 167-168 Huang (D0CP03229H-(cit39)/*[position()=1]) 2018; 20 Hammer (D0CP03229H-(cit7)/*[position()=1]) 2004; 304 Light (D0CP03229H-(cit50)/*[position()=1]) 1985; 82 Roscioli (D0CP03229H-(cit17)/*[position()=1]) 2007; 316 Jiang (D0CP03229H-(cit3)/*[position()=1]) 2000; 122 Fischer (D0CP03229H-(cit27)/*[position()=1]) 2019; 123 Ho (D0CP03229H-(cit34)/*[position()=1]) 2016; 18 Wassermann (D0CP03229H-(cit29)/*[position()=1]) 2007; 127 Katada (D0CP03229H-(cit31)/*[position()=1]) 2018; 122 Shishido (D0CP03229H-(cit22)/*[position()=1]) 2012; 116 Tan (D0CP03229H-(cit25)/*[position()=1]) 2015; 119 Lehoucq (D0CP03229H-(cit53)/*[position()=1]) 1998 Wu (D0CP03229H-(cit5)/*[position()=1]) 2005; 122 Tan (D0CP03229H-(cit35)/*[position()=1]) 2016; 18 Tan (D0CP03229H-(cit46)/*[position()=1]) 2015; 119 Mizuse (D0CP03229H-(cit12)/*[position()=1]) 2012; 116 Fournier (D0CP03229H-(cit15)/*[position()=1]) 2014; 344 McDonald (D0CP03229H-(cit48)/*[position()=1]) 2016; 145 Gerardi (D0CP03229H-(cit30)/*[position()=1]) 2011; 501 Fischer (D0CP03229H-(cit28)/*[position()=1]) 2020; 124 D0CP03229H-(cit43)/*[position()=1] |
| References_xml | – issn: 2000 end-page: p 263-310 publication-title: Advances in Chemical Physics doi: Light Carrington – issn: 2016 publication-title: Gaussian 09, Revision E.01 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery, Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox – issn: 2005 end-page: p 365-379 publication-title: Molecular Quantum Mechanics doi: Atkins Friedman – issn: 1998 publication-title: ARPACK Users' Guide doi: Lehoucq Sorensen Yang – issn: 2012 doi: Tsai – volume: 122 start-page: 074315 year: 2005 ident: D0CP03229H-(cit5)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1843816 – volume: 421 start-page: 1 year: 2013 ident: D0CP03229H-(cit23)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2013.05.009 – volume: 419 start-page: 2 year: 2013 ident: D0CP03229H-(cit13)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2012.07.012 – volume: 344 start-page: 1009 year: 2014 ident: D0CP03229H-(cit15)/*[position()=1] publication-title: Science doi: 10.1126/science.1253788 – volume: 81 start-page: 3779 year: 1984 ident: D0CP03229H-(cit58)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448178 – volume: 150 start-page: 064317 year: 2019 ident: D0CP03229H-(cit41)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.5086095 – volume: 501 start-page: 172 year: 2011 ident: D0CP03229H-(cit30)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.10.062 – volume: 49 start-page: 10119 year: 2010 ident: D0CP03229H-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003662 – volume: 119 start-page: 11320 year: 2015 ident: D0CP03229H-(cit46)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b10554 – volume: 82 start-page: 1400 year: 1985 ident: D0CP03229H-(cit50)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448462 – volume: 19 start-page: 20484 year: 2017 ident: D0CP03229H-(cit49)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03847J – volume: 304 start-page: 1137 year: 2004 ident: D0CP03229H-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1096466 – volume: 112 start-page: 321 year: 2008 ident: D0CP03229H-(cit18)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp075289m – volume: 150 start-page: 124305 year: 2019 ident: D0CP03229H-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.5090031 – volume-title: Advances in Chemical Physics year: 2000 ident: D0CP03229H-(cit52)/*[position()=1] – volume-title: Molecular Quantum Mechanics year: 2005 ident: D0CP03229H-(cit42)/*[position()=1] – volume: 19 start-page: 20484 year: 2017 ident: D0CP03229H-(cit37)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03847J – volume: 116 start-page: 4868 year: 2012 ident: D0CP03229H-(cit12)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp302030d – volume: 145 start-page: 231101 year: 2016 ident: D0CP03229H-(cit36)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4972581 – volume: 9 start-page: 2246 year: 2018 ident: D0CP03229H-(cit26)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00738 – volume: 127 start-page: 234309 year: 2007 ident: D0CP03229H-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2806181 – ident: D0CP03229H-(cit43)/*[position()=1] – volume: 137 start-page: 204118 year: 2012 ident: D0CP03229H-(cit57)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4767776 – volume: 41 start-page: 839 year: 1990 ident: D0CP03229H-(cit59)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.41.100190.004203 – volume: 17 start-page: 261 year: 2020 ident: D0CP03229H-(cit54)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 18 start-page: 30721 year: 2016 ident: D0CP03229H-(cit35)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP06326H – volume-title: ARPACK Users’ Guide year: 1998 ident: D0CP03229H-(cit53)/*[position()=1] doi: 10.1137/1.9780898719628 – year: 2020 ident: D0CP03229H-(cit45)/*[position()=1] publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 938 year: 2005 ident: D0CP03229H-(cit4)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B412281J – volume: 116 start-page: 6740 year: 2012 ident: D0CP03229H-(cit22)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp3026144 – volume: 20 start-page: 13836 year: 2018 ident: D0CP03229H-(cit40)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP02151A – volume: 167-168 start-page: 637 year: 1997 ident: D0CP03229H-(cit20)/*[position()=1] publication-title: Int. J. Mass Spectrom. Ion Processes doi: 10.1016/S0168-1176(97)00111-0 – volume: 124 start-page: 2253 year: 2020 ident: D0CP03229H-(cit33)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c00241 – volume: 124 start-page: 1593 year: 2020 ident: D0CP03229H-(cit28)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b11977 – volume: 17 start-page: 25863 year: 2015 ident: D0CP03229H-(cit24)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01487E – volume: 109 start-page: 1487 year: 2005 ident: D0CP03229H-(cit8)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp044155v – volume: 32 start-page: 266 year: 2013 ident: D0CP03229H-(cit14)/*[position()=1] publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2012.760836 – volume: 122 start-page: 5822 year: 2018 ident: D0CP03229H-(cit31)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b04446 – volume: 119 start-page: 11320 year: 2015 ident: D0CP03229H-(cit25)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b10554 – volume: 100 start-page: 191 year: 1998 ident: D0CP03229H-(cit56)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s002140050379 – volume: 18 start-page: 30498 year: 2016 ident: D0CP03229H-(cit34)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05537K – volume: 96 start-page: 1982 year: 1992 ident: D0CP03229H-(cit51)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.462100 – volume: 145 start-page: 231101 year: 2016 ident: D0CP03229H-(cit48)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4972581 – volume: 21 start-page: 15157 year: 2019 ident: D0CP03229H-(cit32)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP02787D – volume: 122 start-page: 244301 year: 2005 ident: D0CP03229H-(cit16)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1927522 – volume: 316 start-page: 249 year: 2007 ident: D0CP03229H-(cit17)/*[position()=1] publication-title: Science doi: 10.1126/science.1138962 – volume: 120 start-page: 8777 year: 1998 ident: D0CP03229H-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9802908 – volume: 114 start-page: 8170 year: 2010 ident: D0CP03229H-(cit21)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp104931t – volume: 304 start-page: 1134 year: 2004 ident: D0CP03229H-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.1096037 – volume: 308 start-page: 1765 year: 2005 ident: D0CP03229H-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.1113094 – volume: 2 start-page: 868 year: 2011 ident: D0CP03229H-(cit11)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C0SC00604A – volume: 114 start-page: 4570 year: 2010 ident: D0CP03229H-(cit19)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp100778s – volume: 18 start-page: 14531 year: 2016 ident: D0CP03229H-(cit47)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00309E – volume: 91 start-page: 7319 year: 1989 ident: D0CP03229H-(cit1)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.457305 – volume: 20 start-page: 7653 year: 2018 ident: D0CP03229H-(cit39)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP00533H – volume: 122 start-page: 1398 year: 2000 ident: D0CP03229H-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja990033i – volume: 123 start-page: 3355 year: 2019 ident: D0CP03229H-(cit27)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b01578 |
| SSID | ssj0001513 |
| Score | 2.4390707 |
| Snippet | Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions... |
| SourceID | proquest crossref rsc |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2235 |
| SubjectTerms | Algorithms Ammonia Anharmonicity Argon Bend strength Bonding strength Clusters Couplings Frequency ranges Harmonic oscillators Hydrogen bonding Lighting Marking Resonance Spectrum analysis Stretching Trimethylamine Tuning Vibrational spectra |
| Title | Vibrational spectroscopy of protonated amine-water clusters: tuning Fermi resonance and lighting up dark states |
| URI | https://www.proquest.com/docview/2448820283 https://www.proquest.com/docview/2446991154 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1463-9084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001513 issn: 1463-9076 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLY6nQNcRmwjOgzICISEKg9ZnI1bVVoVKEMZtai3yHFstUxJQtsIwR_h7_LsrIgeBi6WZbtJ5ffFfov9PYSe-8zxRCAkMaQnCZVeTJgFhWkZnuTCEq5m4Ptw6U4W9N3SWXY6v1qnlvJ9dMF_HrxX8j9ShTaQq7ol-w-SrR8KDVAH-UIJEobyRjL-rGzd0pmnr0wqaso000FzRcCgPOOgULKvoEqS70zxIfJNrqgR9EG4fa6dImN1HqYPZnea1PcHNspmV5151o_Z9rqvLx7t2qrsrJIwr3LGFTXVVPhLdtrfMBsOmwzJ6zLGv16R92xdu3dWyhMWa6_t1Y88SXf5dQtwpUv7EyCZXOX1r8b5l7U-izCA4aztvgBbVQXfvdaKS12bBEaRJ-5CHGgrl2nLasGxYISpFl3LKChP_toODFuxqcYGzwxYuIJVs-lVgf7Lj-F4MZ2G89Fy_iL7RlQ6MhW2L3OzHKFjC7YLo4uOB6P522m9yYOiZBcX14p_WjHf2sGr5nV_6jqNAXO0rbLLaC1mfgedlOYHHhRYuos6IrmHbg0rCd5HaQtTuI0pnErcYAq3MIUrTL3GBaKwRhSuEYUBUbhCFM4zrBCFC0Q9QIvxaD6ckDIpB-GU2nsiTcojUKKlIo-LvVj4UpqGKw1mS186qs4Z96UJhjAD9d6VAacOdQPb92D_EPYp6iZpIh4izH3hcDuKA-E5lEVBICJOXZ_5PvVjzzR76GU1fSEvGetV4pRNqE9O2EH4xhjO9FRPeuhZPTYreFoOjjqvpBCW3_EuBAUXzEylZ_fQ07obpl2Fzlgi0lyPccGSAnujh05BevU7GmH30NnhjjCL5dkNnvwI3W4-kHPU3W9z8Rg03n30pETfb2HYs0o |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibrational+spectroscopy+of+protonated+amine-water+clusters%3A+tuning+Fermi+resonance+and+lighting+up+dark+states&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Lin%2C+Chih-Kai&rft.au=Shishido%2C+Ryunosuke&rft.au=Huang%2C+Qian-Rui&rft.au=Fujii%2C+Asuka&rft.date=2020-10-07&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=22&rft.issue=38&rft.spage=22035&rft_id=info:doi/10.1039%2Fd0cp03229h&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |