Vibrational spectroscopy of protonated amine-water clusters: tuning Fermi resonance and lighting up dark states

Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 22; no. 38; pp. 2235 - 2246
Main Authors Lin, Chih-Kai, Shishido, Ryunosuke, Huang, Qian-Rui, Fujii, Asuka, Kuo, Jer-Lai
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.10.2020
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d0cp03229h

Cover

Abstract Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine-water clusters, including the NH 4 + ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm −1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N-H + stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine-water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia. The H-bonded NH stretching fundamentals of protonated amine-water clusters pass through the "Fermi resonance window" formed by bending overtones, generating split bands due to anharmonic couplings.
AbstractList Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine-water clusters, including the NH 4 + ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm −1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N-H + stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine-water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia. The H-bonded NH stretching fundamentals of protonated amine-water clusters pass through the "Fermi resonance window" formed by bending overtones, generating split bands due to anharmonic couplings.
Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine–water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine–water clusters, including the NH 4 + ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm −1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N–H + stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine–water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia.
Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine–water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine–water clusters, including the NH4+ ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm−1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N–H+ stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine–water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia.
Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine-water clusters, including the NH4+ ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm-1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N-H+ stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine-water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia.Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions in the protonated trimethylamine-water cluster. To investigate the role of FR, we examined the vibrational spectra of other three protonated ammonia/amine-water clusters, including the NH4+ ion and its mono- and di-methylated analogues, respectively, with and without argon tagging. In these systems, a simple frequency-scaled harmonic oscillator model will predict only one strong band between 2600 and 3200 cm-1 uniquely due to the hydrogen-bonded NH stretching fundamental for a given conformer. In the experimental vibrational spectra, however, multiple sharp bands were observed. Such a discrepancy often leads to the notions of the coexistence of multiple conformers and/or the appearance of an overtone state as a result of FR. In this work, we applied a discrete variable representation (DVR) implementation of ab initio anharmonic algorithms and demonstrated how one N-H+ stretching fundamental can lead to multiple bands as a result of intrinsic anharmonic couplings. A prominent effect of tuning these FR bands and lighting up dark overtone states in this wide frequency range was investigated by changing the number of methyl groups in the protonated amine moiety. The effect of Ar-tagging was also analyzed and decent agreement between the experimental and simulated spectra certified the above-mentioned simple pictures. We also found that the coupling constant for trimethylamine is the largest among these protonated amine-water clusters, and the overall coupling strength decreases as the hydrogen-bonded NH stretching frequency redshifts in the order of dimethylamine, methylamine, and ammonia.
Author Lin, Chih-Kai
Kuo, Jer-Lai
Huang, Qian-Rui
Shishido, Ryunosuke
Fujii, Asuka
AuthorAffiliation Department of Chemistry
Tohoku University
Institute of Atomic and Molecular Sciences
Graduate School of Science
Academia Sinica
AuthorAffiliation_xml – name: Academia Sinica
– name: Department of Chemistry
– name: Graduate School of Science
– name: Institute of Atomic and Molecular Sciences
– name: Tohoku University
Author_xml – sequence: 1
  givenname: Chih-Kai
  surname: Lin
  fullname: Lin, Chih-Kai
– sequence: 2
  givenname: Ryunosuke
  surname: Shishido
  fullname: Shishido, Ryunosuke
– sequence: 3
  givenname: Qian-Rui
  surname: Huang
  fullname: Huang, Qian-Rui
– sequence: 4
  givenname: Asuka
  surname: Fujii
  fullname: Fujii, Asuka
– sequence: 5
  givenname: Jer-Lai
  surname: Kuo
  fullname: Kuo, Jer-Lai
BookMark eNp9kUFLAzEQhYNUsK1evAsRLyKsJpvsNutNqrVCQQ_qdUmzSZu6TdYki_Tfm7ZSoYinefC-NzBveqBjrJEAnGJ0jREpbiokGkTStJgfgC6mOUkKxGhnpwf5Eeh5v0AI4QyTLrDveup40NbwGvpGiuCsF7ZZQatg42yIRpAV5EttZPIVtYOibn2c_haG1mgzgyPplho66SNshITcVLDWs3lYm20DK-4-oA8x7I_BoeK1lyc_sw_eRg-vw3EyeX58Gt5NEkEpCYnCVExzShWiaVoNKsmUwihXiBPFVLbWggumMBtknJEsV4WgGc0LwgYEM0n64HK7N97w2UofyqX2QtY1N9K2vkxphAuMMxrRiz10YVsX-9hQjKUoZSRSV1tKxIK8k6psnF5ytyoxKtfdl_do-LLpfhxhtAcLHTYtB8d1_XfkbBtxXuxW_74z-uf_-WVTKfINxA6esQ
CitedBy_id crossref_primary_10_1021_acs_jpca_4c01834
crossref_primary_10_1039_D0CP03519J
crossref_primary_10_1039_D2CP00663D
crossref_primary_10_3390_molecules27010038
crossref_primary_10_1039_D3CP05659G
crossref_primary_10_1039_D1CP04451F
crossref_primary_10_1021_acs_jpclett_0c03197
crossref_primary_10_1021_acs_jpca_1c00068
crossref_primary_10_1063_5_0044703
crossref_primary_10_1039_D0CS01602K
crossref_primary_10_1016_j_ica_2023_121449
crossref_primary_10_1134_S1061934822140039
crossref_primary_10_1016_j_molstruc_2022_133560
crossref_primary_10_1039_D4NR01416B
crossref_primary_10_1021_acs_jpclett_1c00748
crossref_primary_10_1039_D4CP00458B
Cites_doi 10.1063/1.1843816
10.1016/j.chemphys.2013.05.009
10.1016/j.chemphys.2012.07.012
10.1126/science.1253788
10.1063/1.448178
10.1063/1.5086095
10.1016/j.cplett.2010.10.062
10.1002/anie.201003662
10.1021/acs.jpca.5b10554
10.1063/1.448462
10.1039/C7CP03847J
10.1126/science.1096466
10.1021/jp075289m
10.1063/1.5090031
10.1021/jp302030d
10.1063/1.4972581
10.1021/acs.jpclett.8b00738
10.1063/1.2806181
10.1063/1.4767776
10.1146/annurev.pc.41.100190.004203
10.1038/s41592-019-0686-2
10.1039/C6CP06326H
10.1137/1.9780898719628
10.1039/B412281J
10.1021/jp3026144
10.1039/C8CP02151A
10.1016/S0168-1176(97)00111-0
10.1021/acs.jpca.0c00241
10.1021/acs.jpca.9b11977
10.1039/C5CP01487E
10.1021/jp044155v
10.1080/0144235X.2012.760836
10.1021/acs.jpca.8b04446
10.1007/s002140050379
10.1039/C6CP05537K
10.1063/1.462100
10.1039/C9CP02787D
10.1063/1.1927522
10.1126/science.1138962
10.1021/ja9802908
10.1021/jp104931t
10.1126/science.1096037
10.1126/science.1113094
10.1039/C0SC00604A
10.1021/jp100778s
10.1039/C6CP00309E
10.1063/1.457305
10.1039/C8CP00533H
10.1021/ja990033i
10.1021/acs.jpca.9b01578
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0cp03229h
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 2246
ExternalDocumentID 10_1039_D0CP03229H
d0cp03229h
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c443t-f14cb644f0422d7de8ff106f0a3f8f5f106cac8f1875a8356f9c45469387318e3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 08:17:53 EDT 2025
Mon Jun 30 04:53:47 EDT 2025
Thu Apr 24 22:51:54 EDT 2025
Tue Jul 01 00:53:47 EDT 2025
Sat Jan 08 03:54:58 EST 2022
Wed Nov 11 00:36:17 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-f14cb644f0422d7de8ff106f0a3f8f5f106cac8f1875a8356f9c45469387318e3
Notes 10.1039/d0cp03229h
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5566-6238
0000-0002-0550-0181
0000-0001-5384-9241
0000-0002-6854-9636
PQID 2448820283
PQPubID 2047499
PageCount 12
ParticipantIDs rsc_primary_d0cp03229h
crossref_primary_10_1039_D0CP03229H
crossref_citationtrail_10_1039_D0CP03229H
proquest_miscellaneous_2446991154
proquest_journals_2448820283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201007
PublicationDateYYYYMMDD 2020-10-07
PublicationDate_xml – month: 10
  year: 2020
  text: 20201007
  day: 7
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Tan (D0CP03229H-(cit38)/*[position()=1]) 2019; 150
Voss (D0CP03229H-(cit26)/*[position()=1]) 2018; 9
Dübal (D0CP03229H-(cit58)/*[position()=1]) 1984; 81
Light (D0CP03229H-(cit52)/*[position()=1]) 2000
Quack (D0CP03229H-(cit59)/*[position()=1]) 1990; 41
Bing (D0CP03229H-(cit21)/*[position()=1]) 2010; 114
Bing (D0CP03229H-(cit23)/*[position()=1]) 2013; 421
Lin (D0CP03229H-(cit4)/*[position()=1]) 2005; 7
Diken (D0CP03229H-(cit8)/*[position()=1]) 2005; 109
Miyazaki (D0CP03229H-(cit6)/*[position()=1]) 2004; 304
Liao (D0CP03229H-(cit37)/*[position()=1]) 2017; 19
Mizuse (D0CP03229H-(cit11)/*[position()=1]) 2011; 2
Headrick (D0CP03229H-(cit9)/*[position()=1]) 2005; 308
Shishido (D0CP03229H-(cit24)/*[position()=1]) 2015; 17
Tan (D0CP03229H-(cit47)/*[position()=1]) 2016; 18
Yeh (D0CP03229H-(cit1)/*[position()=1]) 1989; 91
Liao (D0CP03229H-(cit49)/*[position()=1]) 2017; 19
Fujii (D0CP03229H-(cit14)/*[position()=1]) 2013; 32
Hammer (D0CP03229H-(cit16)/*[position()=1]) 2005; 122
Huang (D0CP03229H-(cit40)/*[position()=1]) 2018; 20
Carter (D0CP03229H-(cit56)/*[position()=1]) 1998; 100
Chatterjee (D0CP03229H-(cit32)/*[position()=1]) 2019; 21
Mizuse (D0CP03229H-(cit10)/*[position()=1]) 2010; 49
Douberly (D0CP03229H-(cit19)/*[position()=1]) 2010; 114
McDonald II (D0CP03229H-(cit36)/*[position()=1]) 2016; 145
Atkins (D0CP03229H-(cit42)/*[position()=1]) 2005
McCunn (D0CP03229H-(cit18)/*[position()=1]) 2008; 112
Huang (D0CP03229H-(cit45)/*[position()=1]) 2020
Mizuse (D0CP03229H-(cit13)/*[position()=1]) 2013; 419
Zhang (D0CP03229H-(cit41)/*[position()=1]) 2019; 150
Virtanen (D0CP03229H-(cit54)/*[position()=1]) 2020; 17
Wang (D0CP03229H-(cit2)/*[position()=1]) 1998; 120
Tsuge (D0CP03229H-(cit33)/*[position()=1]) 2020; 124
Colbert (D0CP03229H-(cit51)/*[position()=1]) 1992; 96
Yagi (D0CP03229H-(cit57)/*[position()=1]) 2012; 137
Dopfer (D0CP03229H-(cit20)/*[position()=1]) 1997; 167-168
Huang (D0CP03229H-(cit39)/*[position()=1]) 2018; 20
Hammer (D0CP03229H-(cit7)/*[position()=1]) 2004; 304
Light (D0CP03229H-(cit50)/*[position()=1]) 1985; 82
Roscioli (D0CP03229H-(cit17)/*[position()=1]) 2007; 316
Jiang (D0CP03229H-(cit3)/*[position()=1]) 2000; 122
Fischer (D0CP03229H-(cit27)/*[position()=1]) 2019; 123
Ho (D0CP03229H-(cit34)/*[position()=1]) 2016; 18
Wassermann (D0CP03229H-(cit29)/*[position()=1]) 2007; 127
Katada (D0CP03229H-(cit31)/*[position()=1]) 2018; 122
Shishido (D0CP03229H-(cit22)/*[position()=1]) 2012; 116
Tan (D0CP03229H-(cit25)/*[position()=1]) 2015; 119
Lehoucq (D0CP03229H-(cit53)/*[position()=1]) 1998
Wu (D0CP03229H-(cit5)/*[position()=1]) 2005; 122
Tan (D0CP03229H-(cit35)/*[position()=1]) 2016; 18
Tan (D0CP03229H-(cit46)/*[position()=1]) 2015; 119
Mizuse (D0CP03229H-(cit12)/*[position()=1]) 2012; 116
Fournier (D0CP03229H-(cit15)/*[position()=1]) 2014; 344
McDonald (D0CP03229H-(cit48)/*[position()=1]) 2016; 145
Gerardi (D0CP03229H-(cit30)/*[position()=1]) 2011; 501
Fischer (D0CP03229H-(cit28)/*[position()=1]) 2020; 124
D0CP03229H-(cit43)/*[position()=1]
References_xml – issn: 2000
  end-page: p 263-310
  publication-title: Advances in Chemical Physics
  doi: Light Carrington
– issn: 2016
  publication-title: Gaussian 09, Revision E.01
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery, Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– issn: 2005
  end-page: p 365-379
  publication-title: Molecular Quantum Mechanics
  doi: Atkins Friedman
– issn: 1998
  publication-title: ARPACK Users' Guide
  doi: Lehoucq Sorensen Yang
– issn: 2012
  doi: Tsai
– volume: 122
  start-page: 074315
  year: 2005
  ident: D0CP03229H-(cit5)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1843816
– volume: 421
  start-page: 1
  year: 2013
  ident: D0CP03229H-(cit23)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2013.05.009
– volume: 419
  start-page: 2
  year: 2013
  ident: D0CP03229H-(cit13)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2012.07.012
– volume: 344
  start-page: 1009
  year: 2014
  ident: D0CP03229H-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1253788
– volume: 81
  start-page: 3779
  year: 1984
  ident: D0CP03229H-(cit58)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448178
– volume: 150
  start-page: 064317
  year: 2019
  ident: D0CP03229H-(cit41)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5086095
– volume: 501
  start-page: 172
  year: 2011
  ident: D0CP03229H-(cit30)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.10.062
– volume: 49
  start-page: 10119
  year: 2010
  ident: D0CP03229H-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003662
– volume: 119
  start-page: 11320
  year: 2015
  ident: D0CP03229H-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.5b10554
– volume: 82
  start-page: 1400
  year: 1985
  ident: D0CP03229H-(cit50)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448462
– volume: 19
  start-page: 20484
  year: 2017
  ident: D0CP03229H-(cit49)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03847J
– volume: 304
  start-page: 1137
  year: 2004
  ident: D0CP03229H-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1096466
– volume: 112
  start-page: 321
  year: 2008
  ident: D0CP03229H-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp075289m
– volume: 150
  start-page: 124305
  year: 2019
  ident: D0CP03229H-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5090031
– volume-title: Advances in Chemical Physics
  year: 2000
  ident: D0CP03229H-(cit52)/*[position()=1]
– volume-title: Molecular Quantum Mechanics
  year: 2005
  ident: D0CP03229H-(cit42)/*[position()=1]
– volume: 19
  start-page: 20484
  year: 2017
  ident: D0CP03229H-(cit37)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03847J
– volume: 116
  start-page: 4868
  year: 2012
  ident: D0CP03229H-(cit12)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp302030d
– volume: 145
  start-page: 231101
  year: 2016
  ident: D0CP03229H-(cit36)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4972581
– volume: 9
  start-page: 2246
  year: 2018
  ident: D0CP03229H-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00738
– volume: 127
  start-page: 234309
  year: 2007
  ident: D0CP03229H-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2806181
– ident: D0CP03229H-(cit43)/*[position()=1]
– volume: 137
  start-page: 204118
  year: 2012
  ident: D0CP03229H-(cit57)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4767776
– volume: 41
  start-page: 839
  year: 1990
  ident: D0CP03229H-(cit59)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.41.100190.004203
– volume: 17
  start-page: 261
  year: 2020
  ident: D0CP03229H-(cit54)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 18
  start-page: 30721
  year: 2016
  ident: D0CP03229H-(cit35)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP06326H
– volume-title: ARPACK Users’ Guide
  year: 1998
  ident: D0CP03229H-(cit53)/*[position()=1]
  doi: 10.1137/1.9780898719628
– year: 2020
  ident: D0CP03229H-(cit45)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 938
  year: 2005
  ident: D0CP03229H-(cit4)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B412281J
– volume: 116
  start-page: 6740
  year: 2012
  ident: D0CP03229H-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp3026144
– volume: 20
  start-page: 13836
  year: 2018
  ident: D0CP03229H-(cit40)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP02151A
– volume: 167-168
  start-page: 637
  year: 1997
  ident: D0CP03229H-(cit20)/*[position()=1]
  publication-title: Int. J. Mass Spectrom. Ion Processes
  doi: 10.1016/S0168-1176(97)00111-0
– volume: 124
  start-page: 2253
  year: 2020
  ident: D0CP03229H-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c00241
– volume: 124
  start-page: 1593
  year: 2020
  ident: D0CP03229H-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b11977
– volume: 17
  start-page: 25863
  year: 2015
  ident: D0CP03229H-(cit24)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01487E
– volume: 109
  start-page: 1487
  year: 2005
  ident: D0CP03229H-(cit8)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp044155v
– volume: 32
  start-page: 266
  year: 2013
  ident: D0CP03229H-(cit14)/*[position()=1]
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2012.760836
– volume: 122
  start-page: 5822
  year: 2018
  ident: D0CP03229H-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.8b04446
– volume: 119
  start-page: 11320
  year: 2015
  ident: D0CP03229H-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.5b10554
– volume: 100
  start-page: 191
  year: 1998
  ident: D0CP03229H-(cit56)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002140050379
– volume: 18
  start-page: 30498
  year: 2016
  ident: D0CP03229H-(cit34)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05537K
– volume: 96
  start-page: 1982
  year: 1992
  ident: D0CP03229H-(cit51)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462100
– volume: 145
  start-page: 231101
  year: 2016
  ident: D0CP03229H-(cit48)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4972581
– volume: 21
  start-page: 15157
  year: 2019
  ident: D0CP03229H-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP02787D
– volume: 122
  start-page: 244301
  year: 2005
  ident: D0CP03229H-(cit16)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1927522
– volume: 316
  start-page: 249
  year: 2007
  ident: D0CP03229H-(cit17)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1138962
– volume: 120
  start-page: 8777
  year: 1998
  ident: D0CP03229H-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9802908
– volume: 114
  start-page: 8170
  year: 2010
  ident: D0CP03229H-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp104931t
– volume: 304
  start-page: 1134
  year: 2004
  ident: D0CP03229H-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1096037
– volume: 308
  start-page: 1765
  year: 2005
  ident: D0CP03229H-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1113094
– volume: 2
  start-page: 868
  year: 2011
  ident: D0CP03229H-(cit11)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C0SC00604A
– volume: 114
  start-page: 4570
  year: 2010
  ident: D0CP03229H-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp100778s
– volume: 18
  start-page: 14531
  year: 2016
  ident: D0CP03229H-(cit47)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00309E
– volume: 91
  start-page: 7319
  year: 1989
  ident: D0CP03229H-(cit1)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.457305
– volume: 20
  start-page: 7653
  year: 2018
  ident: D0CP03229H-(cit39)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP00533H
– volume: 122
  start-page: 1398
  year: 2000
  ident: D0CP03229H-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja990033i
– volume: 123
  start-page: 3355
  year: 2019
  ident: D0CP03229H-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b01578
SSID ssj0001513
Score 2.4390707
Snippet Strong coupling between stretching fundamentals and bending overtones of vibrational modes, known as Fermi resonance (FR), has been observed for proton motions...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2235
SubjectTerms Algorithms
Ammonia
Anharmonicity
Argon
Bend strength
Bonding strength
Clusters
Couplings
Frequency ranges
Harmonic oscillators
Hydrogen bonding
Lighting
Marking
Resonance
Spectrum analysis
Stretching
Trimethylamine
Tuning
Vibrational spectra
Title Vibrational spectroscopy of protonated amine-water clusters: tuning Fermi resonance and lighting up dark states
URI https://www.proquest.com/docview/2448820283
https://www.proquest.com/docview/2446991154
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLY6nQNcRmwjOgzICISEKg9ZnI1bVVoVKEMZtai3yHFstUxJQtsIwR_h7_LsrIgeBi6WZbtJ5ffFfov9PYSe-8zxRCAkMaQnCZVeTJgFhWkZnuTCEq5m4Ptw6U4W9N3SWXY6v1qnlvJ9dMF_HrxX8j9ShTaQq7ol-w-SrR8KDVAH-UIJEobyRjL-rGzd0pmnr0wqaso000FzRcCgPOOgULKvoEqS70zxIfJNrqgR9EG4fa6dImN1HqYPZnea1PcHNspmV5151o_Z9rqvLx7t2qrsrJIwr3LGFTXVVPhLdtrfMBsOmwzJ6zLGv16R92xdu3dWyhMWa6_t1Y88SXf5dQtwpUv7EyCZXOX1r8b5l7U-izCA4aztvgBbVQXfvdaKS12bBEaRJ-5CHGgrl2nLasGxYISpFl3LKChP_toODFuxqcYGzwxYuIJVs-lVgf7Lj-F4MZ2G89Fy_iL7RlQ6MhW2L3OzHKFjC7YLo4uOB6P522m9yYOiZBcX14p_WjHf2sGr5nV_6jqNAXO0rbLLaC1mfgedlOYHHhRYuos6IrmHbg0rCd5HaQtTuI0pnErcYAq3MIUrTL3GBaKwRhSuEYUBUbhCFM4zrBCFC0Q9QIvxaD6ckDIpB-GU2nsiTcojUKKlIo-LvVj4UpqGKw1mS186qs4Z96UJhjAD9d6VAacOdQPb92D_EPYp6iZpIh4izH3hcDuKA-E5lEVBICJOXZ_5PvVjzzR76GU1fSEvGetV4pRNqE9O2EH4xhjO9FRPeuhZPTYreFoOjjqvpBCW3_EuBAUXzEylZ_fQ07obpl2Fzlgi0lyPccGSAnujh05BevU7GmH30NnhjjCL5dkNnvwI3W4-kHPU3W9z8Rg03n30pETfb2HYs0o
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibrational+spectroscopy+of+protonated+amine-water+clusters%3A+tuning+Fermi+resonance+and+lighting+up+dark+states&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Lin%2C+Chih-Kai&rft.au=Shishido%2C+Ryunosuke&rft.au=Huang%2C+Qian-Rui&rft.au=Fujii%2C+Asuka&rft.date=2020-10-07&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=22&rft.issue=38&rft.spage=22035&rft_id=info:doi/10.1039%2Fd0cp03229h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon