A faster polynomial algorithm for the constrained maximum flow problem

The constrained maximum flow problem is a variant of the classical maximum flow problem in which the flow from a source node to a sink node is maximized in a directed capacitated network with arc costs subject to the constraint that the total cost of flow should be within a budget. It is important t...

Full description

Saved in:
Bibliographic Details
Published inComputers & operations research Vol. 39; no. 11; pp. 2634 - 2641
Main Author CALISKAN, Cenk
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2012
Elsevier
Pergamon Press Inc
Subjects
Online AccessGet full text
ISSN0305-0548
1873-765X
0305-0548
DOI10.1016/j.cor.2012.01.010

Cover

Abstract The constrained maximum flow problem is a variant of the classical maximum flow problem in which the flow from a source node to a sink node is maximized in a directed capacitated network with arc costs subject to the constraint that the total cost of flow should be within a budget. It is important to study this problem because it has important applications, such as in logistics, telecommunications and computer networks; and because it is related to variants of classical problems such as the constrained shortest path problem, constrained transportation problem, or constrained assignment problem, all of which have important applications as well. In this research, we present an O(n2mlog(nC)) time cost scaling algorithm and compare its empirical performance against the two existing polynomial combinatorial algorithms for the problem: the capacity scaling and the double scaling algorithms. We show that the cost scaling algorithm is on average 25 times faster than the double scaling algorithm, and 32 times faster than the capacity scaling algorithm.
AbstractList The constrained maximum flow problem is a variant of the classical maximum flow problem in which the flow from a source node to a sink node is maximized in a directed capacitated network with arc costs subject to the constraint that the total cost of flow should be within a budget. It is important to study this problem because it has important applications, such as in logistics, telecommunications and computer networks; and because it is related to variants of classical problems such as the constrained shortest path problem, constrained transportation problem, or constrained assignment problem, all of which have important applications as well. In this research, we present an O(n2mlog(nC)) time cost scaling algorithm and compare its empirical performance against the two existing polynomial combinatorial algorithms for the problem: the capacity scaling and the double scaling algorithms. We show that the cost scaling algorithm is on average 25 times faster than the double scaling algorithm, and 32 times faster than the capacity scaling algorithm.
The constrained maximum flow problem is a variant of the classical maximum flow problem in which the flow from a source node to a sink node is maximized in a directed capacitated network with arc costs subject to the constraint that the total cost of flow should be within a budget. It is important to study this problem because it has important applications, such as in logistics, telecommunications and computer networks; and because it is related to variants of classical problems such as the constrained shortest path problem, constrained transportation problem, or constrained assignment problem, all of which have important applications as well. In this research, we present an O(n^sup 2^m log(nC)) time cost scaling algorithm and compare its empirical performance against the two existing polynomial combinatorial algorithms for the problem: the capacity scaling and the double scaling algorithms. We show that the cost scaling algorithm is on average 25 times faster than the double scaling algorithm, and 32 times faster than the capacity scaling algorithm. [PUBLICATION ABSTRACT]
The constrained maximum flow problem is a variant of the classical maximum flow problem in which the flow from a source node to a sink node is maximized in a directed capacitated network with arc costs subject to the constraint that the total cost of flow should be within a budget. It is important to study this problem because it has important applications, such as in logistics, telecommunications and computer networks; and because it is related to variants of classical problems such as the constrained shortest path problem, constrained transportation problem, or constrained assignment problem, all of which have important applications as well. In this research, we present an O ( n 2 m log ( nC ) ) time cost scaling algorithm and compare its empirical performance against the two existing polynomial combinatorial algorithms for the problem: the capacity scaling and the double scaling algorithms. We show that the cost scaling algorithm is on average 25 times faster than the double scaling algorithm, and 32 times faster than the capacity scaling algorithm.
Author Çalışkan, Cenk
Author_xml – sequence: 1
  givenname: Cenk
  surname: CALISKAN
  fullname: CALISKAN, Cenk
  organization: Department of Finance and Economics, Woodbury School of Business, Utah Valley University, Orem, UT 84058, United States
BackLink http://www.econis.eu/PPNSET?PPN=718453093$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26067594$$DView record in Pascal Francis
BookMark eNp9kdFrFDEQxoO04LX1D_DJBRF8uXOyySZ7-FSKVaHgSwu-hdnsxObIJmeyV-1_b847RPrQMCQP-X0zw_edsZOYIjH2msOKA1cfNiub8qoF3q6A14IXbMF7LZZadd9P2AIEdEvoZP-SnZWygXp0yxfs-rJxWGbKzTaFx5gmj6HB8CNlP99PjUu5me-psSmWOaOPNDYT_vbTrv6F9KvZ5jQEmi7YqcNQ6NXxPWd3159ur74sb759_np1ebO0Uoq53hZc72Qnh7brJXKUGmEE4bRQg-UDOjUo0RMhCuU0SiH60REKJzQXVpyz94e-de7PHZXZTL5YCgEjpV0xHNq2X4t2DRV9-wTdpF2OdbtKAUipur_UuyOFxWJwGaP1xWyznzA_mlaB0t1aVu7NgaNqxX-A5r3sBKxFJfiBsDmVksn9YziYfUZmY2pGZp-RAV5rP10_0Vg_4-xT3JsdnlV-PO5T3X7wlE2xnqKl0WeysxmTf0b9B27Cq-c
CODEN CMORAP
CitedBy_id crossref_primary_10_1007_s00186_017_0604_2
crossref_primary_10_1016_j_ejor_2016_11_024
Cites_doi 10.1137/S0097539795288246
10.1002/net.3230250207
10.1002/net.20263
10.1287/moor.15.3.430
10.1007/BF01786986
10.4153/CJM-1956-045-5
10.1080/00207177108932064
10.1016/j.ejor.2010.10.018
10.1137/0218069
10.1016/j.cor.2006.07.009
10.1145/77600.77615
10.1007/3-540-45022-X_7
10.1007/BF02579369
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright Pergamon Press Inc. Nov 2012
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Nov 2012
DBID AAYXX
CITATION
OQ6
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2012.01.010
DatabaseName CrossRef
ECONIS
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1873-765X
0305-0548
EndPage 2641
ExternalDocumentID 2634755441
26067594
718453093
10_1016_j_cor_2012_01_010
S0305054812000226
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c443t-c4c0f8f454b2584a1a47a0d03f736bc1baf6b638eeaa36f7a4338dfea3f3713c3
IEDL.DBID .~1
ISSN 0305-0548
IngestDate Sat Sep 27 17:58:11 EDT 2025
Fri Jul 25 04:16:36 EDT 2025
Mon Jul 21 09:14:59 EDT 2025
Sat Mar 08 16:22:50 EST 2025
Wed Oct 01 02:48:24 EDT 2025
Thu Apr 24 23:12:05 EDT 2025
Fri Feb 23 02:33:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Scaling
Minimum cost network flow
Network flows
Computational complexity
Maximum flow
Costs
Network flow
Assignment problem
Combinatorial problem
Empirical method
Shortest path
Graph theory
Distributed system
Combinatorial optimization
Source sink relationship
Source flow
Transportation problem
Computer network
Time average
Telecommunication network
Budget
Capacity constraint
Optimal flow
Logistics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-c4c0f8f454b2584a1a47a0d03f736bc1baf6b638eeaa36f7a4338dfea3f3713c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1000446590
PQPubID 45870
PageCount 8
ParticipantIDs proquest_miscellaneous_1022893290
proquest_journals_1000446590
pascalfrancis_primary_26067594
econis_primary_718453093
crossref_primary_10_1016_j_cor_2012_01_010
crossref_citationtrail_10_1016_j_cor_2012_01_010
elsevier_sciencedirect_doi_10_1016_j_cor_2012_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: New York
PublicationTitle Computers & operations research
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Pergamon Press Inc
References Thorup (bib19) 2000; 30
Ahuja, Mehlhorn, Orlin, Tarjan (bib1) 1990; 37
Malek-Zavarei, Frisch (bib15) 1971; 14
Gabow, Tarjan (bib10) 1989; 18
Goldberg, Tarjan (bib12) 1990; 15
Çalışkan (bib5) 2008; 35
Ahuja, Orlin (bib2) 1995; 25
Röck (bib17) 1980
Bertsekas DP. A distributed algorithm for the assignment problem. Working Paper. Laboratory for Information and Decision Systems. Cambridge, MA: MIT; 1979.
Johnson (bib14) 1982; 15
Çalışkan (bib7) 2011; 210
Ahuja, Magnanti, Orlin (bib3) 1993
Fulkerson (bib9) 1959; 5
Hagerup T. Improved shortest paths in the word RAM. In: 27th international colloquium on automata, languages, and programming, Geneva, Switzerland, 2000. p. 61–72.
Çalışkan (bib6) 2009; 53
Ford, Fulkerson (bib8) 1956; 8
Thorup (bib20) 2003
Raman (bib16) 1996; vol. 1136
Tardos (bib18) 1985; 5
Goldberg, Tarjan (bib11) 1987
Raman (10.1016/j.cor.2012.01.010_bib16) 1996; vol. 1136
Tardos (10.1016/j.cor.2012.01.010_bib18) 1985; 5
Ford (10.1016/j.cor.2012.01.010_bib8) 1956; 8
Ahuja (10.1016/j.cor.2012.01.010_bib1) 1990; 37
10.1016/j.cor.2012.01.010_bib13
Malek-Zavarei (10.1016/j.cor.2012.01.010_bib15) 1971; 14
10.1016/j.cor.2012.01.010_bib4
Goldberg (10.1016/j.cor.2012.01.010_bib11) 1987
Goldberg (10.1016/j.cor.2012.01.010_bib12) 1990; 15
Çalışkan (10.1016/j.cor.2012.01.010_bib6) 2009; 53
Röck (10.1016/j.cor.2012.01.010_bib17) 1980
Thorup (10.1016/j.cor.2012.01.010_bib20) 2003
Çalışkan (10.1016/j.cor.2012.01.010_bib5) 2008; 35
Fulkerson (10.1016/j.cor.2012.01.010_bib9) 1959; 5
Ahuja (10.1016/j.cor.2012.01.010_bib3) 1993
Gabow (10.1016/j.cor.2012.01.010_bib10) 1989; 18
Ahuja (10.1016/j.cor.2012.01.010_bib2) 1995; 25
Çalışkan (10.1016/j.cor.2012.01.010_bib7) 2011; 210
Johnson (10.1016/j.cor.2012.01.010_bib14) 1982; 15
Thorup (10.1016/j.cor.2012.01.010_bib19) 2000; 30
References_xml – start-page: 7
  year: 1987
  end-page: 18
  ident: bib11
  article-title: Solving minimum cost flow problem by successive approximation
  publication-title: Proceedings of the 19th ACM symposium on the theory of computing
– volume: vol. 1136
  start-page: 121
  year: 1996
  end-page: 137
  ident: bib16
  article-title: Priority queues: small monotone and trans-dichotomous
  publication-title: Proceedings of the fourth annual European symposium on algorithms. Lecture notes in computer science
– volume: 210
  start-page: 137
  year: 2011
  end-page: 147
  ident: bib7
  article-title: A specialized network simplex algorithm for the constrained maximum flow problem
  publication-title: Eur J Operat Res
– volume: 5
  start-page: 473
  year: 1959
  end-page: 483
  ident: bib9
  article-title: Increasing the capacity of a network: the parametric budget problem
  publication-title: Manage Sci
– volume: 37
  start-page: 213
  year: 1990
  end-page: 223
  ident: bib1
  article-title: Faster algorithms for the shortest path problem
  publication-title: J ACM
– volume: 25
  start-page: 89
  year: 1995
  end-page: 98
  ident: bib2
  article-title: A capacity scaling algorithm for the constrained maximum flow problem
  publication-title: Networks
– reference: Bertsekas DP. A distributed algorithm for the assignment problem. Working Paper. Laboratory for Information and Decision Systems. Cambridge, MA: MIT; 1979.
– volume: 35
  start-page: 1138
  year: 2008
  end-page: 1150
  ident: bib5
  article-title: A double scaling algorithm for the constrained maximum flow problem
  publication-title: Comput Operat Res
– volume: 18
  start-page: 1013
  year: 1989
  end-page: 1036
  ident: bib10
  article-title: Faster scaling algorithms for network problems
  publication-title: SIAM J Comput
– volume: 15
  start-page: 430
  year: 1990
  end-page: 466
  ident: bib12
  article-title: Finding minimum cost flow circulations by successive approximation
  publication-title: Math Operat Res
– volume: 53
  start-page: 229
  year: 2009
  end-page: 230
  ident: bib6
  article-title: On a capacity scaling algorithm for the constrained maximum flow problem
  publication-title: Networks
– volume: 5
  start-page: 155
  year: 1985
  end-page: 247
  ident: bib18
  article-title: A strongly polynomial minimum cost circulation algorithm
  publication-title: Combinatorica
– volume: 15
  start-page: 295
  year: 1982
  end-page: 309
  ident: bib14
  article-title: A priority queue in which initialization and queue operations take
  publication-title: Math Syst Theory
– start-page: 149
  year: 2003
  end-page: 158
  ident: bib20
  article-title: Integer priority queues with decrease key in constant time and the single source shortest paths problem
  publication-title: Proceedings of the 35th annual ACM symposium on theory of computing (STOC), San Diego, CA
– volume: 30
  start-page: 86
  year: 2000
  end-page: 109
  ident: bib19
  article-title: On RAM priority queues
  publication-title: SIAM J Comput
– reference: Hagerup T. Improved shortest paths in the word RAM. In: 27th international colloquium on automata, languages, and programming, Geneva, Switzerland, 2000. p. 61–72.
– start-page: 181
  year: 1980
  end-page: 191
  ident: bib17
  article-title: Scaling techniques for minimal cost network flows
  publication-title: Discrete structures and algorithms
– volume: 14
  start-page: 549
  year: 1971
  end-page: 560
  ident: bib15
  article-title: A constrained maximum flow problem
  publication-title: Int J Control
– year: 1993
  ident: bib3
  article-title: Network flows: theory, algorithms and applications
– volume: 8
  start-page: 399
  year: 1956
  end-page: 404
  ident: bib8
  article-title: Maximum flow through a network
  publication-title: Can J Math
– start-page: 7
  year: 1987
  ident: 10.1016/j.cor.2012.01.010_bib11
  article-title: Solving minimum cost flow problem by successive approximation
– volume: 30
  start-page: 86
  year: 2000
  ident: 10.1016/j.cor.2012.01.010_bib19
  article-title: On RAM priority queues
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539795288246
– volume: 25
  start-page: 89
  year: 1995
  ident: 10.1016/j.cor.2012.01.010_bib2
  article-title: A capacity scaling algorithm for the constrained maximum flow problem
  publication-title: Networks
  doi: 10.1002/net.3230250207
– start-page: 181
  year: 1980
  ident: 10.1016/j.cor.2012.01.010_bib17
  article-title: Scaling techniques for minimal cost network flows
– ident: 10.1016/j.cor.2012.01.010_bib4
– volume: 53
  start-page: 229
  issue: 3
  year: 2009
  ident: 10.1016/j.cor.2012.01.010_bib6
  article-title: On a capacity scaling algorithm for the constrained maximum flow problem
  publication-title: Networks
  doi: 10.1002/net.20263
– volume: 15
  start-page: 430
  year: 1990
  ident: 10.1016/j.cor.2012.01.010_bib12
  article-title: Finding minimum cost flow circulations by successive approximation
  publication-title: Math Operat Res
  doi: 10.1287/moor.15.3.430
– volume: 15
  start-page: 295
  year: 1982
  ident: 10.1016/j.cor.2012.01.010_bib14
  article-title: A priority queue in which initialization and queue operations take O(loglogD) time
  publication-title: Math Syst Theory
  doi: 10.1007/BF01786986
– volume: 8
  start-page: 399
  year: 1956
  ident: 10.1016/j.cor.2012.01.010_bib8
  article-title: Maximum flow through a network
  publication-title: Can J Math
  doi: 10.4153/CJM-1956-045-5
– volume: 5
  start-page: 473
  issue: 1
  year: 1959
  ident: 10.1016/j.cor.2012.01.010_bib9
  article-title: Increasing the capacity of a network: the parametric budget problem
  publication-title: Manage Sci
– volume: vol. 1136
  start-page: 121
  year: 1996
  ident: 10.1016/j.cor.2012.01.010_bib16
  article-title: Priority queues: small monotone and trans-dichotomous
– volume: 14
  start-page: 549
  issue: 3
  year: 1971
  ident: 10.1016/j.cor.2012.01.010_bib15
  article-title: A constrained maximum flow problem
  publication-title: Int J Control
  doi: 10.1080/00207177108932064
– year: 1993
  ident: 10.1016/j.cor.2012.01.010_bib3
– volume: 210
  start-page: 137
  issue: 2
  year: 2011
  ident: 10.1016/j.cor.2012.01.010_bib7
  article-title: A specialized network simplex algorithm for the constrained maximum flow problem
  publication-title: Eur J Operat Res
  doi: 10.1016/j.ejor.2010.10.018
– volume: 18
  start-page: 1013
  year: 1989
  ident: 10.1016/j.cor.2012.01.010_bib10
  article-title: Faster scaling algorithms for network problems
  publication-title: SIAM J Comput
  doi: 10.1137/0218069
– volume: 35
  start-page: 1138
  issue: 4
  year: 2008
  ident: 10.1016/j.cor.2012.01.010_bib5
  article-title: A double scaling algorithm for the constrained maximum flow problem
  publication-title: Comput Operat Res
  doi: 10.1016/j.cor.2006.07.009
– volume: 37
  start-page: 213
  year: 1990
  ident: 10.1016/j.cor.2012.01.010_bib1
  article-title: Faster algorithms for the shortest path problem
  publication-title: J ACM
  doi: 10.1145/77600.77615
– ident: 10.1016/j.cor.2012.01.010_bib13
  doi: 10.1007/3-540-45022-X_7
– volume: 5
  start-page: 155
  year: 1985
  ident: 10.1016/j.cor.2012.01.010_bib18
  article-title: A strongly polynomial minimum cost circulation algorithm
  publication-title: Combinatorica
  doi: 10.1007/BF02579369
– start-page: 149
  year: 2003
  ident: 10.1016/j.cor.2012.01.010_bib20
  article-title: Integer priority queues with decrease key in constant time and the single source shortest paths problem
SSID ssj0000721
Score 2.0821908
Snippet The constrained maximum flow problem is a variant of the classical maximum flow problem in which the flow from a source node to a sink node is maximized in a...
SourceID proquest
pascalfrancis
econis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2634
SubjectTerms Algorithms
Applied sciences
Combinatorial analysis
Comparative studies
Computational complexity
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Constraints
Costs
Exact sciences and technology
Flows in networks. Combinatorial problems
Inventory control, production control. Distribution
Logistics
Maximum flow
Minimum cost network flow
Network flow problem
Network flows
Operational research and scientific management
Operational research. Management science
Operations research
Polynomials
Scaling
Shortest-path problems
Software
Transportation problem
Transportation problem (Operations research)
Title A faster polynomial algorithm for the constrained maximum flow problem
URI https://dx.doi.org/10.1016/j.cor.2012.01.010
http://www.econis.eu/PPNSET?PPN=718453093
https://www.proquest.com/docview/1000446590
https://www.proquest.com/docview/1022893290
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AKRWK
  dateStart: 19740101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB-OU0QRP6py1bOs4JMQm2R3k-axHJaqeC96cG9hdrOrkbYp1xb1xb_dmWRTrwj3IIRAspNl2dnZmcnM_gbgdZJWjNNWRdrbNFJIkl5MiiwyhTFVqj1OkP93fDrP5hfqw6W-PIKz_iwMp1WGvb_b09vdOrwZh9kcr-t6_JmXKhkcpKFaFBeG3VYq5yoGb3__TfNg_K8ukqAjpu4jm22OFzl4nN2VtsidfIj2mm66zQ5pvTlQUvfXuKGp813Ni3-271YnzR7Bg2BMimk33sdw5FYDuNPnsg_gYV-zQQQRHsC9awCET2A2FR4ZKkGsm8UvPqFM3eHia3NVb78tBRm0ggxEYdmI5FoSrhJL_Fkvd9S2aH6IUI7mKVzM3n05m0ehskJklZJbutvYT7zSyqRkgWCCKse4iqXPZWZsYtBnhiTTOUSZ-RwVebKVdyi9JK_WymdwvGpW7gREIZXLjTfSZUZZpw1qq6VPbDzJiypzQ4j7OS1tgB3nES_KPr_se0lsKJkNZZzQFQ_hzf6TdYe5cRPxSceoPSlpW6U5wDsE1bOuPFhTJamLm3ocHbB53zG5fuReFWoIpz3fyyDxG8Z-5ti4Luj7V_tmklUOwODKNTumScm_lWkRP_-_ob2Au_zUnYU8hePt1c69JKNoa0btqh_Bren7j_PzPwhGCj8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NgYAJ8VFA6xjDSDwhhSaxnTSP00RVYNsLm7Q3y3bsEdQ21doKeOFv313idKuQ9oAU5SH-kOXz-e5yd78D-JCkJeG0lZH0No2ERk4vhkUWmcKYMpVeDzX97zg5zcbn4uuFvNiCoy4XhsIqw93f3unNbR2-DMJuDuZVNfhORxUVDpRQDYpLdg_uC5nmZIF9-nsT50EAYK0rQUbUvXNtNkFeaOFReFfaQHdSFu0t4fSALNJqsSGlnsz1AvfOt0Uv_rm_G6E0eg5PgzbJDtsFv4AtN-vBwy6YvQfPuqINLPBwD3ZuIRC-hNEh85qwEti8nvyhFGWcTk8u66tq-WPKUKNlqCEyS1okFZNwJZvq39V0hW2T-hcL9Whewfno89nROAqlFSIrBF_i28Z-6IUUJkUVRCda5DouY-5znhmbGO0zg6zpnNY887kWaMqW3mnuOZq1lr-G7Vk9c7vACi5cbrzhLjPCOmm0tJL7xMbDvCgz14e421NlA-44rXiiugCznwrJoIgMKk7wifvwcT1k3oJu3NV5tyXUuiuKWyHJw9sH0ZFObRwqhfLirhkPNsi8nhhtP7SvCtGH_Y7uKrD8gsCfyTkuCxz_ft2MzEoeGD1z9Yr6pGjg8rSI9_5vae_g0fjs5Fgdfzn99gYeU0ubGLkP28urlXuLGtLSHDQccA0X7wvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+faster+polynomial+algorithm+for+the+constrained+maximum+flow+problem&rft.jtitle=Computers+%26+operations+research&rft.au=%C3%87al%C4%B1%C5%9Fkan%2C+Cenk&rft.date=2012-11-01&rft.issn=0305-0548&rft.volume=39&rft.issue=11&rft.spage=2634&rft.epage=2641&rft_id=info:doi/10.1016%2Fj.cor.2012.01.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2012_01_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon