A unified framework for multimodal structure–function mapping based on eigenmodes
•Structure-function mappings based on eigenmodes are unified in a general framework.•Two new mappings are proposed and their performance is compared to existing mappings.•Recently published results are reproduced on 50 subjects of the HCP.•A glass ceiling on the prediction of the functional connecti...
Saved in:
Published in | Medical image analysis Vol. 66; p. 101799 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.12.2020
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2020.101799 |
Cover
Abstract | •Structure-function mappings based on eigenmodes are unified in a general framework.•Two new mappings are proposed and their performance is compared to existing mappings.•Recently published results are reproduced on 50 subjects of the HCP.•A glass ceiling on the prediction of the functional connectivity is obtained.
[Display omitted]
Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure–function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure–function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure–function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit. |
---|---|
AbstractList | •Structure-function mappings based on eigenmodes are unified in a general framework.•Two new mappings are proposed and their performance is compared to existing mappings.•Recently published results are reproduced on 50 subjects of the HCP.•A glass ceiling on the prediction of the functional connectivity is obtained.
[Display omitted]
Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure–function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure–function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure–function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit. Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure-function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure-function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure-function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit.Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure-function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure-function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure-function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit. Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure–function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure–function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure–function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit. |
ArticleNumber | 101799 |
Author | Deriche, Rachid Zucchelli, Mauro Frigo, Matteo Deslauriers-Gauthier, Samuel |
Author_xml | – sequence: 1 givenname: Samuel surname: Deslauriers-Gauthier fullname: Deslauriers-Gauthier, Samuel email: samuel.deslauriers-gauthier@inria.fr – sequence: 2 givenname: Mauro surname: Zucchelli fullname: Zucchelli, Mauro – sequence: 3 givenname: Matteo surname: Frigo fullname: Frigo, Matteo – sequence: 4 givenname: Rachid surname: Deriche fullname: Deriche, Rachid |
BackLink | https://inria.hal.science/hal-02925913$$DView record in HAL |
BookMark | eNp9kbFOHDEQhq2ISAGSJ0izUhoo7vB4vV5vkeKEAkQ6iSJJbfm8Y-Jj177YXlA63iFvmCfBx4YUFFRjjb7Pmpn_iBz44JGQj0CXQEGcbZcj9k4vGWVPnbbr3pBDqAUsJGf1wf83NO_IUUpbSmnLOT0k31bV5J112Fc26hHvQ7ytbIjVOA3ZjaHXQ5VynEyeIv59-GMnb7ILvhr1buf8TbXRqbilge4GfREwvSdvrR4SfvhXj8mPiy_fz68W6-vLr-er9cJwXueFYcDBghSge9S01RQso8ilLrP2XanQSW65NGA3LVBBpRSyEZu-EcZwUx-T0_nfn3pQu-hGHX-roJ26Wq3VvkdZx5oO6jso7MnM7mL4NWHKanTJ4DBoj2FKipVrcCHbhhX00wt0G6boyyaFKhMIUUtZqG6mTAwpRbTKuKz3p8lRu0EBVfto1FY9RaP20ag5muLWL9zn6V-3Ps8WlpveOYwqGYfeFDCiyaoP7lX_Ef2wqlE |
CitedBy_id | crossref_primary_10_3389_fnins_2022_959557 crossref_primary_10_1016_j_neuroimage_2021_118190 crossref_primary_10_1007_s10548_021_00828_2 crossref_primary_10_1038_s41598_022_17213_z crossref_primary_10_1162_imag_a_00307 crossref_primary_10_1103_PhysRevE_104_034411 crossref_primary_10_3389_fnimg_2022_815423 crossref_primary_10_1162_netn_a_00400 crossref_primary_10_3389_fnimg_2022_850266 crossref_primary_10_1016_j_nicl_2025_103764 crossref_primary_10_1038_s41583_023_00718_5 crossref_primary_10_1038_s42005_024_01748_w crossref_primary_10_1038_s42003_024_06669_6 crossref_primary_10_1162_imag_a_00381 crossref_primary_10_1109_TMI_2022_3196007 crossref_primary_10_1007_s00429_024_02796_2 crossref_primary_10_1038_s41467_023_42053_4 crossref_primary_10_1089_brain_2020_0905 crossref_primary_10_1016_j_media_2021_102126 crossref_primary_10_1002_hbm_26554 crossref_primary_10_1016_j_neuroimage_2023_119975 crossref_primary_10_1016_j_neuroimage_2020_117705 crossref_primary_10_1002_alz_14266 crossref_primary_10_3389_fnins_2022_810111 crossref_primary_10_1038_s41583_024_00846_6 crossref_primary_10_1016_j_neuroimage_2022_118919 crossref_primary_10_1007_s00521_024_10703_3 crossref_primary_10_1038_s42003_023_05497_4 crossref_primary_10_1093_cercor_bhab314 crossref_primary_10_1016_j_bpsc_2023_06_008 crossref_primary_10_1016_j_neuron_2023_01_027 |
Cites_doi | 10.1109/TMI.2014.2341732 10.1093/cercor/bhw089 10.1038/s41467-017-01285-x 10.1016/j.neuroimage.2018.02.016 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2008.07.063 10.1073/pnas.0811168106 10.1016/j.neuroimage.2012.06.005 10.1002/hbm.10062 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2013.04.127 10.1089/brain.2015.0408 10.1073/pnas.1315529111 10.1073/pnas.0701519104 10.1371/journal.pcbi.1005325 10.1016/j.neuroimage.2015.06.092 10.1371/journal.pone.0157292 10.1371/annotation/2c9bfbcb-6b96-4d77-bfe3-10c5988150b8 10.1016/j.neuroimage.2010.01.071 10.1016/j.neuroimage.2007.02.016 10.1371/journal.pcbi.0010042 10.1109/42.906424 10.1038/nrn2961 10.1016/j.neuroimage.2019.116017 10.1016/j.neuroimage.2019.116137 10.1016/j.neuroimage.2019.02.039 10.1016/j.neuroimage.2013.12.039 10.1073/pnas.1905534116 10.1016/j.neuroimage.2011.08.085 10.1016/j.neuroimage.2012.01.021 10.1038/s41562-017-0260-9 10.1109/TMI.2013.2276916 10.1523/JNEUROSCI.2523-11.2012 10.1523/JNEUROSCI.1091-13.2013 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Dec 2020 Copyright © 2020. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Dec 2020 – notice: Copyright © 2020. Published by Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES |
DOI | 10.1016/j.media.2020.101799 |
DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1361-8423 |
ExternalDocumentID | oai_HAL_hal_02925913v1 10_1016_j_media_2020_101799 S1361841520301638 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 ACLOT ~HD 1XC VOOES |
ID | FETCH-LOGICAL-c443t-c2141f1861adea07a01f20e48a361d948a1984f48c1fb71060886856bd56cc4c3 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Sep 12 12:53:01 EDT 2025 Sat Sep 27 22:38:36 EDT 2025 Sat Jul 26 03:23:57 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Tue Jul 01 02:49:29 EDT 2025 Fri Feb 23 02:47:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-c2141f1861adea07a01f20e48a361d948a1984f48c1fb71060886856bd56cc4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2781-121X 0000-0002-4643-8417 0000-0002-9365-8017 0000-0002-7109-2884 |
OpenAccessLink | https://inria.hal.science/hal-02925913 |
PQID | 2486866388 |
PQPubID | 2045428 |
ParticipantIDs | hal_primary_oai_HAL_hal_02925913v1 proquest_miscellaneous_2440468752 proquest_journals_2486866388 crossref_citationtrail_10_1016_j_media_2020_101799 crossref_primary_10_1016_j_media_2020_101799 elsevier_sciencedirect_doi_10_1016_j_media_2020_101799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | Messé, Benali, Marrelec (bib0024) 2015; 34 Civier, Smith, Yeh, Connelly, Calamante (bib0006) 2019; 194 Goñi, van den Heuvel, Avena-Koenigsberger, de Mendizabal, Betzel, Griffa, Hagmann, Corominas-Murtra, Thiran, Sporns (bib0016) 2012; 111 Saggio, Ritter, Jirsa (bib0030) 2016; 11 Deco, Ponce-Alvarez, Mantini, Romani, Hagmann, Corbetta (bib0010) 2013; 33 Deslauriers-Gauthier, Lina, Butler, Whittingstall, Gilbert, Bernier, Deriche, Descoteaux (bib0012) 2019; 201 Messé, Hutt, Konig, Hilgetag (bib0025) 2015; 5 Honey, Kótter, Breakspear, Sporns (bib0017) 2007; 104 Chu, Parhi, Lenglet (bib0005) 2018; 8 Atasoy, Donnelly, Pearson (bib0003) 2016 Rubinov, Sporns (bib0029) 2010; 52 Sporns, Tonomi, Kötter (bib0036) 2005; 1 Meier, Tewarie, Hillebrand, Douw, van Dijsk, Stufflebeam, Van Mieghem (bib0023) 2016; 6 Smith, Tournier, Calamante, Connelly (bib0033) 2015; 119 Becker, Pequito, Pappas, Miller, Grafton, Bassett, Preciado (bib0004) 2018; 8 Medaglia, Huang, Karuza, Kelkar, Thompson-Schill, Ribeiro, Bassett (bib0022) 2018; 2 Deco, Jirsa, McIntosh (bib0009) 2011; 12 Tournier, Calamante, Connelly (bib0037) 2007; 35 Abdelnour, Dayan, Devinsky, Thesen, Raj (bib0001) 2018; 172 Liang, Wang (bib0020) 2017; 13 Sporns (bib0035) 2012; 62 Smith (bib0034) 2002; 17 Townsend, Koep, Weichwald (bib0039) 2016; 17 Abdelnour, Voss, Raj (bib0002) 2014; 90 Power, Barnes, Snyder, Schlaggar, Petersen (bib0027) 2012; 59 Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bib0018) 2009; 106 Galán (bib0014) 2008; 3 Honey, Thivierge, Sporns (bib0019) 2010; 52 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0015) 2013; 80 Fischl (bib0013) 2012; 62 Deligianni, Varoquaux, Thirion, Sharp, Ledig, Leech, Rueckert (bib0011) 2013; 32 Skudlarsky, Jagannathan, Calhoun, Hampson, Skudlarska, Pearlson (bib0031) 2008; 43 Preti, Van De Ville (bib0028) 2019; 10 Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong, Chamberland, Yeh, Lin, Ji, Reddick, Glass, Qixiang Chen, Feng, Gao, Wu, Ma, Renjie, Li, Westin, Deslauriers-Gauthier, González, Paquette, St-Jean, Girard, Rheault, Sidhu, Tax, Guo, Mesri, Dávid, Froeling, Heemskerk, Leemans, Boré, Pinsard, Bedetti, Desrosiers, Brambati, Doyon, Sarica, Vasta, Cerasa, Quattrone, Yeatman, Khan, Hodges, Alexander, Romascano, Barakovic, Auría, Esteban, Lemkaddem, Thiran, Cetingul, Odry, Mailhé, Nadar, Pizzagalli, Prasad, Villalon-Reina, Galvis, Thompson, Requejo, Laguna, Lacerda, Barrett, Dell’Acqua, Catani, Petit, Caruyer, Daducci, Dyrby, Holland-Letz, Hilgetag, Stieltjes, Descoteaux (bib0021) 2017; 8 Deco, Jirsa (bib0008) 2012; 32 Deco, Cruzat, Cabral, Tagliazucchi, Laufs, Logothetis, Kringelbach (bib0007) 2019; 116 Mišić, Betzel, de Reus, van den Heuvel, Berman, McIntosh, Sporns (bib0026) 2016; 26 Smith, Tournier, Calamante, Connelly (bib0032) 2012; 62 Zhang, Brady, Smith (bib0040) 2001; 20 Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch, Christiaens, Jeurissen, Yeh, Connelly (bib0038) 2019; 202 Preti (10.1016/j.media.2020.101799_bib0028) 2019; 10 Deslauriers-Gauthier (10.1016/j.media.2020.101799_bib0012) 2019; 201 Smith (10.1016/j.media.2020.101799_bib0032) 2012; 62 Smith (10.1016/j.media.2020.101799_bib0033) 2015; 119 Abdelnour (10.1016/j.media.2020.101799_bib0001) 2018; 172 Atasoy (10.1016/j.media.2020.101799_bib0003) 2016 Deco (10.1016/j.media.2020.101799_bib0009) 2011; 12 Honey (10.1016/j.media.2020.101799_bib0018) 2009; 106 Smith (10.1016/j.media.2020.101799_bib0034) 2002; 17 Sporns (10.1016/j.media.2020.101799_bib0035) 2012; 62 Galán (10.1016/j.media.2020.101799_bib0014) 2008; 3 Liang (10.1016/j.media.2020.101799_bib0020) 2017; 13 Medaglia (10.1016/j.media.2020.101799_bib0022) 2018; 2 Glasser (10.1016/j.media.2020.101799_bib0015) 2013; 80 Honey (10.1016/j.media.2020.101799_bib0019) 2010; 52 Zhang (10.1016/j.media.2020.101799_bib0040) 2001; 20 Chu (10.1016/j.media.2020.101799_bib0005) 2018; 8 Deligianni (10.1016/j.media.2020.101799_bib0011) 2013; 32 Honey (10.1016/j.media.2020.101799_bib0017) 2007; 104 Becker (10.1016/j.media.2020.101799_bib0004) 2018; 8 Tournier (10.1016/j.media.2020.101799_bib0037) 2007; 35 Saggio (10.1016/j.media.2020.101799_bib0030) 2016; 11 Sporns (10.1016/j.media.2020.101799_bib0036) 2005; 1 Meier (10.1016/j.media.2020.101799_bib0023) 2016; 6 Messé (10.1016/j.media.2020.101799_bib0025) 2015; 5 Power (10.1016/j.media.2020.101799_bib0027) 2012; 59 Skudlarsky (10.1016/j.media.2020.101799_bib0031) 2008; 43 Messé (10.1016/j.media.2020.101799_bib0024) 2015; 34 Civier (10.1016/j.media.2020.101799_bib0006) 2019; 194 Deco (10.1016/j.media.2020.101799_bib0008) 2012; 32 Goñi (10.1016/j.media.2020.101799_bib0016) 2012; 111 Townsend (10.1016/j.media.2020.101799_bib0039) 2016; 17 Rubinov (10.1016/j.media.2020.101799_bib0029) 2010; 52 Mišić (10.1016/j.media.2020.101799_bib0026) 2016; 26 Tournier (10.1016/j.media.2020.101799_bib0038) 2019; 202 Maier-Hein (10.1016/j.media.2020.101799_bib0021) 2017; 8 Abdelnour (10.1016/j.media.2020.101799_bib0002) 2014; 90 Deco (10.1016/j.media.2020.101799_bib0010) 2013; 33 Fischl (10.1016/j.media.2020.101799_bib0013) 2012; 62 Deco (10.1016/j.media.2020.101799_bib0007) 2019; 116 |
References_xml | – start-page: 1 year: 2016 end-page: 10 ident: bib0003 article-title: Human brain networks function in connectome specific hamonic waves publication-title: Nat. Commun. – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bib0037 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage – volume: 8 year: 2017 ident: bib0021 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. – volume: 11 start-page: 1 year: 2016 end-page: 25 ident: bib0030 article-title: Analytical operations relate strutural and functional connectivity in the brain publication-title: PLoS One – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0015 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage – volume: 52 start-page: 766 year: 2010 end-page: 776 ident: bib0019 article-title: Can structure predict function in the human brain? publication-title: NeuroImage – volume: 33 start-page: 11239 year: 2013 end-page: 11252 ident: bib0010 article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations publication-title: J. Neurosci. – volume: 116 start-page: 18088 year: 2019 end-page: 18097 ident: bib0007 article-title: Awakening Predicting external stimulation to force transitions between different brain states publication-title: PNAS – volume: 32 start-page: 2200 year: 2013 end-page: 2214 ident: bib0011 article-title: A framework for inter–subject prediction of functional connectivity from structural networks publication-title: IEEE Trans. Med. Imaging – volume: 201 year: 2019 ident: bib0012 article-title: White matter information flow mapping from diffusion MRI and EEEG publication-title: NeuroImage – volume: 8 year: 2018 ident: bib0004 article-title: Spectral mapping of brain functional connectivity from diffusion imaging publication-title: Sci. Rep. – volume: 1 start-page: 245 year: 2005 end-page: 251 ident: bib0036 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. – volume: 6 start-page: 298 year: 2016 end-page: 311 ident: bib0023 article-title: A mapping between structural and functional brain networks publication-title: Brain Connect. – volume: 106 start-page: 2035 year: 2009 end-page: 2040 ident: bib0018 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. – volume: 5 year: 2015 ident: bib0025 article-title: A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks publication-title: Scientific Reports – volume: 17 start-page: 1 year: 2016 end-page: 5 ident: bib0039 article-title: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation publication-title: J. Mach. Learn. Res. – volume: 10 year: 2019 ident: bib0028 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nat. Commun. – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib0029 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage – volume: 3 year: 2008 ident: bib0014 article-title: On how network architecture determines the dominant patterns of spontaneous neural activity publication-title: PLoS One – volume: 13 year: 2017 ident: bib0020 article-title: Structure–function network mapping and its assessment via persistent homology publication-title: PLoS Comput. Biol. – volume: 119 start-page: 338 year: 2015 end-page: 351 ident: bib0033 article-title: SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: NeuroImage – volume: 12 start-page: 43 year: 2011 end-page: 56 ident: bib0009 article-title: Emerging concepts for the dynamical organization of resting–state activity in the brain publication-title: Nat. Rev. Neurosci. – volume: 34 start-page: 27 year: 2015 end-page: 37 ident: bib0024 article-title: Relating structural and functional connectivity in MRI: a simple model for a complex brain publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 3285 year: 2016 end-page: 3296 ident: bib0026 article-title: Network-level structure-function relationships in human neocortex publication-title: Cereb. Cortex – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bib0034 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Map. – volume: 194 start-page: 68 year: 2019 end-page: 81 ident: bib0006 article-title: Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI? publication-title: NeuroImage – volume: 172 start-page: 728 year: 2018 end-page: 739 ident: bib0001 article-title: Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure publication-title: NeuroImage – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib0013 article-title: FreeSurfer publication-title: NeuroImage – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib0040 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging – volume: 104 start-page: 10240 year: 2007 end-page: 10245 ident: bib0017 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proc. Natl. Acad. Sci. – volume: 111 start-page: 833 year: 2012 end-page: 838 ident: bib0016 article-title: Resting-brain functional connectivity predicted by analytic measures of network communication publication-title: Proc. Natl. Acad. Sci. – volume: 202 year: 2019 ident: bib0038 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: NeuroImage – volume: 32 start-page: 3366 year: 2012 end-page: 3375 ident: bib0008 article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors publication-title: J. Neurosci. – volume: 62 start-page: 1924 year: 2012 end-page: 1938 ident: bib0032 article-title: Anatomically–constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: NeuroImage – volume: 8 year: 2018 ident: bib0005 article-title: Function–specific and enhanced brain structural connectivity mapping via joint modeling of diffusion and functional MRI publication-title: Sci. Rep. – volume: 90 start-page: 335 year: 2014 end-page: 347 ident: bib0002 article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks publication-title: NeuroImage – volume: 2 start-page: 156 year: 2018 end-page: 164 ident: bib0022 article-title: Functional alignment with anatomical networks is associated with cognitive flexibility publication-title: Nat. Hum. Behav. – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bib0027 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 62 start-page: 881 year: 2012 end-page: 886 ident: bib0035 article-title: From simple graphs to the connectome: networks in neuroimaging publication-title: NeuroImage – volume: 43 start-page: 554 year: 2008 end-page: 561 ident: bib0031 article-title: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations publication-title: NeuroImage – volume: 34 start-page: 27 issue: 1 year: 2015 ident: 10.1016/j.media.2020.101799_bib0024 article-title: Relating structural and functional connectivity in MRI: a simple model for a complex brain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2341732 – volume: 26 start-page: 3285 year: 2016 ident: 10.1016/j.media.2020.101799_bib0026 article-title: Network-level structure-function relationships in human neocortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw089 – volume: 8 issue: 1 year: 2017 ident: 10.1016/j.media.2020.101799_bib0021 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. doi: 10.1038/s41467-017-01285-x – volume: 172 start-page: 728 year: 2018 ident: 10.1016/j.media.2020.101799_bib0001 article-title: Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.02.016 – start-page: 1 year: 2016 ident: 10.1016/j.media.2020.101799_bib0003 article-title: Human brain networks function in connectome specific hamonic waves publication-title: Nat. Commun. – volume: 5 issue: 7870 year: 2015 ident: 10.1016/j.media.2020.101799_bib0025 article-title: A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks publication-title: Scientific Reports – volume: 59 start-page: 2142 year: 2012 ident: 10.1016/j.media.2020.101799_bib0027 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 43 start-page: 554 year: 2008 ident: 10.1016/j.media.2020.101799_bib0031 article-title: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.07.063 – volume: 106 start-page: 2035 issue: 6 year: 2009 ident: 10.1016/j.media.2020.101799_bib0018 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0811168106 – volume: 10 issue: 4747 year: 2019 ident: 10.1016/j.media.2020.101799_bib0028 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nat. Commun. – volume: 62 start-page: 1924 year: 2012 ident: 10.1016/j.media.2020.101799_bib0032 article-title: Anatomically–constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.media.2020.101799_bib0034 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Map. doi: 10.1002/hbm.10062 – volume: 52 start-page: 1059 year: 2010 ident: 10.1016/j.media.2020.101799_bib0029 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.media.2020.101799_bib0015 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 8 issue: 4741 year: 2018 ident: 10.1016/j.media.2020.101799_bib0005 article-title: Function–specific and enhanced brain structural connectivity mapping via joint modeling of diffusion and functional MRI publication-title: Sci. Rep. – volume: 6 start-page: 298 issue: 4 year: 2016 ident: 10.1016/j.media.2020.101799_bib0023 article-title: A mapping between structural and functional brain networks publication-title: Brain Connect. doi: 10.1089/brain.2015.0408 – volume: 111 start-page: 833 issue: 2 year: 2012 ident: 10.1016/j.media.2020.101799_bib0016 article-title: Resting-brain functional connectivity predicted by analytic measures of network communication publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1315529111 – volume: 104 start-page: 10240 issue: 24 year: 2007 ident: 10.1016/j.media.2020.101799_bib0017 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0701519104 – volume: 13 issue: 1 year: 2017 ident: 10.1016/j.media.2020.101799_bib0020 article-title: Structure–function network mapping and its assessment via persistent homology publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005325 – volume: 119 start-page: 338 year: 2015 ident: 10.1016/j.media.2020.101799_bib0033 article-title: SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.06.092 – volume: 11 start-page: 1 issue: 8 year: 2016 ident: 10.1016/j.media.2020.101799_bib0030 article-title: Analytical operations relate strutural and functional connectivity in the brain publication-title: PLoS One doi: 10.1371/journal.pone.0157292 – volume: 17 start-page: 1 issue: 137 year: 2016 ident: 10.1016/j.media.2020.101799_bib0039 article-title: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation publication-title: J. Mach. Learn. Res. – volume: 3 issue: 5 year: 2008 ident: 10.1016/j.media.2020.101799_bib0014 article-title: On how network architecture determines the dominant patterns of spontaneous neural activity publication-title: PLoS One doi: 10.1371/annotation/2c9bfbcb-6b96-4d77-bfe3-10c5988150b8 – volume: 52 start-page: 766 year: 2010 ident: 10.1016/j.media.2020.101799_bib0019 article-title: Can structure predict function in the human brain? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.071 – volume: 35 start-page: 1459 year: 2007 ident: 10.1016/j.media.2020.101799_bib0037 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 1 start-page: 245 year: 2005 ident: 10.1016/j.media.2020.101799_bib0036 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 20 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.media.2020.101799_bib0040 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 12 start-page: 43 year: 2011 ident: 10.1016/j.media.2020.101799_bib0009 article-title: Emerging concepts for the dynamical organization of resting–state activity in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2961 – volume: 201 year: 2019 ident: 10.1016/j.media.2020.101799_bib0012 article-title: White matter information flow mapping from diffusion MRI and EEEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116017 – volume: 202 year: 2019 ident: 10.1016/j.media.2020.101799_bib0038 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116137 – volume: 194 start-page: 68 year: 2019 ident: 10.1016/j.media.2020.101799_bib0006 article-title: Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.02.039 – volume: 90 start-page: 335 year: 2014 ident: 10.1016/j.media.2020.101799_bib0002 article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.039 – volume: 8 issue: 1411 year: 2018 ident: 10.1016/j.media.2020.101799_bib0004 article-title: Spectral mapping of brain functional connectivity from diffusion imaging publication-title: Sci. Rep. – volume: 116 start-page: 18088 issue: 36 year: 2019 ident: 10.1016/j.media.2020.101799_bib0007 article-title: Awakening Predicting external stimulation to force transitions between different brain states publication-title: PNAS doi: 10.1073/pnas.1905534116 – volume: 62 start-page: 881 year: 2012 ident: 10.1016/j.media.2020.101799_bib0035 article-title: From simple graphs to the connectome: networks in neuroimaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.085 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.media.2020.101799_bib0013 article-title: FreeSurfer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 2 start-page: 156 year: 2018 ident: 10.1016/j.media.2020.101799_bib0022 article-title: Functional alignment with anatomical networks is associated with cognitive flexibility publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-017-0260-9 – volume: 32 start-page: 2200 issue: 12 year: 2013 ident: 10.1016/j.media.2020.101799_bib0011 article-title: A framework for inter–subject prediction of functional connectivity from structural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2276916 – volume: 32 start-page: 3366 issue: 10 year: 2012 ident: 10.1016/j.media.2020.101799_bib0008 article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2523-11.2012 – volume: 33 start-page: 11239 issue: 27 year: 2013 ident: 10.1016/j.media.2020.101799_bib0010 article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1091-13.2013 |
SSID | ssj0007440 |
Score | 2.4628177 |
Snippet | •Structure-function mappings based on eigenmodes are unified in a general framework.•Two new mappings are proposed and their performance is compared to... Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101799 |
SubjectTerms | Brain Brain mapping Computational neuroscience Computer Science Functional anatomy Life Sciences Mapping Medical Imaging Neural networks Neurons and Cognition Structure-function relationships Substantia alba |
Title | A unified framework for multimodal structure–function mapping based on eigenmodes |
URI | https://dx.doi.org/10.1016/j.media.2020.101799 https://www.proquest.com/docview/2486866388 https://www.proquest.com/docview/2440468752 https://inria.hal.science/hal-02925913 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB51txKCA4ICYkupDOJI2NjrOM4xVJQF2l5KUW-W4x9YRLNV2-WIeAfekCdhJnFWgFAPnKw4dmLN2PPNyOPPAM-CsiFGW2ahCk0mS5VnGmE_Kzx6E042Tc-ld3ik5ify7WlxugF7w1kYSqtMtr-36Z21TjXTJM3p-WIxPeYzuqwE8Ye8epxGI9gUiPZ6DJv1m3fzo7VBJg68_vgVz6jDQD7UpXl1BzQwThQ95VDHAftPgBp9okzJvwx2h0L7d-B2ch9Z3Y_wLmyEdgtu_UYquAU3DtN2-T04rtmqXUT0MlkckrAYeqmsSyM8W3r8VE8gu7oIP7__IJAjRbEzS7QNHxlhnGdYEYi0k27NubwPJ_uv3u_Ns3SLQuaknF1lTnDJI9eKWx9sXtqcR5EHqS3Kw1dY8krLKLXjsUF_Q6HdUbpQjS-Uc9LNHsC4XbbhITBVFXnQwYXSYhQiY-VFWfpQePqatWoCYhCdcYlinG66-GKGXLLPppO3IXmbXt4TeL7udN4zbFzfXA06MX9MFIMYcH3Hp6jB9S-IVnteHxiqy0WFUSCffeUT2BkUbNJivjRCokDQM9N6Ak_Wr3EZ0t6KbcNyRW1kLhUGf2L7fwf4CG7SEyWj8GIHxqj-8Bg9nqtmF0YvvvHdNK-xfP3y4EP9C3XmAKM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK7wSBQOBlHCKmJrPDru9GxPT89xQySL7nIBEm6dnn7AEpglwno0_Af_ob_EqumZVQnh4GmSfk2nqroe6eqvAD54aXwIpkh86atEFDJNFJr9JHfoTVhRVRFLb3IoRyfiy2l-ugR73VsYSqtsdX_U6Y22blv6LTX719Np_4gPqFgJ2h_y6lGMlmFVUJkDFOpPP_7keRACXnx8xRMa3kEPNUlezfMMjBKzCDjUIMA-aJ6WzylP8p66bmzQ_gY8a51HNoz7ew5Lvt6E9b8gBTfhyaS9LH8BR0M2r6cBfUwWuhQshj4qa5IIr2YOl4rwsfNv_tfdTzJxxCZ2ZQi04YyRhXMMGzxBdlLNnJuXcLL_-XhvlLQ1FBIrxOA2sRkXPHAluXHepIVJechSL5RBergSv7xUIghleajQ25CodaTKZeVyaa2wgy1YqWe13wYmyzz1yltfGIxBRChdVhTO545WM0b2IOtIp20LME51Li51l0l2oRt6a6K3jvTuwcfFpOuIr_H4cNnxRP8jJhotwOMT3yMHF78gUO3RcKypLc1KjAH54DvvwU7HYN0e5RudCSQI-mVK9eDdohsPId2smNrP5jRGpEJi6Je9-t8NvoWno-PJWI8PDr--hjXqiVkzO7CCouDfoO9zW-02sv0bhGn_vA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Framework+for+Multimodal+Structure-function+Mapping+Based+on+Eigenmodes&rft.jtitle=Medical+image+analysis&rft.au=Deslauriers-Gauthier%2C+Samuel&rft.au=Zucchelli%2C+Mauro&rft.au=Frigo%2C+Matteo&rft.au=Deriche%2C+Rachid&rft.date=2020-12-01&rft.pub=Elsevier&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016%2Fj.media.2020.101799&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02925913v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |