A unified framework for multimodal structure–function mapping based on eigenmodes

•Structure-function mappings based on eigenmodes are unified in a general framework.•Two new mappings are proposed and their performance is compared to existing mappings.•Recently published results are reproduced on 50 subjects of the HCP.•A glass ceiling on the prediction of the functional connecti...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 66; p. 101799
Main Authors Deslauriers-Gauthier, Samuel, Zucchelli, Mauro, Frigo, Matteo, Deriche, Rachid
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2020
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2020.101799

Cover

Abstract •Structure-function mappings based on eigenmodes are unified in a general framework.•Two new mappings are proposed and their performance is compared to existing mappings.•Recently published results are reproduced on 50 subjects of the HCP.•A glass ceiling on the prediction of the functional connectivity is obtained. [Display omitted] Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure–function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure–function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure–function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit.
AbstractList •Structure-function mappings based on eigenmodes are unified in a general framework.•Two new mappings are proposed and their performance is compared to existing mappings.•Recently published results are reproduced on 50 subjects of the HCP.•A glass ceiling on the prediction of the functional connectivity is obtained. [Display omitted] Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure–function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure–function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure–function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit.
Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure-function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure-function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure-function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit.Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure-function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure-function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure-function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit.
Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure–function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure–function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure–function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit.
ArticleNumber 101799
Author Deriche, Rachid
Zucchelli, Mauro
Frigo, Matteo
Deslauriers-Gauthier, Samuel
Author_xml – sequence: 1
  givenname: Samuel
  surname: Deslauriers-Gauthier
  fullname: Deslauriers-Gauthier, Samuel
  email: samuel.deslauriers-gauthier@inria.fr
– sequence: 2
  givenname: Mauro
  surname: Zucchelli
  fullname: Zucchelli, Mauro
– sequence: 3
  givenname: Matteo
  surname: Frigo
  fullname: Frigo, Matteo
– sequence: 4
  givenname: Rachid
  surname: Deriche
  fullname: Deriche, Rachid
BackLink https://inria.hal.science/hal-02925913$$DView record in HAL
BookMark eNp9kbFOHDEQhq2ISAGSJ0izUhoo7vB4vV5vkeKEAkQ6iSJJbfm8Y-Jj177YXlA63iFvmCfBx4YUFFRjjb7Pmpn_iBz44JGQj0CXQEGcbZcj9k4vGWVPnbbr3pBDqAUsJGf1wf83NO_IUUpbSmnLOT0k31bV5J112Fc26hHvQ7ytbIjVOA3ZjaHXQ5VynEyeIv59-GMnb7ILvhr1buf8TbXRqbilge4GfREwvSdvrR4SfvhXj8mPiy_fz68W6-vLr-er9cJwXueFYcDBghSge9S01RQso8ilLrP2XanQSW65NGA3LVBBpRSyEZu-EcZwUx-T0_nfn3pQu-hGHX-roJ26Wq3VvkdZx5oO6jso7MnM7mL4NWHKanTJ4DBoj2FKipVrcCHbhhX00wt0G6boyyaFKhMIUUtZqG6mTAwpRbTKuKz3p8lRu0EBVfto1FY9RaP20ag5muLWL9zn6V-3Ps8WlpveOYwqGYfeFDCiyaoP7lX_Ef2wqlE
CitedBy_id crossref_primary_10_3389_fnins_2022_959557
crossref_primary_10_1016_j_neuroimage_2021_118190
crossref_primary_10_1007_s10548_021_00828_2
crossref_primary_10_1038_s41598_022_17213_z
crossref_primary_10_1162_imag_a_00307
crossref_primary_10_1103_PhysRevE_104_034411
crossref_primary_10_3389_fnimg_2022_815423
crossref_primary_10_1162_netn_a_00400
crossref_primary_10_3389_fnimg_2022_850266
crossref_primary_10_1016_j_nicl_2025_103764
crossref_primary_10_1038_s41583_023_00718_5
crossref_primary_10_1038_s42005_024_01748_w
crossref_primary_10_1038_s42003_024_06669_6
crossref_primary_10_1162_imag_a_00381
crossref_primary_10_1109_TMI_2022_3196007
crossref_primary_10_1007_s00429_024_02796_2
crossref_primary_10_1038_s41467_023_42053_4
crossref_primary_10_1089_brain_2020_0905
crossref_primary_10_1016_j_media_2021_102126
crossref_primary_10_1002_hbm_26554
crossref_primary_10_1016_j_neuroimage_2023_119975
crossref_primary_10_1016_j_neuroimage_2020_117705
crossref_primary_10_1002_alz_14266
crossref_primary_10_3389_fnins_2022_810111
crossref_primary_10_1038_s41583_024_00846_6
crossref_primary_10_1016_j_neuroimage_2022_118919
crossref_primary_10_1007_s00521_024_10703_3
crossref_primary_10_1038_s42003_023_05497_4
crossref_primary_10_1093_cercor_bhab314
crossref_primary_10_1016_j_bpsc_2023_06_008
crossref_primary_10_1016_j_neuron_2023_01_027
Cites_doi 10.1109/TMI.2014.2341732
10.1093/cercor/bhw089
10.1038/s41467-017-01285-x
10.1016/j.neuroimage.2018.02.016
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2008.07.063
10.1073/pnas.0811168106
10.1016/j.neuroimage.2012.06.005
10.1002/hbm.10062
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2013.04.127
10.1089/brain.2015.0408
10.1073/pnas.1315529111
10.1073/pnas.0701519104
10.1371/journal.pcbi.1005325
10.1016/j.neuroimage.2015.06.092
10.1371/journal.pone.0157292
10.1371/annotation/2c9bfbcb-6b96-4d77-bfe3-10c5988150b8
10.1016/j.neuroimage.2010.01.071
10.1016/j.neuroimage.2007.02.016
10.1371/journal.pcbi.0010042
10.1109/42.906424
10.1038/nrn2961
10.1016/j.neuroimage.2019.116017
10.1016/j.neuroimage.2019.116137
10.1016/j.neuroimage.2019.02.039
10.1016/j.neuroimage.2013.12.039
10.1073/pnas.1905534116
10.1016/j.neuroimage.2011.08.085
10.1016/j.neuroimage.2012.01.021
10.1038/s41562-017-0260-9
10.1109/TMI.2013.2276916
10.1523/JNEUROSCI.2523-11.2012
10.1523/JNEUROSCI.1091-13.2013
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Dec 2020
Copyright © 2020. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Dec 2020
– notice: Copyright © 2020. Published by Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1016/j.media.2020.101799
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1361-8423
ExternalDocumentID oai_HAL_hal_02925913v1
10_1016_j_media_2020_101799
S1361841520301638
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ACLOT
~HD
1XC
VOOES
ID FETCH-LOGICAL-c443t-c2141f1861adea07a01f20e48a361d948a1984f48c1fb71060886856bd56cc4c3
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Fri Sep 12 12:53:01 EDT 2025
Sat Sep 27 22:38:36 EDT 2025
Sat Jul 26 03:23:57 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Tue Jul 01 02:49:29 EDT 2025
Fri Feb 23 02:47:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-c2141f1861adea07a01f20e48a361d948a1984f48c1fb71060886856bd56cc4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2781-121X
0000-0002-4643-8417
0000-0002-9365-8017
0000-0002-7109-2884
OpenAccessLink https://inria.hal.science/hal-02925913
PQID 2486866388
PQPubID 2045428
ParticipantIDs hal_primary_oai_HAL_hal_02925913v1
proquest_miscellaneous_2440468752
proquest_journals_2486866388
crossref_citationtrail_10_1016_j_media_2020_101799
crossref_primary_10_1016_j_media_2020_101799
elsevier_sciencedirect_doi_10_1016_j_media_2020_101799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Medical image analysis
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Messé, Benali, Marrelec (bib0024) 2015; 34
Civier, Smith, Yeh, Connelly, Calamante (bib0006) 2019; 194
Goñi, van den Heuvel, Avena-Koenigsberger, de Mendizabal, Betzel, Griffa, Hagmann, Corominas-Murtra, Thiran, Sporns (bib0016) 2012; 111
Saggio, Ritter, Jirsa (bib0030) 2016; 11
Deco, Ponce-Alvarez, Mantini, Romani, Hagmann, Corbetta (bib0010) 2013; 33
Deslauriers-Gauthier, Lina, Butler, Whittingstall, Gilbert, Bernier, Deriche, Descoteaux (bib0012) 2019; 201
Messé, Hutt, Konig, Hilgetag (bib0025) 2015; 5
Honey, Kótter, Breakspear, Sporns (bib0017) 2007; 104
Chu, Parhi, Lenglet (bib0005) 2018; 8
Atasoy, Donnelly, Pearson (bib0003) 2016
Rubinov, Sporns (bib0029) 2010; 52
Sporns, Tonomi, Kötter (bib0036) 2005; 1
Meier, Tewarie, Hillebrand, Douw, van Dijsk, Stufflebeam, Van Mieghem (bib0023) 2016; 6
Smith, Tournier, Calamante, Connelly (bib0033) 2015; 119
Becker, Pequito, Pappas, Miller, Grafton, Bassett, Preciado (bib0004) 2018; 8
Medaglia, Huang, Karuza, Kelkar, Thompson-Schill, Ribeiro, Bassett (bib0022) 2018; 2
Deco, Jirsa, McIntosh (bib0009) 2011; 12
Tournier, Calamante, Connelly (bib0037) 2007; 35
Abdelnour, Dayan, Devinsky, Thesen, Raj (bib0001) 2018; 172
Liang, Wang (bib0020) 2017; 13
Sporns (bib0035) 2012; 62
Smith (bib0034) 2002; 17
Townsend, Koep, Weichwald (bib0039) 2016; 17
Abdelnour, Voss, Raj (bib0002) 2014; 90
Power, Barnes, Snyder, Schlaggar, Petersen (bib0027) 2012; 59
Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bib0018) 2009; 106
Galán (bib0014) 2008; 3
Honey, Thivierge, Sporns (bib0019) 2010; 52
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0015) 2013; 80
Fischl (bib0013) 2012; 62
Deligianni, Varoquaux, Thirion, Sharp, Ledig, Leech, Rueckert (bib0011) 2013; 32
Skudlarsky, Jagannathan, Calhoun, Hampson, Skudlarska, Pearlson (bib0031) 2008; 43
Preti, Van De Ville (bib0028) 2019; 10
Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong, Chamberland, Yeh, Lin, Ji, Reddick, Glass, Qixiang Chen, Feng, Gao, Wu, Ma, Renjie, Li, Westin, Deslauriers-Gauthier, González, Paquette, St-Jean, Girard, Rheault, Sidhu, Tax, Guo, Mesri, Dávid, Froeling, Heemskerk, Leemans, Boré, Pinsard, Bedetti, Desrosiers, Brambati, Doyon, Sarica, Vasta, Cerasa, Quattrone, Yeatman, Khan, Hodges, Alexander, Romascano, Barakovic, Auría, Esteban, Lemkaddem, Thiran, Cetingul, Odry, Mailhé, Nadar, Pizzagalli, Prasad, Villalon-Reina, Galvis, Thompson, Requejo, Laguna, Lacerda, Barrett, Dell’Acqua, Catani, Petit, Caruyer, Daducci, Dyrby, Holland-Letz, Hilgetag, Stieltjes, Descoteaux (bib0021) 2017; 8
Deco, Jirsa (bib0008) 2012; 32
Deco, Cruzat, Cabral, Tagliazucchi, Laufs, Logothetis, Kringelbach (bib0007) 2019; 116
Mišić, Betzel, de Reus, van den Heuvel, Berman, McIntosh, Sporns (bib0026) 2016; 26
Smith, Tournier, Calamante, Connelly (bib0032) 2012; 62
Zhang, Brady, Smith (bib0040) 2001; 20
Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch, Christiaens, Jeurissen, Yeh, Connelly (bib0038) 2019; 202
Preti (10.1016/j.media.2020.101799_bib0028) 2019; 10
Deslauriers-Gauthier (10.1016/j.media.2020.101799_bib0012) 2019; 201
Smith (10.1016/j.media.2020.101799_bib0032) 2012; 62
Smith (10.1016/j.media.2020.101799_bib0033) 2015; 119
Abdelnour (10.1016/j.media.2020.101799_bib0001) 2018; 172
Atasoy (10.1016/j.media.2020.101799_bib0003) 2016
Deco (10.1016/j.media.2020.101799_bib0009) 2011; 12
Honey (10.1016/j.media.2020.101799_bib0018) 2009; 106
Smith (10.1016/j.media.2020.101799_bib0034) 2002; 17
Sporns (10.1016/j.media.2020.101799_bib0035) 2012; 62
Galán (10.1016/j.media.2020.101799_bib0014) 2008; 3
Liang (10.1016/j.media.2020.101799_bib0020) 2017; 13
Medaglia (10.1016/j.media.2020.101799_bib0022) 2018; 2
Glasser (10.1016/j.media.2020.101799_bib0015) 2013; 80
Honey (10.1016/j.media.2020.101799_bib0019) 2010; 52
Zhang (10.1016/j.media.2020.101799_bib0040) 2001; 20
Chu (10.1016/j.media.2020.101799_bib0005) 2018; 8
Deligianni (10.1016/j.media.2020.101799_bib0011) 2013; 32
Honey (10.1016/j.media.2020.101799_bib0017) 2007; 104
Becker (10.1016/j.media.2020.101799_bib0004) 2018; 8
Tournier (10.1016/j.media.2020.101799_bib0037) 2007; 35
Saggio (10.1016/j.media.2020.101799_bib0030) 2016; 11
Sporns (10.1016/j.media.2020.101799_bib0036) 2005; 1
Meier (10.1016/j.media.2020.101799_bib0023) 2016; 6
Messé (10.1016/j.media.2020.101799_bib0025) 2015; 5
Power (10.1016/j.media.2020.101799_bib0027) 2012; 59
Skudlarsky (10.1016/j.media.2020.101799_bib0031) 2008; 43
Messé (10.1016/j.media.2020.101799_bib0024) 2015; 34
Civier (10.1016/j.media.2020.101799_bib0006) 2019; 194
Deco (10.1016/j.media.2020.101799_bib0008) 2012; 32
Goñi (10.1016/j.media.2020.101799_bib0016) 2012; 111
Townsend (10.1016/j.media.2020.101799_bib0039) 2016; 17
Rubinov (10.1016/j.media.2020.101799_bib0029) 2010; 52
Mišić (10.1016/j.media.2020.101799_bib0026) 2016; 26
Tournier (10.1016/j.media.2020.101799_bib0038) 2019; 202
Maier-Hein (10.1016/j.media.2020.101799_bib0021) 2017; 8
Abdelnour (10.1016/j.media.2020.101799_bib0002) 2014; 90
Deco (10.1016/j.media.2020.101799_bib0010) 2013; 33
Fischl (10.1016/j.media.2020.101799_bib0013) 2012; 62
Deco (10.1016/j.media.2020.101799_bib0007) 2019; 116
References_xml – start-page: 1
  year: 2016
  end-page: 10
  ident: bib0003
  article-title: Human brain networks function in connectome specific hamonic waves
  publication-title: Nat. Commun.
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bib0037
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
– volume: 8
  year: 2017
  ident: bib0021
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1
  year: 2016
  end-page: 25
  ident: bib0030
  article-title: Analytical operations relate strutural and functional connectivity in the brain
  publication-title: PLoS One
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0015
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
– volume: 52
  start-page: 766
  year: 2010
  end-page: 776
  ident: bib0019
  article-title: Can structure predict function in the human brain?
  publication-title: NeuroImage
– volume: 33
  start-page: 11239
  year: 2013
  end-page: 11252
  ident: bib0010
  article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: J. Neurosci.
– volume: 116
  start-page: 18088
  year: 2019
  end-page: 18097
  ident: bib0007
  article-title: Awakening Predicting external stimulation to force transitions between different brain states
  publication-title: PNAS
– volume: 32
  start-page: 2200
  year: 2013
  end-page: 2214
  ident: bib0011
  article-title: A framework for inter–subject prediction of functional connectivity from structural networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 201
  year: 2019
  ident: bib0012
  article-title: White matter information flow mapping from diffusion MRI and EEEG
  publication-title: NeuroImage
– volume: 8
  year: 2018
  ident: bib0004
  article-title: Spectral mapping of brain functional connectivity from diffusion imaging
  publication-title: Sci. Rep.
– volume: 1
  start-page: 245
  year: 2005
  end-page: 251
  ident: bib0036
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
– volume: 6
  start-page: 298
  year: 2016
  end-page: 311
  ident: bib0023
  article-title: A mapping between structural and functional brain networks
  publication-title: Brain Connect.
– volume: 106
  start-page: 2035
  year: 2009
  end-page: 2040
  ident: bib0018
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 5
  year: 2015
  ident: bib0025
  article-title: A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks
  publication-title: Scientific Reports
– volume: 17
  start-page: 1
  year: 2016
  end-page: 5
  ident: bib0039
  article-title: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation
  publication-title: J. Mach. Learn. Res.
– volume: 10
  year: 2019
  ident: bib0028
  article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans
  publication-title: Nat. Commun.
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib0029
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
– volume: 3
  year: 2008
  ident: bib0014
  article-title: On how network architecture determines the dominant patterns of spontaneous neural activity
  publication-title: PLoS One
– volume: 13
  year: 2017
  ident: bib0020
  article-title: Structure–function network mapping and its assessment via persistent homology
  publication-title: PLoS Comput. Biol.
– volume: 119
  start-page: 338
  year: 2015
  end-page: 351
  ident: bib0033
  article-title: SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography
  publication-title: NeuroImage
– volume: 12
  start-page: 43
  year: 2011
  end-page: 56
  ident: bib0009
  article-title: Emerging concepts for the dynamical organization of resting–state activity in the brain
  publication-title: Nat. Rev. Neurosci.
– volume: 34
  start-page: 27
  year: 2015
  end-page: 37
  ident: bib0024
  article-title: Relating structural and functional connectivity in MRI: a simple model for a complex brain
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 3285
  year: 2016
  end-page: 3296
  ident: bib0026
  article-title: Network-level structure-function relationships in human neocortex
  publication-title: Cereb. Cortex
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib0034
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Map.
– volume: 194
  start-page: 68
  year: 2019
  end-page: 81
  ident: bib0006
  article-title: Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI?
  publication-title: NeuroImage
– volume: 172
  start-page: 728
  year: 2018
  end-page: 739
  ident: bib0001
  article-title: Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure
  publication-title: NeuroImage
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0013
  article-title: FreeSurfer
  publication-title: NeuroImage
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib0040
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 104
  start-page: 10240
  year: 2007
  end-page: 10245
  ident: bib0017
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc. Natl. Acad. Sci.
– volume: 111
  start-page: 833
  year: 2012
  end-page: 838
  ident: bib0016
  article-title: Resting-brain functional connectivity predicted by analytic measures of network communication
  publication-title: Proc. Natl. Acad. Sci.
– volume: 202
  year: 2019
  ident: bib0038
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: NeuroImage
– volume: 32
  start-page: 3366
  year: 2012
  end-page: 3375
  ident: bib0008
  article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
  publication-title: J. Neurosci.
– volume: 62
  start-page: 1924
  year: 2012
  end-page: 1938
  ident: bib0032
  article-title: Anatomically–constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: NeuroImage
– volume: 8
  year: 2018
  ident: bib0005
  article-title: Function–specific and enhanced brain structural connectivity mapping via joint modeling of diffusion and functional MRI
  publication-title: Sci. Rep.
– volume: 90
  start-page: 335
  year: 2014
  end-page: 347
  ident: bib0002
  article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks
  publication-title: NeuroImage
– volume: 2
  start-page: 156
  year: 2018
  end-page: 164
  ident: bib0022
  article-title: Functional alignment with anatomical networks is associated with cognitive flexibility
  publication-title: Nat. Hum. Behav.
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bib0027
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 62
  start-page: 881
  year: 2012
  end-page: 886
  ident: bib0035
  article-title: From simple graphs to the connectome: networks in neuroimaging
  publication-title: NeuroImage
– volume: 43
  start-page: 554
  year: 2008
  end-page: 561
  ident: bib0031
  article-title: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations
  publication-title: NeuroImage
– volume: 34
  start-page: 27
  issue: 1
  year: 2015
  ident: 10.1016/j.media.2020.101799_bib0024
  article-title: Relating structural and functional connectivity in MRI: a simple model for a complex brain
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2341732
– volume: 26
  start-page: 3285
  year: 2016
  ident: 10.1016/j.media.2020.101799_bib0026
  article-title: Network-level structure-function relationships in human neocortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw089
– volume: 8
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2020.101799_bib0021
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01285-x
– volume: 172
  start-page: 728
  year: 2018
  ident: 10.1016/j.media.2020.101799_bib0001
  article-title: Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.02.016
– start-page: 1
  year: 2016
  ident: 10.1016/j.media.2020.101799_bib0003
  article-title: Human brain networks function in connectome specific hamonic waves
  publication-title: Nat. Commun.
– volume: 5
  issue: 7870
  year: 2015
  ident: 10.1016/j.media.2020.101799_bib0025
  article-title: A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks
  publication-title: Scientific Reports
– volume: 59
  start-page: 2142
  year: 2012
  ident: 10.1016/j.media.2020.101799_bib0027
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 43
  start-page: 554
  year: 2008
  ident: 10.1016/j.media.2020.101799_bib0031
  article-title: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.07.063
– volume: 106
  start-page: 2035
  issue: 6
  year: 2009
  ident: 10.1016/j.media.2020.101799_bib0018
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0811168106
– volume: 10
  issue: 4747
  year: 2019
  ident: 10.1016/j.media.2020.101799_bib0028
  article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans
  publication-title: Nat. Commun.
– volume: 62
  start-page: 1924
  year: 2012
  ident: 10.1016/j.media.2020.101799_bib0032
  article-title: Anatomically–constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.005
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.media.2020.101799_bib0034
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Map.
  doi: 10.1002/hbm.10062
– volume: 52
  start-page: 1059
  year: 2010
  ident: 10.1016/j.media.2020.101799_bib0029
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.media.2020.101799_bib0015
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 8
  issue: 4741
  year: 2018
  ident: 10.1016/j.media.2020.101799_bib0005
  article-title: Function–specific and enhanced brain structural connectivity mapping via joint modeling of diffusion and functional MRI
  publication-title: Sci. Rep.
– volume: 6
  start-page: 298
  issue: 4
  year: 2016
  ident: 10.1016/j.media.2020.101799_bib0023
  article-title: A mapping between structural and functional brain networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2015.0408
– volume: 111
  start-page: 833
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2020.101799_bib0016
  article-title: Resting-brain functional connectivity predicted by analytic measures of network communication
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1315529111
– volume: 104
  start-page: 10240
  issue: 24
  year: 2007
  ident: 10.1016/j.media.2020.101799_bib0017
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0701519104
– volume: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2020.101799_bib0020
  article-title: Structure–function network mapping and its assessment via persistent homology
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005325
– volume: 119
  start-page: 338
  year: 2015
  ident: 10.1016/j.media.2020.101799_bib0033
  article-title: SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.092
– volume: 11
  start-page: 1
  issue: 8
  year: 2016
  ident: 10.1016/j.media.2020.101799_bib0030
  article-title: Analytical operations relate strutural and functional connectivity in the brain
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157292
– volume: 17
  start-page: 1
  issue: 137
  year: 2016
  ident: 10.1016/j.media.2020.101799_bib0039
  article-title: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation
  publication-title: J. Mach. Learn. Res.
– volume: 3
  issue: 5
  year: 2008
  ident: 10.1016/j.media.2020.101799_bib0014
  article-title: On how network architecture determines the dominant patterns of spontaneous neural activity
  publication-title: PLoS One
  doi: 10.1371/annotation/2c9bfbcb-6b96-4d77-bfe3-10c5988150b8
– volume: 52
  start-page: 766
  year: 2010
  ident: 10.1016/j.media.2020.101799_bib0019
  article-title: Can structure predict function in the human brain?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.071
– volume: 35
  start-page: 1459
  year: 2007
  ident: 10.1016/j.media.2020.101799_bib0037
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 1
  start-page: 245
  year: 2005
  ident: 10.1016/j.media.2020.101799_bib0036
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.media.2020.101799_bib0040
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 12
  start-page: 43
  year: 2011
  ident: 10.1016/j.media.2020.101799_bib0009
  article-title: Emerging concepts for the dynamical organization of resting–state activity in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2961
– volume: 201
  year: 2019
  ident: 10.1016/j.media.2020.101799_bib0012
  article-title: White matter information flow mapping from diffusion MRI and EEEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116017
– volume: 202
  year: 2019
  ident: 10.1016/j.media.2020.101799_bib0038
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 194
  start-page: 68
  year: 2019
  ident: 10.1016/j.media.2020.101799_bib0006
  article-title: Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.02.039
– volume: 90
  start-page: 335
  year: 2014
  ident: 10.1016/j.media.2020.101799_bib0002
  article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.039
– volume: 8
  issue: 1411
  year: 2018
  ident: 10.1016/j.media.2020.101799_bib0004
  article-title: Spectral mapping of brain functional connectivity from diffusion imaging
  publication-title: Sci. Rep.
– volume: 116
  start-page: 18088
  issue: 36
  year: 2019
  ident: 10.1016/j.media.2020.101799_bib0007
  article-title: Awakening Predicting external stimulation to force transitions between different brain states
  publication-title: PNAS
  doi: 10.1073/pnas.1905534116
– volume: 62
  start-page: 881
  year: 2012
  ident: 10.1016/j.media.2020.101799_bib0035
  article-title: From simple graphs to the connectome: networks in neuroimaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.085
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.media.2020.101799_bib0013
  article-title: FreeSurfer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 2
  start-page: 156
  year: 2018
  ident: 10.1016/j.media.2020.101799_bib0022
  article-title: Functional alignment with anatomical networks is associated with cognitive flexibility
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-017-0260-9
– volume: 32
  start-page: 2200
  issue: 12
  year: 2013
  ident: 10.1016/j.media.2020.101799_bib0011
  article-title: A framework for inter–subject prediction of functional connectivity from structural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2276916
– volume: 32
  start-page: 3366
  issue: 10
  year: 2012
  ident: 10.1016/j.media.2020.101799_bib0008
  article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2523-11.2012
– volume: 33
  start-page: 11239
  issue: 27
  year: 2013
  ident: 10.1016/j.media.2020.101799_bib0010
  article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1091-13.2013
SSID ssj0007440
Score 2.4628177
Snippet •Structure-function mappings based on eigenmodes are unified in a general framework.•Two new mappings are proposed and their performance is compared to...
Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101799
SubjectTerms Brain
Brain mapping
Computational neuroscience
Computer Science
Functional anatomy
Life Sciences
Mapping
Medical Imaging
Neural networks
Neurons and Cognition
Structure-function relationships
Substantia alba
Title A unified framework for multimodal structure–function mapping based on eigenmodes
URI https://dx.doi.org/10.1016/j.media.2020.101799
https://www.proquest.com/docview/2486866388
https://www.proquest.com/docview/2440468752
https://inria.hal.science/hal-02925913
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB51txKCA4ICYkupDOJI2NjrOM4xVJQF2l5KUW-W4x9YRLNV2-WIeAfekCdhJnFWgFAPnKw4dmLN2PPNyOPPAM-CsiFGW2ahCk0mS5VnGmE_Kzx6E042Tc-ld3ik5ify7WlxugF7w1kYSqtMtr-36Z21TjXTJM3p-WIxPeYzuqwE8Ye8epxGI9gUiPZ6DJv1m3fzo7VBJg68_vgVz6jDQD7UpXl1BzQwThQ95VDHAftPgBp9okzJvwx2h0L7d-B2ch9Z3Y_wLmyEdgtu_UYquAU3DtN2-T04rtmqXUT0MlkckrAYeqmsSyM8W3r8VE8gu7oIP7__IJAjRbEzS7QNHxlhnGdYEYi0k27NubwPJ_uv3u_Ns3SLQuaknF1lTnDJI9eKWx9sXtqcR5EHqS3Kw1dY8krLKLXjsUF_Q6HdUbpQjS-Uc9LNHsC4XbbhITBVFXnQwYXSYhQiY-VFWfpQePqatWoCYhCdcYlinG66-GKGXLLPppO3IXmbXt4TeL7udN4zbFzfXA06MX9MFIMYcH3Hp6jB9S-IVnteHxiqy0WFUSCffeUT2BkUbNJivjRCokDQM9N6Ak_Wr3EZ0t6KbcNyRW1kLhUGf2L7fwf4CG7SEyWj8GIHxqj-8Bg9nqtmF0YvvvHdNK-xfP3y4EP9C3XmAKM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK7wSBQOBlHCKmJrPDru9GxPT89xQySL7nIBEm6dnn7AEpglwno0_Af_ob_EqumZVQnh4GmSfk2nqroe6eqvAD54aXwIpkh86atEFDJNFJr9JHfoTVhRVRFLb3IoRyfiy2l-ugR73VsYSqtsdX_U6Y22blv6LTX719Np_4gPqFgJ2h_y6lGMlmFVUJkDFOpPP_7keRACXnx8xRMa3kEPNUlezfMMjBKzCDjUIMA-aJ6WzylP8p66bmzQ_gY8a51HNoz7ew5Lvt6E9b8gBTfhyaS9LH8BR0M2r6cBfUwWuhQshj4qa5IIr2YOl4rwsfNv_tfdTzJxxCZ2ZQi04YyRhXMMGzxBdlLNnJuXcLL_-XhvlLQ1FBIrxOA2sRkXPHAluXHepIVJechSL5RBergSv7xUIghleajQ25CodaTKZeVyaa2wgy1YqWe13wYmyzz1yltfGIxBRChdVhTO545WM0b2IOtIp20LME51Li51l0l2oRt6a6K3jvTuwcfFpOuIr_H4cNnxRP8jJhotwOMT3yMHF78gUO3RcKypLc1KjAH54DvvwU7HYN0e5RudCSQI-mVK9eDdohsPId2smNrP5jRGpEJi6Je9-t8NvoWno-PJWI8PDr--hjXqiVkzO7CCouDfoO9zW-02sv0bhGn_vA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Framework+for+Multimodal+Structure-function+Mapping+Based+on+Eigenmodes&rft.jtitle=Medical+image+analysis&rft.au=Deslauriers-Gauthier%2C+Samuel&rft.au=Zucchelli%2C+Mauro&rft.au=Frigo%2C+Matteo&rft.au=Deriche%2C+Rachid&rft.date=2020-12-01&rft.pub=Elsevier&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016%2Fj.media.2020.101799&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02925913v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon