Dissociable Contributions of Basolateral Amygdala and Ventrolateral Orbitofrontal Cortex to Flexible Learning Under Uncertainty
Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral...
Saved in:
Published in | The Journal of neuroscience Vol. 44; no. 2; p. e0622232023 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
10.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.0622-23.2023 |
Cover
Abstract | Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment. |
---|---|
AbstractList | Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment. Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment. |
Author | Aguirre, C. G. Pannu, J. Izquierdo, A. Tejada, A. N. Munier, J. J. Gomez, M. Spigelman, I. Soltani, A. O’Neill, P. R. Woo, J. H. Perez, J. Ye, T. Romero-Sosa, J. L. Goldfarb, M. Das, K. Evans, K. Rivera, Z. M. |
AuthorAffiliation | 3 Section of Biosystems and Function, School of Dentistry, University of California , Los Angeles, California 90095 1 Department of Psychology, University of California , Los Angeles, California 90095 2 Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire 03755 4 Shirley and Stefan Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles , Los Angeles, California 90095 |
AuthorAffiliation_xml | – name: 1 Department of Psychology, University of California , Los Angeles, California 90095 – name: 4 Shirley and Stefan Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles , Los Angeles, California 90095 – name: 2 Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire 03755 – name: 3 Section of Biosystems and Function, School of Dentistry, University of California , Los Angeles, California 90095 |
Author_xml | – sequence: 1 givenname: C. G. surname: Aguirre fullname: Aguirre, C. G. – sequence: 2 givenname: J. H. orcidid: 0009-0003-3534-206X surname: Woo fullname: Woo, J. H. – sequence: 3 givenname: J. L. surname: Romero-Sosa fullname: Romero-Sosa, J. L. – sequence: 4 givenname: Z. M. surname: Rivera fullname: Rivera, Z. M. – sequence: 5 givenname: A. N. surname: Tejada fullname: Tejada, A. N. – sequence: 6 givenname: J. J. surname: Munier fullname: Munier, J. J. – sequence: 7 givenname: J. surname: Perez fullname: Perez, J. – sequence: 8 givenname: M. surname: Goldfarb fullname: Goldfarb, M. – sequence: 9 givenname: K. surname: Das fullname: Das, K. – sequence: 10 givenname: M. surname: Gomez fullname: Gomez, M. – sequence: 11 givenname: T. surname: Ye fullname: Ye, T. – sequence: 12 givenname: J. surname: Pannu fullname: Pannu, J. – sequence: 13 givenname: K. surname: Evans fullname: Evans, K. – sequence: 14 givenname: P. R. surname: O’Neill fullname: O’Neill, P. R. – sequence: 15 givenname: I. surname: Spigelman fullname: Spigelman, I. – sequence: 16 givenname: A. orcidid: 0000-0003-4386-8486 surname: Soltani fullname: Soltani, A. – sequence: 17 givenname: A. orcidid: 0000-0001-9897-2091 surname: Izquierdo fullname: Izquierdo, A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37968116$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFV6gisWGTwT-Jk0hIqIQWikaMBAxb69pxBlceu7Ud1Fnx6jhqGUE3bGzZ97tH59rnBB057zRCZwQvSU3Z60-fLzZf1l_7qyXmlJaULSmm7Ala5GpX0gqTI7TAtMElr5rqGJ3EeI0xbjBpnqFj1nS8JYQv0K_3JkavDEiri967FIyckvEuFn4s3kH0FpIOYIvz3X47gIUC3FB815k8lNZBmuTHkNvzqfch6bsi-eLS6jszC680BGfctti4QYe8Kh0SGJf2z9HTEWzULx72U7S5vPjWfyxX6w9X_fmqVFXFUimHgbR1NaixAqYBiOZtpaQcO9lUDKhknMuaS4a54pJz1ipgA68JMCJBE3aK3t7r3kxypwc1-wcrboLZQdgLD0b8W3Hmh9j6n4LgluO6YVnh1YNC8LeTjknsTFTaWnDaT1HQtsNNBjuc0ZeP0Gs_BZfnE7QjdX747DNTZ39bOnj58zkZ4PeACj7GoMcDQrCYUyAOKRBzCkS-mVOQG988alQmwfyreTRj_9f-G_gXvOA |
CitedBy_id | crossref_primary_10_1093_cercor_bhae135 |
Cites_doi | 10.1038/s41386-018-0179-5 10.1038/s41593-019-0374-7 10.1093/cercor/bhaa277 10.1016/j.neuroscience.2016.03.034 10.17179/excli2021-4072 10.1523/JNEUROSCI.0486-17.2017 10.1016/j.neubiorev.2020.10.029 10.1523/JNEUROSCI.2097-21.2022 10.1037/bne0000442 10.7554/eLife.68617 10.1093/cercor/bhz144 10.1523/JNEUROSCI.2272-08.2008 10.1038/s41593-019-0408-1 10.1038/s41386-021-01123-1 10.1038/s41593-022-01216-0 10.1523/JNEUROSCI.5781-09.2010 10.1196/annals.1401.001 10.3389/fnins.2015.00230 10.7554/eLife.27483 10.1037/a0017734 10.1101/061507 10.1016/j.cub.2021.09.037 10.1093/cercor/bhaa241 10.1016/j.nlm.2004.10.003 10.1196/annals.1401.014 10.1523/JNEUROSCI.1678-17.2017 10.1016/j.nlm.2022.107663 10.1016/j.xpro.2021.100306 10.3758/s13420-018-0320-7 10.1016/j.neubiorev.2015.08.017 10.1152/jn.00968.2003 10.1016/0014-4886(72)90030-1 10.1016/j.bbr.2007.02.005 10.1523/JNEUROSCI.1594-15.2015 10.1016/j.bbr.2008.10.005 10.1523/JNEUROSCI.5281-06.2007 10.1002/jnr.23810 10.1523/JNEUROSCI.1713-16.2016 10.1101/lm.048264.118 10.1007/s00213-020-05454-7 10.1038/nn1954 10.1523/JNEUROSCI.2393-12.2012 10.1111/ejn.12476 10.1523/JNEUROSCI.2548-19.2020 10.1037/bne0000474 10.1038/npp.2017.139 10.1038/s41583-019-0180-y 10.1523/JNEUROSCI.4507-04.2005 10.1016/j.neuroscience.2021.02.017 10.1038/s41467-019-12725-1 10.1038/nature14188 10.1016/j.neuron.2016.09.025 10.1038/s41593-022-01229-9 10.1523/JNEUROSCI.3366-15.2016 10.1101/lm.55203 10.1523/JNEUROSCI.4942-12.2013 10.1016/j.neuron.2019.05.042 10.1016/j.beproc.2022.104663 10.1523/JNEUROSCI.0631-17.2017 10.1016/j.biopsych.2012.05.023 10.1093/oons/kvad00 |
ContentType | Journal Article |
Copyright | Copyright © 2024 the authors. Copyright Society for Neuroscience Jan 10, 2024 Copyright © 2024 the authors 2024 |
Copyright_xml | – notice: Copyright © 2024 the authors. – notice: Copyright Society for Neuroscience Jan 10, 2024 – notice: Copyright © 2024 the authors 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1523/JNEUROSCI.0622-23.2023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts Animal Behavior Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
ExternalDocumentID | PMC10860573 37968116 10_1523_JNEUROSCI_0622_23_2023 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R01 AA024527 – fundername: NIAAA NIH HHS grantid: F31 AA028183 – fundername: NINDS NIH HHS grantid: T32 NS115753 – fundername: NIDA NIH HHS grantid: K01 DA042219 – fundername: NIMH NIH HHS grantid: R21 MH122800 – fundername: NIDA NIH HHS grantid: R01 DA047870 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: T32 NS115753 – fundername: HHS | NIH | National Institute on Drug Abuse (NIDA) grantid: R01 DA047870; K01 DA042219 – fundername: HHS | NIH | National Institute of Mental Health (NIMH) grantid: R21 MH122800 – fundername: HHS | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA) grantid: R01 AA024527; F31 AA028183 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADHGD AENEX AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M YBU YHG YKV YNH YSK AFHIN AIZTS CGR CUY CVF ECM EIF NPM RHF 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c443t-bdd1854dcf4a3eaa1e684cbbf9b743a2b366b56b306c6b6638ca3d651a31bae13 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:32:27 EDT 2025 Thu Sep 04 19:47:20 EDT 2025 Mon Jun 30 16:54:46 EDT 2025 Wed Feb 19 01:58:38 EST 2025 Thu Apr 24 23:08:19 EDT 2025 Tue Jul 01 00:59:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deterministic reward learning DREADDs stimulus learning action learning probabilistic |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2024 the authors. SfN exclusive license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-bdd1854dcf4a3eaa1e684cbbf9b743a2b366b56b306c6b6638ca3d651a31bae13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 C.G.A. and J.H.W. are the co-first authors. The authors declare no competing financial interests. This work was supported by UCLA’s Division of Life Sciences Retention Fund (A.I.); National Institutes of Health Grants R01 DA047870 (A.I. and A.S.), R21 MH122800 (A.I. and Blair), R01AA024527 (I.S.), K01 DA042219 (P.O.), and F31 AA028183 (J.M.); the NSF GRFP, Cota-Robles Fellowship, and Charles E. and Sue K. Young Fellowship (C.A.); Ursula Mandel Fellowship and Graduate Research Mentorship Award (J.R.); and the Training Program in Neurotechnology Translation T32 NS115753 (T.Y.). We acknowledge the Staglin Center for Brain and Behavioral Health for additional support related to fluorescence microscopy. We thank P. Ganupuru for his assistance with brain collection. We also thank the NIDA Drug Supply program for the supply of clozapine-N-oxide. Author contributions: C.G.A. and A.I. designed research; C.G.A., J.L.R-S., Z.M.R., A.N.T., J.J.M., J.P., M.G., K.D., M.G., T.Y., J.P., and K.E. performed research; C.G.A., J.H.W., J.L.R-S., J.J.M., P.R.O., A.S., and A.I. analyzed data; C.G.A., J.H.W., and A.I. wrote the paper. |
ORCID | 0000-0003-4386-8486 0000-0001-9897-2091 0009-0003-3534-206X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10860573 |
PMID | 37968116 |
PQID | 2915116306 |
PQPubID | 2049535 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10860573 proquest_miscellaneous_2890757390 proquest_journals_2915116306 pubmed_primary_37968116 crossref_primary_10_1523_JNEUROSCI_0622_23_2023 crossref_citationtrail_10_1523_JNEUROSCI_0622_23_2023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-10 20240110 |
PublicationDateYYYYMMDD | 2024-01-10 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2024 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2025010215350798000_44.2.e0622232023.6 2025010215350798000_44.2.e0622232023.50 2025010215350798000_44.2.e0622232023.7 2025010215350798000_44.2.e0622232023.8 2025010215350798000_44.2.e0622232023.52 2025010215350798000_44.2.e0622232023.9 2025010215350798000_44.2.e0622232023.51 2025010215350798000_44.2.e0622232023.10 2025010215350798000_44.2.e0622232023.54 2025010215350798000_44.2.e0622232023.53 2025010215350798000_44.2.e0622232023.12 2025010215350798000_44.2.e0622232023.56 2025010215350798000_44.2.e0622232023.11 2025010215350798000_44.2.e0622232023.55 2025010215350798000_44.2.e0622232023.1 2025010215350798000_44.2.e0622232023.2 2025010215350798000_44.2.e0622232023.3 2025010215350798000_44.2.e0622232023.4 2025010215350798000_44.2.e0622232023.5 2025010215350798000_44.2.e0622232023.14 2025010215350798000_44.2.e0622232023.58 2025010215350798000_44.2.e0622232023.13 2025010215350798000_44.2.e0622232023.57 2025010215350798000_44.2.e0622232023.16 2025010215350798000_44.2.e0622232023.15 2025010215350798000_44.2.e0622232023.59 2025010215350798000_44.2.e0622232023.18 2025010215350798000_44.2.e0622232023.17 2025010215350798000_44.2.e0622232023.19 2025010215350798000_44.2.e0622232023.41 2025010215350798000_44.2.e0622232023.40 2025010215350798000_44.2.e0622232023.43 2025010215350798000_44.2.e0622232023.42 2025010215350798000_44.2.e0622232023.45 2025010215350798000_44.2.e0622232023.44 2025010215350798000_44.2.e0622232023.47 2025010215350798000_44.2.e0622232023.46 2025010215350798000_44.2.e0622232023.49 2025010215350798000_44.2.e0622232023.48 2025010215350798000_44.2.e0622232023.30 2025010215350798000_44.2.e0622232023.32 2025010215350798000_44.2.e0622232023.31 2025010215350798000_44.2.e0622232023.34 2025010215350798000_44.2.e0622232023.33 2025010215350798000_44.2.e0622232023.36 2025010215350798000_44.2.e0622232023.35 2025010215350798000_44.2.e0622232023.38 2025010215350798000_44.2.e0622232023.37 2025010215350798000_44.2.e0622232023.39 2025010215350798000_44.2.e0622232023.61 2025010215350798000_44.2.e0622232023.60 2025010215350798000_44.2.e0622232023.21 2025010215350798000_44.2.e0622232023.20 2025010215350798000_44.2.e0622232023.23 2025010215350798000_44.2.e0622232023.22 2025010215350798000_44.2.e0622232023.25 2025010215350798000_44.2.e0622232023.24 2025010215350798000_44.2.e0622232023.27 2025010215350798000_44.2.e0622232023.26 2025010215350798000_44.2.e0622232023.29 2025010215350798000_44.2.e0622232023.28 39715690 - J Neurosci. 2024 Dec 23:e2029242024. doi: 10.1523/JNEUROSCI.2029-24.2024 37066321 - bioRxiv. 2023 Oct 16:2023.04.03.535471. doi: 10.1101/2023.04.03.535471 |
References_xml | – ident: 2025010215350798000_44.2.e0622232023.17 doi: 10.1038/s41386-018-0179-5 – ident: 2025010215350798000_44.2.e0622232023.33 doi: 10.1038/s41593-019-0374-7 – ident: 2025010215350798000_44.2.e0622232023.1 doi: 10.1093/cercor/bhaa277 – ident: 2025010215350798000_44.2.e0622232023.2 doi: 10.1016/j.neuroscience.2016.03.034 – ident: 2025010215350798000_44.2.e0622232023.16 doi: 10.17179/excli2021-4072 – ident: 2025010215350798000_44.2.e0622232023.32 doi: 10.1523/JNEUROSCI.0486-17.2017 – ident: 2025010215350798000_44.2.e0622232023.22 doi: 10.1016/j.neubiorev.2020.10.029 – ident: 2025010215350798000_44.2.e0622232023.28 doi: 10.1523/JNEUROSCI.2097-21.2022 – ident: 2025010215350798000_44.2.e0622232023.5 doi: 10.1037/bne0000442 – ident: 2025010215350798000_44.2.e0622232023.46 doi: 10.7554/eLife.68617 – ident: 2025010215350798000_44.2.e0622232023.21 doi: 10.1093/cercor/bhz144 – ident: 2025010215350798000_44.2.e0622232023.43 doi: 10.1523/JNEUROSCI.2272-08.2008 – ident: 2025010215350798000_44.2.e0622232023.34 doi: 10.1038/s41593-019-0408-1 – ident: 2025010215350798000_44.2.e0622232023.48 doi: 10.1038/s41386-021-01123-1 – ident: 2025010215350798000_44.2.e0622232023.11 doi: 10.1038/s41593-022-01216-0 – ident: 2025010215350798000_44.2.e0622232023.40 doi: 10.1523/JNEUROSCI.5781-09.2010 – ident: 2025010215350798000_44.2.e0622232023.45 doi: 10.1196/annals.1401.001 – ident: 2025010215350798000_44.2.e0622232023.56 doi: 10.3389/fnins.2015.00230 – ident: 2025010215350798000_44.2.e0622232023.50 doi: 10.7554/eLife.27483 – ident: 2025010215350798000_44.2.e0622232023.9 doi: 10.1037/a0017734 – ident: 2025010215350798000_44.2.e0622232023.38 doi: 10.1101/061507 – ident: 2025010215350798000_44.2.e0622232023.35 doi: 10.1016/j.cub.2021.09.037 – ident: 2025010215350798000_44.2.e0622232023.53 doi: 10.1093/cercor/bhaa241 – ident: 2025010215350798000_44.2.e0622232023.31 doi: 10.1016/j.nlm.2004.10.003 – ident: 2025010215350798000_44.2.e0622232023.49 doi: 10.1196/annals.1401.014 – ident: 2025010215350798000_44.2.e0622232023.23 doi: 10.1523/JNEUROSCI.1678-17.2017 – ident: 2025010215350798000_44.2.e0622232023.30 doi: 10.1016/j.nlm.2022.107663 – ident: 2025010215350798000_44.2.e0622232023.3 doi: 10.1016/j.xpro.2021.100306 – ident: 2025010215350798000_44.2.e0622232023.59 doi: 10.3758/s13420-018-0320-7 – ident: 2025010215350798000_44.2.e0622232023.57 doi: 10.1016/j.neubiorev.2015.08.017 – ident: 2025010215350798000_44.2.e0622232023.24 doi: 10.1152/jn.00968.2003 – ident: 2025010215350798000_44.2.e0622232023.29 doi: 10.1016/0014-4886(72)90030-1 – ident: 2025010215350798000_44.2.e0622232023.8 doi: 10.1016/j.bbr.2007.02.005 – ident: 2025010215350798000_44.2.e0622232023.27 doi: 10.1523/JNEUROSCI.1594-15.2015 – ident: 2025010215350798000_44.2.e0622232023.7 doi: 10.1016/j.bbr.2008.10.005 – ident: 2025010215350798000_44.2.e0622232023.54 doi: 10.1523/JNEUROSCI.5281-06.2007 – ident: 2025010215350798000_44.2.e0622232023.36 doi: 10.1002/jnr.23810 – ident: 2025010215350798000_44.2.e0622232023.58 doi: 10.1523/JNEUROSCI.1713-16.2016 – ident: 2025010215350798000_44.2.e0622232023.39 doi: 10.1101/lm.048264.118 – ident: 2025010215350798000_44.2.e0622232023.55 doi: 10.1007/s00213-020-05454-7 – ident: 2025010215350798000_44.2.e0622232023.6 doi: 10.1038/nn1954 – ident: 2025010215350798000_44.2.e0622232023.41 doi: 10.1523/JNEUROSCI.2393-12.2012 – ident: 2025010215350798000_44.2.e0622232023.52 doi: 10.1111/ejn.12476 – ident: 2025010215350798000_44.2.e0622232023.20 doi: 10.1523/JNEUROSCI.2548-19.2020 – ident: 2025010215350798000_44.2.e0622232023.19 doi: 10.1037/bne0000474 – ident: 2025010215350798000_44.2.e0622232023.61 doi: 10.1038/npp.2017.139 – ident: 2025010215350798000_44.2.e0622232023.47 doi: 10.1038/s41583-019-0180-y – ident: 2025010215350798000_44.2.e0622232023.10 doi: 10.1523/JNEUROSCI.4507-04.2005 – ident: 2025010215350798000_44.2.e0622232023.4 doi: 10.1016/j.neuroscience.2021.02.017 – ident: 2025010215350798000_44.2.e0622232023.51 doi: 10.1038/s41467-019-12725-1 – ident: 2025010215350798000_44.2.e0622232023.26 doi: 10.1038/nature14188 – ident: 2025010215350798000_44.2.e0622232023.12 doi: 10.1016/j.neuron.2016.09.025 – ident: 2025010215350798000_44.2.e0622232023.13 doi: 10.1038/s41593-022-01229-9 – ident: 2025010215350798000_44.2.e0622232023.14 doi: 10.1523/JNEUROSCI.3366-15.2016 – ident: 2025010215350798000_44.2.e0622232023.44 doi: 10.1101/lm.55203 – ident: 2025010215350798000_44.2.e0622232023.25 doi: 10.1523/JNEUROSCI.4942-12.2013 – ident: 2025010215350798000_44.2.e0622232023.18 doi: 10.1016/j.neuron.2019.05.042 – ident: 2025010215350798000_44.2.e0622232023.37 doi: 10.1016/j.beproc.2022.104663 – ident: 2025010215350798000_44.2.e0622232023.42 doi: 10.1523/JNEUROSCI.0631-17.2017 – ident: 2025010215350798000_44.2.e0622232023.15 doi: 10.1016/j.biopsych.2012.05.023 – ident: 2025010215350798000_44.2.e0622232023.60 doi: 10.1093/oons/kvad00 – reference: 39715690 - J Neurosci. 2024 Dec 23:e2029242024. doi: 10.1523/JNEUROSCI.2029-24.2024 – reference: 37066321 - bioRxiv. 2023 Oct 16:2023.04.03.535471. doi: 10.1101/2023.04.03.535471 |
SSID | ssj0007017 |
Score | 2.4681249 |
Snippet | Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0622232023 |
SubjectTerms | Amygdala Animals Basolateral Nuclear Complex - physiology Cortex Drug delivery Female Learning Male Mental disorders Prefrontal Cortex - physiology Rats Rats, Long-Evans Reversal learning Reversal Learning - physiology Substance use Uncertainty |
Title | Dissociable Contributions of Basolateral Amygdala and Ventrolateral Orbitofrontal Cortex to Flexible Learning Under Uncertainty |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37968116 https://www.proquest.com/docview/2915116306 https://www.proquest.com/docview/2890757390 https://pubmed.ncbi.nlm.nih.gov/PMC10860573 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSGMhIiJcpXS6OkzyOsWpMZRNbCxUvkZ04o9KaTF0qMV7465zjODeoxOAlquwkrvJ9cY59zvkOIW8cO_GVE0VWkkW2xVyWWQKruSvGFH6O4SON-c4fT_jRjB3P_flgcNWJWlqXcpT82JhX8j-oQhvgilmy_4Bsc1NogN-ALxwBYTjeCuP3i-rhYvYTykzVxat0eMY7AYMLTDAGEJY3F6m41PlXu5-Vjk43XacrCS91hjoGeh9hVarvaJCOUSkTbzypN090iSQ4JlUUQdlzCLcpZtq47chktpy6WC9W1ZZ3p6TXl6Ly_bRZEmfFUq0K67y4ruJ4d5v96TMMItGNX80urtmvcDHGxTKRq2aKdbVPp2KU2tBm5uVKF9Lwz9043ftaduL4BKMezw8-jGwOS2vXG2FN-PYDVzv1T07j8WwyiaeH8-kdctcNwNpCN_6nVl8-sHWN5ub_mJxyGGdv8yh9c-aPNcrvobYd22X6gNw3uND9ikEPyUDlj8j2fi7KYnlD31IdBqz9K9vkZ4dUtEcqWmS0Qypak4oCqWiPVLRHKlqRipYFrUlFa1JRTSraIdVjMhsfTg-OLFOlw0oY80pLpinYfCxNMiY8JYSjeMgSKbNIgnUqXOlxLn0uYW2acAmPPEyEl3LfEZ4jhXK8J2QrL3L1jFC4lvkBSkRmHuOMS1hdsMR2RBpkaajEkPj1w44TI2GPlVQuY1zKAkhxA1KMIMXQgiANyV5z3VUl4vLXK3ZqLGPzwl_HbgTmMaxfbD4kr5tumI7RxyZyVazhnDACIzzwIntInlbQN0N6QcRDuMGQhD1SNCeg1Hu_J19805LvWA8NpUuf32LgF-Re-97tkK1ytVYvwXIu5StN9l_j3cb0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissociable+Contributions+of+Basolateral+Amygdala+and+Ventrolateral+Orbitofrontal+Cortex+to+Flexible+Learning+Under+Uncertainty&rft.jtitle=The+Journal+of+neuroscience&rft.au=Aguirre%2C+C+G&rft.au=Woo%2C+J+H&rft.au=Romero-Sosa%2C+J+L&rft.au=Rivera%2C+Z+M&rft.date=2024-01-10&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=44&rft.issue=2&rft_id=info:doi/10.1523%2FJNEUROSCI.0622-23.2023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |