Dissociable Contributions of Basolateral Amygdala and Ventrolateral Orbitofrontal Cortex to Flexible Learning Under Uncertainty

Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 44; no. 2; p. e0622232023
Main Authors Aguirre, C. G., Woo, J. H., Romero-Sosa, J. L., Rivera, Z. M., Tejada, A. N., Munier, J. J., Perez, J., Goldfarb, M., Das, K., Gomez, M., Ye, T., Pannu, J., Evans, K., O’Neill, P. R., Spigelman, I., Soltani, A., Izquierdo, A.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 10.01.2024
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.0622-23.2023

Cover

Abstract Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.
AbstractList Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.
Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.
Author Aguirre, C. G.
Pannu, J.
Izquierdo, A.
Tejada, A. N.
Munier, J. J.
Gomez, M.
Spigelman, I.
Soltani, A.
O’Neill, P. R.
Woo, J. H.
Perez, J.
Ye, T.
Romero-Sosa, J. L.
Goldfarb, M.
Das, K.
Evans, K.
Rivera, Z. M.
AuthorAffiliation 3 Section of Biosystems and Function, School of Dentistry, University of California , Los Angeles, California 90095
1 Department of Psychology, University of California , Los Angeles, California 90095
2 Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire 03755
4 Shirley and Stefan Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles , Los Angeles, California 90095
AuthorAffiliation_xml – name: 1 Department of Psychology, University of California , Los Angeles, California 90095
– name: 4 Shirley and Stefan Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles , Los Angeles, California 90095
– name: 2 Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire 03755
– name: 3 Section of Biosystems and Function, School of Dentistry, University of California , Los Angeles, California 90095
Author_xml – sequence: 1
  givenname: C. G.
  surname: Aguirre
  fullname: Aguirre, C. G.
– sequence: 2
  givenname: J. H.
  orcidid: 0009-0003-3534-206X
  surname: Woo
  fullname: Woo, J. H.
– sequence: 3
  givenname: J. L.
  surname: Romero-Sosa
  fullname: Romero-Sosa, J. L.
– sequence: 4
  givenname: Z. M.
  surname: Rivera
  fullname: Rivera, Z. M.
– sequence: 5
  givenname: A. N.
  surname: Tejada
  fullname: Tejada, A. N.
– sequence: 6
  givenname: J. J.
  surname: Munier
  fullname: Munier, J. J.
– sequence: 7
  givenname: J.
  surname: Perez
  fullname: Perez, J.
– sequence: 8
  givenname: M.
  surname: Goldfarb
  fullname: Goldfarb, M.
– sequence: 9
  givenname: K.
  surname: Das
  fullname: Das, K.
– sequence: 10
  givenname: M.
  surname: Gomez
  fullname: Gomez, M.
– sequence: 11
  givenname: T.
  surname: Ye
  fullname: Ye, T.
– sequence: 12
  givenname: J.
  surname: Pannu
  fullname: Pannu, J.
– sequence: 13
  givenname: K.
  surname: Evans
  fullname: Evans, K.
– sequence: 14
  givenname: P. R.
  surname: O’Neill
  fullname: O’Neill, P. R.
– sequence: 15
  givenname: I.
  surname: Spigelman
  fullname: Spigelman, I.
– sequence: 16
  givenname: A.
  orcidid: 0000-0003-4386-8486
  surname: Soltani
  fullname: Soltani, A.
– sequence: 17
  givenname: A.
  orcidid: 0000-0001-9897-2091
  surname: Izquierdo
  fullname: Izquierdo, A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37968116$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFV6gisWGTwT-Jk0hIqIQWikaMBAxb69pxBlceu7Ud1Fnx6jhqGUE3bGzZ97tH59rnBB057zRCZwQvSU3Z60-fLzZf1l_7qyXmlJaULSmm7Ala5GpX0gqTI7TAtMElr5rqGJ3EeI0xbjBpnqFj1nS8JYQv0K_3JkavDEiri967FIyckvEuFn4s3kH0FpIOYIvz3X47gIUC3FB815k8lNZBmuTHkNvzqfch6bsi-eLS6jszC680BGfctti4QYe8Kh0SGJf2z9HTEWzULx72U7S5vPjWfyxX6w9X_fmqVFXFUimHgbR1NaixAqYBiOZtpaQcO9lUDKhknMuaS4a54pJz1ipgA68JMCJBE3aK3t7r3kxypwc1-wcrboLZQdgLD0b8W3Hmh9j6n4LgluO6YVnh1YNC8LeTjknsTFTaWnDaT1HQtsNNBjuc0ZeP0Gs_BZfnE7QjdX747DNTZ39bOnj58zkZ4PeACj7GoMcDQrCYUyAOKRBzCkS-mVOQG988alQmwfyreTRj_9f-G_gXvOA
CitedBy_id crossref_primary_10_1093_cercor_bhae135
Cites_doi 10.1038/s41386-018-0179-5
10.1038/s41593-019-0374-7
10.1093/cercor/bhaa277
10.1016/j.neuroscience.2016.03.034
10.17179/excli2021-4072
10.1523/JNEUROSCI.0486-17.2017
10.1016/j.neubiorev.2020.10.029
10.1523/JNEUROSCI.2097-21.2022
10.1037/bne0000442
10.7554/eLife.68617
10.1093/cercor/bhz144
10.1523/JNEUROSCI.2272-08.2008
10.1038/s41593-019-0408-1
10.1038/s41386-021-01123-1
10.1038/s41593-022-01216-0
10.1523/JNEUROSCI.5781-09.2010
10.1196/annals.1401.001
10.3389/fnins.2015.00230
10.7554/eLife.27483
10.1037/a0017734
10.1101/061507
10.1016/j.cub.2021.09.037
10.1093/cercor/bhaa241
10.1016/j.nlm.2004.10.003
10.1196/annals.1401.014
10.1523/JNEUROSCI.1678-17.2017
10.1016/j.nlm.2022.107663
10.1016/j.xpro.2021.100306
10.3758/s13420-018-0320-7
10.1016/j.neubiorev.2015.08.017
10.1152/jn.00968.2003
10.1016/0014-4886(72)90030-1
10.1016/j.bbr.2007.02.005
10.1523/JNEUROSCI.1594-15.2015
10.1016/j.bbr.2008.10.005
10.1523/JNEUROSCI.5281-06.2007
10.1002/jnr.23810
10.1523/JNEUROSCI.1713-16.2016
10.1101/lm.048264.118
10.1007/s00213-020-05454-7
10.1038/nn1954
10.1523/JNEUROSCI.2393-12.2012
10.1111/ejn.12476
10.1523/JNEUROSCI.2548-19.2020
10.1037/bne0000474
10.1038/npp.2017.139
10.1038/s41583-019-0180-y
10.1523/JNEUROSCI.4507-04.2005
10.1016/j.neuroscience.2021.02.017
10.1038/s41467-019-12725-1
10.1038/nature14188
10.1016/j.neuron.2016.09.025
10.1038/s41593-022-01229-9
10.1523/JNEUROSCI.3366-15.2016
10.1101/lm.55203
10.1523/JNEUROSCI.4942-12.2013
10.1016/j.neuron.2019.05.042
10.1016/j.beproc.2022.104663
10.1523/JNEUROSCI.0631-17.2017
10.1016/j.biopsych.2012.05.023
10.1093/oons/kvad00
ContentType Journal Article
Copyright Copyright © 2024 the authors.
Copyright Society for Neuroscience Jan 10, 2024
Copyright © 2024 the authors 2024
Copyright_xml – notice: Copyright © 2024 the authors.
– notice: Copyright Society for Neuroscience Jan 10, 2024
– notice: Copyright © 2024 the authors 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
DOI 10.1523/JNEUROSCI.0622-23.2023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
ExternalDocumentID PMC10860573
37968116
10_1523_JNEUROSCI_0622_23_2023
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R01 AA024527
– fundername: NIAAA NIH HHS
  grantid: F31 AA028183
– fundername: NINDS NIH HHS
  grantid: T32 NS115753
– fundername: NIDA NIH HHS
  grantid: K01 DA042219
– fundername: NIMH NIH HHS
  grantid: R21 MH122800
– fundername: NIDA NIH HHS
  grantid: R01 DA047870
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: T32 NS115753
– fundername: HHS | NIH | National Institute on Drug Abuse (NIDA)
  grantid: R01 DA047870; K01 DA042219
– fundername: HHS | NIH | National Institute of Mental Health (NIMH)
  grantid: R21 MH122800
– fundername: HHS | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
  grantid: R01 AA024527; F31 AA028183
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c443t-bdd1854dcf4a3eaa1e684cbbf9b743a2b366b56b306c6b6638ca3d651a31bae13
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:32:27 EDT 2025
Thu Sep 04 19:47:20 EDT 2025
Mon Jun 30 16:54:46 EDT 2025
Wed Feb 19 01:58:38 EST 2025
Thu Apr 24 23:08:19 EDT 2025
Tue Jul 01 00:59:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deterministic
reward learning
DREADDs
stimulus learning
action learning
probabilistic
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2024 the authors.
SfN exclusive license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-bdd1854dcf4a3eaa1e684cbbf9b743a2b366b56b306c6b6638ca3d651a31bae13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
C.G.A. and J.H.W. are the co-first authors.
The authors declare no competing financial interests.
This work was supported by UCLA’s Division of Life Sciences Retention Fund (A.I.); National Institutes of Health Grants R01 DA047870 (A.I. and A.S.), R21 MH122800 (A.I. and Blair), R01AA024527 (I.S.), K01 DA042219 (P.O.), and F31 AA028183 (J.M.); the NSF GRFP, Cota-Robles Fellowship, and Charles E. and Sue K. Young Fellowship (C.A.); Ursula Mandel Fellowship and Graduate Research Mentorship Award (J.R.); and the Training Program in Neurotechnology Translation T32 NS115753 (T.Y.). We acknowledge the Staglin Center for Brain and Behavioral Health for additional support related to fluorescence microscopy. We thank P. Ganupuru for his assistance with brain collection. We also thank the NIDA Drug Supply program for the supply of clozapine-N-oxide.
Author contributions: C.G.A. and A.I. designed research; C.G.A., J.L.R-S., Z.M.R., A.N.T., J.J.M., J.P., M.G., K.D., M.G., T.Y., J.P., and K.E. performed research; C.G.A., J.H.W., J.L.R-S., J.J.M., P.R.O., A.S., and A.I. analyzed data; C.G.A., J.H.W., and A.I. wrote the paper.
ORCID 0000-0003-4386-8486
0000-0001-9897-2091
0009-0003-3534-206X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10860573
PMID 37968116
PQID 2915116306
PQPubID 2049535
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10860573
proquest_miscellaneous_2890757390
proquest_journals_2915116306
pubmed_primary_37968116
crossref_primary_10_1523_JNEUROSCI_0622_23_2023
crossref_citationtrail_10_1523_JNEUROSCI_0622_23_2023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-10
20240110
PublicationDateYYYYMMDD 2024-01-10
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2024
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2025010215350798000_44.2.e0622232023.6
2025010215350798000_44.2.e0622232023.50
2025010215350798000_44.2.e0622232023.7
2025010215350798000_44.2.e0622232023.8
2025010215350798000_44.2.e0622232023.52
2025010215350798000_44.2.e0622232023.9
2025010215350798000_44.2.e0622232023.51
2025010215350798000_44.2.e0622232023.10
2025010215350798000_44.2.e0622232023.54
2025010215350798000_44.2.e0622232023.53
2025010215350798000_44.2.e0622232023.12
2025010215350798000_44.2.e0622232023.56
2025010215350798000_44.2.e0622232023.11
2025010215350798000_44.2.e0622232023.55
2025010215350798000_44.2.e0622232023.1
2025010215350798000_44.2.e0622232023.2
2025010215350798000_44.2.e0622232023.3
2025010215350798000_44.2.e0622232023.4
2025010215350798000_44.2.e0622232023.5
2025010215350798000_44.2.e0622232023.14
2025010215350798000_44.2.e0622232023.58
2025010215350798000_44.2.e0622232023.13
2025010215350798000_44.2.e0622232023.57
2025010215350798000_44.2.e0622232023.16
2025010215350798000_44.2.e0622232023.15
2025010215350798000_44.2.e0622232023.59
2025010215350798000_44.2.e0622232023.18
2025010215350798000_44.2.e0622232023.17
2025010215350798000_44.2.e0622232023.19
2025010215350798000_44.2.e0622232023.41
2025010215350798000_44.2.e0622232023.40
2025010215350798000_44.2.e0622232023.43
2025010215350798000_44.2.e0622232023.42
2025010215350798000_44.2.e0622232023.45
2025010215350798000_44.2.e0622232023.44
2025010215350798000_44.2.e0622232023.47
2025010215350798000_44.2.e0622232023.46
2025010215350798000_44.2.e0622232023.49
2025010215350798000_44.2.e0622232023.48
2025010215350798000_44.2.e0622232023.30
2025010215350798000_44.2.e0622232023.32
2025010215350798000_44.2.e0622232023.31
2025010215350798000_44.2.e0622232023.34
2025010215350798000_44.2.e0622232023.33
2025010215350798000_44.2.e0622232023.36
2025010215350798000_44.2.e0622232023.35
2025010215350798000_44.2.e0622232023.38
2025010215350798000_44.2.e0622232023.37
2025010215350798000_44.2.e0622232023.39
2025010215350798000_44.2.e0622232023.61
2025010215350798000_44.2.e0622232023.60
2025010215350798000_44.2.e0622232023.21
2025010215350798000_44.2.e0622232023.20
2025010215350798000_44.2.e0622232023.23
2025010215350798000_44.2.e0622232023.22
2025010215350798000_44.2.e0622232023.25
2025010215350798000_44.2.e0622232023.24
2025010215350798000_44.2.e0622232023.27
2025010215350798000_44.2.e0622232023.26
2025010215350798000_44.2.e0622232023.29
2025010215350798000_44.2.e0622232023.28
39715690 - J Neurosci. 2024 Dec 23:e2029242024. doi: 10.1523/JNEUROSCI.2029-24.2024
37066321 - bioRxiv. 2023 Oct 16:2023.04.03.535471. doi: 10.1101/2023.04.03.535471
References_xml – ident: 2025010215350798000_44.2.e0622232023.17
  doi: 10.1038/s41386-018-0179-5
– ident: 2025010215350798000_44.2.e0622232023.33
  doi: 10.1038/s41593-019-0374-7
– ident: 2025010215350798000_44.2.e0622232023.1
  doi: 10.1093/cercor/bhaa277
– ident: 2025010215350798000_44.2.e0622232023.2
  doi: 10.1016/j.neuroscience.2016.03.034
– ident: 2025010215350798000_44.2.e0622232023.16
  doi: 10.17179/excli2021-4072
– ident: 2025010215350798000_44.2.e0622232023.32
  doi: 10.1523/JNEUROSCI.0486-17.2017
– ident: 2025010215350798000_44.2.e0622232023.22
  doi: 10.1016/j.neubiorev.2020.10.029
– ident: 2025010215350798000_44.2.e0622232023.28
  doi: 10.1523/JNEUROSCI.2097-21.2022
– ident: 2025010215350798000_44.2.e0622232023.5
  doi: 10.1037/bne0000442
– ident: 2025010215350798000_44.2.e0622232023.46
  doi: 10.7554/eLife.68617
– ident: 2025010215350798000_44.2.e0622232023.21
  doi: 10.1093/cercor/bhz144
– ident: 2025010215350798000_44.2.e0622232023.43
  doi: 10.1523/JNEUROSCI.2272-08.2008
– ident: 2025010215350798000_44.2.e0622232023.34
  doi: 10.1038/s41593-019-0408-1
– ident: 2025010215350798000_44.2.e0622232023.48
  doi: 10.1038/s41386-021-01123-1
– ident: 2025010215350798000_44.2.e0622232023.11
  doi: 10.1038/s41593-022-01216-0
– ident: 2025010215350798000_44.2.e0622232023.40
  doi: 10.1523/JNEUROSCI.5781-09.2010
– ident: 2025010215350798000_44.2.e0622232023.45
  doi: 10.1196/annals.1401.001
– ident: 2025010215350798000_44.2.e0622232023.56
  doi: 10.3389/fnins.2015.00230
– ident: 2025010215350798000_44.2.e0622232023.50
  doi: 10.7554/eLife.27483
– ident: 2025010215350798000_44.2.e0622232023.9
  doi: 10.1037/a0017734
– ident: 2025010215350798000_44.2.e0622232023.38
  doi: 10.1101/061507
– ident: 2025010215350798000_44.2.e0622232023.35
  doi: 10.1016/j.cub.2021.09.037
– ident: 2025010215350798000_44.2.e0622232023.53
  doi: 10.1093/cercor/bhaa241
– ident: 2025010215350798000_44.2.e0622232023.31
  doi: 10.1016/j.nlm.2004.10.003
– ident: 2025010215350798000_44.2.e0622232023.49
  doi: 10.1196/annals.1401.014
– ident: 2025010215350798000_44.2.e0622232023.23
  doi: 10.1523/JNEUROSCI.1678-17.2017
– ident: 2025010215350798000_44.2.e0622232023.30
  doi: 10.1016/j.nlm.2022.107663
– ident: 2025010215350798000_44.2.e0622232023.3
  doi: 10.1016/j.xpro.2021.100306
– ident: 2025010215350798000_44.2.e0622232023.59
  doi: 10.3758/s13420-018-0320-7
– ident: 2025010215350798000_44.2.e0622232023.57
  doi: 10.1016/j.neubiorev.2015.08.017
– ident: 2025010215350798000_44.2.e0622232023.24
  doi: 10.1152/jn.00968.2003
– ident: 2025010215350798000_44.2.e0622232023.29
  doi: 10.1016/0014-4886(72)90030-1
– ident: 2025010215350798000_44.2.e0622232023.8
  doi: 10.1016/j.bbr.2007.02.005
– ident: 2025010215350798000_44.2.e0622232023.27
  doi: 10.1523/JNEUROSCI.1594-15.2015
– ident: 2025010215350798000_44.2.e0622232023.7
  doi: 10.1016/j.bbr.2008.10.005
– ident: 2025010215350798000_44.2.e0622232023.54
  doi: 10.1523/JNEUROSCI.5281-06.2007
– ident: 2025010215350798000_44.2.e0622232023.36
  doi: 10.1002/jnr.23810
– ident: 2025010215350798000_44.2.e0622232023.58
  doi: 10.1523/JNEUROSCI.1713-16.2016
– ident: 2025010215350798000_44.2.e0622232023.39
  doi: 10.1101/lm.048264.118
– ident: 2025010215350798000_44.2.e0622232023.55
  doi: 10.1007/s00213-020-05454-7
– ident: 2025010215350798000_44.2.e0622232023.6
  doi: 10.1038/nn1954
– ident: 2025010215350798000_44.2.e0622232023.41
  doi: 10.1523/JNEUROSCI.2393-12.2012
– ident: 2025010215350798000_44.2.e0622232023.52
  doi: 10.1111/ejn.12476
– ident: 2025010215350798000_44.2.e0622232023.20
  doi: 10.1523/JNEUROSCI.2548-19.2020
– ident: 2025010215350798000_44.2.e0622232023.19
  doi: 10.1037/bne0000474
– ident: 2025010215350798000_44.2.e0622232023.61
  doi: 10.1038/npp.2017.139
– ident: 2025010215350798000_44.2.e0622232023.47
  doi: 10.1038/s41583-019-0180-y
– ident: 2025010215350798000_44.2.e0622232023.10
  doi: 10.1523/JNEUROSCI.4507-04.2005
– ident: 2025010215350798000_44.2.e0622232023.4
  doi: 10.1016/j.neuroscience.2021.02.017
– ident: 2025010215350798000_44.2.e0622232023.51
  doi: 10.1038/s41467-019-12725-1
– ident: 2025010215350798000_44.2.e0622232023.26
  doi: 10.1038/nature14188
– ident: 2025010215350798000_44.2.e0622232023.12
  doi: 10.1016/j.neuron.2016.09.025
– ident: 2025010215350798000_44.2.e0622232023.13
  doi: 10.1038/s41593-022-01229-9
– ident: 2025010215350798000_44.2.e0622232023.14
  doi: 10.1523/JNEUROSCI.3366-15.2016
– ident: 2025010215350798000_44.2.e0622232023.44
  doi: 10.1101/lm.55203
– ident: 2025010215350798000_44.2.e0622232023.25
  doi: 10.1523/JNEUROSCI.4942-12.2013
– ident: 2025010215350798000_44.2.e0622232023.18
  doi: 10.1016/j.neuron.2019.05.042
– ident: 2025010215350798000_44.2.e0622232023.37
  doi: 10.1016/j.beproc.2022.104663
– ident: 2025010215350798000_44.2.e0622232023.42
  doi: 10.1523/JNEUROSCI.0631-17.2017
– ident: 2025010215350798000_44.2.e0622232023.15
  doi: 10.1016/j.biopsych.2012.05.023
– ident: 2025010215350798000_44.2.e0622232023.60
  doi: 10.1093/oons/kvad00
– reference: 39715690 - J Neurosci. 2024 Dec 23:e2029242024. doi: 10.1523/JNEUROSCI.2029-24.2024
– reference: 37066321 - bioRxiv. 2023 Oct 16:2023.04.03.535471. doi: 10.1101/2023.04.03.535471
SSID ssj0007017
Score 2.4681249
Snippet Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0622232023
SubjectTerms Amygdala
Animals
Basolateral Nuclear Complex - physiology
Cortex
Drug delivery
Female
Learning
Male
Mental disorders
Prefrontal Cortex - physiology
Rats
Rats, Long-Evans
Reversal learning
Reversal Learning - physiology
Substance use
Uncertainty
Title Dissociable Contributions of Basolateral Amygdala and Ventrolateral Orbitofrontal Cortex to Flexible Learning Under Uncertainty
URI https://www.ncbi.nlm.nih.gov/pubmed/37968116
https://www.proquest.com/docview/2915116306
https://www.proquest.com/docview/2890757390
https://pubmed.ncbi.nlm.nih.gov/PMC10860573
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSGMhIiJcpXS6OkzyOsWpMZRNbCxUvkZ04o9KaTF0qMV7465zjODeoxOAlquwkrvJ9cY59zvkOIW8cO_GVE0VWkkW2xVyWWQKruSvGFH6O4SON-c4fT_jRjB3P_flgcNWJWlqXcpT82JhX8j-oQhvgilmy_4Bsc1NogN-ALxwBYTjeCuP3i-rhYvYTykzVxat0eMY7AYMLTDAGEJY3F6m41PlXu5-Vjk43XacrCS91hjoGeh9hVarvaJCOUSkTbzypN090iSQ4JlUUQdlzCLcpZtq47chktpy6WC9W1ZZ3p6TXl6Ly_bRZEmfFUq0K67y4ruJ4d5v96TMMItGNX80urtmvcDHGxTKRq2aKdbVPp2KU2tBm5uVKF9Lwz9043ftaduL4BKMezw8-jGwOS2vXG2FN-PYDVzv1T07j8WwyiaeH8-kdctcNwNpCN_6nVl8-sHWN5ub_mJxyGGdv8yh9c-aPNcrvobYd22X6gNw3uND9ikEPyUDlj8j2fi7KYnlD31IdBqz9K9vkZ4dUtEcqWmS0Qypak4oCqWiPVLRHKlqRipYFrUlFa1JRTSraIdVjMhsfTg-OLFOlw0oY80pLpinYfCxNMiY8JYSjeMgSKbNIgnUqXOlxLn0uYW2acAmPPEyEl3LfEZ4jhXK8J2QrL3L1jFC4lvkBSkRmHuOMS1hdsMR2RBpkaajEkPj1w44TI2GPlVQuY1zKAkhxA1KMIMXQgiANyV5z3VUl4vLXK3ZqLGPzwl_HbgTmMaxfbD4kr5tumI7RxyZyVazhnDACIzzwIntInlbQN0N6QcRDuMGQhD1SNCeg1Hu_J19805LvWA8NpUuf32LgF-Re-97tkK1ytVYvwXIu5StN9l_j3cb0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissociable+Contributions+of+Basolateral+Amygdala+and+Ventrolateral+Orbitofrontal+Cortex+to+Flexible+Learning+Under+Uncertainty&rft.jtitle=The+Journal+of+neuroscience&rft.au=Aguirre%2C+C+G&rft.au=Woo%2C+J+H&rft.au=Romero-Sosa%2C+J+L&rft.au=Rivera%2C+Z+M&rft.date=2024-01-10&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=44&rft.issue=2&rft_id=info:doi/10.1523%2FJNEUROSCI.0622-23.2023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon