Primary cilia control glucose homeostasis via islet paracrine interactions

Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remai...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 16; pp. 8912 - 8923
Main Authors Hughes, Jing W., Cho, Jung Hoon, Conway, Hannah E., DiGruccio, Michael R., Ng, Xue Wen, Roseman, Henry F., Abreu, Damien, Urano, Fumihiko, Piston, David W.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.04.2020
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2001936117

Cover

Abstract Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking β-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the β-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of β-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate β-cell–intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.
AbstractList Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking β-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the β-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of β-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate β-cell-intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking β-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the β-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of β-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate β-cell-intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.
Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking β-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the β-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of β-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate β-cell–intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.
The primary cilium is a small subcompartment of the cell but has powerful influence on pancreatic islet function. In this study, we find a critical role for cilia in regulating β-cell function and energy metabolism. Importantly, the deletion of β-cell cilia disrupts intercellular communication and leads to islet dysfunction and diabetes, as seen in a number of human ciliopathy syndromes. These results should help elucidate pathophysiology of human ciliopathy and aid the development of pharmacologic agents targeting primary cilia that may lead to a more effective treatment for human diabetes. Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking β-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the β-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of β-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate β-cell–intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.
Author Conway, Hannah E.
Hughes, Jing W.
Cho, Jung Hoon
DiGruccio, Michael R.
Ng, Xue Wen
Urano, Fumihiko
Abreu, Damien
Piston, David W.
Roseman, Henry F.
Author_xml – sequence: 1
  givenname: Jing W.
  surname: Hughes
  fullname: Hughes, Jing W.
– sequence: 2
  givenname: Jung Hoon
  surname: Cho
  fullname: Cho, Jung Hoon
– sequence: 3
  givenname: Hannah E.
  surname: Conway
  fullname: Conway, Hannah E.
– sequence: 4
  givenname: Michael R.
  surname: DiGruccio
  fullname: DiGruccio, Michael R.
– sequence: 5
  givenname: Xue Wen
  surname: Ng
  fullname: Ng, Xue Wen
– sequence: 6
  givenname: Henry F.
  surname: Roseman
  fullname: Roseman, Henry F.
– sequence: 7
  givenname: Damien
  surname: Abreu
  fullname: Abreu, Damien
– sequence: 8
  givenname: Fumihiko
  surname: Urano
  fullname: Urano, Fumihiko
– sequence: 9
  givenname: David W.
  surname: Piston
  fullname: Piston, David W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32253320$$D View this record in MEDLINE/PubMed
BookMark eNp9UT1vFDEUtFAQuQRqKtBKNDSbPH-t7QYJRXwqEhRQW7bPm_jksw_bG4l_j08XDkhBZUtvZt7MmzN0knLyCD3HcIFB0MtdMvWCAGBFJ4zFI7TCoPA4MQUnaAVAxCgZYaforNYNACgu4Qk6pYRwSgms0OevJWxN-Tm4EIMZXE6t5DjcxMXl6ofbvPW5NlNDHe76PNTo27AzxbgSkh9Car7_W8ipPkWPZxOrf3b_nqPv7999u_o4Xn_58Onq7fXoGKNttFwyxsC62YGwBks2EytMT0DXxNpufbaCc8IUMxKvZ6w4nrhQYmbekjWh5-jNQXe32K1fO98tm6h3hyA6m6D_naRwq2_ynRZ9F0y0C7y-Fyj5x-Jr09tQnY_RJJ-XqgmVgnAupezQVw-gm7yU1ON1lGJkkpjuHb3829HRyu8zd8DlAeBKrrX4-QjBoPdF6n2R-k-RncEfMFxoZn_nHinE__BeHHib2nI5riGTImqagP4CX0Wsiw
CitedBy_id crossref_primary_10_1016_j_isci_2023_108693
crossref_primary_10_3389_fcell_2022_1082193
crossref_primary_10_1007_s00125_022_05729_y
crossref_primary_10_1016_j_metabol_2024_156105
crossref_primary_10_1016_j_lfs_2023_121436
crossref_primary_10_1016_j_neurobiolaging_2021_05_006
crossref_primary_10_1038_s41580_023_00698_5
crossref_primary_10_1126_sciadv_ade4450
crossref_primary_10_1016_j_semcdb_2022_03_014
crossref_primary_10_3390_cells11244091
crossref_primary_10_1073_pnas_2302624120
crossref_primary_10_1126_sciadv_abq8486
crossref_primary_10_1186_s13041_024_01143_0
crossref_primary_10_26508_lsa_202402916
crossref_primary_10_1016_j_isci_2024_110644
crossref_primary_10_3390_ijms21197109
crossref_primary_10_1172_JCI144833
crossref_primary_10_1093_hmg_ddaa230
crossref_primary_10_7759_cureus_39344
crossref_primary_10_3389_fendo_2022_1004136
crossref_primary_10_3389_fendo_2022_869780
crossref_primary_10_1016_j_phymed_2024_156099
crossref_primary_10_1111_febs_16049
crossref_primary_10_1242_dmm_049484
crossref_primary_10_1016_j_molmet_2021_101166
crossref_primary_10_1038_s41574_021_00568_0
crossref_primary_10_3390_cells10071623
crossref_primary_10_7554_eLife_56914
crossref_primary_10_1016_j_coemr_2024_100505
crossref_primary_10_3389_fphys_2021_769367
crossref_primary_10_3390_antiox10081284
crossref_primary_10_3389_fendo_2022_922825
crossref_primary_10_1111_jcmm_70035
crossref_primary_10_1101_gad_348261_121
crossref_primary_10_3389_fendo_2022_922983
crossref_primary_10_1073_pnas_2206098119
crossref_primary_10_1242_jcs_262038
crossref_primary_10_3390_ijms232012147
crossref_primary_10_1007_s00125_024_06096_6
crossref_primary_10_3390_biom10111504
crossref_primary_10_1210_endocr_bqaa162
crossref_primary_10_1007_s00125_024_06180_x
crossref_primary_10_4093_dmj_2022_0442
crossref_primary_10_1016_j_bone_2021_116176
crossref_primary_10_1038_s41467_024_53348_5
crossref_primary_10_1083_jcb_202108101
crossref_primary_10_1080_19382014_2023_2252855
crossref_primary_10_1002_jcp_31325
crossref_primary_10_1177_15353702231199079
crossref_primary_10_1038_s44318_025_00383_7
crossref_primary_10_1152_ajpendo_00649_2020
crossref_primary_10_1002_jnr_24919
crossref_primary_10_1007_s00018_022_04543_4
crossref_primary_10_1177_15353702221090464
Cites_doi 10.1016/j.ceca.2011.11.006
10.1074/jbc.M116.758516
10.1210/endo.137.5.8612552
10.2337/db12-1657
10.4161/isl.24166
10.1080/15548627.2015.1023983
10.1007/s00125-014-3468-5
10.2337/db11-1312
10.2220/biomedres.32.73
10.1097/MNH.0000000000000251
10.2337/dc07-9920
10.1016/S0021-9258(17)37032-1
10.1016/j.cmet.2014.03.010
10.1038/nmeth.1806
10.1016/j.tem.2014.02.005
10.1093/nar/gkw419
10.1016/j.celrep.2019.02.056
10.1210/jc.2017-01459
10.1038/s41598-017-14025-4
10.1016/j.tcb.2016.08.002
10.1016/j.celrep.2018.10.018
10.1038/nature12833
10.1016/j.cmet.2018.06.019
10.1210/en.2016-1393
10.1038/ng867
10.1053/j.gastro.2006.10.050
10.1016/j.cell.2011.05.030
10.1016/j.celrep.2018.08.035
10.1038/labinvest.3700207
10.1152/ajpcell.1991.260.5.C1046
10.1038/s41467-019-12953-5
10.1038/s41581-019-0116-9
10.1016/j.stemcr.2018.12.012
10.3389/fnagi.2016.00127
10.1679/aohc.49.449
10.1093/hmg/4.4.559
10.1093/emboj/20.11.2768
10.1091/mbc.E17-10-0600
10.1038/s41598-018-25147-8
10.1172/JCI91348
10.1152/ajpendo.00344.2014
10.1242/dev.02732
10.1016/j.bpj.2015.11.3518
10.1371/journal.pbio.0040049
10.1083/jcb.151.3.709
10.2337/db09-1177
10.1152/ajprenal.00273.2001
10.1242/dmm.006239
10.1016/j.cmet.2018.01.015
10.1126/science.8191288
10.1074/jbc.M114.562587
10.1210/me.2012-1226
10.2337/db06-0337
10.2337/db07-0991
10.2337/diab.16.1.35
10.1152/physrev.00019.2012
10.1016/j.febslet.2005.04.069
10.1016/j.cell.2007.02.044
10.1038/ncomms6308
10.1242/jcs.049908
10.1038/nature12832
10.1088/1361-6463/ab0261
10.1152/ajpendo.00262.2010
10.1091/mbc.e13-10-0617
10.7554/eLife.44039
10.1369/jhc.5C6684.2005
10.1016/j.cmet.2008.12.005
10.1093/nar/gkw377
10.1016/j.cell.2015.04.015
10.1152/ajpheart.01028.2001
10.1002/cyto.a.20560
10.1038/ncomms13496
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Apr 21, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Apr 21, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2001936117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8923
ExternalDocumentID PMC7184063
32253320
10_1073_pnas_2001936117
26929660
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: U24 DK098085
– fundername: NIDDK NIH HHS
  grantid: K08 DK115795
– fundername: NIDDK NIH HHS
  grantid: P60 DK020579
– fundername: NIAMS NIH HHS
  grantid: P30 AR074992
– fundername: NIDDK NIH HHS
  grantid: P30 DK020579
– fundername: NIDDK NIH HHS
  grantid: R01 DK112921
– fundername: NIDDK NIH HHS
  grantid: R01 DK098659
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NIDDK NIH HHS
  grantid: R01 DK115972
– fundername: NIDDK NIH HHS
  grantid: F30 DK111070
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-b584440bcfc07ba184f2b7a1933d2bb649fb7552494a81df195165797f4eb2d23
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:31:15 EDT 2025
Fri Sep 05 00:40:49 EDT 2025
Mon Jun 30 10:08:48 EDT 2025
Wed Feb 19 02:11:44 EST 2025
Tue Jul 01 03:40:19 EDT 2025
Thu Apr 24 22:53:29 EDT 2025
Mon Apr 21 03:38:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-b584440bcfc07ba184f2b7a1933d2bb649fb7552494a81df195165797f4eb2d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by C. Ronald Kahn, Harvard Medical School, Boston, MA, and approved March 10, 2020 (received for review January 31, 2020)
Author contributions: J.W.H. and D.W.P. designed research; J.W.H., J.H.C., H.E.C., M.R.D., X.W.N., and H.F.R. performed research; F.U. and D.W.P. contributed new reagents/analytic tools; J.H.C., M.R.D., X.W.N., and D.A. analyzed data; and J.W.H. wrote the paper.
ORCID 0000-0003-4397-8175
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7184063
PMID 32253320
PQID 2394268132
PQPubID 42026
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184063
proquest_miscellaneous_2387255888
proquest_journals_2394268132
pubmed_primary_32253320
crossref_primary_10_1073_pnas_2001936117
crossref_citationtrail_10_1073_pnas_2001936117
jstor_primary_26929660
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-21
PublicationDateYYYYMMDD 2020-04-21
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Mujahid S. (e_1_3_4_11_2) 2018; 103
Nathan D. M. (e_1_3_4_67_2) 2007; 30
Gerdes J. M. (e_1_3_4_10_2) 2014; 5
Günzel D. (e_1_3_4_44_2) 2013; 93
Svendsen B. (e_1_3_4_56_2) 2018; 25
Thorens B. (e_1_3_4_16_2) 2015; 58
Kapeller R. (e_1_3_4_41_2) 1993; 13
Takahashi T. (e_1_3_4_35_2) 2001; 20
Head W. S. (e_1_3_4_19_2) 2012; 61
Rorsman P. (e_1_3_4_66_2) 2012; 51
Delling M. (e_1_3_4_64_2) 2013; 504
Ezratty E. J. (e_1_3_4_26_2) 2011; 145
Fridlyand L. E. (e_1_3_4_48_2) 2013; 5
e_1_3_4_29_2
Mina A. I. (e_1_3_4_73_2) 2018; 28
Benzinou M. (e_1_3_4_52_2) 2006; 55
Lacy P. E. (e_1_3_4_71_2) 1967; 16
Elliott A. D. (e_1_3_4_2_2) 2015; 308
Velazco-Cruz L. (e_1_3_4_39_2) 2019; 12
Laine R. F. (e_1_3_4_75_2) 2019; 52
DeCaen P. G. (e_1_3_4_63_2) 2013; 504
Sorrenson B. (e_1_3_4_38_2) 2016; 291
Yamamoto M. (e_1_3_4_5_2) 1986; 49
Haycraft C. J. (e_1_3_4_17_2) 2007; 134
Lin E. (e_1_3_4_36_2) 2017; 7
Li H. (e_1_3_4_45_2) 2002; 282
Tschöp M. H. (e_1_3_4_74_2) 2011; 9
Rodriguez-Diaz R. (e_1_3_4_3_2) 2018; 27
Brereton M. F. (e_1_3_4_53_2) 2016; 7
Babicki S. (e_1_3_4_76_2) 2016; 44
Nauli S. M. (e_1_3_4_65_2) 2016; 25
Collin G. B. (e_1_3_4_12_2) 2002; 31
Bergsten P. (e_1_3_4_22_2) 1994; 269
Schrick J. J. (e_1_3_4_9_2) 1995; 4
Gan W. J. (e_1_3_4_42_2) 2018; 24
Charrier E. E. (e_1_3_4_43_2) 2016; 110
Anvarian Z. (e_1_3_4_24_2) 2019; 15
Drigo R. A. E. (e_1_3_4_62_2) 2019; 10
Galletta B. J. (e_1_3_4_50_2) 2014; 25
Gan W. J. (e_1_3_4_4_2) 2017; 130
Benninger R. K. P. (e_1_3_4_21_2) 2014; 25
Braun M. (e_1_3_4_47_2) 2008; 57
Cano D. A. (e_1_3_4_13_2) 2006; 131
Wang S. (e_1_3_4_70_2) 2015; 11
Dai C. (e_1_3_4_31_2) 2013; 62
Hogan M. F. (e_1_3_4_32_2) 2017; 158
Geng X. (e_1_3_4_40_2) 2011; 300
Wang X. P. (e_1_3_4_59_2) 2005; 579
Zimmerman K. (e_1_3_4_27_2) 2015; 161
e_1_3_4_28_2
Iwanaga T. (e_1_3_4_58_2) 2011; 32
Pazour G. J. (e_1_3_4_6_2) 2000; 151
Eguether T. (e_1_3_4_25_2) 2018; 29
MacDonald P. E. (e_1_3_4_1_2) 2006; 4
Jayaraman S. (e_1_3_4_18_2) 2008; 73
Li Q. (e_1_3_4_30_2) 2017; 127
Ustione A. (e_1_3_4_72_2) 2012; 26
Guadiana S. M. (e_1_3_4_57_2) 2016; 8
Sase H. (e_1_3_4_34_2) 2009; 122
Ayala J. E. (e_1_3_4_23_2) 2010; 3
Kluth O. (e_1_3_4_51_2) 2019; 26
Bosco D. (e_1_3_4_60_2) 2010; 59
Yoder B. K. (e_1_3_4_7_2) 2002; 282
Roell W. (e_1_3_4_46_2) 2018; 8
Remedi M. S. (e_1_3_4_54_2) 2009; 9
Brissova M. (e_1_3_4_61_2) 2005; 53
Konstantinova I. (e_1_3_4_20_2) 2007; 129
Volta F. (e_1_3_4_15_2) 2019; 10
Nanjundappa R. (e_1_3_4_69_2) 2019; 8
Rabinovitch A. (e_1_3_4_33_2) 1996; 137
Kuleshov M. V. (e_1_3_4_77_2) 2016; 44
Malicki J. J. (e_1_3_4_68_2) 2017; 27
Moyer J. H. (e_1_3_4_8_2) 1994; 264
Zhang Q. (e_1_3_4_14_2) 2005; 85
Sjöholm A. (e_1_3_4_37_2) 1991; 260
Dadi P. K. (e_1_3_4_49_2) 2014; 289
Wang Z. (e_1_3_4_55_2) 2014; 19
References_xml – volume: 51
  start-page: 300
  year: 2012
  ident: e_1_3_4_66_2
  article-title: Regulation of calcium in pancreatic α- and β-cells in health and disease
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2011.11.006
– volume: 291
  start-page: 25888
  year: 2016
  ident: e_1_3_4_38_2
  article-title: A critical role for β-catenin in modulating levels of insulin secretion from β-cells by regulating actin cytoskeleton and insulin vesicle localization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.758516
– volume: 137
  start-page: 2093
  year: 1996
  ident: e_1_3_4_33_2
  article-title: Inducible nitric oxide synthase (iNOS) in pancreatic islets of nonobese diabetic mice: Identification of iNOS-expressing cells and relationships to cytokines expressed in the islets
  publication-title: Endocrinology
  doi: 10.1210/endo.137.5.8612552
– volume: 62
  start-page: 4144
  year: 2013
  ident: e_1_3_4_31_2
  article-title: Pancreatic islet vasculature adapts to insulin resistance through dilation and not angiogenesis
  publication-title: Diabetes
  doi: 10.2337/db12-1657
– volume: 5
  start-page: 1
  year: 2013
  ident: e_1_3_4_48_2
  article-title: Ion channels and regulation of insulin secretion in human β-cells: A computational systems analysis
  publication-title: Islets
  doi: 10.4161/isl.24166
– volume: 11
  start-page: 607
  year: 2015
  ident: e_1_3_4_70_2
  article-title: Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1023983
– volume: 58
  start-page: 558
  year: 2015
  ident: e_1_3_4_16_2
  article-title: Ins1(Cre) knock-in mice for beta cell-specific gene recombination
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3468-5
– volume: 61
  start-page: 1700
  year: 2012
  ident: e_1_3_4_19_2
  article-title: Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse
  publication-title: Diabetes
  doi: 10.2337/db11-1312
– volume: 32
  start-page: 73
  year: 2011
  ident: e_1_3_4_58_2
  article-title: Restricted expression of somatostatin receptor 3 to primary cilia in the pancreatic islets and adenohypophysis of mice
  publication-title: Biomed. Res.
  doi: 10.2220/biomedres.32.73
– volume: 25
  start-page: 452
  year: 2016
  ident: e_1_3_4_65_2
  article-title: Calcium channels in primary cilia
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0000000000000251
– volume: 30
  start-page: 753
  year: 2007
  ident: e_1_3_4_67_2
  article-title: Impaired fasting glucose and impaired glucose tolerance: Implications for care
  publication-title: Diabetes Care
  doi: 10.2337/dc07-9920
– volume: 269
  start-page: 8749
  year: 1994
  ident: e_1_3_4_22_2
  article-title: Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)37032-1
– volume: 19
  start-page: 872
  year: 2014
  ident: e_1_3_4_55_2
  article-title: Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.03.010
– volume: 9
  start-page: 57
  year: 2011
  ident: e_1_3_4_74_2
  article-title: A guide to analysis of mouse energy metabolism
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1806
– volume: 25
  start-page: 399
  year: 2014
  ident: e_1_3_4_21_2
  article-title: Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2014.02.005
– volume: 44
  start-page: W147
  year: 2016
  ident: e_1_3_4_76_2
  article-title: Heatmapper: Web-enabled heat mapping for all
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw419
– volume: 26
  start-page: 3027
  year: 2019
  ident: e_1_3_4_51_2
  article-title: Decreased expression of cilia genes in pancreatic islets as a risk factor for type 2 diabetes in mice and humans
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.02.056
– volume: 103
  start-page: 1834
  year: 2018
  ident: e_1_3_4_11_2
  article-title: The endocrine and metabolic characteristics of a large Bardet-Biedl syndrome clinic population
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2017-01459
– volume: 7
  start-page: 13589
  year: 2017
  ident: e_1_3_4_36_2
  article-title: Transforming growth factor-β signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14025-4
– volume: 10
  start-page: 1
  year: 2019
  ident: e_1_3_4_62_2
  article-title: Structural basis for delta cell paracrine regulation in pancreatic islets
  publication-title: Nat. Commun.
– volume: 27
  start-page: 126
  year: 2017
  ident: e_1_3_4_68_2
  article-title: The cilium: Cellular antenna and central processing unit
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.08.002
– volume: 25
  start-page: 1127
  year: 2018
  ident: e_1_3_4_56_2
  article-title: Insulin secretion depends on intra-islet glucagon signaling
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.018
– volume: 504
  start-page: 311
  year: 2013
  ident: e_1_3_4_64_2
  article-title: Primary cilia are specialized calcium signalling organelles
  publication-title: Nature
  doi: 10.1038/nature12833
– volume: 28
  start-page: 656
  year: 2018
  ident: e_1_3_4_73_2
  article-title: CalR: A web-based analysis tool for indirect calorimetry experiments
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.06.019
– volume: 158
  start-page: 293
  year: 2017
  ident: e_1_3_4_32_2
  article-title: Markers of islet endothelial dysfunction occur in male B6.BKS(D)-Leprdb/J mice and may contribute to reduced insulin release
  publication-title: Endocrinology
  doi: 10.1210/en.2016-1393
– volume: 31
  start-page: 74
  year: 2002
  ident: e_1_3_4_12_2
  article-title: Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome
  publication-title: Nat. Genet.
  doi: 10.1038/ng867
– volume: 131
  start-page: 1856
  year: 2006
  ident: e_1_3_4_13_2
  article-title: Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.10.050
– volume: 145
  start-page: 1129
  year: 2011
  ident: e_1_3_4_26_2
  article-title: A role for the primary cilium in Notch signaling and epidermal differentiation during skin development
  publication-title: Cell
  doi: 10.1016/j.cell.2011.05.030
– volume: 24
  start-page: 2819
  year: 2018
  ident: e_1_3_4_42_2
  article-title: Local integrin activation in pancreatic β cells targets insulin secretion to the vasculature
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.08.035
– volume: 85
  start-page: 45
  year: 2005
  ident: e_1_3_4_14_2
  article-title: Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737(orpk) mutant mice
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.3700207
– volume: 260
  start-page: C1046
  year: 1991
  ident: e_1_3_4_37_2
  article-title: TGF-beta stimulates insulin secretion and blocks mitogenic response of pancreatic beta-cells to glucose
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1991.260.5.C1046
– volume: 10
  start-page: 5686
  year: 2019
  ident: e_1_3_4_15_2
  article-title: Glucose homeostasis is regulated by pancreatic β-cell cilia via endosomal EphA-processing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12953-5
– volume: 15
  start-page: 199
  year: 2019
  ident: e_1_3_4_24_2
  article-title: Cellular signalling by primary cilia in development, organ function and disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-019-0116-9
– volume: 12
  start-page: 351
  year: 2019
  ident: e_1_3_4_39_2
  article-title: Acquisition of dynamic function in human stem cell-derived β cells
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2018.12.012
– volume: 8
  start-page: 127
  year: 2016
  ident: e_1_3_4_57_2
  article-title: Type 3 adenylyl cyclase and somatostatin receptor 3 expression persists in aged rat neocortical and hippocampal neuronal cilia
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2016.00127
– volume: 49
  start-page: 449
  year: 1986
  ident: e_1_3_4_5_2
  article-title: Electron microscopic observation of the primary cilium in the pancreatic islets
  publication-title: Arch. Histol. Jpn.
  doi: 10.1679/aohc.49.449
– volume: 4
  start-page: 559
  year: 1995
  ident: e_1_3_4_9_2
  article-title: Characterization of the human homologue of the mouse Tg737 candidate polycystic kidney disease gene
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/4.4.559
– volume: 20
  start-page: 2768
  year: 2001
  ident: e_1_3_4_35_2
  article-title: A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.11.2768
– volume: 29
  start-page: 1178
  year: 2018
  ident: e_1_3_4_25_2
  article-title: Intraflagellar transport is deeply integrated in hedgehog signaling
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E17-10-0600
– ident: e_1_3_4_29_2
– volume: 8
  start-page: 7145
  year: 2018
  ident: e_1_3_4_46_2
  article-title: Overexpression of Cx43 in cells of the myocardial scar: Correction of post-infarct arrhythmias through heterotypic cell-cell coupling
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25147-8
– volume: 127
  start-page: 2631
  year: 2017
  ident: e_1_3_4_30_2
  article-title: A cullin 4B-RING E3 ligase complex fine-tunes pancreatic δ cell paracrine interactions
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI91348
– volume: 308
  start-page: E130
  year: 2015
  ident: e_1_3_4_2_2
  article-title: Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00344.2014
– volume: 134
  start-page: 307
  year: 2007
  ident: e_1_3_4_17_2
  article-title: Intraflagellar transport is essential for endochondral bone formation
  publication-title: Development
  doi: 10.1242/dev.02732
– volume: 110
  start-page: 470
  year: 2016
  ident: e_1_3_4_43_2
  article-title: Desmin mutation in the C-terminal domain impairs traction force generation in myoblasts
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.11.3518
– volume: 4
  start-page: e49
  year: 2006
  ident: e_1_3_4_1_2
  article-title: Oscillations, intercellular coupling, and insulin secretion in pancreatic β cells
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040049
– volume: 151
  start-page: 709
  year: 2000
  ident: e_1_3_4_6_2
  article-title: Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.151.3.709
– volume: 59
  start-page: 1202
  year: 2010
  ident: e_1_3_4_60_2
  article-title: Unique arrangement of alpha- and beta-cells in human islets of Langerhans
  publication-title: Diabetes
  doi: 10.2337/db09-1177
– volume: 282
  start-page: F541
  year: 2002
  ident: e_1_3_4_7_2
  article-title: Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00273.2001
– ident: e_1_3_4_28_2
– volume: 3
  start-page: 525
  year: 2010
  ident: e_1_3_4_23_2
  article-title: Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.006239
– volume: 27
  start-page: 549
  year: 2018
  ident: e_1_3_4_3_2
  article-title: Paracrine interactions within the pancreatic islet determine the glycemic set point
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.01.015
– volume: 264
  start-page: 1329
  year: 1994
  ident: e_1_3_4_8_2
  article-title: Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice
  publication-title: Science
  doi: 10.1126/science.8191288
– volume: 130
  start-page: 143
  year: 2017
  ident: e_1_3_4_4_2
  article-title: Cell polarity defines three distinct domains in pancreatic β-cells
  publication-title: J. Cell Sci.
– volume: 289
  start-page: 12435
  year: 2014
  ident: e_1_3_4_49_2
  article-title: Inhibition of pancreatic β-cell Ca2+/calmodulin-dependent protein kinase II reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.562587
– volume: 26
  start-page: 1928
  year: 2012
  ident: e_1_3_4_72_2
  article-title: Dopamine synthesis and D3 receptor activation in pancreatic β-cells regulates insulin secretion and intracellular [Ca(2+)] oscillations
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2012-1226
– volume: 55
  start-page: 2876
  year: 2006
  ident: e_1_3_4_52_2
  article-title: Bardet-Biedl syndrome gene variants are associated with both childhood and adult common obesity in French Caucasians
  publication-title: Diabetes
  doi: 10.2337/db06-0337
– volume: 57
  start-page: 1618
  year: 2008
  ident: e_1_3_4_47_2
  article-title: Voltage-gated ion channels in human pancreatic beta-cells: Electrophysiological characterization and role in insulin secretion
  publication-title: Diabetes
  doi: 10.2337/db07-0991
– volume: 16
  start-page: 35
  year: 1967
  ident: e_1_3_4_71_2
  article-title: Method for the isolation of intact islets of Langerhans from the rat pancreas
  publication-title: Diabetes
  doi: 10.2337/diab.16.1.35
– volume: 93
  start-page: 525
  year: 2013
  ident: e_1_3_4_44_2
  article-title: Claudins and the modulation of tight junction permeability
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00019.2012
– volume: 579
  start-page: 3107
  year: 2005
  ident: e_1_3_4_59_2
  article-title: SSTR5 ablation in islet results in alterations in glucose homeostasis in mice
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.04.069
– volume: 129
  start-page: 359
  year: 2007
  ident: e_1_3_4_20_2
  article-title: EphA-ephrin-A-mediated β cell communication regulates insulin secretion from pancreatic islets
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.044
– volume: 5
  start-page: 5308
  year: 2014
  ident: e_1_3_4_10_2
  article-title: Ciliary dysfunction impairs beta-cell insulin secretion and promotes development of type 2 diabetes in rodents
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6308
– volume: 122
  start-page: 3303
  year: 2009
  ident: e_1_3_4_34_2
  article-title: VEGFR2-PLCgamma1 axis is essential for endothelial specification of VEGFR2+ vascular progenitor cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.049908
– volume: 504
  start-page: 315
  year: 2013
  ident: e_1_3_4_63_2
  article-title: Direct recording and molecular identification of the calcium channel of primary cilia
  publication-title: Nature
  doi: 10.1038/nature12832
– volume: 52
  start-page: 163001
  year: 2019
  ident: e_1_3_4_75_2
  article-title: NanoJ: A high-performance open-source super-resolution microscopy toolbox
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/ab0261
– volume: 300
  start-page: E276
  year: 2011
  ident: e_1_3_4_40_2
  article-title: α-Synuclein binds the K(ATP) channel at insulin-secretory granules and inhibits insulin secretion
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00262.2010
– volume: 25
  start-page: 2682
  year: 2014
  ident: e_1_3_4_50_2
  article-title: Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-10-0617
– volume: 8
  start-page: e44039
  year: 2019
  ident: e_1_3_4_69_2
  article-title: Regulation of cilia abundance in multiciliated cells
  publication-title: eLife
  doi: 10.7554/eLife.44039
– volume: 13
  start-page: 6052
  year: 1993
  ident: e_1_3_4_41_2
  article-title: Internalization of activated platelet-derived growth factor receptor-phosphatidylinositol-3′ kinase complexes: Potential interactions with the microtubule cytoskeleton
  publication-title: Mol. Cell. Biol.
– volume: 53
  start-page: 1087
  year: 2005
  ident: e_1_3_4_61_2
  article-title: Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/jhc.5C6684.2005
– volume: 9
  start-page: 140
  year: 2009
  ident: e_1_3_4_54_2
  article-title: Secondary consequences of β cell inexcitability: Identification and prevention in a murine model of K(ATP)-induced neonatal diabetes mellitus
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.12.005
– volume: 44
  start-page: W90
  year: 2016
  ident: e_1_3_4_77_2
  article-title: Enrichr: A comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 161
  start-page: 692
  year: 2015
  ident: e_1_3_4_27_2
  article-title: SnapShot: Sensing and signaling by cilia
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.015
– volume: 282
  start-page: H2124
  year: 2002
  ident: e_1_3_4_45_2
  article-title: Paradoxical overexpression and translocation of connexin43 in homocysteine-treated endothelial cells
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01028.2001
– volume: 73
  start-page: 615
  year: 2008
  ident: e_1_3_4_18_2
  article-title: A novel method for the detection of viable human pancreatic beta cells by flow cytometry using fluorophores that selectively detect labile zinc, mitochondrial membrane potential and protein thiols
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20560
– volume: 7
  start-page: 13496
  year: 2016
  ident: e_1_3_4_53_2
  article-title: Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13496
SSID ssj0009580
Score 2.5575926
Snippet Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is...
The primary cilium is a small subcompartment of the cell but has powerful influence on pancreatic islet function. In this study, we find a critical role for...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8912
SubjectTerms Animals
Beta cells
Biological Sciences
Calcium - metabolism
Calcium influx
Cell Communication - physiology
Cellular structure
Chemoreception
Cilia
Cilia - genetics
Cilia - metabolism
Cilia - pathology
Clonal deletion
Crosstalk
Diabetes
Diabetes mellitus
Diabetes Mellitus - genetics
Diabetes Mellitus - pathology
Disease Models, Animal
Energy Metabolism - physiology
Female
Glucagon-Secreting Cells - metabolism
Glucose
Glucose - metabolism
Homeostasis
Humans
Insulin
Insulin - metabolism
Insulin Secretion
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - metabolism
Insulin-Secreting Cells - pathology
Male
Mice
Mice, Knockout
Pancreas
Paracrine signalling
Perturbation
Secretion
Signal Transduction - physiology
Title Primary cilia control glucose homeostasis via islet paracrine interactions
URI https://www.jstor.org/stable/26929660
https://www.ncbi.nlm.nih.gov/pubmed/32253320
https://www.proquest.com/docview/2394268132
https://www.proquest.com/docview/2387255888
https://pubmed.ncbi.nlm.nih.gov/PMC7184063
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKeOEFbcCgYyAj8TBUpbS2YyeP09ioqlH60Ep9i2w3WSONBK0tSPwQfi_n2HHSMSbgJaoSx3J9X85357vPCL3lMVcqFTIItRQB40sZSCVlsCRDqtM40lybAudPEz6as_EiXHQ6P1tZS9uN6usfd9aV_I9U4R7I1VTJ_oNkfadwA36DfOEKEobrX8l46qgidH6dS591Xmehr8ovaQnGn6Ec-QbP8zXIqGe4vrUp-auYIm5sXcO6baNO_Zq2rjMIJnXI8LQpQHFaYd0LetNJc5zxaHu1sqpnbKIQLTpfu8cDyqU3KpvN_7Oy-C5tmYQsCrlqSiM-5B8BeDovW-n9Lr_RhSmIyRkNSBOmuG-cbf1MYM1ktqq6n1qVDBZNwJk9VNTrbFvwWYOzrYKj2OZl_7Y2gDIzBxoXsmJpB8OV173ssHBPPicX88vLZHa-mD1AD4kAm6yOAnky58iWNrnR1pRRgr6_1f2OtWMTXu9yZW5n5LZMnNk-eux8E3xqgXaAOmnxBB3U84dPHEX5u6do7JCHK-RhhzzskIdbyMOAPFwhD3vk4TbynqH5xfnsbBS4UzkCzRjdBApMVsYGSmd6IJQcRiwjSkj4w3RJlAJJZUqEIbj1TIIzlA3BhuehiEXGUkWWhB6ivaIs0hcID4SQGZdUDFLFwjiUgA2ZacXpMBWasC7q17OXaEdZb05OuU6q1AlBEzPdSTPdXXTiX_hqJ-LPTQ8rcfh2hIOnwPmgi45r-STuW4f3aAymbDSkpIve-Megic32mizScmvaRAIc9CiKuui5Fafv3CyblBLoXOwI2jcwLO-7T4p8VbG9CxOD4fTo_mG9RI-ar-4Y7W1utukrMJc36nWF3V9zxcR3
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primary+cilia+control+glucose+homeostasis+via+islet+paracrine+interactions&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hughes%2C+Jing+W&rft.au=Cho%2C+Jung+Hoon&rft.au=Conway%2C+Hannah+E&rft.au=DiGruccio%2C+Michael+R&rft.date=2020-04-21&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=16&rft.spage=8912&rft_id=info:doi/10.1073%2Fpnas.2001936117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon