The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI
The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functio...
Saved in:
Published in | Neural computation Vol. 28; no. 10; pp. 2250 - 2290 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.10.2016
MIT Press Journals, The |
Subjects | |
Online Access | Get full text |
ISSN | 0899-7667 1530-888X 1530-888X |
DOI | 10.1162/NECO_a_00877 |
Cover
Abstract | The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables. |
---|---|
AbstractList | The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables. The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables.The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables. |
Author | Madsen, Kristoffer Churchill, Nathan W Mørup, Morten |
Author_xml | – sequence: 1 givenname: Nathan W surname: Churchill fullname: Churchill, Nathan W email: nchurchill.research@gmail.com – sequence: 2 givenname: Kristoffer surname: Madsen fullname: Madsen, Kristoffer email: kristoffer.madsen@gmail.com – sequence: 3 givenname: Morten surname: Mørup fullname: Mørup, Morten organization: Section for Cognitive Systems, DTU Compute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark mmor@dtu.dk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27557105$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vEzEQxS1URNPAjTOyxIUDC_6za3u5VVFbIiVUKgVxsxxntrja2Iu9G1G-Al8aN5uiqioSp_GMfu_ZnneEDnzwgNBLSt5RKtj7Tyezc200IUrKJ2hCK04KpdS3AzQhqq4LKYQ8REcpXRNCBCXVM3TIZFXJfJyg35ffAZ8O3vYueNPiz3AV4crcdtj4NZ77Pk_GfhnW0H7AS_ezHyKMLb6ALkIC3--YhEODZ7m61OfZzuKric6sWsBnMQxdsYBtlmXGQ7506_ob7Dxulhfz5-hpY9oEL_Z1ir6cnlzOPhaL87P57HhR2LLkfWFozRtuBbErJqxsjITaKkpLYKKUwI2yTBqxZkC4MEQpQauVMmVZ8bLJFJ-iN6NvF8OPAVKvNy5ZaFvjIQxJU1VWilRcqf9AGSdMsZpk9PUD9DoMMe90R4maKpHhKXq1p4bVBta6i25j4o2-SyQDbARsDClFaLR14277aFyrKdG3sev7sWfR2weiO99_4Ptfbdz9Vz6OHj-C5ujClimXJZxmTGpGGNOk0oTpX67bAX89_gBYN9Ae |
CODEN | NEUCEB |
CitedBy_id | crossref_primary_10_1162_neco_a_01000 crossref_primary_10_3389_fnagi_2023_1039496 crossref_primary_10_1093_schbul_sby026 crossref_primary_10_1038_s41598_021_85811_4 crossref_primary_10_1109_ACCESS_2020_3018995 crossref_primary_10_1016_j_bbe_2024_09_003 crossref_primary_10_3389_fneur_2023_1136408 crossref_primary_10_3390_brainsci12111575 crossref_primary_10_61189_052994nhuqqb |
Cites_doi | 10.1214/09-SS053 10.1007/BF02288918 10.1006/nimg.1998.0391 10.1038/nrn1246 10.1176/ajp.2007.164.3.450 10.1016/j.tics.2013.09.016 10.1016/j.neuroimage.2013.05.102 10.1016/j.neuroimage.2011.07.044 10.1016/j.neuroimage.2004.03.039 10.1016/j.csda.2007.01.011 10.1016/j.neuroimage.2010.08.042 10.1038/jcbfm.1987.118 10.1016/S0730-725X(02)00503-9 10.1016/j.neuroimage.2005.08.044 10.3389/fnins.2014.00167 10.1016/j.neuroimage.2014.05.083 10.1073/pnas.0705843104 10.1006/nimg.1998.0425 10.1196/annals.1440.009 10.1016/j.neuroimage.2004.03.026 10.1002/ana.21228 10.1080/01621459.1987.10478395 10.1016/j.neuroimage.2010.02.082 10.1089/brain.2011.0065 10.1002/cem.1290 10.1016/j.neuropsychologia.2007.10.003 10.1016/j.neuroimage.2004.02.026 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.neuroimage.2004.05.018 10.1214/ss/1177013815 10.1073/pnas.0308627101 10.1016/j.neuroimage.2009.04.048 10.1016/S1053-8119(03)00352-5 10.1016/S0730-725X(99)00102-2 10.1007/s10867-008-9077-0 10.1002/hbm.21333 10.1080/00401706.1977.10489493 10.1371/journal.pone.0007200 10.1016/j.neuroimage.2005.12.057 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G 10.1016/S1388-2457(02)00038-X 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B 10.1073/pnas.0601417103 10.1016/j.neuron.2010.08.017 10.1073/pnas.91.11.5033 10.1016/j.compmedimag.2008.10.011 10.1002/hbm.20210 10.3389/fnagi.2013.00073 10.1016/j.neuroimage.2007.04.065 10.1016/j.neuroimage.2011.08.031 10.1109/TMI.2004.836545 10.1016/j.neuroimage.2012.03.020 10.1016/j.neuroimage.2009.10.003 10.1080/03610927408827101 10.1016/S0301-0082(02)00076-X 10.1371/journal.pone.0002001 10.1523/JNEUROSCI.5166-09.2010 10.1073/pnas.0135058100 10.1016/j.neuroimage.2006.08.035 10.1016/j.patcog.2011.09.011 10.1198/016214502760047131 10.1148/radiol.2241011005 10.1073/pnas.98.2.676 10.1214/aos/1176325375 10.1016/j.neuroimage.2009.11.015 |
ContentType | Journal Article |
Copyright | Copyright MIT Press Journals Oct 2016 |
Copyright_xml | – notice: Copyright MIT Press Journals Oct 2016 |
DBID | AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1162/NECO_a_00877 |
DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1530-888X |
EndPage | 2290 |
ExternalDocumentID | 4208037661 27557105 10_1162_NECO_a_00877 neco_a_00877.pdf |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - 0R 123 4.4 4S 6IK AAJGR AAPBV ABDBF ABFLS ABIVO ABPTK ADIYS AEILP AENEX AFHIN ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CAG CS3 DU5 EAP EAS EBC EBD EBS ECS EDO EJD EMB EMK EPL EPS EST ESX F5P FEDTE FNEHJ HZ I-F IPLJI JAVBF MCG MKJ O9- OCL P2P PK0 PQEST PQQKQ RMI SV3 TUS WH7 X --- -~X .4S .DC 0R~ 36B 41~ 53G AAFWJ AALMD AAYXX ABAZT ABDNZ ABEFU ABJNI ABVLG ACGFO ACUHS ACYGS ADMLS AEGXH AIAGR AMVHM CITATION COF EMOBN HVGLF HZ~ H~9 MINIK WG8 XJE ZWS AAYOK NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c443t-a193f3c60cb26c7fa7e9c8114e2647e3a8c27a6d2e036a088615b8a44534f14e3 |
ISSN | 0899-7667 1530-888X |
IngestDate | Thu Sep 04 22:24:24 EDT 2025 Fri Sep 05 13:44:56 EDT 2025 Mon Jun 30 08:05:41 EDT 2025 Thu Apr 03 07:06:16 EDT 2025 Wed Aug 20 07:46:48 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Tue May 03 12:21:23 EDT 2022 Wed May 04 05:17:57 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-a193f3c60cb26c7fa7e9c8114e2647e3a8c27a6d2e036a088615b8a44534f14e3 |
Notes | October, 2016 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27557105 |
PQID | 1826918682 |
PQPubID | 37252 |
PageCount | 41 |
ParticipantIDs | mit_journals_10_1162_NECO_a_00877 crossref_primary_10_1162_NECO_a_00877 pubmed_primary_27557105 proquest_miscellaneous_1845805388 proquest_journals_1826918682 mit_journals_necov28i10_318777_2022_05_02_zip_neco_a_00877 crossref_citationtrail_10_1162_NECO_a_00877 proquest_miscellaneous_1823028290 |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States – name: Cambridge |
PublicationTitle | Neural computation |
PublicationTitleAlternate | Neural Comput |
PublicationYear | 2016 |
Publisher | MIT Press MIT Press Journals, The |
Publisher_xml | – name: MIT Press – name: MIT Press Journals, The |
References | B64 B21 B65 B22 B67 B24 B68 B25 B69 B26 B27 B28 Harshman R. A. (B41) 1972; 22 Turaga P. (B70) 2008 B71 B72 B73 B30 B31 B75 B33 B34 Cook R. D. (B14) 1977; 19 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B42 B43 B44 B45 B46 B47 B48 B49 Corduneau A. (B16) 2001 B50 B53 B10 B54 B11 B55 B12 B56 B13 B57 Duda R. O. (B23) 1973 B58 B15 B59 B17 B18 B19 Vinnikov A. (B74) 2014 Dempster A. P. (B20) 1977; 1 Gillis N. (B32) 2014 McIntosh A. R. (B51) 2010; 148 Fukunaga K. (B29) 2013 B60 B61 B62 B63 |
References_xml | – ident: B54 doi: 10.1214/09-SS053 – ident: B36 doi: 10.1007/BF02288918 – ident: B34 doi: 10.1006/nimg.1998.0391 – ident: B21 doi: 10.1038/nrn1246 – ident: B31 doi: 10.1176/ajp.2007.164.3.450 – ident: B64 doi: 10.1016/j.tics.2013.09.016 – year: 2014 ident: B32 publication-title: The why and how of nonnegative matrix factorization – ident: B12 doi: 10.1016/j.neuroimage.2013.05.102 – ident: B73 doi: 10.1016/j.neuroimage.2011.07.044 – ident: B55 doi: 10.1016/j.neuroimage.2004.03.039 – ident: B63 doi: 10.1016/j.csda.2007.01.011 – ident: B42 doi: 10.1016/j.neuroimage.2010.08.042 – ident: B56 doi: 10.1038/jcbfm.1987.118 – ident: B15 doi: 10.1016/S0730-725X(02)00503-9 – ident: B5 doi: 10.1016/j.neuroimage.2005.08.044 – ident: B68 doi: 10.3389/fnins.2014.00167 – ident: B2 doi: 10.1016/j.neuroimage.2014.05.083 – ident: B25 doi: 10.1073/pnas.0705843104 – ident: B40 doi: 10.1006/nimg.1998.0425 – ident: B35 doi: 10.1196/annals.1440.009 – ident: B57 doi: 10.1016/j.neuroimage.2004.03.026 – ident: B37 doi: 10.1002/ana.21228 – volume: 22 start-page: 122215 issue: 3044 year: 1972 ident: B41 publication-title: UCLA Working Papers in Phonetics – ident: B44 doi: 10.1080/01621459.1987.10478395 – ident: B6 doi: 10.1016/j.neuroimage.2010.02.082 – ident: B10 doi: 10.1089/brain.2011.0065 – ident: B13 doi: 10.1002/cem.1290 – year: 2013 ident: B29 publication-title: Introduction to statistical pattern recognition – ident: B33 doi: 10.1016/j.neuropsychologia.2007.10.003 – ident: B1 doi: 10.1016/j.neuroimage.2004.02.026 – volume: 1 start-page: 1 year: 1977 ident: B20 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: B50 doi: 10.1016/j.neuroimage.2004.05.018 – start-page: 27 year: 2001 ident: B16 publication-title: Proceedings of the 8th International Conference on Artificial intelligence and statistics – year: 1973 ident: B23 publication-title: Pattern classification and scene analysis – ident: B24 doi: 10.1214/ss/1177013815 – ident: B39 doi: 10.1073/pnas.0308627101 – ident: B11 doi: 10.1016/j.neuroimage.2009.04.048 – ident: B48 doi: 10.1016/S1053-8119(03)00352-5 – ident: B4 doi: 10.1016/S0730-725X(99)00102-2 – ident: B53 doi: 10.1007/s10867-008-9077-0 – ident: B17 doi: 10.1002/hbm.21333 – volume: 19 start-page: 15 year: 1977 ident: B14 publication-title: Technometrics doi: 10.1080/00401706.1977.10489493 – ident: B7 doi: 10.1371/journal.pone.0007200 – ident: B49 doi: 10.1016/j.neuroimage.2005.12.057 – ident: B3 doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G – ident: B22 doi: 10.1016/S1388-2457(02)00038-X – start-page: 712 year: 2014 ident: B74 publication-title: Proceedings of the 31st International Conference on Machine Learning – volume: 148 start-page: 323 issue: 3 year: 2010 ident: B51 publication-title: Archives italiennes de biologie – ident: B43 doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B – start-page: 1 year: 2008 ident: B70 publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: B19 doi: 10.1073/pnas.0601417103 – ident: B58 doi: 10.1016/j.neuron.2010.08.017 – ident: B69 doi: 10.1073/pnas.91.11.5033 – ident: B46 doi: 10.1016/j.compmedimag.2008.10.011 – ident: B67 doi: 10.1002/hbm.20210 – ident: B9 doi: 10.3389/fnagi.2013.00073 – ident: B18 doi: 10.1016/j.neuroimage.2007.04.065 – ident: B45 doi: 10.1016/j.neuroimage.2011.08.031 – ident: B75 doi: 10.1109/TMI.2004.836545 – ident: B61 doi: 10.1016/j.neuroimage.2012.03.020 – ident: B62 doi: 10.1016/j.neuroimage.2009.10.003 – ident: B8 doi: 10.1080/03610927408827101 – ident: B27 doi: 10.1016/S0301-0082(02)00076-X – ident: B72 doi: 10.1371/journal.pone.0002001 – ident: B30 doi: 10.1523/JNEUROSCI.5166-09.2010 – ident: B38 doi: 10.1073/pnas.0135058100 – ident: B28 doi: 10.1016/j.neuroimage.2006.08.035 – ident: B60 doi: 10.1016/j.patcog.2011.09.011 – ident: B26 doi: 10.1198/016214502760047131 – ident: B47 doi: 10.1148/radiol.2241011005 – ident: B59 doi: 10.1073/pnas.98.2.676 – ident: B71 doi: 10.1214/aos/1176325375 – ident: B65 doi: 10.1016/j.neuroimage.2009.11.015 |
SSID | ssj0006105 |
Score | 2.2475615 |
Snippet | The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated... |
SourceID | proquest pubmed crossref mit |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2250 |
SubjectTerms | Brain Estimates Flexibility Letters Magnetic resonance imaging Mathematical models Networks NMR Normal distribution Nuclear magnetic resonance Parameters Segregations Simulation Time series |
Title | The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI |
URI | https://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00877 https://www.ncbi.nlm.nih.gov/pubmed/27557105 https://www.proquest.com/docview/1826918682 https://www.proquest.com/docview/1823028290 https://www.proquest.com/docview/1845805388 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67oUXvmGFgYwET1UgdRLb3ds6Wg3UdhK0qG-Wkzoo0kin0SLYv8A_zfkjiQsrGrxEjXPN1_3iu599vkPoJZCONA4VC3KWJkBQAMa8nyQB4TmNU7A4eU-vd55M6ek8fr9IFq3WDy9qabNOX2dX164r-R-tQhvoVa-S_QfN1ieFBvgN-oUtaBi2N9bxCAyTG8_7qIA8f7YatWG-NhWE3tc1z841_Z8U382kgWnQ_nez_shGxJkSnqB7F3v-Cci0WV5lRqmCsQ4y6prwmMwVnijKbj758M53c3XKD5N4RJeM2Jrrt9WnXA7tqRm479bDPBO5dANCpu9Z6dot9TE9pT_glxtTUM_ECJf-kEWP1sFvTS8bBkC9F9YIXdPmumbCfQiGfkdLbL7aPy0A1Rllp8OTMyGFTrjHGktXze5Pz8RoPh6L2XAx20P7hIHb1Ub7x4O3g1FtxqmNf63vq1o1Qckb_-xb_szel2K9m6oYl2V2F912XAMfW-DcQy1V3kd3qjoe2HXrD9BPwBFucIQ9HGGAAPZwhA1sjrBDkd3Fv6EIr3LcoMicokIR9lCEfRThosQaRQ_RfDScnZwGrkhHkMVxtA4kMIA8ymiYpYRmLJdM9TMOLFuBq81UJHlGmKRLosBXkmDTwIVOuYzjJIpzkIoeoXa5KtUBwuBqymVOeaiAR_R7Kl1GPRISyQhVS95nHdStXrXIXAZ7XUjlXBgmS4nwFdNBr2rpC5u5ZYfcC9CacJ_11x0yR1sy8HJW3wgvQBZsImNMwH0SESYiJOKquDACzZ8PK0B4VwFa39elKghcvz4MXbuer5OlWm2MTGQjHf4mEyccDCnnHfTYgq1-WsKSBAhE8uQGV3iKbjVf6iFqry836hm42-v0ufswfgGB2NcD |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Functional+Segregation+and+Integration+Model%3A+Mixture+Model+Representations+of+Consistent+and+Variable+Group-Level+Connectivity+in+fMRI&rft.jtitle=Neural+computation&rft.au=Churchill%2C+Nathan+W&rft.au=Madsen%2C+Kristoffer&rft.au=M%C3%B8rup%2C+Morten&rft.date=2016-10-01&rft.issn=1530-888X&rft.eissn=1530-888X&rft.volume=28&rft.issue=10&rft.spage=2250&rft_id=info:doi/10.1162%2FNECO_a_00877&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon |