The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI

The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functio...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 28; no. 10; pp. 2250 - 2290
Main Authors Churchill, Nathan W, Madsen, Kristoffer, Mørup, Morten
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.10.2016
MIT Press Journals, The
Subjects
Online AccessGet full text
ISSN0899-7667
1530-888X
1530-888X
DOI10.1162/NECO_a_00877

Cover

Abstract The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables.
AbstractList The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables.
The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables.The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables.
Author Madsen, Kristoffer
Churchill, Nathan W
Mørup, Morten
Author_xml – sequence: 1
  givenname: Nathan W
  surname: Churchill
  fullname: Churchill, Nathan W
  email: nchurchill.research@gmail.com
– sequence: 2
  givenname: Kristoffer
  surname: Madsen
  fullname: Madsen, Kristoffer
  email: kristoffer.madsen@gmail.com
– sequence: 3
  givenname: Morten
  surname: Mørup
  fullname: Mørup, Morten
  organization: Section for Cognitive Systems, DTU Compute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark mmor@dtu.dk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27557105$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vEzEQxS1URNPAjTOyxIUDC_6za3u5VVFbIiVUKgVxsxxntrja2Iu9G1G-Al8aN5uiqioSp_GMfu_ZnneEDnzwgNBLSt5RKtj7Tyezc200IUrKJ2hCK04KpdS3AzQhqq4LKYQ8REcpXRNCBCXVM3TIZFXJfJyg35ffAZ8O3vYueNPiz3AV4crcdtj4NZ77Pk_GfhnW0H7AS_ezHyKMLb6ALkIC3--YhEODZ7m61OfZzuKric6sWsBnMQxdsYBtlmXGQ7506_ob7Dxulhfz5-hpY9oEL_Z1ir6cnlzOPhaL87P57HhR2LLkfWFozRtuBbErJqxsjITaKkpLYKKUwI2yTBqxZkC4MEQpQauVMmVZ8bLJFJ-iN6NvF8OPAVKvNy5ZaFvjIQxJU1VWilRcqf9AGSdMsZpk9PUD9DoMMe90R4maKpHhKXq1p4bVBta6i25j4o2-SyQDbARsDClFaLR14277aFyrKdG3sev7sWfR2weiO99_4Ptfbdz9Vz6OHj-C5ujClimXJZxmTGpGGNOk0oTpX67bAX89_gBYN9Ae
CODEN NEUCEB
CitedBy_id crossref_primary_10_1162_neco_a_01000
crossref_primary_10_3389_fnagi_2023_1039496
crossref_primary_10_1093_schbul_sby026
crossref_primary_10_1038_s41598_021_85811_4
crossref_primary_10_1109_ACCESS_2020_3018995
crossref_primary_10_1016_j_bbe_2024_09_003
crossref_primary_10_3389_fneur_2023_1136408
crossref_primary_10_3390_brainsci12111575
crossref_primary_10_61189_052994nhuqqb
Cites_doi 10.1214/09-SS053
10.1007/BF02288918
10.1006/nimg.1998.0391
10.1038/nrn1246
10.1176/ajp.2007.164.3.450
10.1016/j.tics.2013.09.016
10.1016/j.neuroimage.2013.05.102
10.1016/j.neuroimage.2011.07.044
10.1016/j.neuroimage.2004.03.039
10.1016/j.csda.2007.01.011
10.1016/j.neuroimage.2010.08.042
10.1038/jcbfm.1987.118
10.1016/S0730-725X(02)00503-9
10.1016/j.neuroimage.2005.08.044
10.3389/fnins.2014.00167
10.1016/j.neuroimage.2014.05.083
10.1073/pnas.0705843104
10.1006/nimg.1998.0425
10.1196/annals.1440.009
10.1016/j.neuroimage.2004.03.026
10.1002/ana.21228
10.1080/01621459.1987.10478395
10.1016/j.neuroimage.2010.02.082
10.1089/brain.2011.0065
10.1002/cem.1290
10.1016/j.neuropsychologia.2007.10.003
10.1016/j.neuroimage.2004.02.026
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.neuroimage.2004.05.018
10.1214/ss/1177013815
10.1073/pnas.0308627101
10.1016/j.neuroimage.2009.04.048
10.1016/S1053-8119(03)00352-5
10.1016/S0730-725X(99)00102-2
10.1007/s10867-008-9077-0
10.1002/hbm.21333
10.1080/00401706.1977.10489493
10.1371/journal.pone.0007200
10.1016/j.neuroimage.2005.12.057
10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
10.1016/S1388-2457(02)00038-X
10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B
10.1073/pnas.0601417103
10.1016/j.neuron.2010.08.017
10.1073/pnas.91.11.5033
10.1016/j.compmedimag.2008.10.011
10.1002/hbm.20210
10.3389/fnagi.2013.00073
10.1016/j.neuroimage.2007.04.065
10.1016/j.neuroimage.2011.08.031
10.1109/TMI.2004.836545
10.1016/j.neuroimage.2012.03.020
10.1016/j.neuroimage.2009.10.003
10.1080/03610927408827101
10.1016/S0301-0082(02)00076-X
10.1371/journal.pone.0002001
10.1523/JNEUROSCI.5166-09.2010
10.1073/pnas.0135058100
10.1016/j.neuroimage.2006.08.035
10.1016/j.patcog.2011.09.011
10.1198/016214502760047131
10.1148/radiol.2241011005
10.1073/pnas.98.2.676
10.1214/aos/1176325375
10.1016/j.neuroimage.2009.11.015
ContentType Journal Article
Copyright Copyright MIT Press Journals Oct 2016
Copyright_xml – notice: Copyright MIT Press Journals Oct 2016
DBID AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1162/NECO_a_00877
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
EndPage 2290
ExternalDocumentID 4208037661
27557105
10_1162_NECO_a_00877
neco_a_00877.pdf
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
0R
123
4.4
4S
6IK
AAJGR
AAPBV
ABDBF
ABFLS
ABIVO
ABPTK
ADIYS
AEILP
AENEX
AFHIN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HZ
I-F
IPLJI
JAVBF
MCG
MKJ
O9-
OCL
P2P
PK0
PQEST
PQQKQ
RMI
SV3
TUS
WH7
X
---
-~X
.4S
.DC
0R~
36B
41~
53G
AAFWJ
AALMD
AAYXX
ABAZT
ABDNZ
ABEFU
ABJNI
ABVLG
ACGFO
ACUHS
ACYGS
ADMLS
AEGXH
AIAGR
AMVHM
CITATION
COF
EMOBN
HVGLF
HZ~
H~9
MINIK
WG8
XJE
ZWS
AAYOK
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c443t-a193f3c60cb26c7fa7e9c8114e2647e3a8c27a6d2e036a088615b8a44534f14e3
ISSN 0899-7667
1530-888X
IngestDate Thu Sep 04 22:24:24 EDT 2025
Fri Sep 05 13:44:56 EDT 2025
Mon Jun 30 08:05:41 EDT 2025
Thu Apr 03 07:06:16 EDT 2025
Wed Aug 20 07:46:48 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Tue May 03 12:21:23 EDT 2022
Wed May 04 05:17:57 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-a193f3c60cb26c7fa7e9c8114e2647e3a8c27a6d2e036a088615b8a44534f14e3
Notes October, 2016
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27557105
PQID 1826918682
PQPubID 37252
PageCount 41
ParticipantIDs mit_journals_10_1162_NECO_a_00877
crossref_primary_10_1162_NECO_a_00877
pubmed_primary_27557105
proquest_miscellaneous_1845805388
proquest_journals_1826918682
mit_journals_necov28i10_318777_2022_05_02_zip_neco_a_00877
crossref_citationtrail_10_1162_NECO_a_00877
proquest_miscellaneous_1823028290
PublicationCentury 2000
PublicationDate 2016-10-01
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2016
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References B64
B21
B65
B22
B67
B24
B68
B25
B69
B26
B27
B28
Harshman R. A. (B41) 1972; 22
Turaga P. (B70) 2008
B71
B72
B73
B30
B31
B75
B33
B34
Cook R. D. (B14) 1977; 19
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B42
B43
B44
B45
B46
B47
B48
B49
Corduneau A. (B16) 2001
B50
B53
B10
B54
B11
B55
B12
B56
B13
B57
Duda R. O. (B23) 1973
B58
B15
B59
B17
B18
B19
Vinnikov A. (B74) 2014
Dempster A. P. (B20) 1977; 1
Gillis N. (B32) 2014
McIntosh A. R. (B51) 2010; 148
Fukunaga K. (B29) 2013
B60
B61
B62
B63
References_xml – ident: B54
  doi: 10.1214/09-SS053
– ident: B36
  doi: 10.1007/BF02288918
– ident: B34
  doi: 10.1006/nimg.1998.0391
– ident: B21
  doi: 10.1038/nrn1246
– ident: B31
  doi: 10.1176/ajp.2007.164.3.450
– ident: B64
  doi: 10.1016/j.tics.2013.09.016
– year: 2014
  ident: B32
  publication-title: The why and how of nonnegative matrix factorization
– ident: B12
  doi: 10.1016/j.neuroimage.2013.05.102
– ident: B73
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: B55
  doi: 10.1016/j.neuroimage.2004.03.039
– ident: B63
  doi: 10.1016/j.csda.2007.01.011
– ident: B42
  doi: 10.1016/j.neuroimage.2010.08.042
– ident: B56
  doi: 10.1038/jcbfm.1987.118
– ident: B15
  doi: 10.1016/S0730-725X(02)00503-9
– ident: B5
  doi: 10.1016/j.neuroimage.2005.08.044
– ident: B68
  doi: 10.3389/fnins.2014.00167
– ident: B2
  doi: 10.1016/j.neuroimage.2014.05.083
– ident: B25
  doi: 10.1073/pnas.0705843104
– ident: B40
  doi: 10.1006/nimg.1998.0425
– ident: B35
  doi: 10.1196/annals.1440.009
– ident: B57
  doi: 10.1016/j.neuroimage.2004.03.026
– ident: B37
  doi: 10.1002/ana.21228
– volume: 22
  start-page: 122215
  issue: 3044
  year: 1972
  ident: B41
  publication-title: UCLA Working Papers in Phonetics
– ident: B44
  doi: 10.1080/01621459.1987.10478395
– ident: B6
  doi: 10.1016/j.neuroimage.2010.02.082
– ident: B10
  doi: 10.1089/brain.2011.0065
– ident: B13
  doi: 10.1002/cem.1290
– year: 2013
  ident: B29
  publication-title: Introduction to statistical pattern recognition
– ident: B33
  doi: 10.1016/j.neuropsychologia.2007.10.003
– ident: B1
  doi: 10.1016/j.neuroimage.2004.02.026
– volume: 1
  start-page: 1
  year: 1977
  ident: B20
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: B50
  doi: 10.1016/j.neuroimage.2004.05.018
– start-page: 27
  year: 2001
  ident: B16
  publication-title: Proceedings of the 8th International Conference on Artificial intelligence and statistics
– year: 1973
  ident: B23
  publication-title: Pattern classification and scene analysis
– ident: B24
  doi: 10.1214/ss/1177013815
– ident: B39
  doi: 10.1073/pnas.0308627101
– ident: B11
  doi: 10.1016/j.neuroimage.2009.04.048
– ident: B48
  doi: 10.1016/S1053-8119(03)00352-5
– ident: B4
  doi: 10.1016/S0730-725X(99)00102-2
– ident: B53
  doi: 10.1007/s10867-008-9077-0
– ident: B17
  doi: 10.1002/hbm.21333
– volume: 19
  start-page: 15
  year: 1977
  ident: B14
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489493
– ident: B7
  doi: 10.1371/journal.pone.0007200
– ident: B49
  doi: 10.1016/j.neuroimage.2005.12.057
– ident: B3
  doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
– ident: B22
  doi: 10.1016/S1388-2457(02)00038-X
– start-page: 712
  year: 2014
  ident: B74
  publication-title: Proceedings of the 31st International Conference on Machine Learning
– volume: 148
  start-page: 323
  issue: 3
  year: 2010
  ident: B51
  publication-title: Archives italiennes de biologie
– ident: B43
  doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B
– start-page: 1
  year: 2008
  ident: B70
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: B19
  doi: 10.1073/pnas.0601417103
– ident: B58
  doi: 10.1016/j.neuron.2010.08.017
– ident: B69
  doi: 10.1073/pnas.91.11.5033
– ident: B46
  doi: 10.1016/j.compmedimag.2008.10.011
– ident: B67
  doi: 10.1002/hbm.20210
– ident: B9
  doi: 10.3389/fnagi.2013.00073
– ident: B18
  doi: 10.1016/j.neuroimage.2007.04.065
– ident: B45
  doi: 10.1016/j.neuroimage.2011.08.031
– ident: B75
  doi: 10.1109/TMI.2004.836545
– ident: B61
  doi: 10.1016/j.neuroimage.2012.03.020
– ident: B62
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: B8
  doi: 10.1080/03610927408827101
– ident: B27
  doi: 10.1016/S0301-0082(02)00076-X
– ident: B72
  doi: 10.1371/journal.pone.0002001
– ident: B30
  doi: 10.1523/JNEUROSCI.5166-09.2010
– ident: B38
  doi: 10.1073/pnas.0135058100
– ident: B28
  doi: 10.1016/j.neuroimage.2006.08.035
– ident: B60
  doi: 10.1016/j.patcog.2011.09.011
– ident: B26
  doi: 10.1198/016214502760047131
– ident: B47
  doi: 10.1148/radiol.2241011005
– ident: B59
  doi: 10.1073/pnas.98.2.676
– ident: B71
  doi: 10.1214/aos/1176325375
– ident: B65
  doi: 10.1016/j.neuroimage.2009.11.015
SSID ssj0006105
Score 2.2475615
Snippet The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated...
SourceID proquest
pubmed
crossref
mit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2250
SubjectTerms Brain
Estimates
Flexibility
Letters
Magnetic resonance imaging
Mathematical models
Networks
NMR
Normal distribution
Nuclear magnetic resonance
Parameters
Segregations
Simulation
Time series
Title The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI
URI https://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00877
https://www.ncbi.nlm.nih.gov/pubmed/27557105
https://www.proquest.com/docview/1826918682
https://www.proquest.com/docview/1823028290
https://www.proquest.com/docview/1845805388
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67oUXvmGFgYwET1UgdRLb3ds6Wg3UdhK0qG-Wkzoo0kin0SLYv8A_zfkjiQsrGrxEjXPN1_3iu599vkPoJZCONA4VC3KWJkBQAMa8nyQB4TmNU7A4eU-vd55M6ek8fr9IFq3WDy9qabNOX2dX164r-R-tQhvoVa-S_QfN1ieFBvgN-oUtaBi2N9bxCAyTG8_7qIA8f7YatWG-NhWE3tc1z841_Z8U382kgWnQ_nez_shGxJkSnqB7F3v-Cci0WV5lRqmCsQ4y6prwmMwVnijKbj758M53c3XKD5N4RJeM2Jrrt9WnXA7tqRm479bDPBO5dANCpu9Z6dot9TE9pT_glxtTUM_ECJf-kEWP1sFvTS8bBkC9F9YIXdPmumbCfQiGfkdLbL7aPy0A1Rllp8OTMyGFTrjHGktXze5Pz8RoPh6L2XAx20P7hIHb1Ub7x4O3g1FtxqmNf63vq1o1Qckb_-xb_szel2K9m6oYl2V2F912XAMfW-DcQy1V3kd3qjoe2HXrD9BPwBFucIQ9HGGAAPZwhA1sjrBDkd3Fv6EIr3LcoMicokIR9lCEfRThosQaRQ_RfDScnZwGrkhHkMVxtA4kMIA8ymiYpYRmLJdM9TMOLFuBq81UJHlGmKRLosBXkmDTwIVOuYzjJIpzkIoeoXa5KtUBwuBqymVOeaiAR_R7Kl1GPRISyQhVS95nHdStXrXIXAZ7XUjlXBgmS4nwFdNBr2rpC5u5ZYfcC9CacJ_11x0yR1sy8HJW3wgvQBZsImNMwH0SESYiJOKquDACzZ8PK0B4VwFa39elKghcvz4MXbuer5OlWm2MTGQjHf4mEyccDCnnHfTYgq1-WsKSBAhE8uQGV3iKbjVf6iFqry836hm42-v0ufswfgGB2NcD
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Functional+Segregation+and+Integration+Model%3A+Mixture+Model+Representations+of+Consistent+and+Variable+Group-Level+Connectivity+in+fMRI&rft.jtitle=Neural+computation&rft.au=Churchill%2C+Nathan+W&rft.au=Madsen%2C+Kristoffer&rft.au=M%C3%B8rup%2C+Morten&rft.date=2016-10-01&rft.issn=1530-888X&rft.eissn=1530-888X&rft.volume=28&rft.issue=10&rft.spage=2250&rft_id=info:doi/10.1162%2FNECO_a_00877&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon