Statistical Modeling of 4D Respiratory Lung Motion Using Diffeomorphic Image Registration
Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 30; no. 2; pp. 251 - 265 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2010.2076299 |
Cover
Abstract | Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis. |
---|---|
AbstractList | Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 plus or minus 1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis. Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of [Formula Omitted] mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis. Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis. Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis. |
Author | Ehrhardt, Jan Handels, Heinz Werner, René Schmidt-Richberg, Alexander |
Author_xml | – sequence: 1 givenname: Jan surname: Ehrhardt fullname: Ehrhardt, Jan email: ehrhardt@imi.uni-luebeck.de organization: Inst. of Med. Inf., Univ. of Lubeck, Lübeck, Germany – sequence: 2 givenname: René surname: Werner fullname: Werner, René organization: Inst. of Med. Inf., Univ. of Lubeck, Lübeck, Germany – sequence: 3 givenname: Alexander surname: Schmidt-Richberg fullname: Schmidt-Richberg, Alexander organization: Inst. of Med. Inf., Univ. of Lubeck, Lübeck, Germany – sequence: 4 givenname: Heinz surname: Handels fullname: Handels, Heinz organization: Inst. of Med. Inf., Univ. of Lubeck, Lübeck, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20876013$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1LwzAYxoMobn7cBUGKF0-db9I0TY6y-THYEHSCnkqWpjPSNjNpD_vvzdzcwYOeQsLveV7e58kR2m9soxE6wzDAGMT1bDoeEAg3AhkjQuyhPk5THpOUvu6jPpCMxwCM9NCR9x8AmKYgDlGPAM8Y4KSP3p5b2RrfGiWraGoLXZlmEdkyoqPoSfulcbK1bhVNuvA8ta2xTfTi18zIlKW2tXXLd6OicS0XOigWwStIAnaCDkpZeX26PY_Ry93tbPgQTx7vx8ObSawoTdpYCEYo4WxepKUUrOCKl1zPMYWCCUwxVymjPMsIh1IyKgCzIplrqgTjrMA4OUZXG9-ls5-d9m1eG690VclG287nnIVIwgTxP0kFTbDIWCAvf5EftnNNWCNAPMNZkq7tLrZQN691kS-dqaVb5T_hBgA2gHLWe6fLHYIhX_eXh_7ydX_5tr8gYb8kyrTfcYZUTfWX8HwjNFrr3ZzwF1JOaPIFRjik6A |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_compmedimag_2023_102273 crossref_primary_10_1088_0031_9155_60_4_1497 crossref_primary_10_1016_j_media_2011_06_007 crossref_primary_10_1007_s10278_021_00440_7 crossref_primary_10_1109_TNS_2015_2502721 crossref_primary_10_1111_cgf_14575 crossref_primary_10_1109_TMI_2017_2690260 crossref_primary_10_1007_s11548_019_02013_0 crossref_primary_10_1088_0031_9155_56_18_015 crossref_primary_10_1016_j_nicl_2015_12_001 crossref_primary_10_1016_j_media_2011_08_003 crossref_primary_10_1109_TRPMS_2021_3107322 crossref_primary_10_1007_s40846_018_0390_1 crossref_primary_10_1093_bjr_tqae067 crossref_primary_10_1118_1_4790689 crossref_primary_10_1007_s11548_017_1538_0 crossref_primary_10_3414_ME13_01_0137 crossref_primary_10_1007_s11548_020_02154_7 crossref_primary_10_1115_1_4032051 crossref_primary_10_1121_10_0034639 crossref_primary_10_1002_cnm_3144 crossref_primary_10_1088_1361_6560_aca877 crossref_primary_10_1109_TITB_2012_2214395 crossref_primary_10_1109_ACCESS_2019_2899385 crossref_primary_10_1088_1361_6560_aa64ef crossref_primary_10_1016_j_media_2021_102181 crossref_primary_10_1109_TIP_2013_2297024 crossref_primary_10_1109_TMI_2022_3194517 crossref_primary_10_1088_0031_9155_59_5_1147 crossref_primary_10_1016_j_eswa_2023_120593 crossref_primary_10_1016_j_media_2014_05_005 crossref_primary_10_1088_0031_9155_59_20_6085 crossref_primary_10_1016_j_jcp_2023_112463 crossref_primary_10_1117_1_JMI_2_2_024004 crossref_primary_10_3414_ME12_01_0044 crossref_primary_10_1080_21681163_2015_1036308 crossref_primary_10_1145_2508037_2508050 crossref_primary_10_1044_2019_JSLHR_S_18_0495 crossref_primary_10_1016_j_bspc_2024_106476 crossref_primary_10_1002_mp_15008 crossref_primary_10_1016_j_eswa_2021_115288 crossref_primary_10_1016_j_media_2020_101829 crossref_primary_10_1109_TMI_2011_2158349 crossref_primary_10_1007_s10237_017_0974_7 crossref_primary_10_1080_21681163_2016_1147985 crossref_primary_10_1007_s11548_016_1405_4 crossref_primary_10_1088_1361_6560_aa8841 crossref_primary_10_1371_journal_pone_0204492 crossref_primary_10_3389_fphys_2023_1190155 crossref_primary_10_1016_j_media_2014_03_006 crossref_primary_10_1016_j_cmpb_2016_04_017 crossref_primary_10_1109_TMI_2013_2262055 crossref_primary_10_1109_JBHI_2018_2815346 crossref_primary_10_1587_transinf_E96_D_784 crossref_primary_10_1016_j_media_2014_05_013 crossref_primary_10_1088_1361_6560_aa70cc crossref_primary_10_1088_1361_6560_ad611b crossref_primary_10_1007_s11548_013_0963_y crossref_primary_10_1118_1_4929556 crossref_primary_10_1016_j_media_2012_09_005 crossref_primary_10_1088_0031_9155_59_15_4247 crossref_primary_10_1109_JBHI_2014_2381772 crossref_primary_10_1016_j_ijrobp_2016_02_050 crossref_primary_10_1088_1361_6560_aa925a crossref_primary_10_1007_s11548_022_02676_2 crossref_primary_10_1080_21681163_2016_1169220 crossref_primary_10_1007_s40009_016_0451_3 crossref_primary_10_1080_21681163_2017_1382393 crossref_primary_10_1088_1361_6560_ac5fe2 crossref_primary_10_1016_j_media_2015_10_006 crossref_primary_10_1016_j_zemedi_2011_08_001 crossref_primary_10_1109_TMI_2012_2190938 crossref_primary_10_1155_2022_6451770 crossref_primary_10_1016_j_radonc_2017_02_012 crossref_primary_10_1155_2014_974038 |
Cites_doi | 10.1006/cviu.1999.0815 10.1118/1.3193526 10.1117/12.844263 10.1016/S1361-8415(98)80022-4 10.1118/1.1739671 10.1007/11566489_50 10.1137/050637996 10.1118/1.2431245 10.1007/s11263-009-0219-z 10.1118/1.2222079 10.1088/0031-9155/51/17/003 10.1016/j.neuroimage.2004.07.068 10.1093/acprof:oso/9780198528418.001.0001 10.1016/j.neuroimage.2008.10.040 10.1016/j.neuroimage.2004.07.010 10.1007/11866565_113 10.1016/j.media.2008.03.007 10.1016/S1077-3142(03)00002-X 10.1016/j.neuroimage.2007.07.007 10.1088/0031-9155/54/7/001 10.1023/B:VISI.0000043755.93987.aa 10.1016/j.ijrobp.2005.03.070 10.1118/1.3013563 10.1118/1.2349696 10.1109/83.661190 10.1118/1.1576230 10.1118/1.1531177 10.1007/978-3-540-45087-0_50 10.1109/TMI.2004.828681 10.1160/ME9040 10.1023/A:1011161132514 10.1016/j.neuroimage.2004.07.023 10.1088/0031-9155/48/5/303 10.1007/978-3-540-85990-1_117 10.1109/34.121791 10.1023/A:1008001603737 10.1007/978-3-540-85988-8_90 10.1118/1.2161409 10.1088/0031-9155/53/16/007 10.1007/s10851-006-6228-4 10.1016/j.cam.2007.11.008 10.1118/1.3101820 10.1007/978-3-540-30136-3_121 10.1016/j.radonc.2004.07.017 10.1109/TMI.2003.815865 10.1118/1.1879152 10.1160/ME9047 10.1118/1.1771931 10.1088/0031-9155/51/4/002 10.1109/42.929615 10.1118/1.1870152 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2010.2076299 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 265 |
ExternalDocumentID | 2255160071 20876013 10_1109_TMI_2010_2076299 5585824 |
Genre | orig-research Journal Article |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c443t-99624286bd5fa96d8c8f8eb140d691418c564877280fa649016d3be4c9686d113 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Sun Sep 28 11:33:03 EDT 2025 Sun Sep 28 10:48:20 EDT 2025 Mon Jun 30 04:26:07 EDT 2025 Thu Apr 03 04:55:11 EDT 2025 Wed Oct 01 03:55:20 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Tue Aug 26 17:17:02 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-99624286bd5fa96d8c8f8eb140d691418c564877280fa649016d3be4c9686d113 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 20876013 |
PQID | 848717359 |
PQPubID | 85460 |
PageCount | 15 |
ParticipantIDs | pubmed_primary_20876013 proquest_miscellaneous_849431976 proquest_journals_848717359 crossref_primary_10_1109_TMI_2010_2076299 crossref_citationtrail_10_1109_TMI_2010_2076299 ieee_primary_5585824 proquest_miscellaneous_861554289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-Feb. 2011-02-00 2011-Feb 20110201 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-Feb. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2011 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | neicu (ref13) 2003; 48 ref12 nehmeh (ref7) 2004; 31 ref53 ref52 ref11 ref54 ref10 ref17 ref16 vercauteren (ref32) 2008; 5241 ref19 ref51 arsigny (ref20) 2006; 4190 ref46 peyrat (ref27) 2008; 5241 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ehrhardt (ref25) 2007; 34 ref9 ref4 ref3 ref6 ref5 ref40 marsland (ref31) 2008; 222 cachier (ref35) 2003; 89 ref34 perperidis (ref15) 2005; 3750 ref37 ref36 ref30 ref33 ref2 ref1 ref39 ref38 arsigny (ref18) 2006 (ref50) 1999 bossa (ref43) 2008 ref24 ref23 ref26 chandrashekara (ref14) 2003; 2732 ref22 ref21 ref28 ref29 |
References_xml | – ident: ref37 doi: 10.1006/cviu.1999.0815 – ident: ref47 doi: 10.1118/1.3193526 – ident: ref54 doi: 10.1117/12.844263 – ident: ref34 doi: 10.1016/S1361-8415(98)80022-4 – volume: 31 start-page: 1333 year: 2004 ident: ref7 article-title: quantitation of respiratory motion during 4d-pet/ct acquisition. publication-title: Med Phys doi: 10.1118/1.1739671 – volume: 3750 start-page: 402 year: 2005 ident: ref15 publication-title: Proc Med Image Computing and Computer-Assisted Intervent (MICCAI 2005) doi: 10.1007/11566489_50 – ident: ref42 doi: 10.1137/050637996 – volume: 34 start-page: 711 year: 2007 ident: ref25 article-title: An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing. publication-title: Med Phys doi: 10.1118/1.2431245 – ident: ref30 doi: 10.1007/s11263-009-0219-z – ident: ref11 doi: 10.1118/1.2222079 – ident: ref9 doi: 10.1088/0031-9155/51/17/003 – ident: ref38 doi: 10.1016/j.neuroimage.2004.07.068 – ident: ref33 doi: 10.1093/acprof:oso/9780198528418.001.0001 – ident: ref19 doi: 10.1016/j.neuroimage.2008.10.040 – ident: ref45 doi: 10.1016/j.neuroimage.2004.07.010 – volume: 4190 start-page: 924 year: 2006 ident: ref20 publication-title: Proc Med Image Computing and Computer-Assisted Intervent (MICCAI 2006) doi: 10.1007/11866565_113 – ident: ref5 doi: 10.1016/j.media.2008.03.007 – volume: 89 start-page: 272 year: 2003 ident: ref35 article-title: Iconic feature based nonrigid registration: The pasha algorithm publication-title: Comput Vis Image Understand doi: 10.1016/S1077-3142(03)00002-X – year: 1999 ident: ref50 publication-title: Report 62 Prescribing Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50) – start-page: 13 year: 2008 ident: ref43 article-title: a new algorithm for the computation of the group logarithm of diffeomorphisms publication-title: Proc Int Workshop Math Foundations Computat Anatomy (MFCA 2008) – ident: ref29 doi: 10.1016/j.neuroimage.2007.07.007 – ident: ref52 doi: 10.1088/0031-9155/54/7/001 – ident: ref21 doi: 10.1023/B:VISI.0000043755.93987.aa – ident: ref10 doi: 10.1016/j.ijrobp.2005.03.070 – ident: ref51 doi: 10.1118/1.3013563 – ident: ref1 doi: 10.1118/1.2349696 – ident: ref36 doi: 10.1109/83.661190 – ident: ref23 doi: 10.1118/1.1576230 – ident: ref2 doi: 10.1118/1.1531177 – volume: 2732 start-page: 599 year: 2003 ident: ref14 publication-title: Proc Information Processing in Medical Imaging doi: 10.1007/978-3-540-45087-0_50 – ident: ref16 doi: 10.1109/TMI.2004.828681 – ident: ref46 doi: 10.1160/ME9040 – ident: ref41 doi: 10.1023/A:1011161132514 – ident: ref40 doi: 10.1016/j.neuroimage.2004.07.023 – volume: 48 start-page: 587 year: 2003 ident: ref13 article-title: synchronized moving aperture radiation therapy (smart): average tumour trajectory for lung patients. publication-title: Phys Med Biol doi: 10.1088/0031-9155/48/5/303 – volume: 5241 start-page: 972 year: 2008 ident: ref27 publication-title: Proc Med Image Computing and Computer-Assisted Intervent (MICCAI 2008) doi: 10.1007/978-3-540-85990-1_117 – ident: ref48 doi: 10.1109/34.121791 – ident: ref28 doi: 10.1023/A:1008001603737 – volume: 5241 start-page: 754 year: 2008 ident: ref32 publication-title: Proc Med Image Computing and Computer-Assisted Intervent (MICCAI 2008) doi: 10.1007/978-3-540-85988-8_90 – ident: ref6 doi: 10.1118/1.2161409 – ident: ref12 doi: 10.1088/0031-9155/53/16/007 – ident: ref22 doi: 10.1007/s10851-006-6228-4 – volume: 222 start-page: 411 year: 2008 ident: ref31 article-title: constructing an atlas for the diffeomorphism group of a compact manifold with boundary, with application to the analysis of image registrations publication-title: J Comput Appl Math doi: 10.1016/j.cam.2007.11.008 – ident: ref53 doi: 10.1118/1.3101820 – ident: ref17 doi: 10.1007/978-3-540-30136-3_121 – ident: ref49 doi: 10.1016/j.radonc.2004.07.017 – ident: ref39 doi: 10.1109/TMI.2003.815865 – ident: ref3 doi: 10.1118/1.1879152 – ident: ref26 doi: 10.1160/ME9047 – year: 2006 ident: ref18 publication-title: Processing data in lie groups An algebraic approach Application to non-linear registration and diffusion tensor MRI – ident: ref8 doi: 10.1118/1.1771931 – ident: ref4 doi: 10.1088/0031-9155/51/4/002 – ident: ref44 doi: 10.1109/42.929615 – ident: ref24 doi: 10.1118/1.1870152 |
SSID | ssj0014509 |
Score | 2.3833156 |
Snippet | Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 251 |
SubjectTerms | 4D computed tomography (CT) Algorithms Computational modeling Computed tomography Diffeomorphic registration Four-Dimensional Computed Tomography - methods Humans Image Processing, Computer-Assisted - methods Image registration Lung - diagnostic imaging Lung cancer Lungs Models, Biological Models, Statistical motion modeling Movement Radiation therapy respiratory motion Solid modeling statistical atlas generation Three dimensional displays Tumors |
Title | Statistical Modeling of 4D Respiratory Lung Motion Using Diffeomorphic Image Registration |
URI | https://ieeexplore.ieee.org/document/5585824 https://www.ncbi.nlm.nih.gov/pubmed/20876013 https://www.proquest.com/docview/848717359 https://www.proquest.com/docview/849431976 https://www.proquest.com/docview/861554289 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB1QO5VXo8pIPvSA1u3k4jn1EPASI7aECiZ4ix4-qAjao3b3w65lxHkAFiFsk24mdb2zPeMbfAHxLbOW4ljZCG9lG3GsKAtBZZKzQlUgT7ivy6I5_iNMrfn6dX8_B9_4ujHMuBJ-5IT0GX76tzYyOykY56rYy5fMwXxSquavVewx43oRzpMQYG4u0c0nGanQ5PmtiuFLsEC6_RABMTGxxkr3YjUJ6lbc1zbDjnCzDuOtrE2hyM5xNq6F5-I_G8aODWYHPrerJDhpZWYU5N1mDpWeEhGuwOG5d7evwi9TQwOKMbShjGt1bZ7Vn_Ij9fPLPswtcLbCc8GUh_oAdUc6V-q5GBP8YdnaHKxa2-N0z9H6Bq5Pjy8PTqM3DEBnOs2mEJhFu5FJUNvdaCSuN9BLXeB5boRKeSJMLtHso0ZXXgqOGIWyGImCUkMImSbYBC5N64r4CU7IqtBeFjq3i1njcC6WPrdQ85M3yAxh1eJSmJSmnXBm3ZTBWYlUimCWBWbZgDmC_b3HfEHS8U3edcOjrtRAMYLuDvGxn8L9S4oiSIsuxEetLceqRP0VPXD2jKgrVL9Tn3qlCbl_8d_iWzUaW-o93Irj1eqe24VNzfE2RMzuwMP07c7uo_0yrvSD4j2n3_bY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKrVwaCnPLW3xoZdKzW4ejtc5IijaLRsO1SLRU-T4gRCwQbB74dcz4zwKFUW9RfI4sfON7bFn_A3A18iUlitpAtwjm4A7RUEAKgm0EaoUccRdSR7d_ESMTvnPs_RsCb53d2GstT74zPbp0fvyTaUXdFQ2SNG2lTF_Ba9T3FUM69tanc-Ap3VAR0ycsaGIW6dkmA2m-biO4oqxSTgBEwUwcbGFUfJkPfIJVv5ta_o15-g95G1r61CTy_5iXvb1_V9Ejv_bnTV41xifbL_Wlg-wZGfrsPqIknAd3uSNs30DfpMh6nmcsQ7lTKOb66xyjB-yX3889GyC8wWWE8LMRyCwQ8q6Ul1XiOGFZuNrnLOwxnnH0bsJp0c_pgejoMnEEGjOk3mAmyJcyqUoTepUJozU0kmc5XloRBbxSOpUICCU6sopwdHGECZBJdCZkMJEUbIFy7NqZneAZbIcKieGKjQZN9rhaihdaKTiPnOW68GgxaPQDU05Zcu4Kvx2JcwKBLMgMIsGzB5862rc1BQdL8huEA6dXANBD3ZbyItmDN8VEnsUDZMUK7GuFAcfeVTUzFYLEsnQAEOL7gURcvziv8O3bNe61H28VcGPzzdqD96OpvmkmIxPjndhpT7MpjiaT7A8v13Yz2gNzcsvfhA8AOTJARY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Modeling+of+4D+Respiratory+Lung+Motion+Using+Diffeomorphic+Image+Registration&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Ehrhardt%2C+Jan&rft.au=Werner%2C+Rene%CC%81&rft.au=Schmidt-Richberg%2C+Alexander&rft.au=Handels%2C+Heinz&rft.date=2011-02-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=30&rft.issue=2&rft.spage=251&rft.epage=265&rft_id=info:doi/10.1109%2FTMI.2010.2076299&rft_id=info%3Apmid%2F20876013&rft.externalDocID=5585824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |