Statistical Modeling of 4D Respiratory Lung Motion Using Diffeomorphic Image Registration

Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 30; no. 2; pp. 251 - 265
Main Authors Ehrhardt, Jan, Werner, René, Schmidt-Richberg, Alexander, Handels, Heinz
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2010.2076299

Cover

Abstract Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.
AbstractList Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 plus or minus 1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.
Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of [Formula Omitted] mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.
Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.
Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.
Author Ehrhardt, Jan
Handels, Heinz
Werner, René
Schmidt-Richberg, Alexander
Author_xml – sequence: 1
  givenname: Jan
  surname: Ehrhardt
  fullname: Ehrhardt, Jan
  email: ehrhardt@imi.uni-luebeck.de
  organization: Inst. of Med. Inf., Univ. of Lubeck, Lübeck, Germany
– sequence: 2
  givenname: René
  surname: Werner
  fullname: Werner, René
  organization: Inst. of Med. Inf., Univ. of Lubeck, Lübeck, Germany
– sequence: 3
  givenname: Alexander
  surname: Schmidt-Richberg
  fullname: Schmidt-Richberg, Alexander
  organization: Inst. of Med. Inf., Univ. of Lubeck, Lübeck, Germany
– sequence: 4
  givenname: Heinz
  surname: Handels
  fullname: Handels, Heinz
  organization: Inst. of Med. Inf., Univ. of Lubeck, Lübeck, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20876013$$D View this record in MEDLINE/PubMed
BookMark eNqFks1LwzAYxoMobn7cBUGKF0-db9I0TY6y-THYEHSCnkqWpjPSNjNpD_vvzdzcwYOeQsLveV7e58kR2m9soxE6wzDAGMT1bDoeEAg3AhkjQuyhPk5THpOUvu6jPpCMxwCM9NCR9x8AmKYgDlGPAM8Y4KSP3p5b2RrfGiWraGoLXZlmEdkyoqPoSfulcbK1bhVNuvA8ta2xTfTi18zIlKW2tXXLd6OicS0XOigWwStIAnaCDkpZeX26PY_Ry93tbPgQTx7vx8ObSawoTdpYCEYo4WxepKUUrOCKl1zPMYWCCUwxVymjPMsIh1IyKgCzIplrqgTjrMA4OUZXG9-ls5-d9m1eG690VclG287nnIVIwgTxP0kFTbDIWCAvf5EftnNNWCNAPMNZkq7tLrZQN691kS-dqaVb5T_hBgA2gHLWe6fLHYIhX_eXh_7ydX_5tr8gYb8kyrTfcYZUTfWX8HwjNFrr3ZzwF1JOaPIFRjik6A
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_compmedimag_2023_102273
crossref_primary_10_1088_0031_9155_60_4_1497
crossref_primary_10_1016_j_media_2011_06_007
crossref_primary_10_1007_s10278_021_00440_7
crossref_primary_10_1109_TNS_2015_2502721
crossref_primary_10_1111_cgf_14575
crossref_primary_10_1109_TMI_2017_2690260
crossref_primary_10_1007_s11548_019_02013_0
crossref_primary_10_1088_0031_9155_56_18_015
crossref_primary_10_1016_j_nicl_2015_12_001
crossref_primary_10_1016_j_media_2011_08_003
crossref_primary_10_1109_TRPMS_2021_3107322
crossref_primary_10_1007_s40846_018_0390_1
crossref_primary_10_1093_bjr_tqae067
crossref_primary_10_1118_1_4790689
crossref_primary_10_1007_s11548_017_1538_0
crossref_primary_10_3414_ME13_01_0137
crossref_primary_10_1007_s11548_020_02154_7
crossref_primary_10_1115_1_4032051
crossref_primary_10_1121_10_0034639
crossref_primary_10_1002_cnm_3144
crossref_primary_10_1088_1361_6560_aca877
crossref_primary_10_1109_TITB_2012_2214395
crossref_primary_10_1109_ACCESS_2019_2899385
crossref_primary_10_1088_1361_6560_aa64ef
crossref_primary_10_1016_j_media_2021_102181
crossref_primary_10_1109_TIP_2013_2297024
crossref_primary_10_1109_TMI_2022_3194517
crossref_primary_10_1088_0031_9155_59_5_1147
crossref_primary_10_1016_j_eswa_2023_120593
crossref_primary_10_1016_j_media_2014_05_005
crossref_primary_10_1088_0031_9155_59_20_6085
crossref_primary_10_1016_j_jcp_2023_112463
crossref_primary_10_1117_1_JMI_2_2_024004
crossref_primary_10_3414_ME12_01_0044
crossref_primary_10_1080_21681163_2015_1036308
crossref_primary_10_1145_2508037_2508050
crossref_primary_10_1044_2019_JSLHR_S_18_0495
crossref_primary_10_1016_j_bspc_2024_106476
crossref_primary_10_1002_mp_15008
crossref_primary_10_1016_j_eswa_2021_115288
crossref_primary_10_1016_j_media_2020_101829
crossref_primary_10_1109_TMI_2011_2158349
crossref_primary_10_1007_s10237_017_0974_7
crossref_primary_10_1080_21681163_2016_1147985
crossref_primary_10_1007_s11548_016_1405_4
crossref_primary_10_1088_1361_6560_aa8841
crossref_primary_10_1371_journal_pone_0204492
crossref_primary_10_3389_fphys_2023_1190155
crossref_primary_10_1016_j_media_2014_03_006
crossref_primary_10_1016_j_cmpb_2016_04_017
crossref_primary_10_1109_TMI_2013_2262055
crossref_primary_10_1109_JBHI_2018_2815346
crossref_primary_10_1587_transinf_E96_D_784
crossref_primary_10_1016_j_media_2014_05_013
crossref_primary_10_1088_1361_6560_aa70cc
crossref_primary_10_1088_1361_6560_ad611b
crossref_primary_10_1007_s11548_013_0963_y
crossref_primary_10_1118_1_4929556
crossref_primary_10_1016_j_media_2012_09_005
crossref_primary_10_1088_0031_9155_59_15_4247
crossref_primary_10_1109_JBHI_2014_2381772
crossref_primary_10_1016_j_ijrobp_2016_02_050
crossref_primary_10_1088_1361_6560_aa925a
crossref_primary_10_1007_s11548_022_02676_2
crossref_primary_10_1080_21681163_2016_1169220
crossref_primary_10_1007_s40009_016_0451_3
crossref_primary_10_1080_21681163_2017_1382393
crossref_primary_10_1088_1361_6560_ac5fe2
crossref_primary_10_1016_j_media_2015_10_006
crossref_primary_10_1016_j_zemedi_2011_08_001
crossref_primary_10_1109_TMI_2012_2190938
crossref_primary_10_1155_2022_6451770
crossref_primary_10_1016_j_radonc_2017_02_012
crossref_primary_10_1155_2014_974038
Cites_doi 10.1006/cviu.1999.0815
10.1118/1.3193526
10.1117/12.844263
10.1016/S1361-8415(98)80022-4
10.1118/1.1739671
10.1007/11566489_50
10.1137/050637996
10.1118/1.2431245
10.1007/s11263-009-0219-z
10.1118/1.2222079
10.1088/0031-9155/51/17/003
10.1016/j.neuroimage.2004.07.068
10.1093/acprof:oso/9780198528418.001.0001
10.1016/j.neuroimage.2008.10.040
10.1016/j.neuroimage.2004.07.010
10.1007/11866565_113
10.1016/j.media.2008.03.007
10.1016/S1077-3142(03)00002-X
10.1016/j.neuroimage.2007.07.007
10.1088/0031-9155/54/7/001
10.1023/B:VISI.0000043755.93987.aa
10.1016/j.ijrobp.2005.03.070
10.1118/1.3013563
10.1118/1.2349696
10.1109/83.661190
10.1118/1.1576230
10.1118/1.1531177
10.1007/978-3-540-45087-0_50
10.1109/TMI.2004.828681
10.1160/ME9040
10.1023/A:1011161132514
10.1016/j.neuroimage.2004.07.023
10.1088/0031-9155/48/5/303
10.1007/978-3-540-85990-1_117
10.1109/34.121791
10.1023/A:1008001603737
10.1007/978-3-540-85988-8_90
10.1118/1.2161409
10.1088/0031-9155/53/16/007
10.1007/s10851-006-6228-4
10.1016/j.cam.2007.11.008
10.1118/1.3101820
10.1007/978-3-540-30136-3_121
10.1016/j.radonc.2004.07.017
10.1109/TMI.2003.815865
10.1118/1.1879152
10.1160/ME9047
10.1118/1.1771931
10.1088/0031-9155/51/4/002
10.1109/42.929615
10.1118/1.1870152
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2010.2076299
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 265
ExternalDocumentID 2255160071
20876013
10_1109_TMI_2010_2076299
5585824
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c443t-99624286bd5fa96d8c8f8eb140d691418c564877280fa649016d3be4c9686d113
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 11:33:03 EDT 2025
Sun Sep 28 10:48:20 EDT 2025
Mon Jun 30 04:26:07 EDT 2025
Thu Apr 03 04:55:11 EDT 2025
Wed Oct 01 03:55:20 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Tue Aug 26 17:17:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-99624286bd5fa96d8c8f8eb140d691418c564877280fa649016d3be4c9686d113
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20876013
PQID 848717359
PQPubID 85460
PageCount 15
ParticipantIDs pubmed_primary_20876013
proquest_miscellaneous_849431976
proquest_journals_848717359
crossref_primary_10_1109_TMI_2010_2076299
crossref_citationtrail_10_1109_TMI_2010_2076299
ieee_primary_5585824
proquest_miscellaneous_861554289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-Feb.
2011-02-00
2011-Feb
20110201
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-Feb.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References neicu (ref13) 2003; 48
ref12
nehmeh (ref7) 2004; 31
ref53
ref52
ref11
ref54
ref10
ref17
ref16
vercauteren (ref32) 2008; 5241
ref19
ref51
arsigny (ref20) 2006; 4190
ref46
peyrat (ref27) 2008; 5241
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ehrhardt (ref25) 2007; 34
ref9
ref4
ref3
ref6
ref5
ref40
marsland (ref31) 2008; 222
cachier (ref35) 2003; 89
ref34
perperidis (ref15) 2005; 3750
ref37
ref36
ref30
ref33
ref2
ref1
ref39
ref38
arsigny (ref18) 2006
(ref50) 1999
bossa (ref43) 2008
ref24
ref23
ref26
chandrashekara (ref14) 2003; 2732
ref22
ref21
ref28
ref29
References_xml – ident: ref37
  doi: 10.1006/cviu.1999.0815
– ident: ref47
  doi: 10.1118/1.3193526
– ident: ref54
  doi: 10.1117/12.844263
– ident: ref34
  doi: 10.1016/S1361-8415(98)80022-4
– volume: 31
  start-page: 1333
  year: 2004
  ident: ref7
  article-title: quantitation of respiratory motion during 4d-pet/ct acquisition.
  publication-title: Med Phys
  doi: 10.1118/1.1739671
– volume: 3750
  start-page: 402
  year: 2005
  ident: ref15
  publication-title: Proc Med Image Computing and Computer-Assisted Intervent (MICCAI 2005)
  doi: 10.1007/11566489_50
– ident: ref42
  doi: 10.1137/050637996
– volume: 34
  start-page: 711
  year: 2007
  ident: ref25
  article-title: An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing.
  publication-title: Med Phys
  doi: 10.1118/1.2431245
– ident: ref30
  doi: 10.1007/s11263-009-0219-z
– ident: ref11
  doi: 10.1118/1.2222079
– ident: ref9
  doi: 10.1088/0031-9155/51/17/003
– ident: ref38
  doi: 10.1016/j.neuroimage.2004.07.068
– ident: ref33
  doi: 10.1093/acprof:oso/9780198528418.001.0001
– ident: ref19
  doi: 10.1016/j.neuroimage.2008.10.040
– ident: ref45
  doi: 10.1016/j.neuroimage.2004.07.010
– volume: 4190
  start-page: 924
  year: 2006
  ident: ref20
  publication-title: Proc Med Image Computing and Computer-Assisted Intervent (MICCAI 2006)
  doi: 10.1007/11866565_113
– ident: ref5
  doi: 10.1016/j.media.2008.03.007
– volume: 89
  start-page: 272
  year: 2003
  ident: ref35
  article-title: Iconic feature based nonrigid registration: The pasha algorithm
  publication-title: Comput Vis Image Understand
  doi: 10.1016/S1077-3142(03)00002-X
– year: 1999
  ident: ref50
  publication-title: Report 62 Prescribing Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50)
– start-page: 13
  year: 2008
  ident: ref43
  article-title: a new algorithm for the computation of the group logarithm of diffeomorphisms
  publication-title: Proc Int Workshop Math Foundations Computat Anatomy (MFCA 2008)
– ident: ref29
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: ref52
  doi: 10.1088/0031-9155/54/7/001
– ident: ref21
  doi: 10.1023/B:VISI.0000043755.93987.aa
– ident: ref10
  doi: 10.1016/j.ijrobp.2005.03.070
– ident: ref51
  doi: 10.1118/1.3013563
– ident: ref1
  doi: 10.1118/1.2349696
– ident: ref36
  doi: 10.1109/83.661190
– ident: ref23
  doi: 10.1118/1.1576230
– ident: ref2
  doi: 10.1118/1.1531177
– volume: 2732
  start-page: 599
  year: 2003
  ident: ref14
  publication-title: Proc Information Processing in Medical Imaging
  doi: 10.1007/978-3-540-45087-0_50
– ident: ref16
  doi: 10.1109/TMI.2004.828681
– ident: ref46
  doi: 10.1160/ME9040
– ident: ref41
  doi: 10.1023/A:1011161132514
– ident: ref40
  doi: 10.1016/j.neuroimage.2004.07.023
– volume: 48
  start-page: 587
  year: 2003
  ident: ref13
  article-title: synchronized moving aperture radiation therapy (smart): average tumour trajectory for lung patients.
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/48/5/303
– volume: 5241
  start-page: 972
  year: 2008
  ident: ref27
  publication-title: Proc Med Image Computing and Computer-Assisted Intervent (MICCAI 2008)
  doi: 10.1007/978-3-540-85990-1_117
– ident: ref48
  doi: 10.1109/34.121791
– ident: ref28
  doi: 10.1023/A:1008001603737
– volume: 5241
  start-page: 754
  year: 2008
  ident: ref32
  publication-title: Proc Med Image Computing and Computer-Assisted Intervent (MICCAI 2008)
  doi: 10.1007/978-3-540-85988-8_90
– ident: ref6
  doi: 10.1118/1.2161409
– ident: ref12
  doi: 10.1088/0031-9155/53/16/007
– ident: ref22
  doi: 10.1007/s10851-006-6228-4
– volume: 222
  start-page: 411
  year: 2008
  ident: ref31
  article-title: constructing an atlas for the diffeomorphism group of a compact manifold with boundary, with application to the analysis of image registrations
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2007.11.008
– ident: ref53
  doi: 10.1118/1.3101820
– ident: ref17
  doi: 10.1007/978-3-540-30136-3_121
– ident: ref49
  doi: 10.1016/j.radonc.2004.07.017
– ident: ref39
  doi: 10.1109/TMI.2003.815865
– ident: ref3
  doi: 10.1118/1.1879152
– ident: ref26
  doi: 10.1160/ME9047
– year: 2006
  ident: ref18
  publication-title: Processing data in lie groups An algebraic approach Application to non-linear registration and diffusion tensor MRI
– ident: ref8
  doi: 10.1118/1.1771931
– ident: ref4
  doi: 10.1088/0031-9155/51/4/002
– ident: ref44
  doi: 10.1109/42.929615
– ident: ref24
  doi: 10.1118/1.1870152
SSID ssj0014509
Score 2.3833156
Snippet Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 251
SubjectTerms 4D computed tomography (CT)
Algorithms
Computational modeling
Computed tomography
Diffeomorphic registration
Four-Dimensional Computed Tomography - methods
Humans
Image Processing, Computer-Assisted - methods
Image registration
Lung - diagnostic imaging
Lung cancer
Lungs
Models, Biological
Models, Statistical
motion modeling
Movement
Radiation therapy
respiratory motion
Solid modeling
statistical atlas generation
Three dimensional displays
Tumors
Title Statistical Modeling of 4D Respiratory Lung Motion Using Diffeomorphic Image Registration
URI https://ieeexplore.ieee.org/document/5585824
https://www.ncbi.nlm.nih.gov/pubmed/20876013
https://www.proquest.com/docview/848717359
https://www.proquest.com/docview/849431976
https://www.proquest.com/docview/861554289
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB1QO5VXo8pIPvSA1u3k4jn1EPASI7aECiZ4ix4-qAjao3b3w65lxHkAFiFsk24mdb2zPeMbfAHxLbOW4ljZCG9lG3GsKAtBZZKzQlUgT7ivy6I5_iNMrfn6dX8_B9_4ujHMuBJ-5IT0GX76tzYyOykY56rYy5fMwXxSquavVewx43oRzpMQYG4u0c0nGanQ5PmtiuFLsEC6_RABMTGxxkr3YjUJ6lbc1zbDjnCzDuOtrE2hyM5xNq6F5-I_G8aODWYHPrerJDhpZWYU5N1mDpWeEhGuwOG5d7evwi9TQwOKMbShjGt1bZ7Vn_Ij9fPLPswtcLbCc8GUh_oAdUc6V-q5GBP8YdnaHKxa2-N0z9H6Bq5Pjy8PTqM3DEBnOs2mEJhFu5FJUNvdaCSuN9BLXeB5boRKeSJMLtHso0ZXXgqOGIWyGImCUkMImSbYBC5N64r4CU7IqtBeFjq3i1njcC6WPrdQ85M3yAxh1eJSmJSmnXBm3ZTBWYlUimCWBWbZgDmC_b3HfEHS8U3edcOjrtRAMYLuDvGxn8L9S4oiSIsuxEetLceqRP0VPXD2jKgrVL9Tn3qlCbl_8d_iWzUaW-o93Irj1eqe24VNzfE2RMzuwMP07c7uo_0yrvSD4j2n3_bY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKrVwaCnPLW3xoZdKzW4ejtc5IijaLRsO1SLRU-T4gRCwQbB74dcz4zwKFUW9RfI4sfON7bFn_A3A18iUlitpAtwjm4A7RUEAKgm0EaoUccRdSR7d_ESMTvnPs_RsCb53d2GstT74zPbp0fvyTaUXdFQ2SNG2lTF_Ba9T3FUM69tanc-Ap3VAR0ycsaGIW6dkmA2m-biO4oqxSTgBEwUwcbGFUfJkPfIJVv5ta_o15-g95G1r61CTy_5iXvb1_V9Ejv_bnTV41xifbL_Wlg-wZGfrsPqIknAd3uSNs30DfpMh6nmcsQ7lTKOb66xyjB-yX3889GyC8wWWE8LMRyCwQ8q6Ul1XiOGFZuNrnLOwxnnH0bsJp0c_pgejoMnEEGjOk3mAmyJcyqUoTepUJozU0kmc5XloRBbxSOpUICCU6sopwdHGECZBJdCZkMJEUbIFy7NqZneAZbIcKieGKjQZN9rhaihdaKTiPnOW68GgxaPQDU05Zcu4Kvx2JcwKBLMgMIsGzB5862rc1BQdL8huEA6dXANBD3ZbyItmDN8VEnsUDZMUK7GuFAcfeVTUzFYLEsnQAEOL7gURcvziv8O3bNe61H28VcGPzzdqD96OpvmkmIxPjndhpT7MpjiaT7A8v13Yz2gNzcsvfhA8AOTJARY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Modeling+of+4D+Respiratory+Lung+Motion+Using+Diffeomorphic+Image+Registration&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Ehrhardt%2C+Jan&rft.au=Werner%2C+Rene%CC%81&rft.au=Schmidt-Richberg%2C+Alexander&rft.au=Handels%2C+Heinz&rft.date=2011-02-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=30&rft.issue=2&rft.spage=251&rft.epage=265&rft_id=info:doi/10.1109%2FTMI.2010.2076299&rft_id=info%3Apmid%2F20876013&rft.externalDocID=5585824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon