Validation of cervical vertebral maturation stages: Artificial intelligence vs human observer visual analysis
This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers. A total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ...
        Saved in:
      
    
          | Published in | American journal of orthodontics and dentofacial orthopedics Vol. 158; no. 6; pp. e173 - e179 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0889-5406 1097-6752 1097-6752  | 
| DOI | 10.1016/j.ajodo.2020.08.014 | 
Cover
| Abstract | This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers.
A total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results.
Intraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively (P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers.
This study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future.
•We developed an artificial neural network (ANN) model to determine skeletal age.•The ANN model was compared with human observers in cervical vertebral maturation staging.•Repeatability and reproducibility of the ANN model were in the range of human observers.•Human interaction is still required in the clinical decision-making process.•Artificial intelligence interpretation of radiographs may someday replace other methods. | 
    
|---|---|
| AbstractList | This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers.
A total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results.
Intraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively (P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers.
This study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future.
•We developed an artificial neural network (ANN) model to determine skeletal age.•The ANN model was compared with human observers in cervical vertebral maturation staging.•Repeatability and reproducibility of the ANN model were in the range of human observers.•Human interaction is still required in the clinical decision-making process.•Artificial intelligence interpretation of radiographs may someday replace other methods. This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers.INTRODUCTIONThis study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers.A total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results.METHODSA total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results.Intraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively (P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers.RESULTSIntraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively (P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers.This study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future.CONCLUSIONSThis study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future. IntroductionThis study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers. MethodsA total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results. ResultsIntraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively ( P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers. ConclusionsThis study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future.  | 
    
| Author | Yıldırım, Derya Amasya, Hakan Cesur, Emre Orhan, Kaan  | 
    
| Author_xml | – sequence: 1 givenname: Hakan orcidid: 0000-0001-7400-9938 surname: Amasya fullname: Amasya, Hakan email: h-amasya@hotmail.com organization: Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Istanbul University-Cerrahpasa, İstanbul, Turkey – sequence: 2 givenname: Emre orcidid: 0000-0003-0176-8970 surname: Cesur fullname: Cesur, Emre organization: Department of Orthodontics, Faculty of Dentistry, Istanbul Medipol University, İstanbul, Turkey – sequence: 3 givenname: Derya orcidid: 0000-0003-3125-1358 surname: Yıldırım fullname: Yıldırım, Derya organization: Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Istanbul University-Cerrahpasa, İstanbul, Turkey – sequence: 4 givenname: Kaan orcidid: 0000-0001-6768-0176 surname: Orhan fullname: Orhan, Kaan organization: Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey  | 
    
| BookMark | eNqFkU1r3DAQhkVJoZu0v6AXH3uxO5Jlr9TSQgj9gkAP_bgKrTxO5dpWqpEN--8rZ3sKlD1JoPd5NTxzyS7mMCNjLzlUHHj7eqjsELpQCRBQgaqAyydsx0Hvy3bfiAu2A6V02Uhon7FLogEAtBSwY9NPO_rOJh_mIvSFw7h6Z8dixZjwEPNtsmmJpwAle4f0priOyffe-fzq54Tj6O9wdlisVPxaJpubDpSLMBarpyWn7GzHI3l6zp72diR88e-8Yj8-fvh-87m8_frpy831bemkrFOp605y2VuuBdhGoZMHqJVy0jW2V00rAEE2PewPuhHa6VqLVmYC-xY6Lfr6ir069d7H8GdBSmby5PKgdsawkBGybfaN5FrmaH2KuhiIIvbmPvrJxqPhYDa5ZjAPcs0m14AyWW6m9CPK-fQgKUXrxzPsuxOL2cDqMRpyfvPX-YgumS74M_z7R7wb_bxt7TcekYawxKybDDckDJhv2-q3zQuooQWhcsHb_xec_f4vbyXC-Q | 
    
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107088 crossref_primary_10_1177_20552076241291345 crossref_primary_10_3390_app13063850 crossref_primary_10_1186_s12903_025_05482_9 crossref_primary_10_3390_diagnostics11122200 crossref_primary_10_1111_ocr_12517 crossref_primary_10_1259_dmfr_20220070 crossref_primary_10_3390_app122211864 crossref_primary_10_1111_ocr_12615 crossref_primary_10_1186_s40510_024_00527_1 crossref_primary_10_7717_peerj_11451 crossref_primary_10_3390_healthcare12131311 crossref_primary_10_37762_jgmds_10_3_470 crossref_primary_10_4041_kjod_2022_52_2_112 crossref_primary_10_1016_j_wneu_2024_10_014 crossref_primary_10_1007_s00784_024_05999_3 crossref_primary_10_1177_21925682241227428 crossref_primary_10_3390_jcm13144047 crossref_primary_10_1007_s11282_021_00566_y crossref_primary_10_1016_j_sdentj_2022_05_001 crossref_primary_10_3390_healthcare11202760 crossref_primary_10_1007_s11548_021_02550_7 crossref_primary_10_1038_s41598_022_15920_1 crossref_primary_10_1007_s11282_023_00678_7 crossref_primary_10_1016_j_jdent_2024_105442 crossref_primary_10_1038_s41598_024_52929_0 crossref_primary_10_3390_jcm13020344 crossref_primary_10_1186_s40510_024_00535_1 crossref_primary_10_1007_s00784_025_06158_y crossref_primary_10_1016_j_jebdp_2023_101928 crossref_primary_10_1016_j_jobcr_2023_08_005 crossref_primary_10_3390_computers11110154 crossref_primary_10_1109_JBHI_2022_3179619 crossref_primary_10_2319_031022_210_1 crossref_primary_10_1016_j_bas_2022_101666 crossref_primary_10_1186_s12903_023_03266_7  | 
    
| Cites_doi | 10.1053/j.sodo.2005.04.005 10.1148/rg.2017170077 10.21608/mjfmct.2018.46313 10.2319/111517-787.1 10.1016/j.jmir.2019.09.005 10.5455/aim.2015.23.364-368 10.1067/mod.2000.105571 10.2214/ajr.182.4.1820867 10.1016/j.ajodo.2019.03.025 10.1016/j.ajodo.2019.03.026 10.1016/S0889-5406(95)70157-5 10.1016/j.ajodo.2018.11.016 10.1016/j.ajodo.2015.12.013 10.1016/j.ajodo.2007.08.028 10.2319/120913-906.1 10.1007/s00256-018-3033-2 10.1016/j.forsciint.2017.10.004 10.2319/070111-425.1 10.1016/j.ajodo.2011.04.013 10.2307/2529310 10.1067/mod.2000.107009 10.1093/ejo/cjy018 10.2298/VSP150708181M 10.1259/dmfr.20130238 10.2319/070605-217 10.1111/j.1600-9657.2012.01148.x 10.5937/sejodr4-15531 10.3109/00016359109005909 10.1016/j.tripleo.2008.03.002 10.2319/051511-333.1 10.1259/dmfr.20190441 10.2319/080414-544.1 10.1259/dmfr.20160107  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 American Association of Orthodontists American Association of Orthodontists Copyright © 2020 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2020 American Association of Orthodontists – notice: American Association of Orthodontists – notice: Copyright © 2020 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.  | 
    
| DBID | AAYXX CITATION 7X8  | 
    
| DOI | 10.1016/j.ajodo.2020.08.014 | 
    
| DatabaseName | CrossRef MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Dentistry | 
    
| EISSN | 1097-6752 | 
    
| EndPage | e179 | 
    
| ExternalDocumentID | 10_1016_j_ajodo_2020_08_014 S0889540620306028 1_s2_0_S0889540620306028  | 
    
| GroupedDBID | --- --K --M .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAGKA AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG COF CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDX HMK HMO HVGLF HZ~ IHE J1W KOM LH1 M29 M41 MO0 N9A O-L O9- OAUVE OB- OM. OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SJN SPCBC SSH SSZ T5K TEORI UHS UV1 WUQ X7M Z5R ZGI ZXP ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION 7X8  | 
    
| ID | FETCH-LOGICAL-c443t-93d414fa1920a58ec4b0388c4c5af85620e045f07b9529c939264414ef60d92f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0889-5406 1097-6752  | 
    
| IngestDate | Sun Sep 28 01:40:38 EDT 2025 Thu Oct 16 04:26:22 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Fri Feb 23 02:46:15 EST 2024 Sun Feb 23 10:19:34 EST 2025 Tue Oct 14 19:40:34 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c443t-93d414fa1920a58ec4b0388c4c5af85620e045f07b9529c939264414ef60d92f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-6768-0176 0000-0003-3125-1358 0000-0001-7400-9938 0000-0003-0176-8970  | 
    
| PQID | 2465754194 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_2465754194 crossref_primary_10_1016_j_ajodo_2020_08_014 crossref_citationtrail_10_1016_j_ajodo_2020_08_014 elsevier_sciencedirect_doi_10_1016_j_ajodo_2020_08_014 elsevier_clinicalkeyesjournals_1_s2_0_S0889540620306028 elsevier_clinicalkey_doi_10_1016_j_ajodo_2020_08_014  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-12-01 | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | American journal of orthodontics and dentofacial orthopedics | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Hassel, Farman (bib4) 1995; 107 de Cassia Silva Azevedo, Michel-Crosato, Haye Biazevic (bib41) 2018; 36 Gabriel, Southard, Qian, Marshall, Franciscus, Southard (bib13) 2009; 136 Baptista, Quaglio, Mourad, Hummel, Caetano, Ortolani (bib37) 2012; 82 Lamparski (bib2) 1972 Kositbowornchai, Plermkamon, Tangkosol (bib20) 2013; 29 Nestman, Marshall, Qian, Holton, Franciscus, Southard (bib14) 2011; 140 Predko-Engel, Kaminek, Langova, Kowalski, Fudalej (bib35) 2015; 116 Devito, de Souza Barbosa, Felippe Filho (bib19) 2008; 106 Baccetti, Franchi, McNamara (bib6) 2002; 72 Santiago, Cunha, Júnior, Fernandes, Campos, Costa (bib27) 2014; 43 Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal (bib15) 2017; 37 Perinetti, Braga, Contardo, Primozic (bib40) 2020; 157 Amasya, Yildirim, Aydogan, Kemaloglu, Orhan (bib24) 2020; 49 Rainey, Burnside, Harrison (bib32) 2016; 150 Dzemidzic, Sokic, Tiro, Nakas (bib25) 2015; 23 Obuchowski (bib38) 2004; 182 Sokic, Tiro, Sokic-Begovic, Nakas (bib36) 2012; 46 Miladinović, Mihailović, Mladenović, Duka, Živković, Mladenović (bib16) 2017; 74 McNamara, Franchi (bib8) 2018; 88 Niño-Sandoval, Guevara Pérez, González, Jaque, Infante-Contreras (bib22) 2017; 281 Zhao, Lin, Jiang, Wang, Ng (bib31) 2012; 82 Gandini, Mancini, Andreani (bib1) 2006; 76 Hellsing (bib3) 1991; 49 Morris, Fields, Beck, Kim (bib29) 2019; 156 Currie, Hawk, Rohren, Vial, Klein (bib18) 2019; 50 Tajmir, Lee, Shailam, Gale, Nguyen, Westra (bib23) 2019; 48 Baccetti, Franchi, Toth, McNamara (bib11) 2000; 118 Rongo, Valleta, Bucci, Bonetti, Michelotti, D’Antò (bib34) 2015; 85 Flores-Mir, Burgess, Champney, Jensen, Pitcher, Major (bib9) 2006; 76 Kucukkeles, Acar, Biren, Arun (bib10) 1999; 24 Khajah, Tadinada, Allareddy, Kuo, Nanda, Uribe (bib30) 2020; 157 Perinetti, Contardo (bib39) 2017; 4 Padalino, Sfondrini, Chenuil, Scudeller, Gandini (bib26) 2014; 12 Franchi, Baccetti, McNamara (bib5) 2000; 118 Johari, Esmaeili, Andalib, Garjani, Saberkari (bib21) 2017; 46 Landis, Koch (bib28) 1977; 33 Perinetti, Caprioglio, Contardo (bib12) 2014; 84 Perinetti, Primozic, Sharma, Cioffi, Contardo (bib33) 2018; 40 Baccetti, Franchi, McNamara (bib7) 2005; 11 Khanna, Dhaimade (bib17) 2017; 6 El-Bakary, Abo El-Atta (bib42) 2018; 26 Dzemidzic (10.1016/j.ajodo.2020.08.014_bib25) 2015; 23 McNamara (10.1016/j.ajodo.2020.08.014_bib8) 2018; 88 Predko-Engel (10.1016/j.ajodo.2020.08.014_bib35) 2015; 116 Padalino (10.1016/j.ajodo.2020.08.014_bib26) 2014; 12 Nestman (10.1016/j.ajodo.2020.08.014_bib14) 2011; 140 Khanna (10.1016/j.ajodo.2020.08.014_bib17) 2017; 6 Rainey (10.1016/j.ajodo.2020.08.014_bib32) 2016; 150 Khajah (10.1016/j.ajodo.2020.08.014_bib30) 2020; 157 Lamparski (10.1016/j.ajodo.2020.08.014_bib2) 1972 Perinetti (10.1016/j.ajodo.2020.08.014_bib39) 2017; 4 Johari (10.1016/j.ajodo.2020.08.014_bib21) 2017; 46 Gabriel (10.1016/j.ajodo.2020.08.014_bib13) 2009; 136 Kositbowornchai (10.1016/j.ajodo.2020.08.014_bib20) 2013; 29 Baccetti (10.1016/j.ajodo.2020.08.014_bib6) 2002; 72 Currie (10.1016/j.ajodo.2020.08.014_bib18) 2019; 50 Santiago (10.1016/j.ajodo.2020.08.014_bib27) 2014; 43 Rongo (10.1016/j.ajodo.2020.08.014_bib34) 2015; 85 Flores-Mir (10.1016/j.ajodo.2020.08.014_bib9) 2006; 76 Niño-Sandoval (10.1016/j.ajodo.2020.08.014_bib22) 2017; 281 Baptista (10.1016/j.ajodo.2020.08.014_bib37) 2012; 82 Hellsing (10.1016/j.ajodo.2020.08.014_bib3) 1991; 49 Zhao (10.1016/j.ajodo.2020.08.014_bib31) 2012; 82 Baccetti (10.1016/j.ajodo.2020.08.014_bib11) 2000; 118 Devito (10.1016/j.ajodo.2020.08.014_bib19) 2008; 106 Perinetti (10.1016/j.ajodo.2020.08.014_bib12) 2014; 84 El-Bakary (10.1016/j.ajodo.2020.08.014_bib42) 2018; 26 Gandini (10.1016/j.ajodo.2020.08.014_bib1) 2006; 76 Sokic (10.1016/j.ajodo.2020.08.014_bib36) 2012; 46 Perinetti (10.1016/j.ajodo.2020.08.014_bib40) 2020; 157 Baccetti (10.1016/j.ajodo.2020.08.014_bib7) 2005; 11 Kucukkeles (10.1016/j.ajodo.2020.08.014_bib10) 1999; 24 de Cassia Silva Azevedo (10.1016/j.ajodo.2020.08.014_bib41) 2018; 36 Morris (10.1016/j.ajodo.2020.08.014_bib29) 2019; 156 Perinetti (10.1016/j.ajodo.2020.08.014_bib33) 2018; 40 Miladinović (10.1016/j.ajodo.2020.08.014_bib16) 2017; 74 Obuchowski (10.1016/j.ajodo.2020.08.014_bib38) 2004; 182 Franchi (10.1016/j.ajodo.2020.08.014_bib5) 2000; 118 Tajmir (10.1016/j.ajodo.2020.08.014_bib23) 2019; 48 Landis (10.1016/j.ajodo.2020.08.014_bib28) 1977; 33 Chartrand (10.1016/j.ajodo.2020.08.014_bib15) 2017; 37 Amasya (10.1016/j.ajodo.2020.08.014_bib24) 2020; 49 Hassel (10.1016/j.ajodo.2020.08.014_bib4) 1995; 107  | 
    
| References_xml | – volume: 4 start-page: 48 year: 2017 end-page: 49 ident: bib39 article-title: Radiographic growth indicators: the issue of diagnostic reliability and clinical feasibility publication-title: South Eur J Orthod Dentofac Res – volume: 88 start-page: 133 year: 2018 end-page: 143 ident: bib8 article-title: The cervical vertebral maturation method: a user's guide publication-title: Angle Orthod – volume: 85 start-page: 841 year: 2015 end-page: 847 ident: bib34 article-title: Does clinical experience affect the reproducibility of cervical vertebrae maturation method? publication-title: Angle Orthod – volume: 72 start-page: 316 year: 2002 end-page: 323 ident: bib6 article-title: An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth publication-title: Angle Orthod – volume: 106 start-page: 879 year: 2008 end-page: 884 ident: bib19 article-title: An artificial multilayer perceptron neural network for diagnosis of proximal dental caries publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod – volume: 49 start-page: 20190441 year: 2020 ident: bib24 article-title: Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models publication-title: Dentomaxillofac Radiol – volume: 12 start-page: 483 year: 2014 end-page: 493 ident: bib26 article-title: Reliability of skeletal maturity analysis using the cervical vertebrae maturation method on dedicated software publication-title: Int Orthod – volume: 157 start-page: 228 year: 2020 end-page: 239 ident: bib30 article-title: Influence of type of radiograph and levels of experience and training on reproducibility of the cervical vertebral maturation method publication-title: Am J Orthod Dentofacial Orthop – volume: 281 start-page: 187.e1 year: 2017 end-page: 187.e7 ident: bib22 article-title: Use of automated learning techniques for predicting mandibular morphology in skeletal Class I, II and III publication-title: Forensic Sci Int – year: 1972 ident: bib2 article-title: Skeletal age assessment utilizing cervical vertebrae – volume: 37 start-page: 2113 year: 2017 end-page: 2131 ident: bib15 article-title: Deep learning: a primer for radiologists publication-title: Radiographics – volume: 50 start-page: 477 year: 2019 end-page: 487 ident: bib18 article-title: Machine learning and deep learning in medical imaging: intelligent imaging publication-title: J Med Imaging Radiat Sci – volume: 150 start-page: 98 year: 2016 end-page: 104 ident: bib32 article-title: Reliability of cervical vertebral maturation staging publication-title: Am J Orthod Dentofacial Orthop – volume: 11 start-page: 119 year: 2005 end-page: 129 ident: bib7 article-title: The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics publication-title: Semin Orthod – volume: 182 start-page: 867 year: 2004 end-page: 869 ident: bib38 article-title: How many observers are needed in clinical studies of medical imaging? publication-title: AJR Am J Roentgenol – volume: 84 start-page: 951 year: 2014 end-page: 956 ident: bib12 article-title: Visual assessment of the cervical vertebral maturation stages: a study of diagnostic accuracy and repeatability publication-title: Angle Orthod – volume: 116 start-page: 222 year: 2015 end-page: 226 ident: bib35 article-title: Reliability of the cervical vertebrae maturation (CVM) method publication-title: Bratisl Lek Listy – volume: 26 start-page: 13 year: 2018 end-page: 21 ident: bib42 article-title: Skeletal maturation using cervical vertebrae versus dental age for age estimation publication-title: Mansoura J Forens Med Clin Toxicol – volume: 74 start-page: 267 year: 2017 end-page: 272 ident: bib16 article-title: Artificial intelligence in clinical medicine and dentistry [in Bosnian] publication-title: Vojnosanit Pregl – volume: 43 start-page: 20130238 year: 2014 ident: bib27 article-title: New software for cervical vertebral geometry assessment and its relationship to skeletal maturation--a pilot study publication-title: Dentomaxillofac Radiol – volume: 46 start-page: 280 year: 2012 end-page: 290 ident: bib36 article-title: Semi-automatic assessment of cervical vertebral maturation stages using cephalograph images and centroid-based clustering publication-title: Acta Stomatol Croat – volume: 40 start-page: 666 year: 2018 end-page: 672 ident: bib33 article-title: Cervical vertebral maturation method and mandibular growth peak: a longitudinal study of diagnostic reliability publication-title: Eur J Orthod – volume: 107 start-page: 58 year: 1995 end-page: 66 ident: bib4 article-title: Skeletal maturation evaluation using cervical vertebrae publication-title: Am J Orthod Dentofacial Orthop – volume: 23 start-page: 364 year: 2015 end-page: 368 ident: bib25 article-title: Computer based assessment of cervical vertebral maturation stages using digital lateral cephalograms publication-title: Acta Inform Med – volume: 118 start-page: 159 year: 2000 end-page: 170 ident: bib11 article-title: Treatment timing for Twin-block therapy publication-title: Am J Orthod Dentofacial Orthop – volume: 46 start-page: 20160107 year: 2017 ident: bib21 article-title: Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study publication-title: Dentomaxillofac Radiol – volume: 136 start-page: 478.e1 year: 2009 end-page: 478.e7 ident: bib13 article-title: Cervical vertebrae maturation method: poor reproducibility publication-title: Am J Orthod Dentofacial Orthop – volume: 140 start-page: 182 year: 2011 end-page: 188 ident: bib14 article-title: Cervical vertebrae maturation method morphologic criteria: poor reproducibility publication-title: Am J Orthod Dentofacial Orthop – volume: 157 start-page: 305 year: 2020 end-page: 312 ident: bib40 article-title: Cervical vertebral maturation: are postpubertal stages attained in all subjects? publication-title: Am J Orthod Dentofacial Orthop – volume: 118 start-page: 335 year: 2000 end-page: 340 ident: bib5 article-title: Mandibular growth as related to cervical vertebral maturation and body height publication-title: Am J Orthod Dentofacial Orthop – volume: 48 start-page: 275 year: 2019 end-page: 283 ident: bib23 article-title: Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability publication-title: Skeletal Radiol – volume: 29 start-page: 151 year: 2013 end-page: 155 ident: bib20 article-title: Performance of an artificial neural network for vertical root fracture detection: an ex vivo study publication-title: Dent Traumatol – volume: 82 start-page: 229 year: 2012 end-page: 234 ident: bib31 article-title: Validity and reliability of a method for assessment of cervical vertebral maturation publication-title: Angle Orthod – volume: 82 start-page: 658 year: 2012 end-page: 662 ident: bib37 article-title: A semi-automated method for bone age assessment using cervical vertebral maturation publication-title: Angle Orthod – volume: 24 start-page: 47 year: 1999 end-page: 52 ident: bib10 article-title: Comparisons between cervical vertebrae and hand-wrist maturation for the assessment of skeletal maturity publication-title: J Clin Pediatr Dent – volume: 76 start-page: 984 year: 2006 end-page: 989 ident: bib1 article-title: A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation publication-title: Angle Orthod – volume: 36 start-page: 31 year: 2018 end-page: 39 ident: bib41 article-title: Radiographic evaluation of dental and cervical vertebral development for age estimation in a young Brazilian population publication-title: J Forensic Odontostomatol – volume: 33 start-page: 159 year: 1977 end-page: 174 ident: bib28 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 76 start-page: 1 year: 2006 end-page: 5 ident: bib9 article-title: Correlation of skeletal maturation stages determined by cervical vertebrae and hand-wrist evaluations publication-title: Angle Orthod – volume: 6 start-page: 161 year: 2017 end-page: 167 ident: bib17 article-title: Artificial intelligence: transforming dentistry today publication-title: Indian J Basic Appl Med Res – volume: 156 start-page: 626 year: 2019 end-page: 632 ident: bib29 article-title: Diagnostic testing of cervical vertebral maturation staging: an independent assessment publication-title: Am J Orthod Dentofacial Orthop – volume: 49 start-page: 207 year: 1991 end-page: 213 ident: bib3 article-title: Cervical vertebral dimensions in 8-, 11-, and 15-year-old children publication-title: Acta Odontol Scand – volume: 11 start-page: 119 year: 2005 ident: 10.1016/j.ajodo.2020.08.014_bib7 article-title: The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics publication-title: Semin Orthod doi: 10.1053/j.sodo.2005.04.005 – volume: 37 start-page: 2113 year: 2017 ident: 10.1016/j.ajodo.2020.08.014_bib15 article-title: Deep learning: a primer for radiologists publication-title: Radiographics doi: 10.1148/rg.2017170077 – volume: 26 start-page: 13 year: 2018 ident: 10.1016/j.ajodo.2020.08.014_bib42 article-title: Skeletal maturation using cervical vertebrae versus dental age for age estimation publication-title: Mansoura J Forens Med Clin Toxicol doi: 10.21608/mjfmct.2018.46313 – volume: 88 start-page: 133 year: 2018 ident: 10.1016/j.ajodo.2020.08.014_bib8 article-title: The cervical vertebral maturation method: a user's guide publication-title: Angle Orthod doi: 10.2319/111517-787.1 – volume: 50 start-page: 477 year: 2019 ident: 10.1016/j.ajodo.2020.08.014_bib18 article-title: Machine learning and deep learning in medical imaging: intelligent imaging publication-title: J Med Imaging Radiat Sci doi: 10.1016/j.jmir.2019.09.005 – volume: 23 start-page: 364 year: 2015 ident: 10.1016/j.ajodo.2020.08.014_bib25 article-title: Computer based assessment of cervical vertebral maturation stages using digital lateral cephalograms publication-title: Acta Inform Med doi: 10.5455/aim.2015.23.364-368 – volume: 116 start-page: 222 year: 2015 ident: 10.1016/j.ajodo.2020.08.014_bib35 article-title: Reliability of the cervical vertebrae maturation (CVM) method publication-title: Bratisl Lek Listy – volume: 118 start-page: 159 year: 2000 ident: 10.1016/j.ajodo.2020.08.014_bib11 article-title: Treatment timing for Twin-block therapy publication-title: Am J Orthod Dentofacial Orthop doi: 10.1067/mod.2000.105571 – volume: 12 start-page: 483 year: 2014 ident: 10.1016/j.ajodo.2020.08.014_bib26 article-title: Reliability of skeletal maturity analysis using the cervical vertebrae maturation method on dedicated software publication-title: Int Orthod – volume: 182 start-page: 867 year: 2004 ident: 10.1016/j.ajodo.2020.08.014_bib38 article-title: How many observers are needed in clinical studies of medical imaging? publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.182.4.1820867 – volume: 72 start-page: 316 year: 2002 ident: 10.1016/j.ajodo.2020.08.014_bib6 article-title: An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth publication-title: Angle Orthod – volume: 157 start-page: 228 year: 2020 ident: 10.1016/j.ajodo.2020.08.014_bib30 article-title: Influence of type of radiograph and levels of experience and training on reproducibility of the cervical vertebral maturation method publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2019.03.025 – volume: 157 start-page: 305 year: 2020 ident: 10.1016/j.ajodo.2020.08.014_bib40 article-title: Cervical vertebral maturation: are postpubertal stages attained in all subjects? publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2019.03.026 – volume: 107 start-page: 58 year: 1995 ident: 10.1016/j.ajodo.2020.08.014_bib4 article-title: Skeletal maturation evaluation using cervical vertebrae publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/S0889-5406(95)70157-5 – volume: 156 start-page: 626 year: 2019 ident: 10.1016/j.ajodo.2020.08.014_bib29 article-title: Diagnostic testing of cervical vertebral maturation staging: an independent assessment publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2018.11.016 – volume: 150 start-page: 98 year: 2016 ident: 10.1016/j.ajodo.2020.08.014_bib32 article-title: Reliability of cervical vertebral maturation staging publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2015.12.013 – volume: 136 start-page: 478.e1 year: 2009 ident: 10.1016/j.ajodo.2020.08.014_bib13 article-title: Cervical vertebrae maturation method: poor reproducibility publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2007.08.028 – volume: 84 start-page: 951 year: 2014 ident: 10.1016/j.ajodo.2020.08.014_bib12 article-title: Visual assessment of the cervical vertebral maturation stages: a study of diagnostic accuracy and repeatability publication-title: Angle Orthod doi: 10.2319/120913-906.1 – volume: 48 start-page: 275 year: 2019 ident: 10.1016/j.ajodo.2020.08.014_bib23 article-title: Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability publication-title: Skeletal Radiol doi: 10.1007/s00256-018-3033-2 – volume: 281 start-page: 187.e1 year: 2017 ident: 10.1016/j.ajodo.2020.08.014_bib22 article-title: Use of automated learning techniques for predicting mandibular morphology in skeletal Class I, II and III publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2017.10.004 – volume: 82 start-page: 658 year: 2012 ident: 10.1016/j.ajodo.2020.08.014_bib37 article-title: A semi-automated method for bone age assessment using cervical vertebral maturation publication-title: Angle Orthod doi: 10.2319/070111-425.1 – volume: 140 start-page: 182 year: 2011 ident: 10.1016/j.ajodo.2020.08.014_bib14 article-title: Cervical vertebrae maturation method morphologic criteria: poor reproducibility publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2011.04.013 – volume: 33 start-page: 159 year: 1977 ident: 10.1016/j.ajodo.2020.08.014_bib28 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – volume: 118 start-page: 335 year: 2000 ident: 10.1016/j.ajodo.2020.08.014_bib5 article-title: Mandibular growth as related to cervical vertebral maturation and body height publication-title: Am J Orthod Dentofacial Orthop doi: 10.1067/mod.2000.107009 – volume: 40 start-page: 666 year: 2018 ident: 10.1016/j.ajodo.2020.08.014_bib33 article-title: Cervical vertebral maturation method and mandibular growth peak: a longitudinal study of diagnostic reliability publication-title: Eur J Orthod doi: 10.1093/ejo/cjy018 – volume: 36 start-page: 31 year: 2018 ident: 10.1016/j.ajodo.2020.08.014_bib41 article-title: Radiographic evaluation of dental and cervical vertebral development for age estimation in a young Brazilian population publication-title: J Forensic Odontostomatol – volume: 24 start-page: 47 year: 1999 ident: 10.1016/j.ajodo.2020.08.014_bib10 article-title: Comparisons between cervical vertebrae and hand-wrist maturation for the assessment of skeletal maturity publication-title: J Clin Pediatr Dent – volume: 74 start-page: 267 year: 2017 ident: 10.1016/j.ajodo.2020.08.014_bib16 article-title: Artificial intelligence in clinical medicine and dentistry [in Bosnian] publication-title: Vojnosanit Pregl doi: 10.2298/VSP150708181M – volume: 43 start-page: 20130238 year: 2014 ident: 10.1016/j.ajodo.2020.08.014_bib27 article-title: New software for cervical vertebral geometry assessment and its relationship to skeletal maturation--a pilot study publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20130238 – volume: 76 start-page: 984 year: 2006 ident: 10.1016/j.ajodo.2020.08.014_bib1 article-title: A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation publication-title: Angle Orthod doi: 10.2319/070605-217 – volume: 29 start-page: 151 year: 2013 ident: 10.1016/j.ajodo.2020.08.014_bib20 article-title: Performance of an artificial neural network for vertical root fracture detection: an ex vivo study publication-title: Dent Traumatol doi: 10.1111/j.1600-9657.2012.01148.x – volume: 4 start-page: 48 year: 2017 ident: 10.1016/j.ajodo.2020.08.014_bib39 article-title: Radiographic growth indicators: the issue of diagnostic reliability and clinical feasibility publication-title: South Eur J Orthod Dentofac Res doi: 10.5937/sejodr4-15531 – volume: 49 start-page: 207 year: 1991 ident: 10.1016/j.ajodo.2020.08.014_bib3 article-title: Cervical vertebral dimensions in 8-, 11-, and 15-year-old children publication-title: Acta Odontol Scand doi: 10.3109/00016359109005909 – volume: 106 start-page: 879 year: 2008 ident: 10.1016/j.ajodo.2020.08.014_bib19 article-title: An artificial multilayer perceptron neural network for diagnosis of proximal dental caries publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1016/j.tripleo.2008.03.002 – volume: 82 start-page: 229 year: 2012 ident: 10.1016/j.ajodo.2020.08.014_bib31 article-title: Validity and reliability of a method for assessment of cervical vertebral maturation publication-title: Angle Orthod doi: 10.2319/051511-333.1 – volume: 76 start-page: 1 year: 2006 ident: 10.1016/j.ajodo.2020.08.014_bib9 article-title: Correlation of skeletal maturation stages determined by cervical vertebrae and hand-wrist evaluations publication-title: Angle Orthod – volume: 49 start-page: 20190441 year: 2020 ident: 10.1016/j.ajodo.2020.08.014_bib24 article-title: Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20190441 – year: 1972 ident: 10.1016/j.ajodo.2020.08.014_bib2 – volume: 85 start-page: 841 year: 2015 ident: 10.1016/j.ajodo.2020.08.014_bib34 article-title: Does clinical experience affect the reproducibility of cervical vertebrae maturation method? publication-title: Angle Orthod doi: 10.2319/080414-544.1 – volume: 46 start-page: 280 year: 2012 ident: 10.1016/j.ajodo.2020.08.014_bib36 article-title: Semi-automatic assessment of cervical vertebral maturation stages using cephalograph images and centroid-based clustering publication-title: Acta Stomatol Croat – volume: 46 start-page: 20160107 year: 2017 ident: 10.1016/j.ajodo.2020.08.014_bib21 article-title: Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20160107 – volume: 6 start-page: 161 year: 2017 ident: 10.1016/j.ajodo.2020.08.014_bib17 article-title: Artificial intelligence: transforming dentistry today publication-title: Indian J Basic Appl Med Res  | 
    
| SSID | ssj0009420 | 
    
| Score | 2.4780817 | 
    
| Snippet | This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the... IntroductionThis study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | e173 | 
    
| SubjectTerms | Dentistry | 
    
| Title | Validation of cervical vertebral maturation stages: Artificial intelligence vs human observer visual analysis | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0889540620306028 https://www.clinicalkey.es/playcontent/1-s2.0-S0889540620306028 https://dx.doi.org/10.1016/j.ajodo.2020.08.014 https://www.proquest.com/docview/2465754194  | 
    
| Volume | 158 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1097-6752 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009420 issn: 0889-5406 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1097-6752 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009420 issn: 0889-5406 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1097-6752 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009420 issn: 0889-5406 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1097-6752 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009420 issn: 0889-5406 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-6752 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009420 issn: 0889-5406 databaseCode: AKRWK dateStart: 19860701 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9LBdhnUPLFsbaMCOcyPL9Ku3IF2RLVgP29rmJsiyNLhokyBOcuxvLynb3bMdsJNhg7QNWSQ_WeRHxt7pDNDrSSIf1CIAV6JJIS4O4rDUZWEwKAmqd_58mkzO4NMsnu2wcVcLQ2mVre9vfLr31u2VYTuaw2VVDb9Sgg7ijUQS7MUwSRXskFIXg8ObH2keOTTUjJTNQ9Id85DP8dKXuPbDRaIUnsczhPui029-2gefk6fsSYsa-ah5sT22Y-fP2KNjyvShZm3P2fU54ummPRJfOG68B0AN6rZMW8NX_JoYPBsBBITfbX3kb9cQSPDqJ2ZOvq25b93HFwX9s7Urvq3qDUrplsHkBTs7-fBtPAnaTgqBAYjWQR6VEILTCOeEjjNroCAWGAMm1i5DCCQsQjsn0iKPZW5yBE2Ek8C6RJS5dNFL1psv5vYV41DIyJWRzm0aAZRh4SzCJpM5WyQmE2mfyW4ElWlpxqnbxZXq8skulR92RcOuqAdmCH32_k5p2bBsPCwO3adRXQEpujyFUeBhtfRvarZuzbZWoaqlEuqPqdVnyZ3mL7Pz3498280chXZLmzF6bhebWkmgLS8Ic3j9vzd_wx7TWZNcs89669XGHiBEWhcDbwMDtjv6OJ2c0nH65WJ6C8FZEtw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqAXBH2oC5S6Uo9N13EmL26IgrYtcClU3CzHsdGuYBeRXY78dmachD5oqdRrMuNEE8_M53j8DcB7UyBFPcXkg0ZG6GtyKcLFURrXpq4sJSXJ552PjrPRKX45S8-WYK8_C8NllV3sb2N6iNbdlWFnzeHVeDz8xgU6hDcyxbCX0uQTeIqpynkF9vH2R51HiS03I5fzsHhPPRSKvMyEFn-0SlQyEHnG-Lf09FugDtnnYA1WO9godts3W4clN30OK5-41Ie7tb2Ay-8EqNv-SGLmhQ0hgDS43TLvDV-IS6bwbAUIEZ67ZicM1zJIiPFP1JziphGhd5-YVfzT1l2Lm3GzICnTUZi8hNOD_ZO9UdS1UogsYjKPyqTGGL0hPCdNWjiLFdPAWLSp8QVhIOkI23mZV2WqSlsSamKghM5nsi6VT17B8nQ2da9BYKUSXyemdHmCWMeVd4SbbOFdldlC5gNQvQW17XjGud3Fhe4LyiY6mF2z2TU3wYxxAB_ula5amo3HxbH_NLo_QUoxT1MaeFwt_5Oaazq_bXSsG6WlfjC3BpDda_4yPf_9yHf9zNHkuLwbY6Zutmi0Qt7zwrjEjf8d_C2sjE6ODvXh5-Ovm_CM77SVNluwPL9euDeEl-bVdvCHO2CREs4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+cervical+vertebral+maturation+stages%3A+Artificial+intelligence+vs+human+observer+visual+analysis&rft.jtitle=American+journal+of+orthodontics+and+dentofacial+orthopedics&rft.au=Amasya%2C+Hakan&rft.au=Cesur%2C+Emre&rft.au=Y%C4%B1ld%C4%B1r%C4%B1m%2C+Derya&rft.au=Orhan%2C+Kaan&rft.date=2020-12-01&rft.issn=0889-5406&rft.volume=158&rft.issue=6&rft.spage=e173&rft.epage=e179&rft_id=info:doi/10.1016%2Fj.ajodo.2020.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ajodo_2020_08_014 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08895406%2FS0889540620X00230%2Fcov150h.gif |