Validation of cervical vertebral maturation stages: Artificial intelligence vs human observer visual analysis

This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers. A total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of orthodontics and dentofacial orthopedics Vol. 158; no. 6; pp. e173 - e179
Main Authors Amasya, Hakan, Cesur, Emre, Yıldırım, Derya, Orhan, Kaan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2020
Subjects
Online AccessGet full text
ISSN0889-5406
1097-6752
1097-6752
DOI10.1016/j.ajodo.2020.08.014

Cover

Abstract This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers. A total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results. Intraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively (P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers. This study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future. •We developed an artificial neural network (ANN) model to determine skeletal age.•The ANN model was compared with human observers in cervical vertebral maturation staging.•Repeatability and reproducibility of the ANN model were in the range of human observers.•Human interaction is still required in the clinical decision-making process.•Artificial intelligence interpretation of radiographs may someday replace other methods.
AbstractList This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers. A total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results. Intraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively (P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers. This study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future. •We developed an artificial neural network (ANN) model to determine skeletal age.•The ANN model was compared with human observers in cervical vertebral maturation staging.•Repeatability and reproducibility of the ANN model were in the range of human observers.•Human interaction is still required in the clinical decision-making process.•Artificial intelligence interpretation of radiographs may someday replace other methods.
This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers.INTRODUCTIONThis study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers.A total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results.METHODSA total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results.Intraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively (P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers.RESULTSIntraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively (P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers.This study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future.CONCLUSIONSThis study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future.
IntroductionThis study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the results of human observers. MethodsA total of 647 lateral cephalograms were selected from patients with 10-30 years of chronological age (mean ± standard deviation, 15.36 ± 4.13 years). New software with a decision support system was developed for manual labeling of the dataset. A total of 26 points were marked on each radiograph. The CVM stages were saved on the basis of the final decision of the observer. Fifty-four image features were saved in text format. A new subset of 72 radiographs was created according to the classification result, and these 72 radiographs were visually evaluated by 4 observers. Weighted kappa (wκ) and Cohen's kappa (cκ) coefficients and percentage agreement were calculated to evaluate the compatibility of the results. ResultsIntraobserver agreement ranges were as follows: wκ = 0.92-0.98, cκ = 0.65-0.85, and 70.8%-87.5%. Interobserver agreement ranges were as follows: wκ = 0.76-0.92, cκ = 0.4-0.65, and 50%-72.2%. Agreement between the ANN model and observers 1, 2, 3, and 4 were as follows: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), respectively ( P <0.001). An average of 58.3% agreement was observed between the ANN model and the human observers. ConclusionsThis study demonstrated that the developed ANN model performed close to, if not better than, human observers in CVM analysis. By generating new algorithms, automatic classification of CVM with artificial intelligence may replace conventional evaluation methods used in the future.
Author Yıldırım, Derya
Amasya, Hakan
Cesur, Emre
Orhan, Kaan
Author_xml – sequence: 1
  givenname: Hakan
  orcidid: 0000-0001-7400-9938
  surname: Amasya
  fullname: Amasya, Hakan
  email: h-amasya@hotmail.com
  organization: Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Istanbul University-Cerrahpasa, İstanbul, Turkey
– sequence: 2
  givenname: Emre
  orcidid: 0000-0003-0176-8970
  surname: Cesur
  fullname: Cesur, Emre
  organization: Department of Orthodontics, Faculty of Dentistry, Istanbul Medipol University, İstanbul, Turkey
– sequence: 3
  givenname: Derya
  orcidid: 0000-0003-3125-1358
  surname: Yıldırım
  fullname: Yıldırım, Derya
  organization: Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Istanbul University-Cerrahpasa, İstanbul, Turkey
– sequence: 4
  givenname: Kaan
  orcidid: 0000-0001-6768-0176
  surname: Orhan
  fullname: Orhan, Kaan
  organization: Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
BookMark eNqFkU1r3DAQhkVJoZu0v6AXH3uxO5Jlr9TSQgj9gkAP_bgKrTxO5dpWqpEN--8rZ3sKlD1JoPd5NTxzyS7mMCNjLzlUHHj7eqjsELpQCRBQgaqAyydsx0Hvy3bfiAu2A6V02Uhon7FLogEAtBSwY9NPO_rOJh_mIvSFw7h6Z8dixZjwEPNtsmmJpwAle4f0priOyffe-fzq54Tj6O9wdlisVPxaJpubDpSLMBarpyWn7GzHI3l6zp72diR88e-8Yj8-fvh-87m8_frpy831bemkrFOp605y2VuuBdhGoZMHqJVy0jW2V00rAEE2PewPuhHa6VqLVmYC-xY6Lfr6ir069d7H8GdBSmby5PKgdsawkBGybfaN5FrmaH2KuhiIIvbmPvrJxqPhYDa5ZjAPcs0m14AyWW6m9CPK-fQgKUXrxzPsuxOL2cDqMRpyfvPX-YgumS74M_z7R7wb_bxt7TcekYawxKybDDckDJhv2-q3zQuooQWhcsHb_xec_f4vbyXC-Q
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107088
crossref_primary_10_1177_20552076241291345
crossref_primary_10_3390_app13063850
crossref_primary_10_1186_s12903_025_05482_9
crossref_primary_10_3390_diagnostics11122200
crossref_primary_10_1111_ocr_12517
crossref_primary_10_1259_dmfr_20220070
crossref_primary_10_3390_app122211864
crossref_primary_10_1111_ocr_12615
crossref_primary_10_1186_s40510_024_00527_1
crossref_primary_10_7717_peerj_11451
crossref_primary_10_3390_healthcare12131311
crossref_primary_10_37762_jgmds_10_3_470
crossref_primary_10_4041_kjod_2022_52_2_112
crossref_primary_10_1016_j_wneu_2024_10_014
crossref_primary_10_1007_s00784_024_05999_3
crossref_primary_10_1177_21925682241227428
crossref_primary_10_3390_jcm13144047
crossref_primary_10_1007_s11282_021_00566_y
crossref_primary_10_1016_j_sdentj_2022_05_001
crossref_primary_10_3390_healthcare11202760
crossref_primary_10_1007_s11548_021_02550_7
crossref_primary_10_1038_s41598_022_15920_1
crossref_primary_10_1007_s11282_023_00678_7
crossref_primary_10_1016_j_jdent_2024_105442
crossref_primary_10_1038_s41598_024_52929_0
crossref_primary_10_3390_jcm13020344
crossref_primary_10_1186_s40510_024_00535_1
crossref_primary_10_1007_s00784_025_06158_y
crossref_primary_10_1016_j_jebdp_2023_101928
crossref_primary_10_1016_j_jobcr_2023_08_005
crossref_primary_10_3390_computers11110154
crossref_primary_10_1109_JBHI_2022_3179619
crossref_primary_10_2319_031022_210_1
crossref_primary_10_1016_j_bas_2022_101666
crossref_primary_10_1186_s12903_023_03266_7
Cites_doi 10.1053/j.sodo.2005.04.005
10.1148/rg.2017170077
10.21608/mjfmct.2018.46313
10.2319/111517-787.1
10.1016/j.jmir.2019.09.005
10.5455/aim.2015.23.364-368
10.1067/mod.2000.105571
10.2214/ajr.182.4.1820867
10.1016/j.ajodo.2019.03.025
10.1016/j.ajodo.2019.03.026
10.1016/S0889-5406(95)70157-5
10.1016/j.ajodo.2018.11.016
10.1016/j.ajodo.2015.12.013
10.1016/j.ajodo.2007.08.028
10.2319/120913-906.1
10.1007/s00256-018-3033-2
10.1016/j.forsciint.2017.10.004
10.2319/070111-425.1
10.1016/j.ajodo.2011.04.013
10.2307/2529310
10.1067/mod.2000.107009
10.1093/ejo/cjy018
10.2298/VSP150708181M
10.1259/dmfr.20130238
10.2319/070605-217
10.1111/j.1600-9657.2012.01148.x
10.5937/sejodr4-15531
10.3109/00016359109005909
10.1016/j.tripleo.2008.03.002
10.2319/051511-333.1
10.1259/dmfr.20190441
10.2319/080414-544.1
10.1259/dmfr.20160107
ContentType Journal Article
Copyright 2020 American Association of Orthodontists
American Association of Orthodontists
Copyright © 2020 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 American Association of Orthodontists
– notice: American Association of Orthodontists
– notice: Copyright © 2020 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.ajodo.2020.08.014
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1097-6752
EndPage e179
ExternalDocumentID 10_1016_j_ajodo_2020_08_014
S0889540620306028
1_s2_0_S0889540620306028
GroupedDBID ---
--K
--M
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAGKA
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDX
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LH1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
TEORI
UHS
UV1
WUQ
X7M
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c443t-93d414fa1920a58ec4b0388c4c5af85620e045f07b9529c939264414ef60d92f3
IEDL.DBID .~1
ISSN 0889-5406
1097-6752
IngestDate Sun Sep 28 01:40:38 EDT 2025
Thu Oct 16 04:26:22 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Fri Feb 23 02:46:15 EST 2024
Sun Feb 23 10:19:34 EST 2025
Tue Oct 14 19:40:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-93d414fa1920a58ec4b0388c4c5af85620e045f07b9529c939264414ef60d92f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6768-0176
0000-0003-3125-1358
0000-0001-7400-9938
0000-0003-0176-8970
PQID 2465754194
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2465754194
crossref_primary_10_1016_j_ajodo_2020_08_014
crossref_citationtrail_10_1016_j_ajodo_2020_08_014
elsevier_sciencedirect_doi_10_1016_j_ajodo_2020_08_014
elsevier_clinicalkeyesjournals_1_s2_0_S0889540620306028
elsevier_clinicalkey_doi_10_1016_j_ajodo_2020_08_014
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle American journal of orthodontics and dentofacial orthopedics
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hassel, Farman (bib4) 1995; 107
de Cassia Silva Azevedo, Michel-Crosato, Haye Biazevic (bib41) 2018; 36
Gabriel, Southard, Qian, Marshall, Franciscus, Southard (bib13) 2009; 136
Baptista, Quaglio, Mourad, Hummel, Caetano, Ortolani (bib37) 2012; 82
Lamparski (bib2) 1972
Kositbowornchai, Plermkamon, Tangkosol (bib20) 2013; 29
Nestman, Marshall, Qian, Holton, Franciscus, Southard (bib14) 2011; 140
Predko-Engel, Kaminek, Langova, Kowalski, Fudalej (bib35) 2015; 116
Devito, de Souza Barbosa, Felippe Filho (bib19) 2008; 106
Baccetti, Franchi, McNamara (bib6) 2002; 72
Santiago, Cunha, Júnior, Fernandes, Campos, Costa (bib27) 2014; 43
Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal (bib15) 2017; 37
Perinetti, Braga, Contardo, Primozic (bib40) 2020; 157
Amasya, Yildirim, Aydogan, Kemaloglu, Orhan (bib24) 2020; 49
Rainey, Burnside, Harrison (bib32) 2016; 150
Dzemidzic, Sokic, Tiro, Nakas (bib25) 2015; 23
Obuchowski (bib38) 2004; 182
Sokic, Tiro, Sokic-Begovic, Nakas (bib36) 2012; 46
Miladinović, Mihailović, Mladenović, Duka, Živković, Mladenović (bib16) 2017; 74
McNamara, Franchi (bib8) 2018; 88
Niño-Sandoval, Guevara Pérez, González, Jaque, Infante-Contreras (bib22) 2017; 281
Zhao, Lin, Jiang, Wang, Ng (bib31) 2012; 82
Gandini, Mancini, Andreani (bib1) 2006; 76
Hellsing (bib3) 1991; 49
Morris, Fields, Beck, Kim (bib29) 2019; 156
Currie, Hawk, Rohren, Vial, Klein (bib18) 2019; 50
Tajmir, Lee, Shailam, Gale, Nguyen, Westra (bib23) 2019; 48
Baccetti, Franchi, Toth, McNamara (bib11) 2000; 118
Rongo, Valleta, Bucci, Bonetti, Michelotti, D’Antò (bib34) 2015; 85
Flores-Mir, Burgess, Champney, Jensen, Pitcher, Major (bib9) 2006; 76
Kucukkeles, Acar, Biren, Arun (bib10) 1999; 24
Khajah, Tadinada, Allareddy, Kuo, Nanda, Uribe (bib30) 2020; 157
Perinetti, Contardo (bib39) 2017; 4
Padalino, Sfondrini, Chenuil, Scudeller, Gandini (bib26) 2014; 12
Franchi, Baccetti, McNamara (bib5) 2000; 118
Johari, Esmaeili, Andalib, Garjani, Saberkari (bib21) 2017; 46
Landis, Koch (bib28) 1977; 33
Perinetti, Caprioglio, Contardo (bib12) 2014; 84
Perinetti, Primozic, Sharma, Cioffi, Contardo (bib33) 2018; 40
Baccetti, Franchi, McNamara (bib7) 2005; 11
Khanna, Dhaimade (bib17) 2017; 6
El-Bakary, Abo El-Atta (bib42) 2018; 26
Dzemidzic (10.1016/j.ajodo.2020.08.014_bib25) 2015; 23
McNamara (10.1016/j.ajodo.2020.08.014_bib8) 2018; 88
Predko-Engel (10.1016/j.ajodo.2020.08.014_bib35) 2015; 116
Padalino (10.1016/j.ajodo.2020.08.014_bib26) 2014; 12
Nestman (10.1016/j.ajodo.2020.08.014_bib14) 2011; 140
Khanna (10.1016/j.ajodo.2020.08.014_bib17) 2017; 6
Rainey (10.1016/j.ajodo.2020.08.014_bib32) 2016; 150
Khajah (10.1016/j.ajodo.2020.08.014_bib30) 2020; 157
Lamparski (10.1016/j.ajodo.2020.08.014_bib2) 1972
Perinetti (10.1016/j.ajodo.2020.08.014_bib39) 2017; 4
Johari (10.1016/j.ajodo.2020.08.014_bib21) 2017; 46
Gabriel (10.1016/j.ajodo.2020.08.014_bib13) 2009; 136
Kositbowornchai (10.1016/j.ajodo.2020.08.014_bib20) 2013; 29
Baccetti (10.1016/j.ajodo.2020.08.014_bib6) 2002; 72
Currie (10.1016/j.ajodo.2020.08.014_bib18) 2019; 50
Santiago (10.1016/j.ajodo.2020.08.014_bib27) 2014; 43
Rongo (10.1016/j.ajodo.2020.08.014_bib34) 2015; 85
Flores-Mir (10.1016/j.ajodo.2020.08.014_bib9) 2006; 76
Niño-Sandoval (10.1016/j.ajodo.2020.08.014_bib22) 2017; 281
Baptista (10.1016/j.ajodo.2020.08.014_bib37) 2012; 82
Hellsing (10.1016/j.ajodo.2020.08.014_bib3) 1991; 49
Zhao (10.1016/j.ajodo.2020.08.014_bib31) 2012; 82
Baccetti (10.1016/j.ajodo.2020.08.014_bib11) 2000; 118
Devito (10.1016/j.ajodo.2020.08.014_bib19) 2008; 106
Perinetti (10.1016/j.ajodo.2020.08.014_bib12) 2014; 84
El-Bakary (10.1016/j.ajodo.2020.08.014_bib42) 2018; 26
Gandini (10.1016/j.ajodo.2020.08.014_bib1) 2006; 76
Sokic (10.1016/j.ajodo.2020.08.014_bib36) 2012; 46
Perinetti (10.1016/j.ajodo.2020.08.014_bib40) 2020; 157
Baccetti (10.1016/j.ajodo.2020.08.014_bib7) 2005; 11
Kucukkeles (10.1016/j.ajodo.2020.08.014_bib10) 1999; 24
de Cassia Silva Azevedo (10.1016/j.ajodo.2020.08.014_bib41) 2018; 36
Morris (10.1016/j.ajodo.2020.08.014_bib29) 2019; 156
Perinetti (10.1016/j.ajodo.2020.08.014_bib33) 2018; 40
Miladinović (10.1016/j.ajodo.2020.08.014_bib16) 2017; 74
Obuchowski (10.1016/j.ajodo.2020.08.014_bib38) 2004; 182
Franchi (10.1016/j.ajodo.2020.08.014_bib5) 2000; 118
Tajmir (10.1016/j.ajodo.2020.08.014_bib23) 2019; 48
Landis (10.1016/j.ajodo.2020.08.014_bib28) 1977; 33
Chartrand (10.1016/j.ajodo.2020.08.014_bib15) 2017; 37
Amasya (10.1016/j.ajodo.2020.08.014_bib24) 2020; 49
Hassel (10.1016/j.ajodo.2020.08.014_bib4) 1995; 107
References_xml – volume: 4
  start-page: 48
  year: 2017
  end-page: 49
  ident: bib39
  article-title: Radiographic growth indicators: the issue of diagnostic reliability and clinical feasibility
  publication-title: South Eur J Orthod Dentofac Res
– volume: 88
  start-page: 133
  year: 2018
  end-page: 143
  ident: bib8
  article-title: The cervical vertebral maturation method: a user's guide
  publication-title: Angle Orthod
– volume: 85
  start-page: 841
  year: 2015
  end-page: 847
  ident: bib34
  article-title: Does clinical experience affect the reproducibility of cervical vertebrae maturation method?
  publication-title: Angle Orthod
– volume: 72
  start-page: 316
  year: 2002
  end-page: 323
  ident: bib6
  article-title: An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth
  publication-title: Angle Orthod
– volume: 106
  start-page: 879
  year: 2008
  end-page: 884
  ident: bib19
  article-title: An artificial multilayer perceptron neural network for diagnosis of proximal dental caries
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
– volume: 49
  start-page: 20190441
  year: 2020
  ident: bib24
  article-title: Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models
  publication-title: Dentomaxillofac Radiol
– volume: 12
  start-page: 483
  year: 2014
  end-page: 493
  ident: bib26
  article-title: Reliability of skeletal maturity analysis using the cervical vertebrae maturation method on dedicated software
  publication-title: Int Orthod
– volume: 157
  start-page: 228
  year: 2020
  end-page: 239
  ident: bib30
  article-title: Influence of type of radiograph and levels of experience and training on reproducibility of the cervical vertebral maturation method
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 281
  start-page: 187.e1
  year: 2017
  end-page: 187.e7
  ident: bib22
  article-title: Use of automated learning techniques for predicting mandibular morphology in skeletal Class I, II and III
  publication-title: Forensic Sci Int
– year: 1972
  ident: bib2
  article-title: Skeletal age assessment utilizing cervical vertebrae
– volume: 37
  start-page: 2113
  year: 2017
  end-page: 2131
  ident: bib15
  article-title: Deep learning: a primer for radiologists
  publication-title: Radiographics
– volume: 50
  start-page: 477
  year: 2019
  end-page: 487
  ident: bib18
  article-title: Machine learning and deep learning in medical imaging: intelligent imaging
  publication-title: J Med Imaging Radiat Sci
– volume: 150
  start-page: 98
  year: 2016
  end-page: 104
  ident: bib32
  article-title: Reliability of cervical vertebral maturation staging
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 11
  start-page: 119
  year: 2005
  end-page: 129
  ident: bib7
  article-title: The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics
  publication-title: Semin Orthod
– volume: 182
  start-page: 867
  year: 2004
  end-page: 869
  ident: bib38
  article-title: How many observers are needed in clinical studies of medical imaging?
  publication-title: AJR Am J Roentgenol
– volume: 84
  start-page: 951
  year: 2014
  end-page: 956
  ident: bib12
  article-title: Visual assessment of the cervical vertebral maturation stages: a study of diagnostic accuracy and repeatability
  publication-title: Angle Orthod
– volume: 116
  start-page: 222
  year: 2015
  end-page: 226
  ident: bib35
  article-title: Reliability of the cervical vertebrae maturation (CVM) method
  publication-title: Bratisl Lek Listy
– volume: 26
  start-page: 13
  year: 2018
  end-page: 21
  ident: bib42
  article-title: Skeletal maturation using cervical vertebrae versus dental age for age estimation
  publication-title: Mansoura J Forens Med Clin Toxicol
– volume: 74
  start-page: 267
  year: 2017
  end-page: 272
  ident: bib16
  article-title: Artificial intelligence in clinical medicine and dentistry [in Bosnian]
  publication-title: Vojnosanit Pregl
– volume: 43
  start-page: 20130238
  year: 2014
  ident: bib27
  article-title: New software for cervical vertebral geometry assessment and its relationship to skeletal maturation--a pilot study
  publication-title: Dentomaxillofac Radiol
– volume: 46
  start-page: 280
  year: 2012
  end-page: 290
  ident: bib36
  article-title: Semi-automatic assessment of cervical vertebral maturation stages using cephalograph images and centroid-based clustering
  publication-title: Acta Stomatol Croat
– volume: 40
  start-page: 666
  year: 2018
  end-page: 672
  ident: bib33
  article-title: Cervical vertebral maturation method and mandibular growth peak: a longitudinal study of diagnostic reliability
  publication-title: Eur J Orthod
– volume: 107
  start-page: 58
  year: 1995
  end-page: 66
  ident: bib4
  article-title: Skeletal maturation evaluation using cervical vertebrae
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 23
  start-page: 364
  year: 2015
  end-page: 368
  ident: bib25
  article-title: Computer based assessment of cervical vertebral maturation stages using digital lateral cephalograms
  publication-title: Acta Inform Med
– volume: 118
  start-page: 159
  year: 2000
  end-page: 170
  ident: bib11
  article-title: Treatment timing for Twin-block therapy
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 46
  start-page: 20160107
  year: 2017
  ident: bib21
  article-title: Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study
  publication-title: Dentomaxillofac Radiol
– volume: 136
  start-page: 478.e1
  year: 2009
  end-page: 478.e7
  ident: bib13
  article-title: Cervical vertebrae maturation method: poor reproducibility
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 140
  start-page: 182
  year: 2011
  end-page: 188
  ident: bib14
  article-title: Cervical vertebrae maturation method morphologic criteria: poor reproducibility
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 157
  start-page: 305
  year: 2020
  end-page: 312
  ident: bib40
  article-title: Cervical vertebral maturation: are postpubertal stages attained in all subjects?
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 118
  start-page: 335
  year: 2000
  end-page: 340
  ident: bib5
  article-title: Mandibular growth as related to cervical vertebral maturation and body height
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 48
  start-page: 275
  year: 2019
  end-page: 283
  ident: bib23
  article-title: Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability
  publication-title: Skeletal Radiol
– volume: 29
  start-page: 151
  year: 2013
  end-page: 155
  ident: bib20
  article-title: Performance of an artificial neural network for vertical root fracture detection: an ex vivo study
  publication-title: Dent Traumatol
– volume: 82
  start-page: 229
  year: 2012
  end-page: 234
  ident: bib31
  article-title: Validity and reliability of a method for assessment of cervical vertebral maturation
  publication-title: Angle Orthod
– volume: 82
  start-page: 658
  year: 2012
  end-page: 662
  ident: bib37
  article-title: A semi-automated method for bone age assessment using cervical vertebral maturation
  publication-title: Angle Orthod
– volume: 24
  start-page: 47
  year: 1999
  end-page: 52
  ident: bib10
  article-title: Comparisons between cervical vertebrae and hand-wrist maturation for the assessment of skeletal maturity
  publication-title: J Clin Pediatr Dent
– volume: 76
  start-page: 984
  year: 2006
  end-page: 989
  ident: bib1
  article-title: A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation
  publication-title: Angle Orthod
– volume: 36
  start-page: 31
  year: 2018
  end-page: 39
  ident: bib41
  article-title: Radiographic evaluation of dental and cervical vertebral development for age estimation in a young Brazilian population
  publication-title: J Forensic Odontostomatol
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: bib28
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 76
  start-page: 1
  year: 2006
  end-page: 5
  ident: bib9
  article-title: Correlation of skeletal maturation stages determined by cervical vertebrae and hand-wrist evaluations
  publication-title: Angle Orthod
– volume: 6
  start-page: 161
  year: 2017
  end-page: 167
  ident: bib17
  article-title: Artificial intelligence: transforming dentistry today
  publication-title: Indian J Basic Appl Med Res
– volume: 156
  start-page: 626
  year: 2019
  end-page: 632
  ident: bib29
  article-title: Diagnostic testing of cervical vertebral maturation staging: an independent assessment
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 49
  start-page: 207
  year: 1991
  end-page: 213
  ident: bib3
  article-title: Cervical vertebral dimensions in 8-, 11-, and 15-year-old children
  publication-title: Acta Odontol Scand
– volume: 11
  start-page: 119
  year: 2005
  ident: 10.1016/j.ajodo.2020.08.014_bib7
  article-title: The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics
  publication-title: Semin Orthod
  doi: 10.1053/j.sodo.2005.04.005
– volume: 37
  start-page: 2113
  year: 2017
  ident: 10.1016/j.ajodo.2020.08.014_bib15
  article-title: Deep learning: a primer for radiologists
  publication-title: Radiographics
  doi: 10.1148/rg.2017170077
– volume: 26
  start-page: 13
  year: 2018
  ident: 10.1016/j.ajodo.2020.08.014_bib42
  article-title: Skeletal maturation using cervical vertebrae versus dental age for age estimation
  publication-title: Mansoura J Forens Med Clin Toxicol
  doi: 10.21608/mjfmct.2018.46313
– volume: 88
  start-page: 133
  year: 2018
  ident: 10.1016/j.ajodo.2020.08.014_bib8
  article-title: The cervical vertebral maturation method: a user's guide
  publication-title: Angle Orthod
  doi: 10.2319/111517-787.1
– volume: 50
  start-page: 477
  year: 2019
  ident: 10.1016/j.ajodo.2020.08.014_bib18
  article-title: Machine learning and deep learning in medical imaging: intelligent imaging
  publication-title: J Med Imaging Radiat Sci
  doi: 10.1016/j.jmir.2019.09.005
– volume: 23
  start-page: 364
  year: 2015
  ident: 10.1016/j.ajodo.2020.08.014_bib25
  article-title: Computer based assessment of cervical vertebral maturation stages using digital lateral cephalograms
  publication-title: Acta Inform Med
  doi: 10.5455/aim.2015.23.364-368
– volume: 116
  start-page: 222
  year: 2015
  ident: 10.1016/j.ajodo.2020.08.014_bib35
  article-title: Reliability of the cervical vertebrae maturation (CVM) method
  publication-title: Bratisl Lek Listy
– volume: 118
  start-page: 159
  year: 2000
  ident: 10.1016/j.ajodo.2020.08.014_bib11
  article-title: Treatment timing for Twin-block therapy
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1067/mod.2000.105571
– volume: 12
  start-page: 483
  year: 2014
  ident: 10.1016/j.ajodo.2020.08.014_bib26
  article-title: Reliability of skeletal maturity analysis using the cervical vertebrae maturation method on dedicated software
  publication-title: Int Orthod
– volume: 182
  start-page: 867
  year: 2004
  ident: 10.1016/j.ajodo.2020.08.014_bib38
  article-title: How many observers are needed in clinical studies of medical imaging?
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.182.4.1820867
– volume: 72
  start-page: 316
  year: 2002
  ident: 10.1016/j.ajodo.2020.08.014_bib6
  article-title: An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth
  publication-title: Angle Orthod
– volume: 157
  start-page: 228
  year: 2020
  ident: 10.1016/j.ajodo.2020.08.014_bib30
  article-title: Influence of type of radiograph and levels of experience and training on reproducibility of the cervical vertebral maturation method
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2019.03.025
– volume: 157
  start-page: 305
  year: 2020
  ident: 10.1016/j.ajodo.2020.08.014_bib40
  article-title: Cervical vertebral maturation: are postpubertal stages attained in all subjects?
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2019.03.026
– volume: 107
  start-page: 58
  year: 1995
  ident: 10.1016/j.ajodo.2020.08.014_bib4
  article-title: Skeletal maturation evaluation using cervical vertebrae
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/S0889-5406(95)70157-5
– volume: 156
  start-page: 626
  year: 2019
  ident: 10.1016/j.ajodo.2020.08.014_bib29
  article-title: Diagnostic testing of cervical vertebral maturation staging: an independent assessment
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2018.11.016
– volume: 150
  start-page: 98
  year: 2016
  ident: 10.1016/j.ajodo.2020.08.014_bib32
  article-title: Reliability of cervical vertebral maturation staging
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2015.12.013
– volume: 136
  start-page: 478.e1
  year: 2009
  ident: 10.1016/j.ajodo.2020.08.014_bib13
  article-title: Cervical vertebrae maturation method: poor reproducibility
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2007.08.028
– volume: 84
  start-page: 951
  year: 2014
  ident: 10.1016/j.ajodo.2020.08.014_bib12
  article-title: Visual assessment of the cervical vertebral maturation stages: a study of diagnostic accuracy and repeatability
  publication-title: Angle Orthod
  doi: 10.2319/120913-906.1
– volume: 48
  start-page: 275
  year: 2019
  ident: 10.1016/j.ajodo.2020.08.014_bib23
  article-title: Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-018-3033-2
– volume: 281
  start-page: 187.e1
  year: 2017
  ident: 10.1016/j.ajodo.2020.08.014_bib22
  article-title: Use of automated learning techniques for predicting mandibular morphology in skeletal Class I, II and III
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2017.10.004
– volume: 82
  start-page: 658
  year: 2012
  ident: 10.1016/j.ajodo.2020.08.014_bib37
  article-title: A semi-automated method for bone age assessment using cervical vertebral maturation
  publication-title: Angle Orthod
  doi: 10.2319/070111-425.1
– volume: 140
  start-page: 182
  year: 2011
  ident: 10.1016/j.ajodo.2020.08.014_bib14
  article-title: Cervical vertebrae maturation method morphologic criteria: poor reproducibility
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2011.04.013
– volume: 33
  start-page: 159
  year: 1977
  ident: 10.1016/j.ajodo.2020.08.014_bib28
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 118
  start-page: 335
  year: 2000
  ident: 10.1016/j.ajodo.2020.08.014_bib5
  article-title: Mandibular growth as related to cervical vertebral maturation and body height
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1067/mod.2000.107009
– volume: 40
  start-page: 666
  year: 2018
  ident: 10.1016/j.ajodo.2020.08.014_bib33
  article-title: Cervical vertebral maturation method and mandibular growth peak: a longitudinal study of diagnostic reliability
  publication-title: Eur J Orthod
  doi: 10.1093/ejo/cjy018
– volume: 36
  start-page: 31
  year: 2018
  ident: 10.1016/j.ajodo.2020.08.014_bib41
  article-title: Radiographic evaluation of dental and cervical vertebral development for age estimation in a young Brazilian population
  publication-title: J Forensic Odontostomatol
– volume: 24
  start-page: 47
  year: 1999
  ident: 10.1016/j.ajodo.2020.08.014_bib10
  article-title: Comparisons between cervical vertebrae and hand-wrist maturation for the assessment of skeletal maturity
  publication-title: J Clin Pediatr Dent
– volume: 74
  start-page: 267
  year: 2017
  ident: 10.1016/j.ajodo.2020.08.014_bib16
  article-title: Artificial intelligence in clinical medicine and dentistry [in Bosnian]
  publication-title: Vojnosanit Pregl
  doi: 10.2298/VSP150708181M
– volume: 43
  start-page: 20130238
  year: 2014
  ident: 10.1016/j.ajodo.2020.08.014_bib27
  article-title: New software for cervical vertebral geometry assessment and its relationship to skeletal maturation--a pilot study
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20130238
– volume: 76
  start-page: 984
  year: 2006
  ident: 10.1016/j.ajodo.2020.08.014_bib1
  article-title: A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation
  publication-title: Angle Orthod
  doi: 10.2319/070605-217
– volume: 29
  start-page: 151
  year: 2013
  ident: 10.1016/j.ajodo.2020.08.014_bib20
  article-title: Performance of an artificial neural network for vertical root fracture detection: an ex vivo study
  publication-title: Dent Traumatol
  doi: 10.1111/j.1600-9657.2012.01148.x
– volume: 4
  start-page: 48
  year: 2017
  ident: 10.1016/j.ajodo.2020.08.014_bib39
  article-title: Radiographic growth indicators: the issue of diagnostic reliability and clinical feasibility
  publication-title: South Eur J Orthod Dentofac Res
  doi: 10.5937/sejodr4-15531
– volume: 49
  start-page: 207
  year: 1991
  ident: 10.1016/j.ajodo.2020.08.014_bib3
  article-title: Cervical vertebral dimensions in 8-, 11-, and 15-year-old children
  publication-title: Acta Odontol Scand
  doi: 10.3109/00016359109005909
– volume: 106
  start-page: 879
  year: 2008
  ident: 10.1016/j.ajodo.2020.08.014_bib19
  article-title: An artificial multilayer perceptron neural network for diagnosis of proximal dental caries
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1016/j.tripleo.2008.03.002
– volume: 82
  start-page: 229
  year: 2012
  ident: 10.1016/j.ajodo.2020.08.014_bib31
  article-title: Validity and reliability of a method for assessment of cervical vertebral maturation
  publication-title: Angle Orthod
  doi: 10.2319/051511-333.1
– volume: 76
  start-page: 1
  year: 2006
  ident: 10.1016/j.ajodo.2020.08.014_bib9
  article-title: Correlation of skeletal maturation stages determined by cervical vertebrae and hand-wrist evaluations
  publication-title: Angle Orthod
– volume: 49
  start-page: 20190441
  year: 2020
  ident: 10.1016/j.ajodo.2020.08.014_bib24
  article-title: Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20190441
– year: 1972
  ident: 10.1016/j.ajodo.2020.08.014_bib2
– volume: 85
  start-page: 841
  year: 2015
  ident: 10.1016/j.ajodo.2020.08.014_bib34
  article-title: Does clinical experience affect the reproducibility of cervical vertebrae maturation method?
  publication-title: Angle Orthod
  doi: 10.2319/080414-544.1
– volume: 46
  start-page: 280
  year: 2012
  ident: 10.1016/j.ajodo.2020.08.014_bib36
  article-title: Semi-automatic assessment of cervical vertebral maturation stages using cephalograph images and centroid-based clustering
  publication-title: Acta Stomatol Croat
– volume: 46
  start-page: 20160107
  year: 2017
  ident: 10.1016/j.ajodo.2020.08.014_bib21
  article-title: Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20160107
– volume: 6
  start-page: 161
  year: 2017
  ident: 10.1016/j.ajodo.2020.08.014_bib17
  article-title: Artificial intelligence: transforming dentistry today
  publication-title: Indian J Basic Appl Med Res
SSID ssj0009420
Score 2.4780817
Snippet This study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's output with the...
IntroductionThis study aimed to develop an artificial neural network (ANN) model for cervical vertebral maturation (CVM) analysis and validate the model's...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e173
SubjectTerms Dentistry
Title Validation of cervical vertebral maturation stages: Artificial intelligence vs human observer visual analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0889540620306028
https://www.clinicalkey.es/playcontent/1-s2.0-S0889540620306028
https://dx.doi.org/10.1016/j.ajodo.2020.08.014
https://www.proquest.com/docview/2465754194
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1097-6752
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009420
  issn: 0889-5406
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1097-6752
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009420
  issn: 0889-5406
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1097-6752
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009420
  issn: 0889-5406
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1097-6752
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009420
  issn: 0889-5406
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-6752
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009420
  issn: 0889-5406
  databaseCode: AKRWK
  dateStart: 19860701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9LBdhnUPLFsbaMCOcyPL9Ku3IF2RLVgP29rmJsiyNLhokyBOcuxvLynb3bMdsJNhg7QNWSQ_WeRHxt7pDNDrSSIf1CIAV6JJIS4O4rDUZWEwKAmqd_58mkzO4NMsnu2wcVcLQ2mVre9vfLr31u2VYTuaw2VVDb9Sgg7ijUQS7MUwSRXskFIXg8ObH2keOTTUjJTNQ9Id85DP8dKXuPbDRaIUnsczhPui029-2gefk6fsSYsa-ah5sT22Y-fP2KNjyvShZm3P2fU54ummPRJfOG68B0AN6rZMW8NX_JoYPBsBBITfbX3kb9cQSPDqJ2ZOvq25b93HFwX9s7Urvq3qDUrplsHkBTs7-fBtPAnaTgqBAYjWQR6VEILTCOeEjjNroCAWGAMm1i5DCCQsQjsn0iKPZW5yBE2Ek8C6RJS5dNFL1psv5vYV41DIyJWRzm0aAZRh4SzCJpM5WyQmE2mfyW4ElWlpxqnbxZXq8skulR92RcOuqAdmCH32_k5p2bBsPCwO3adRXQEpujyFUeBhtfRvarZuzbZWoaqlEuqPqdVnyZ3mL7Pz3498280chXZLmzF6bhebWkmgLS8Ic3j9vzd_wx7TWZNcs89669XGHiBEWhcDbwMDtjv6OJ2c0nH65WJ6C8FZEtw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqAXBH2oC5S6Uo9N13EmL26IgrYtcClU3CzHsdGuYBeRXY78dmachD5oqdRrMuNEE8_M53j8DcB7UyBFPcXkg0ZG6GtyKcLFURrXpq4sJSXJ552PjrPRKX45S8-WYK8_C8NllV3sb2N6iNbdlWFnzeHVeDz8xgU6hDcyxbCX0uQTeIqpynkF9vH2R51HiS03I5fzsHhPPRSKvMyEFn-0SlQyEHnG-Lf09FugDtnnYA1WO9godts3W4clN30OK5-41Ie7tb2Ay-8EqNv-SGLmhQ0hgDS43TLvDV-IS6bwbAUIEZ67ZicM1zJIiPFP1JziphGhd5-YVfzT1l2Lm3GzICnTUZi8hNOD_ZO9UdS1UogsYjKPyqTGGL0hPCdNWjiLFdPAWLSp8QVhIOkI23mZV2WqSlsSamKghM5nsi6VT17B8nQ2da9BYKUSXyemdHmCWMeVd4SbbOFdldlC5gNQvQW17XjGud3Fhe4LyiY6mF2z2TU3wYxxAB_ula5amo3HxbH_NLo_QUoxT1MaeFwt_5Oaazq_bXSsG6WlfjC3BpDda_4yPf_9yHf9zNHkuLwbY6Zutmi0Qt7zwrjEjf8d_C2sjE6ODvXh5-Ovm_CM77SVNluwPL9euDeEl-bVdvCHO2CREs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+cervical+vertebral+maturation+stages%3A+Artificial+intelligence+vs+human+observer+visual+analysis&rft.jtitle=American+journal+of+orthodontics+and+dentofacial+orthopedics&rft.au=Amasya%2C+Hakan&rft.au=Cesur%2C+Emre&rft.au=Y%C4%B1ld%C4%B1r%C4%B1m%2C+Derya&rft.au=Orhan%2C+Kaan&rft.date=2020-12-01&rft.issn=0889-5406&rft.volume=158&rft.issue=6&rft.spage=e173&rft.epage=e179&rft_id=info:doi/10.1016%2Fj.ajodo.2020.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ajodo_2020_08_014
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08895406%2FS0889540620X00230%2Fcov150h.gif