The Landscape of Thermal Transients from Supernovae Interacting with a Circumstellar Medium
The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outburst...
Saved in:
Published in | The Astrophysical journal Vol. 972; no. 2; pp. 140 - 162 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.09.2024
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ad60c0 |
Cover
Abstract | The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients can display a wide range of light-curve morphologies. We provide a framework for classifying the transients arising from interaction with a spherical CSM shell. The light curves are decomposed into five consecutive phases, starting from the onset of interaction and extending through shock breakout and subsequent shock cooling. The relative prominence of each phase in the light curve is determined by two dimensionless quantities representing the CSM-to-ejecta mass ratio
η
, and the breakout parameter
ξ
. These two parameters define four light-curve morphology classes, where each class is characterized by the location of the shock breakout and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling relations connecting the luminosity and duration of each light-curve phase to the physical parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of ejecta and CSM parameters to numerically explore the landscape of interaction light curves, and to calibrate and confirm the analytic scalings. We connect our theoretical framework to several case studies of observed transients, highlighting the relevance in explaining slow-rising and superluminous supernovae, fast blue optical transients, and double-peaked light curves. |
---|---|
AbstractList | The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients can display a wide range of light-curve morphologies. We provide a framework for classifying the transients arising from interaction with a spherical CSM shell. The light curves are decomposed into five consecutive phases, starting from the onset of interaction and extending through shock breakout and subsequent shock cooling. The relative prominence of each phase in the light curve is determined by two dimensionless quantities representing the CSM-to-ejecta mass ratio
η
, and the breakout parameter
ξ
. These two parameters define four light-curve morphology classes, where each class is characterized by the location of the shock breakout and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling relations connecting the luminosity and duration of each light-curve phase to the physical parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of ejecta and CSM parameters to numerically explore the landscape of interaction light curves, and to calibrate and confirm the analytic scalings. We connect our theoretical framework to several case studies of observed transients, highlighting the relevance in explaining slow-rising and superluminous supernovae, fast blue optical transients, and double-peaked light curves. The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients can display a wide range of light-curve morphologies. We provide a framework for classifying the transients arising from interaction with a spherical CSM shell. The light curves are decomposed into five consecutive phases, starting from the onset of interaction and extending through shock breakout and subsequent shock cooling. The relative prominence of each phase in the light curve is determined by two dimensionless quantities representing the CSM-to-ejecta mass ratio η , and the breakout parameter ξ . These two parameters define four light-curve morphology classes, where each class is characterized by the location of the shock breakout and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling relations connecting the luminosity and duration of each light-curve phase to the physical parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of ejecta and CSM parameters to numerically explore the landscape of interaction light curves, and to calibrate and confirm the analytic scalings. We connect our theoretical framework to several case studies of observed transients, highlighting the relevance in explaining slow-rising and superluminous supernovae, fast blue optical transients, and double-peaked light curves. |
Author | Kasen, Daniel N. Khatami, David K. |
Author_xml | – sequence: 1 givenname: David K. orcidid: 0000-0003-4307-0589 surname: Khatami fullname: Khatami, David K. organization: Lawrence Livermore National Laboratory , Livermore, CA 94550, USA – sequence: 2 givenname: Daniel N. surname: Kasen fullname: Kasen, Daniel N. organization: Lawrence Berkeley National Laboratory Nuclear Science Division, 1 Cyclotron Road, Berkeley, CA 94720, USA |
BackLink | https://www.osti.gov/biblio/2439639$$D View this record in Osti.gov |
BookMark | eNp9kcGL1DAYxYOs4Ozq3WPQq3XTJE3bowzqDox4cATBQ_iaftnJ0CY1SVf877ezlRUEvSTk8XuPF94lufDBIyEvS_ZWNLK-LivRFFJU9TX0ihn2hGwepQuyYYzJQon62zNymdLp_ORtuyHfD0eke_B9MjAhDZYuQhxhoIcIPjn0OVEbw0i_zBNGH-4A6c5njGCy87f0p8tHCnTropnHlHEYINJP2Lt5fE6eWhgSvvh9X5GvH94ftjfF_vPH3fbdvjBSilzUnbBKMPlwGsH7phTAWKdKwYE3tmNC9XWllBUWq7ppsUeJwMFUnFeL-4rs1tw-wElP0Y0Qf-kATj8IId5qiNmZAXVn-xZV1XR118uqUR3jBoTlwsi6A4Al69WaFVJ2OhmX0RxN8B5N1lyKVol2gV6v0BTDjxlT1qcwR7_8UYuSsZZVQpYLxVbKxJBSRPtYrWT6vJk-D6TPA-l1s8Wi_rIsBSC74HMEN_zP-GY1ujD9KfNP_B424KrG |
CitedBy_id | crossref_primary_10_1051_0004_6361_202451764 crossref_primary_10_3847_1538_4357_ad8b19 crossref_primary_10_1051_0004_6361_202451172 crossref_primary_10_3847_1538_4357_ad93a9 crossref_primary_10_3847_2041_8213_ad87cc crossref_primary_10_1051_0004_6361_202452014 |
Cites_doi | 10.3847/1538-4357/abc87c 10.1086/159681 10.1086/173557 10.1086/605911 10.3847/1538-4357/abba33 10.1088/0067-0049/217/1/9 10.1146/annurev-astro-081811-125534 10.1111/j.1745-3933.2012.01264.x 10.3847/0004-637X/821/2/76 10.3847/2041-8213/aadd90 10.3847/1538-4357/ac53b0 10.1093/mnras/sty3420 10.1088/0067-0049/196/2/20 10.1093/mnras/sts075 10.3847/1538-4357/abf3be 10.1146/annurev.astro.35.1.309 10.1051/0004-6361:20010127 10.3847/1538-4357/aa7b7d 10.1103/RevModPhys.74.1015 10.1086/167545 10.1126/science.1203601 10.1038/s41592-019-0686-2 10.1086/148549 10.3847/1538-4357/acc533 10.1088/0004-637X/770/2/128 10.1146/annurev-astro-081913-040025 10.1093/mnras/stv990 10.1038/s41586-021-04155-1 10.3847/1538-4357/aa6251 10.1093/mnras/stv609 10.1146/annurev.astro.35.1.1 10.1016/0370-1573(87)90134-7 10.1126/science.1223344 10.1086/171542 10.3847/1538-4357/aba0ba 10.1086/160126 10.3847/1538-4357/abfcbe 10.3847/0004-637X/821/1/38 10.1146/annurev.aa.24.090186.001225 10.3847/1538-4357/835/2/140 10.1088/0004-637X/773/1/76 10.1088/2041-8205/808/2/L51 10.1093/mnras/stx3179 10.5281/zenodo.7570264 10.1038/s41550-018-0423-2 10.1002/cpa.3160130303 10.1086/306571 10.1093/mnras/stx1314 10.1146/annurev.astro.45.051806.110615 10.1088/0004-637X/746/2/121 10.3847/1538-4365/abe303 10.1088/2041-8205/729/1/L6 10.1007/978-3-662-55054-0 10.1086/519949 10.1038/s41586-020-2649-2 10.1051/0004-6361/201629906 10.3847/1538-4357/ab55ec 10.1103/RevModPhys.60.1 10.1016/j.jqsrt.2011.01.027 10.1086/160167 10.1146/annurev.aa.26.090188.001455 10.3847/1538-4357/ac771a 10.1088/0004-637X/757/2/178 10.1088/0004-637X/724/2/1396 10.3847/1538-4357/aafa01 10.3847/1538-4357/836/2/244 10.1088/0004-637X/747/2/147 10.1086/157898 10.1038/378255a0 10.1093/mnras/182.2.147 10.1051/0004-6361/201629619 10.1016/j.physrep.2007.02.002 10.1007/s10509-005-3911-7 10.3847/1538-4357/ac3e63 10.3847/1538-4357/abe2b1 10.1086/163944 10.3847/1538-4357/ac6d59 10.3847/0004-637X/821/1/36 10.1088/0067-0049/204/1/7 10.1051/0004-6361/201936097 10.1086/133478 10.3847/1538-4357/aa8fcb 10.3847/1538-4357/ac67dd 10.1088/1538-3873/ab006c 10.1088/0004-637X/794/1/23 10.1126/science.aas8693 10.1016/S0021-9991(02)00015-3 10.1088/0004-637X/774/1/58 10.3847/1538-4357/aaa96e 10.3847/2041-8213/ac9b3d 10.1086/506190 10.3847/1538-4357/ab40ba 10.3847/1538-4357/ab5a83 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). Published by the American Astronomical Society. 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). Published by the American Astronomical Society. – notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI DOA |
DOI | 10.3847/1538-4357/ad60c0 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_bfd9e658b7bd4586b02ca3f23c47baaa 2439639 10_3847_1538_4357_ad60c0 apjad60c0 |
GrantInformation_xml | – fundername: Simons Foundation (SF) grantid: 622817DK funderid: https://doi.org/10.13039/100000893 – fundername: U.S. Department of Energy (DOE) grantid: DE-AC02-05CH11231 funderid: https://doi.org/10.13039/100000015 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0004658 funderid: https://doi.org/10.13039/100000015 – fundername: Gordon and Betty Moore Foundation (GBMF) grantid: GBMF5076 funderid: https://doi.org/10.13039/100000936 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M OTOTI |
ID | FETCH-LOGICAL-c443t-7b3f63043f630c32d813a00b6132a28fb036d7566f3fe5789ede4ea2ac52257b3 |
IEDL.DBID | DOA |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:31:22 EDT 2025 Mon Mar 03 14:50:34 EST 2025 Wed Aug 13 06:41:38 EDT 2025 Tue Jul 01 03:39:59 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Sep 11 04:03:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-7b3f63043f630c32d813a00b6132a28fb036d7566f3fe5789ede4ea2ac52257b3 |
Notes | AAS46024 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Simons Foundation USDOE Office of Science (SC), High Energy Physics (HEP) USDOE Office of Science (SC), Nuclear Physics (NP) AC02-05CH11231; SC0004658; 622817DK; NP-ERCAP-0025048 |
ORCID | 0000-0003-4307-0589 0000000343070589 |
OpenAccessLink | https://doaj.org/article/bfd9e658b7bd4586b02ca3f23c47baaa |
PQID | 3100905341 |
PQPubID | 4562441 |
PageCount | 23 |
ParticipantIDs | proquest_journals_3100905341 crossref_primary_10_3847_1538_4357_ad60c0 doaj_primary_oai_doaj_org_article_bfd9e658b7bd4586b02ca3f23c47baaa iop_journals_10_3847_1538_4357_ad60c0 osti_scitechconnect_2439639 crossref_citationtrail_10_3847_1538_4357_ad60c0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2024 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Smith (apjad60c0bib80) 2014; 52 Chevalier (apjad60c0bib12) 2017 Bell (apjad60c0bib3) 1978; 182 Metzger (apjad60c0bib58) 2022; 932 Margalit (apjad60c0bib52) 2022; 933 Ofek (apjad60c0bib63) 2010; 724 Sakurai (apjad60c0bib77) 1960; 13 Sana (apjad60c0bib78) 2012; 337 Woosley (apjad60c0bib96) 2002; 74 Morozova (apjad60c0bib60) 2017; 838 Smith (apjad60c0bib82) 2007; 666 Inserra (apjad60c0bib38) 2018; 475 Rau (apjad60c0bib73) 2009; 121 Sukhbold (apjad60c0bib83) 2016; 821 Caswell (apjad60c0bib6) 2023 Drout (apjad60c0bib21) 2014; 794 Chevalier (apjad60c0bib10) 1982b; 258 Gal-Yam (apjad60c0bib28) 2017 Gal-Yam (apjad60c0bib27) 2012; 337 Roth (apjad60c0bib75) 2015; 217 Ginzburg (apjad60c0bib30) 2012; 757 Rest (apjad60c0bib74) 2018; 2 Inserra (apjad60c0bib39) 2013; 770 Davidson (apjad60c0bib17) 1997; 35 Leung (apjad60c0bib50) 2021; 915 Sedov (apjad60c0bib79) 1959 Zel’dovich (apjad60c0bib101) 1967 Parker (apjad60c0bib65) 1963 Karamehmetoglu (apjad60c0bib43) 2017; 602 Harris (apjad60c0bib32) 2020; 585 Blandford (apjad60c0bib4) 1987; 154 Chatzopoulos (apjad60c0bib8) 2012; 746 Katz (apjad60c0bib46) 2012; 747 Suzuki (apjad60c0bib84) 2019; 887 Graham (apjad60c0bib31) 2019; 131 McDowell (apjad60c0bib57) 2018; 856 Moriya (apjad60c0bib59) 2013; 428 Janka (apjad60c0bib40) 2017 Ho (apjad60c0bib34) 2023; 949 Chevalier (apjad60c0bib11) 1994; 420 Arnett (apjad60c0bib2) 1982; 253 Chevalier (apjad60c0bib14) 1989; 341 Waxman (apjad60c0bib92) 2017 Duffell (apjad60c0bib23) 2016; 821 Filippenko (apjad60c0bib25) 1997; 35 Gal-Yam (apjad60c0bib29) 2022; 601 Langer (apjad60c0bib48) 2012; 50 Hosseinzadeh (apjad60c0bib35) 2022; 933 Prentice (apjad60c0bib70) 2018; 865 Howell (apjad60c0bib36) 2003; 184 Leung (apjad60c0bib49) 2020; 903 Piro (apjad60c0bib68) 2015; 808 Zhang (apjad60c0bib102) 2011; 196 Arnett (apjad60c0bib1) 1980; 237 Vink (apjad60c0bib90) 2001; 369 Weiler (apjad60c0bib93) 1988; 26 Woosley (apjad60c0bib98) 1986; 24 Quataert (apjad60c0bib72) 2012; 423 Ensman (apjad60c0bib24) 1992; 393 Janka (apjad60c0bib41) 2007; 442 Koyama (apjad60c0bib47) 1995; 378 Piro (apjad60c0bib69) 2021; 909 Matzner (apjad60c0bib56) 1999; 510 Fuller (apjad60c0bib26) 2017; 470 Ho (apjad60c0bib33) 2019; 887 Tsuna (apjad60c0bib87) 2019; 884 Crowther (apjad60c0bib16) 2007; 45 Jiang (apjad60c0bib42) 2021; 253 Press (apjad60c0bib71) 1986 Dessart (apjad60c0bib19) 2015; 449 Ostriker (apjad60c0bib64) 1988; 60 Wu (apjad60c0bib100) 2022; 940 Margalit (apjad60c0bib53) 2022; 928 Suzuki (apjad60c0bib85) 2020; 899 Margutti (apjad60c0bib54) 2017; 835 Wu (apjad60c0bib99) 2021; 906 Drout (apjad60c0bib22) 2013; 774 Branch (apjad60c0bib5) 2017 Rybicki (apjad60c0bib76) 1979 Margutti (apjad60c0bib55) 2019; 872 Nyholm (apjad60c0bib61) 2017; 605 Nyholm (apjad60c0bib62) 2020; 637 Chevalier (apjad60c0bib9) 1982a; 259 Smith (apjad60c0bib81) 2017 Zhang (apjad60c0bib103) 2013; 204 Kasen (apjad60c0bib44) 2016; 821 Perley (apjad60c0bib67) 2019; 484 Woosley (apjad60c0bib95) 2017; 836 Humphreys (apjad60c0bib37) 1994; 106 Chevalier (apjad60c0bib13) 2011; 729 De (apjad60c0bib18) 2018; 362 Lovegrove (apjad60c0bib51) 2017; 845 Kasen (apjad60c0bib45) 2006; 651 Vaytet (apjad60c0bib88) 2011; 112 Chatzopoulos (apjad60c0bib7) 2013; 773 Virtanen (apjad60c0bib91) 2020; 17 Weiler (apjad60c0bib94) 1986; 301 Tauris (apjad60c0bib86) 2015; 451 Woosley (apjad60c0bib97) 2021; 913 Villar (apjad60c0bib89) 2017; 849 Pellegrino (apjad60c0bib66) 2022; 926 Drake (apjad60c0bib20) 2005; 298 Colgate (apjad60c0bib15) 1966; 143 |
References_xml | – volume: 906 start-page: 3 year: 2021 ident: apjad60c0bib99 publication-title: ApJ doi: 10.3847/1538-4357/abc87c – volume: 253 start-page: 785 year: 1982 ident: apjad60c0bib2 publication-title: ApJ doi: 10.1086/159681 – volume: 420 start-page: 268 year: 1994 ident: apjad60c0bib11 publication-title: ApJ doi: 10.1086/173557 – volume: 121 start-page: 1334 year: 2009 ident: apjad60c0bib73 publication-title: PASP doi: 10.1086/605911 – volume: 903 start-page: 66 year: 2020 ident: apjad60c0bib49 publication-title: ApJ doi: 10.3847/1538-4357/abba33 – volume: 217 start-page: 9 year: 2015 ident: apjad60c0bib75 publication-title: ApJS doi: 10.1088/0067-0049/217/1/9 – volume: 50 start-page: 107 year: 2012 ident: apjad60c0bib48 publication-title: ARA&A doi: 10.1146/annurev-astro-081811-125534 – volume: 423 start-page: L92 year: 2012 ident: apjad60c0bib72 publication-title: MNRAS doi: 10.1111/j.1745-3933.2012.01264.x – volume: 821 start-page: 76 year: 2016 ident: apjad60c0bib23 publication-title: ApJ doi: 10.3847/0004-637X/821/2/76 – volume: 865 start-page: L3 year: 2018 ident: apjad60c0bib70 publication-title: ApJL doi: 10.3847/2041-8213/aadd90 – volume: 928 start-page: 122 year: 2022 ident: apjad60c0bib53 publication-title: ApJ doi: 10.3847/1538-4357/ac53b0 – volume: 484 start-page: 1031 year: 2019 ident: apjad60c0bib67 publication-title: MNRAS doi: 10.1093/mnras/sty3420 – volume: 196 start-page: 20 year: 2011 ident: apjad60c0bib102 publication-title: ApJS doi: 10.1088/0067-0049/196/2/20 – volume: 428 start-page: 1020 year: 2013 ident: apjad60c0bib59 publication-title: MNRAS doi: 10.1093/mnras/sts075 – volume: 913 start-page: 145 year: 2021 ident: apjad60c0bib97 publication-title: ApJ doi: 10.3847/1538-4357/abf3be – volume: 35 start-page: 309 year: 1997 ident: apjad60c0bib25 publication-title: ARA&A doi: 10.1146/annurev.astro.35.1.309 – volume: 369 start-page: 574 year: 2001 ident: apjad60c0bib90 publication-title: A&A doi: 10.1051/0004-6361:20010127 – volume: 845 start-page: 103 year: 2017 ident: apjad60c0bib51 publication-title: ApJ doi: 10.3847/1538-4357/aa7b7d – volume: 74 start-page: 1015 year: 2002 ident: apjad60c0bib96 publication-title: RvMP doi: 10.1103/RevModPhys.74.1015 – volume: 341 start-page: 867 year: 1989 ident: apjad60c0bib14 publication-title: ApJ doi: 10.1086/167545 – volume: 337 start-page: 927 year: 2012 ident: apjad60c0bib27 publication-title: Sci doi: 10.1126/science.1203601 – volume: 17 start-page: 261 year: 2020 ident: apjad60c0bib91 publication-title: NatMe doi: 10.1038/s41592-019-0686-2 – volume: 143 start-page: 626 year: 1966 ident: apjad60c0bib15 publication-title: ApJ doi: 10.1086/148549 – volume: 949 start-page: 120 year: 2023 ident: apjad60c0bib34 publication-title: ApJ doi: 10.3847/1538-4357/acc533 – volume: 770 start-page: 128 year: 2013 ident: apjad60c0bib39 publication-title: ApJ doi: 10.1088/0004-637X/770/2/128 – volume: 52 start-page: 487 year: 2014 ident: apjad60c0bib80 publication-title: ARA&A doi: 10.1146/annurev-astro-081913-040025 – year: 1967 ident: apjad60c0bib101 – volume: 451 start-page: 2123 year: 2015 ident: apjad60c0bib86 publication-title: MNRAS doi: 10.1093/mnras/stv990 – volume: 601 start-page: 201 year: 2022 ident: apjad60c0bib29 publication-title: Natur doi: 10.1038/s41586-021-04155-1 – year: 1959 ident: apjad60c0bib79 – volume: 838 start-page: 28 year: 2017 ident: apjad60c0bib60 publication-title: ApJ doi: 10.3847/1538-4357/aa6251 – volume: 449 start-page: 4304 year: 2015 ident: apjad60c0bib19 publication-title: MNRAS doi: 10.1093/mnras/stv609 – volume: 35 start-page: 1 year: 1997 ident: apjad60c0bib17 publication-title: ARA&A doi: 10.1146/annurev.astro.35.1.1 – volume: 154 start-page: 1 year: 1987 ident: apjad60c0bib4 publication-title: PhR doi: 10.1016/0370-1573(87)90134-7 – volume: 337 start-page: 444 year: 2012 ident: apjad60c0bib78 publication-title: Sci doi: 10.1126/science.1223344 – volume: 393 start-page: 742 year: 1992 ident: apjad60c0bib24 publication-title: ApJ doi: 10.1086/171542 – volume: 899 start-page: 56 year: 2020 ident: apjad60c0bib85 publication-title: ApJ doi: 10.3847/1538-4357/aba0ba – volume: 258 start-page: 790 year: 1982b ident: apjad60c0bib10 publication-title: ApJ doi: 10.1086/160126 – volume: 915 start-page: 80 year: 2021 ident: apjad60c0bib50 publication-title: ApJ doi: 10.3847/1538-4357/abfcbe – volume: 821 start-page: 38 year: 2016 ident: apjad60c0bib83 publication-title: ApJ doi: 10.3847/0004-637X/821/1/38 – volume: 24 start-page: 205 year: 1986 ident: apjad60c0bib98 publication-title: ARA&A doi: 10.1146/annurev.aa.24.090186.001225 – volume: 835 start-page: 140 year: 2017 ident: apjad60c0bib54 publication-title: ApJ doi: 10.3847/1538-4357/835/2/140 – volume: 773 start-page: 76 year: 2013 ident: apjad60c0bib7 publication-title: ApJ doi: 10.1088/0004-637X/773/1/76 – start-page: 1095 year: 2017 ident: apjad60c0bib40 – volume: 808 start-page: L51 year: 2015 ident: apjad60c0bib68 publication-title: ApJL doi: 10.1088/2041-8205/808/2/L51 – volume: 475 start-page: 1046 year: 2018 ident: apjad60c0bib38 publication-title: MNRAS doi: 10.1093/mnras/stx3179 – year: 2023 ident: apjad60c0bib6 doi: 10.5281/zenodo.7570264 – volume: 2 start-page: 307 year: 2018 ident: apjad60c0bib74 publication-title: NatAs doi: 10.1038/s41550-018-0423-2 – volume: 13 start-page: 353 year: 1960 ident: apjad60c0bib77 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160130303 – volume: 510 start-page: 379 year: 1999 ident: apjad60c0bib56 publication-title: ApJ doi: 10.1086/306571 – volume: 470 start-page: 1642 year: 2017 ident: apjad60c0bib26 publication-title: MNRAS doi: 10.1093/mnras/stx1314 – volume: 45 start-page: 177 year: 2007 ident: apjad60c0bib16 publication-title: ARA&A doi: 10.1146/annurev.astro.45.051806.110615 – volume: 746 start-page: 121 year: 2012 ident: apjad60c0bib8 publication-title: ApJ doi: 10.1088/0004-637X/746/2/121 – volume: 253 start-page: 49 year: 2021 ident: apjad60c0bib42 publication-title: ApJS doi: 10.3847/1538-4365/abe303 – volume: 729 start-page: L6 year: 2011 ident: apjad60c0bib13 publication-title: ApJL doi: 10.1088/2041-8205/729/1/L6 – year: 2017 ident: apjad60c0bib5 doi: 10.1007/978-3-662-55054-0 – volume: 666 start-page: 1116 year: 2007 ident: apjad60c0bib82 publication-title: ApJ doi: 10.1086/519949 – volume: 585 start-page: 357 year: 2020 ident: apjad60c0bib32 publication-title: Natur doi: 10.1038/s41586-020-2649-2 – volume: 605 start-page: A6 year: 2017 ident: apjad60c0bib61 publication-title: A&A doi: 10.1051/0004-6361/201629906 – volume: 887 start-page: 169 year: 2019 ident: apjad60c0bib33 publication-title: ApJ doi: 10.3847/1538-4357/ab55ec – volume: 60 start-page: 1 year: 1988 ident: apjad60c0bib64 publication-title: RvMP doi: 10.1103/RevModPhys.60.1 – volume: 112 start-page: 1323 year: 2011 ident: apjad60c0bib88 publication-title: JQSRT doi: 10.1016/j.jqsrt.2011.01.027 – volume: 259 start-page: 302 year: 1982a ident: apjad60c0bib9 publication-title: ApJ doi: 10.1086/160167 – volume: 26 start-page: 295 year: 1988 ident: apjad60c0bib93 publication-title: ARA&A doi: 10.1146/annurev.aa.26.090188.001455 – volume: 933 start-page: 238 year: 2022 ident: apjad60c0bib52 publication-title: ApJ doi: 10.3847/1538-4357/ac771a – volume: 757 start-page: 178 year: 2012 ident: apjad60c0bib30 publication-title: ApJ doi: 10.1088/0004-637X/757/2/178 – volume: 724 start-page: 1396 year: 2010 ident: apjad60c0bib63 publication-title: ApJ doi: 10.1088/0004-637X/724/2/1396 – volume: 872 start-page: 18 year: 2019 ident: apjad60c0bib55 publication-title: ApJ doi: 10.3847/1538-4357/aafa01 – volume: 836 start-page: 244 year: 2017 ident: apjad60c0bib95 publication-title: ApJ doi: 10.3847/1538-4357/836/2/244 – volume: 747 start-page: 147 year: 2012 ident: apjad60c0bib46 publication-title: ApJ doi: 10.1088/0004-637X/747/2/147 – volume: 237 start-page: 541 year: 1980 ident: apjad60c0bib1 publication-title: ApJ doi: 10.1086/157898 – volume: 378 start-page: 255 year: 1995 ident: apjad60c0bib47 publication-title: Natur doi: 10.1038/378255a0 – start-page: 403 year: 2017 ident: apjad60c0bib81 – start-page: 875 year: 2017 ident: apjad60c0bib12 – volume: 182 start-page: 147 year: 1978 ident: apjad60c0bib3 publication-title: MNRAS doi: 10.1093/mnras/182.2.147 – volume: 602 start-page: A93 year: 2017 ident: apjad60c0bib43 publication-title: A&A doi: 10.1051/0004-6361/201629619 – start-page: 967 year: 2017 ident: apjad60c0bib92 – volume: 442 start-page: 38 year: 2007 ident: apjad60c0bib41 publication-title: PhR doi: 10.1016/j.physrep.2007.02.002 – volume: 298 start-page: 49 year: 2005 ident: apjad60c0bib20 publication-title: Ap&SS doi: 10.1007/s10509-005-3911-7 – volume: 926 start-page: 125 year: 2022 ident: apjad60c0bib66 publication-title: ApJ doi: 10.3847/1538-4357/ac3e63 – volume: 909 start-page: 209 year: 2021 ident: apjad60c0bib69 publication-title: ApJ doi: 10.3847/1538-4357/abe2b1 – volume: 301 start-page: 790 year: 1986 ident: apjad60c0bib94 publication-title: ApJ doi: 10.1086/163944 – year: 1963 ident: apjad60c0bib65 – volume: 932 start-page: 84 year: 2022 ident: apjad60c0bib58 publication-title: ApJ doi: 10.3847/1538-4357/ac6d59 – volume: 821 start-page: 36 year: 2016 ident: apjad60c0bib44 publication-title: ApJ doi: 10.3847/0004-637X/821/1/36 – volume: 204 start-page: 7 year: 2013 ident: apjad60c0bib103 publication-title: ApJS doi: 10.1088/0067-0049/204/1/7 – year: 1986 ident: apjad60c0bib71 – year: 1979 ident: apjad60c0bib76 – volume: 637 start-page: A73 year: 2020 ident: apjad60c0bib62 publication-title: A&A doi: 10.1051/0004-6361/201936097 – volume: 106 start-page: 1025 year: 1994 ident: apjad60c0bib37 publication-title: PASP doi: 10.1086/133478 – volume: 849 start-page: 70 year: 2017 ident: apjad60c0bib89 publication-title: ApJ doi: 10.3847/1538-4357/aa8fcb – volume: 933 start-page: 14 year: 2022 ident: apjad60c0bib35 publication-title: ApJ doi: 10.3847/1538-4357/ac67dd – start-page: 195 year: 2017 ident: apjad60c0bib28 – volume: 131 start-page: 078001 year: 2019 ident: apjad60c0bib31 publication-title: PASP doi: 10.1088/1538-3873/ab006c – volume: 794 start-page: 23 year: 2014 ident: apjad60c0bib21 publication-title: ApJ doi: 10.1088/0004-637X/794/1/23 – volume: 362 start-page: 201 year: 2018 ident: apjad60c0bib18 publication-title: Sci doi: 10.1126/science.aas8693 – volume: 184 start-page: 53 year: 2003 ident: apjad60c0bib36 publication-title: JCoPh doi: 10.1016/S0021-9991(02)00015-3 – volume: 774 start-page: 58 year: 2013 ident: apjad60c0bib22 publication-title: ApJ doi: 10.1088/0004-637X/774/1/58 – volume: 856 start-page: 29 year: 2018 ident: apjad60c0bib57 publication-title: ApJ doi: 10.3847/1538-4357/aaa96e – volume: 940 start-page: L27 year: 2022 ident: apjad60c0bib100 publication-title: ApJL doi: 10.3847/2041-8213/ac9b3d – volume: 651 start-page: 366 year: 2006 ident: apjad60c0bib45 publication-title: ApJ doi: 10.1086/506190 – volume: 884 start-page: 87 year: 2019 ident: apjad60c0bib87 publication-title: ApJ doi: 10.3847/1538-4357/ab40ba – volume: 887 start-page: 249 year: 2019 ident: apjad60c0bib84 publication-title: ApJ doi: 10.3847/1538-4357/ab5a83 |
SSID | ssj0004299 |
Score | 2.5891955 |
Snippet | The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into... |
SourceID | doaj osti proquest crossref iop |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 140 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS Binary stars Cooling curves Core-collapse supernovae Ejecta Hydrodynamics Kinetic energy Late stellar evolution Light Light curve Luminosity Morphology Parameters Physical properties Radiation Radiative transfer Shock cooling Shocks Spherical shells Stellar mass loss Supernova Supernovae Thermal transients Transients (astronomy) |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFH-IReiltGpx1ZY5aMFDusnMbJKhJysVEdGCShd6GOYrIribZbN76H_f92biSlGklzAZkkyY9_H7zcd7A3AQrA_cK5Mpr_KMICCri0Jl3HFrEF8Qg2K2z8vy7Faej0fjNfi2ioVpZ73r_4rFlCg4dSHZt0BfOow2iihfDY0vc4fj9TcCeTmNvK7Er6egSK567iuzUlTjtEb54hf-waSYuh-RBpvHmxYN7Zmbjthz-h7e9aSRHadf_ABrYboJO8cdTWO3kz_sC4vlNEvRbcLGz1Tagt-oBuyCwnlpoxNrG4YV6IsfWAQpCobsGIWYsOvlLMzphNTA4iwhBTxM7xjN0zLDTu7nbjnpKOTEzBmt7iwn23B7-uPm5Czrz1PInJRikVVWNKXIZbw6wX1dCJPnFhGdG143FtHMV8jvGtEEtGQVfJDBcOOQpI3w7Y-wPm2nYQcY8rbSlqayReGlCFXtsEtLZ5TB8YkK-QCGjz2qXZ9snM68eNA46CAZaJKBJhnoJIMBHK3emKVEG688-52EtHqOUmTHClQX3auLto1XAfmVrayXo7q0OXdGNFw4WVljzAAOUcS6N9nulcb2SAk0qiWl1XW0_8gtNEcmh-xuAPuPuvH0KVo0UejdZLH7n43swVuObCltXtuH9cV8GT4h21nYz1Gr_wK3_vWg priority: 102 providerName: IOP Publishing |
Title | The Landscape of Thermal Transients from Supernovae Interacting with a Circumstellar Medium |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ad60c0 https://www.proquest.com/docview/3100905341 https://www.osti.gov/biblio/2439639 https://doaj.org/article/bfd9e658b7bd4586b02ca3f23c47baaa |
Volume | 972 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA8iCL1I1Ra3rpKDLfQwbCbJzkyOqyirlLpgRcFDyNeI4O4sO7uH_vd9L5lVi2AvvYRMyMyEvJf3--XjvRByHKwP3CuTKa9YhhCQVXmuMu64NYAvgEEx2ufPYnwjL--Gd6-u-sIzYSk8cOq4ga29CgCTtrReDqvCMu6MqLlwsrTGRGrEFFtPptYekWBl06akAPM7iMMaiEE5ML5gjv0FQjFWP0DLYzOHhwZG1hu7HMHm_CPZ7lgiHaXW7ZCNMNsl-6MW162b6W_6jcZ8WpZod8nWJOX2yD3Inf5A_1082USbmkIBGN8nGlEJvR9bij4l9Ho1Dwu8EjXQuCyIHg6zB4oLs9TQ08eFW01b9DExC4rbOavpJ3JzfvbrdJx1FyhkTkqxzEor6kIwGVMnuK9yYRizAOHc8Kq2AF--BEJXizrA0FXBBxkMNw5Y2RDe_kw2Z80s7BMKRK2whSltnnspQlk56NLCGWVgQqIC65HBuke166KL4yUXTxpmGSgDjTLQKAOdZNAj35_fmKfIGu_UPUEhPdfDmNixADRFd5qi_6UpPfIVRKy7Mdq-87MDVAINFATj6Do8cOSWmgN1AzrXI_21brx8CndJFJgzmX_5Hy09IB84cKd0lK1PNpeLVTgE7rO0R1HNIb24mkB6JW7_AHERAY0 |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bTxQxFD5BCMYXoqhhBbUPasLDuDNtd2b6iOgGkCAJEDfxoeltjAm7s9nZfeDfe047QIyG-DLpNJ1Lei7f18s5BXgXrA_cK5Mpr_KMICCri0Jl3HFrEF8Qg2K2z7Py6EqeTEaT_pzTGAvTznvX_xGLKVFw6kKyb4G-dBhtFFG-Ghpf5i4fzn3zCDZGArkxKvQ38f0-MJKrnv_KrBTVJK1T_vMtf-BSTN-PaIO_gDctGttfrjriz_gpbPXEkR2k33wGa2G2DTsHHU1lt9Mb9oHFcpqp6LZh8zyVnsMPVAV2SiG9tNmJtQ3DCvTH1ywCFQVEdozCTNjFah4WdEpqYHGmkIIeZj8ZzdUyww5_Ldxq2lHYiVkwWuFZTV_A1fjL5eFR1p-pkDkpxTKrrGhKkct4dYL7uhAmzy2iOje8biwimq-Q4zWiCWjNKvggg-HGIVEb4dMvYX3WzsIOMORupS1NZYvCSxGq2mGXls4og2MUFfIBDG97VLs-4Tide3GtceBBMtAkA00y0EkGA9i_e2Kekm080PYTCemuHaXJjhWoMrpXGW0brwJyLFtZL0d1aXPujGi4cLKyxpgBvEcR695suwc-tktKoFE1KbWuoz1Ibqk5sjlkeAPYu9WN-1fRwolCDyeLV__5kbfw-PzzWJ8en33dhSccyVPay7YH68vFKrxG8rO0b6KC_wYV-fme |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Landscape+of+Thermal+Transients+from+Supernovae+Interacting+with+a+Circumstellar+Medium&rft.jtitle=The+Astrophysical+journal&rft.au=Khatami%2C+David+K.&rft.au=Kasen%2C+Daniel+N.&rft.date=2024-09-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=972&rft.issue=2&rft.spage=140&rft_id=info:doi/10.3847%2F1538-4357%2Fad60c0&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ad60c0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |