The Landscape of Thermal Transients from Supernovae Interacting with a Circumstellar Medium

The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outburst...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 972; no. 2; pp. 140 - 162
Main Authors Khatami, David K., Kasen, Daniel N.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.09.2024
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ad60c0

Cover

Abstract The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients can display a wide range of light-curve morphologies. We provide a framework for classifying the transients arising from interaction with a spherical CSM shell. The light curves are decomposed into five consecutive phases, starting from the onset of interaction and extending through shock breakout and subsequent shock cooling. The relative prominence of each phase in the light curve is determined by two dimensionless quantities representing the CSM-to-ejecta mass ratio η , and the breakout parameter ξ . These two parameters define four light-curve morphology classes, where each class is characterized by the location of the shock breakout and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling relations connecting the luminosity and duration of each light-curve phase to the physical parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of ejecta and CSM parameters to numerically explore the landscape of interaction light curves, and to calibrate and confirm the analytic scalings. We connect our theoretical framework to several case studies of observed transients, highlighting the relevance in explaining slow-rising and superluminous supernovae, fast blue optical transients, and double-peaked light curves.
AbstractList The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients can display a wide range of light-curve morphologies. We provide a framework for classifying the transients arising from interaction with a spherical CSM shell. The light curves are decomposed into five consecutive phases, starting from the onset of interaction and extending through shock breakout and subsequent shock cooling. The relative prominence of each phase in the light curve is determined by two dimensionless quantities representing the CSM-to-ejecta mass ratio η , and the breakout parameter ξ . These two parameters define four light-curve morphology classes, where each class is characterized by the location of the shock breakout and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling relations connecting the luminosity and duration of each light-curve phase to the physical parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of ejecta and CSM parameters to numerically explore the landscape of interaction light curves, and to calibrate and confirm the analytic scalings. We connect our theoretical framework to several case studies of observed transients, highlighting the relevance in explaining slow-rising and superluminous supernovae, fast blue optical transients, and double-peaked light curves.
The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients can display a wide range of light-curve morphologies. We provide a framework for classifying the transients arising from interaction with a spherical CSM shell. The light curves are decomposed into five consecutive phases, starting from the onset of interaction and extending through shock breakout and subsequent shock cooling. The relative prominence of each phase in the light curve is determined by two dimensionless quantities representing the CSM-to-ejecta mass ratio η , and the breakout parameter ξ . These two parameters define four light-curve morphology classes, where each class is characterized by the location of the shock breakout and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling relations connecting the luminosity and duration of each light-curve phase to the physical parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of ejecta and CSM parameters to numerically explore the landscape of interaction light curves, and to calibrate and confirm the analytic scalings. We connect our theoretical framework to several case studies of observed transients, highlighting the relevance in explaining slow-rising and superluminous supernovae, fast blue optical transients, and double-peaked light curves.
Author Kasen, Daniel N.
Khatami, David K.
Author_xml – sequence: 1
  givenname: David K.
  orcidid: 0000-0003-4307-0589
  surname: Khatami
  fullname: Khatami, David K.
  organization: Lawrence Livermore National Laboratory , Livermore, CA 94550, USA
– sequence: 2
  givenname: Daniel N.
  surname: Kasen
  fullname: Kasen, Daniel N.
  organization: Lawrence Berkeley National Laboratory Nuclear Science Division, 1 Cyclotron Road, Berkeley, CA 94720, USA
BackLink https://www.osti.gov/biblio/2439639$$D View this record in Osti.gov
BookMark eNp9kcGL1DAYxYOs4Ozq3WPQq3XTJE3bowzqDox4cATBQ_iaftnJ0CY1SVf877ezlRUEvSTk8XuPF94lufDBIyEvS_ZWNLK-LivRFFJU9TX0ihn2hGwepQuyYYzJQon62zNymdLp_ORtuyHfD0eke_B9MjAhDZYuQhxhoIcIPjn0OVEbw0i_zBNGH-4A6c5njGCy87f0p8tHCnTropnHlHEYINJP2Lt5fE6eWhgSvvh9X5GvH94ftjfF_vPH3fbdvjBSilzUnbBKMPlwGsH7phTAWKdKwYE3tmNC9XWllBUWq7ppsUeJwMFUnFeL-4rs1tw-wElP0Y0Qf-kATj8IId5qiNmZAXVn-xZV1XR118uqUR3jBoTlwsi6A4Al69WaFVJ2OhmX0RxN8B5N1lyKVol2gV6v0BTDjxlT1qcwR7_8UYuSsZZVQpYLxVbKxJBSRPtYrWT6vJk-D6TPA-l1s8Wi_rIsBSC74HMEN_zP-GY1ujD9KfNP_B424KrG
CitedBy_id crossref_primary_10_1051_0004_6361_202451764
crossref_primary_10_3847_1538_4357_ad8b19
crossref_primary_10_1051_0004_6361_202451172
crossref_primary_10_3847_1538_4357_ad93a9
crossref_primary_10_3847_2041_8213_ad87cc
crossref_primary_10_1051_0004_6361_202452014
Cites_doi 10.3847/1538-4357/abc87c
10.1086/159681
10.1086/173557
10.1086/605911
10.3847/1538-4357/abba33
10.1088/0067-0049/217/1/9
10.1146/annurev-astro-081811-125534
10.1111/j.1745-3933.2012.01264.x
10.3847/0004-637X/821/2/76
10.3847/2041-8213/aadd90
10.3847/1538-4357/ac53b0
10.1093/mnras/sty3420
10.1088/0067-0049/196/2/20
10.1093/mnras/sts075
10.3847/1538-4357/abf3be
10.1146/annurev.astro.35.1.309
10.1051/0004-6361:20010127
10.3847/1538-4357/aa7b7d
10.1103/RevModPhys.74.1015
10.1086/167545
10.1126/science.1203601
10.1038/s41592-019-0686-2
10.1086/148549
10.3847/1538-4357/acc533
10.1088/0004-637X/770/2/128
10.1146/annurev-astro-081913-040025
10.1093/mnras/stv990
10.1038/s41586-021-04155-1
10.3847/1538-4357/aa6251
10.1093/mnras/stv609
10.1146/annurev.astro.35.1.1
10.1016/0370-1573(87)90134-7
10.1126/science.1223344
10.1086/171542
10.3847/1538-4357/aba0ba
10.1086/160126
10.3847/1538-4357/abfcbe
10.3847/0004-637X/821/1/38
10.1146/annurev.aa.24.090186.001225
10.3847/1538-4357/835/2/140
10.1088/0004-637X/773/1/76
10.1088/2041-8205/808/2/L51
10.1093/mnras/stx3179
10.5281/zenodo.7570264
10.1038/s41550-018-0423-2
10.1002/cpa.3160130303
10.1086/306571
10.1093/mnras/stx1314
10.1146/annurev.astro.45.051806.110615
10.1088/0004-637X/746/2/121
10.3847/1538-4365/abe303
10.1088/2041-8205/729/1/L6
10.1007/978-3-662-55054-0
10.1086/519949
10.1038/s41586-020-2649-2
10.1051/0004-6361/201629906
10.3847/1538-4357/ab55ec
10.1103/RevModPhys.60.1
10.1016/j.jqsrt.2011.01.027
10.1086/160167
10.1146/annurev.aa.26.090188.001455
10.3847/1538-4357/ac771a
10.1088/0004-637X/757/2/178
10.1088/0004-637X/724/2/1396
10.3847/1538-4357/aafa01
10.3847/1538-4357/836/2/244
10.1088/0004-637X/747/2/147
10.1086/157898
10.1038/378255a0
10.1093/mnras/182.2.147
10.1051/0004-6361/201629619
10.1016/j.physrep.2007.02.002
10.1007/s10509-005-3911-7
10.3847/1538-4357/ac3e63
10.3847/1538-4357/abe2b1
10.1086/163944
10.3847/1538-4357/ac6d59
10.3847/0004-637X/821/1/36
10.1088/0067-0049/204/1/7
10.1051/0004-6361/201936097
10.1086/133478
10.3847/1538-4357/aa8fcb
10.3847/1538-4357/ac67dd
10.1088/1538-3873/ab006c
10.1088/0004-637X/794/1/23
10.1126/science.aas8693
10.1016/S0021-9991(02)00015-3
10.1088/0004-637X/774/1/58
10.3847/1538-4357/aaa96e
10.3847/2041-8213/ac9b3d
10.1086/506190
10.3847/1538-4357/ab40ba
10.3847/1538-4357/ab5a83
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OTOTI
DOA
DOI 10.3847/1538-4357/ad60c0
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef


Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_bfd9e658b7bd4586b02ca3f23c47baaa
2439639
10_3847_1538_4357_ad60c0
apjad60c0
GrantInformation_xml – fundername: Simons Foundation (SF)
  grantid: 622817DK
  funderid: https://doi.org/10.13039/100000893
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-AC02-05CH11231
  funderid: https://doi.org/10.13039/100000015
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0004658
  funderid: https://doi.org/10.13039/100000015
– fundername: Gordon and Betty Moore Foundation (GBMF)
  grantid: GBMF5076
  funderid: https://doi.org/10.13039/100000936
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
OTOTI
ID FETCH-LOGICAL-c443t-7b3f63043f630c32d813a00b6132a28fb036d7566f3fe5789ede4ea2ac52257b3
IEDL.DBID DOA
ISSN 0004-637X
IngestDate Wed Aug 27 01:31:22 EDT 2025
Mon Mar 03 14:50:34 EST 2025
Wed Aug 13 06:41:38 EDT 2025
Tue Jul 01 03:39:59 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Wed Sep 11 04:03:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-7b3f63043f630c32d813a00b6132a28fb036d7566f3fe5789ede4ea2ac52257b3
Notes AAS46024
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
Simons Foundation
USDOE Office of Science (SC), High Energy Physics (HEP)
USDOE Office of Science (SC), Nuclear Physics (NP)
AC02-05CH11231; SC0004658; 622817DK; NP-ERCAP-0025048
ORCID 0000-0003-4307-0589
0000000343070589
OpenAccessLink https://doaj.org/article/bfd9e658b7bd4586b02ca3f23c47baaa
PQID 3100905341
PQPubID 4562441
PageCount 23
ParticipantIDs proquest_journals_3100905341
crossref_primary_10_3847_1538_4357_ad60c0
doaj_primary_oai_doaj_org_article_bfd9e658b7bd4586b02ca3f23c47baaa
iop_journals_10_3847_1538_4357_ad60c0
osti_scitechconnect_2439639
crossref_citationtrail_10_3847_1538_4357_ad60c0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Smith (apjad60c0bib80) 2014; 52
Chevalier (apjad60c0bib12) 2017
Bell (apjad60c0bib3) 1978; 182
Metzger (apjad60c0bib58) 2022; 932
Margalit (apjad60c0bib52) 2022; 933
Ofek (apjad60c0bib63) 2010; 724
Sakurai (apjad60c0bib77) 1960; 13
Sana (apjad60c0bib78) 2012; 337
Woosley (apjad60c0bib96) 2002; 74
Morozova (apjad60c0bib60) 2017; 838
Smith (apjad60c0bib82) 2007; 666
Inserra (apjad60c0bib38) 2018; 475
Rau (apjad60c0bib73) 2009; 121
Sukhbold (apjad60c0bib83) 2016; 821
Caswell (apjad60c0bib6) 2023
Drout (apjad60c0bib21) 2014; 794
Chevalier (apjad60c0bib10) 1982b; 258
Gal-Yam (apjad60c0bib28) 2017
Gal-Yam (apjad60c0bib27) 2012; 337
Roth (apjad60c0bib75) 2015; 217
Ginzburg (apjad60c0bib30) 2012; 757
Rest (apjad60c0bib74) 2018; 2
Inserra (apjad60c0bib39) 2013; 770
Davidson (apjad60c0bib17) 1997; 35
Leung (apjad60c0bib50) 2021; 915
Sedov (apjad60c0bib79) 1959
Zel’dovich (apjad60c0bib101) 1967
Parker (apjad60c0bib65) 1963
Karamehmetoglu (apjad60c0bib43) 2017; 602
Harris (apjad60c0bib32) 2020; 585
Blandford (apjad60c0bib4) 1987; 154
Chatzopoulos (apjad60c0bib8) 2012; 746
Katz (apjad60c0bib46) 2012; 747
Suzuki (apjad60c0bib84) 2019; 887
Graham (apjad60c0bib31) 2019; 131
McDowell (apjad60c0bib57) 2018; 856
Moriya (apjad60c0bib59) 2013; 428
Janka (apjad60c0bib40) 2017
Ho (apjad60c0bib34) 2023; 949
Chevalier (apjad60c0bib11) 1994; 420
Arnett (apjad60c0bib2) 1982; 253
Chevalier (apjad60c0bib14) 1989; 341
Waxman (apjad60c0bib92) 2017
Duffell (apjad60c0bib23) 2016; 821
Filippenko (apjad60c0bib25) 1997; 35
Gal-Yam (apjad60c0bib29) 2022; 601
Langer (apjad60c0bib48) 2012; 50
Hosseinzadeh (apjad60c0bib35) 2022; 933
Prentice (apjad60c0bib70) 2018; 865
Howell (apjad60c0bib36) 2003; 184
Leung (apjad60c0bib49) 2020; 903
Piro (apjad60c0bib68) 2015; 808
Zhang (apjad60c0bib102) 2011; 196
Arnett (apjad60c0bib1) 1980; 237
Vink (apjad60c0bib90) 2001; 369
Weiler (apjad60c0bib93) 1988; 26
Woosley (apjad60c0bib98) 1986; 24
Quataert (apjad60c0bib72) 2012; 423
Ensman (apjad60c0bib24) 1992; 393
Janka (apjad60c0bib41) 2007; 442
Koyama (apjad60c0bib47) 1995; 378
Piro (apjad60c0bib69) 2021; 909
Matzner (apjad60c0bib56) 1999; 510
Fuller (apjad60c0bib26) 2017; 470
Ho (apjad60c0bib33) 2019; 887
Tsuna (apjad60c0bib87) 2019; 884
Crowther (apjad60c0bib16) 2007; 45
Jiang (apjad60c0bib42) 2021; 253
Press (apjad60c0bib71) 1986
Dessart (apjad60c0bib19) 2015; 449
Ostriker (apjad60c0bib64) 1988; 60
Wu (apjad60c0bib100) 2022; 940
Margalit (apjad60c0bib53) 2022; 928
Suzuki (apjad60c0bib85) 2020; 899
Margutti (apjad60c0bib54) 2017; 835
Wu (apjad60c0bib99) 2021; 906
Drout (apjad60c0bib22) 2013; 774
Branch (apjad60c0bib5) 2017
Rybicki (apjad60c0bib76) 1979
Margutti (apjad60c0bib55) 2019; 872
Nyholm (apjad60c0bib61) 2017; 605
Nyholm (apjad60c0bib62) 2020; 637
Chevalier (apjad60c0bib9) 1982a; 259
Smith (apjad60c0bib81) 2017
Zhang (apjad60c0bib103) 2013; 204
Kasen (apjad60c0bib44) 2016; 821
Perley (apjad60c0bib67) 2019; 484
Woosley (apjad60c0bib95) 2017; 836
Humphreys (apjad60c0bib37) 1994; 106
Chevalier (apjad60c0bib13) 2011; 729
De (apjad60c0bib18) 2018; 362
Lovegrove (apjad60c0bib51) 2017; 845
Kasen (apjad60c0bib45) 2006; 651
Vaytet (apjad60c0bib88) 2011; 112
Chatzopoulos (apjad60c0bib7) 2013; 773
Virtanen (apjad60c0bib91) 2020; 17
Weiler (apjad60c0bib94) 1986; 301
Tauris (apjad60c0bib86) 2015; 451
Woosley (apjad60c0bib97) 2021; 913
Villar (apjad60c0bib89) 2017; 849
Pellegrino (apjad60c0bib66) 2022; 926
Drake (apjad60c0bib20) 2005; 298
Colgate (apjad60c0bib15) 1966; 143
References_xml – volume: 906
  start-page: 3
  year: 2021
  ident: apjad60c0bib99
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc87c
– volume: 253
  start-page: 785
  year: 1982
  ident: apjad60c0bib2
  publication-title: ApJ
  doi: 10.1086/159681
– volume: 420
  start-page: 268
  year: 1994
  ident: apjad60c0bib11
  publication-title: ApJ
  doi: 10.1086/173557
– volume: 121
  start-page: 1334
  year: 2009
  ident: apjad60c0bib73
  publication-title: PASP
  doi: 10.1086/605911
– volume: 903
  start-page: 66
  year: 2020
  ident: apjad60c0bib49
  publication-title: ApJ
  doi: 10.3847/1538-4357/abba33
– volume: 217
  start-page: 9
  year: 2015
  ident: apjad60c0bib75
  publication-title: ApJS
  doi: 10.1088/0067-0049/217/1/9
– volume: 50
  start-page: 107
  year: 2012
  ident: apjad60c0bib48
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125534
– volume: 423
  start-page: L92
  year: 2012
  ident: apjad60c0bib72
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2012.01264.x
– volume: 821
  start-page: 76
  year: 2016
  ident: apjad60c0bib23
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/2/76
– volume: 865
  start-page: L3
  year: 2018
  ident: apjad60c0bib70
  publication-title: ApJL
  doi: 10.3847/2041-8213/aadd90
– volume: 928
  start-page: 122
  year: 2022
  ident: apjad60c0bib53
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac53b0
– volume: 484
  start-page: 1031
  year: 2019
  ident: apjad60c0bib67
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3420
– volume: 196
  start-page: 20
  year: 2011
  ident: apjad60c0bib102
  publication-title: ApJS
  doi: 10.1088/0067-0049/196/2/20
– volume: 428
  start-page: 1020
  year: 2013
  ident: apjad60c0bib59
  publication-title: MNRAS
  doi: 10.1093/mnras/sts075
– volume: 913
  start-page: 145
  year: 2021
  ident: apjad60c0bib97
  publication-title: ApJ
  doi: 10.3847/1538-4357/abf3be
– volume: 35
  start-page: 309
  year: 1997
  ident: apjad60c0bib25
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.35.1.309
– volume: 369
  start-page: 574
  year: 2001
  ident: apjad60c0bib90
  publication-title: A&A
  doi: 10.1051/0004-6361:20010127
– volume: 845
  start-page: 103
  year: 2017
  ident: apjad60c0bib51
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7b7d
– volume: 74
  start-page: 1015
  year: 2002
  ident: apjad60c0bib96
  publication-title: RvMP
  doi: 10.1103/RevModPhys.74.1015
– volume: 341
  start-page: 867
  year: 1989
  ident: apjad60c0bib14
  publication-title: ApJ
  doi: 10.1086/167545
– volume: 337
  start-page: 927
  year: 2012
  ident: apjad60c0bib27
  publication-title: Sci
  doi: 10.1126/science.1203601
– volume: 17
  start-page: 261
  year: 2020
  ident: apjad60c0bib91
  publication-title: NatMe
  doi: 10.1038/s41592-019-0686-2
– volume: 143
  start-page: 626
  year: 1966
  ident: apjad60c0bib15
  publication-title: ApJ
  doi: 10.1086/148549
– volume: 949
  start-page: 120
  year: 2023
  ident: apjad60c0bib34
  publication-title: ApJ
  doi: 10.3847/1538-4357/acc533
– volume: 770
  start-page: 128
  year: 2013
  ident: apjad60c0bib39
  publication-title: ApJ
  doi: 10.1088/0004-637X/770/2/128
– volume: 52
  start-page: 487
  year: 2014
  ident: apjad60c0bib80
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081913-040025
– year: 1967
  ident: apjad60c0bib101
– volume: 451
  start-page: 2123
  year: 2015
  ident: apjad60c0bib86
  publication-title: MNRAS
  doi: 10.1093/mnras/stv990
– volume: 601
  start-page: 201
  year: 2022
  ident: apjad60c0bib29
  publication-title: Natur
  doi: 10.1038/s41586-021-04155-1
– year: 1959
  ident: apjad60c0bib79
– volume: 838
  start-page: 28
  year: 2017
  ident: apjad60c0bib60
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6251
– volume: 449
  start-page: 4304
  year: 2015
  ident: apjad60c0bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stv609
– volume: 35
  start-page: 1
  year: 1997
  ident: apjad60c0bib17
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.35.1.1
– volume: 154
  start-page: 1
  year: 1987
  ident: apjad60c0bib4
  publication-title: PhR
  doi: 10.1016/0370-1573(87)90134-7
– volume: 337
  start-page: 444
  year: 2012
  ident: apjad60c0bib78
  publication-title: Sci
  doi: 10.1126/science.1223344
– volume: 393
  start-page: 742
  year: 1992
  ident: apjad60c0bib24
  publication-title: ApJ
  doi: 10.1086/171542
– volume: 899
  start-page: 56
  year: 2020
  ident: apjad60c0bib85
  publication-title: ApJ
  doi: 10.3847/1538-4357/aba0ba
– volume: 258
  start-page: 790
  year: 1982b
  ident: apjad60c0bib10
  publication-title: ApJ
  doi: 10.1086/160126
– volume: 915
  start-page: 80
  year: 2021
  ident: apjad60c0bib50
  publication-title: ApJ
  doi: 10.3847/1538-4357/abfcbe
– volume: 821
  start-page: 38
  year: 2016
  ident: apjad60c0bib83
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/1/38
– volume: 24
  start-page: 205
  year: 1986
  ident: apjad60c0bib98
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.24.090186.001225
– volume: 835
  start-page: 140
  year: 2017
  ident: apjad60c0bib54
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/2/140
– volume: 773
  start-page: 76
  year: 2013
  ident: apjad60c0bib7
  publication-title: ApJ
  doi: 10.1088/0004-637X/773/1/76
– start-page: 1095
  year: 2017
  ident: apjad60c0bib40
– volume: 808
  start-page: L51
  year: 2015
  ident: apjad60c0bib68
  publication-title: ApJL
  doi: 10.1088/2041-8205/808/2/L51
– volume: 475
  start-page: 1046
  year: 2018
  ident: apjad60c0bib38
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3179
– year: 2023
  ident: apjad60c0bib6
  doi: 10.5281/zenodo.7570264
– volume: 2
  start-page: 307
  year: 2018
  ident: apjad60c0bib74
  publication-title: NatAs
  doi: 10.1038/s41550-018-0423-2
– volume: 13
  start-page: 353
  year: 1960
  ident: apjad60c0bib77
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160130303
– volume: 510
  start-page: 379
  year: 1999
  ident: apjad60c0bib56
  publication-title: ApJ
  doi: 10.1086/306571
– volume: 470
  start-page: 1642
  year: 2017
  ident: apjad60c0bib26
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1314
– volume: 45
  start-page: 177
  year: 2007
  ident: apjad60c0bib16
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.45.051806.110615
– volume: 746
  start-page: 121
  year: 2012
  ident: apjad60c0bib8
  publication-title: ApJ
  doi: 10.1088/0004-637X/746/2/121
– volume: 253
  start-page: 49
  year: 2021
  ident: apjad60c0bib42
  publication-title: ApJS
  doi: 10.3847/1538-4365/abe303
– volume: 729
  start-page: L6
  year: 2011
  ident: apjad60c0bib13
  publication-title: ApJL
  doi: 10.1088/2041-8205/729/1/L6
– year: 2017
  ident: apjad60c0bib5
  doi: 10.1007/978-3-662-55054-0
– volume: 666
  start-page: 1116
  year: 2007
  ident: apjad60c0bib82
  publication-title: ApJ
  doi: 10.1086/519949
– volume: 585
  start-page: 357
  year: 2020
  ident: apjad60c0bib32
  publication-title: Natur
  doi: 10.1038/s41586-020-2649-2
– volume: 605
  start-page: A6
  year: 2017
  ident: apjad60c0bib61
  publication-title: A&A
  doi: 10.1051/0004-6361/201629906
– volume: 887
  start-page: 169
  year: 2019
  ident: apjad60c0bib33
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab55ec
– volume: 60
  start-page: 1
  year: 1988
  ident: apjad60c0bib64
  publication-title: RvMP
  doi: 10.1103/RevModPhys.60.1
– volume: 112
  start-page: 1323
  year: 2011
  ident: apjad60c0bib88
  publication-title: JQSRT
  doi: 10.1016/j.jqsrt.2011.01.027
– volume: 259
  start-page: 302
  year: 1982a
  ident: apjad60c0bib9
  publication-title: ApJ
  doi: 10.1086/160167
– volume: 26
  start-page: 295
  year: 1988
  ident: apjad60c0bib93
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.26.090188.001455
– volume: 933
  start-page: 238
  year: 2022
  ident: apjad60c0bib52
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac771a
– volume: 757
  start-page: 178
  year: 2012
  ident: apjad60c0bib30
  publication-title: ApJ
  doi: 10.1088/0004-637X/757/2/178
– volume: 724
  start-page: 1396
  year: 2010
  ident: apjad60c0bib63
  publication-title: ApJ
  doi: 10.1088/0004-637X/724/2/1396
– volume: 872
  start-page: 18
  year: 2019
  ident: apjad60c0bib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/aafa01
– volume: 836
  start-page: 244
  year: 2017
  ident: apjad60c0bib95
  publication-title: ApJ
  doi: 10.3847/1538-4357/836/2/244
– volume: 747
  start-page: 147
  year: 2012
  ident: apjad60c0bib46
  publication-title: ApJ
  doi: 10.1088/0004-637X/747/2/147
– volume: 237
  start-page: 541
  year: 1980
  ident: apjad60c0bib1
  publication-title: ApJ
  doi: 10.1086/157898
– volume: 378
  start-page: 255
  year: 1995
  ident: apjad60c0bib47
  publication-title: Natur
  doi: 10.1038/378255a0
– start-page: 403
  year: 2017
  ident: apjad60c0bib81
– start-page: 875
  year: 2017
  ident: apjad60c0bib12
– volume: 182
  start-page: 147
  year: 1978
  ident: apjad60c0bib3
  publication-title: MNRAS
  doi: 10.1093/mnras/182.2.147
– volume: 602
  start-page: A93
  year: 2017
  ident: apjad60c0bib43
  publication-title: A&A
  doi: 10.1051/0004-6361/201629619
– start-page: 967
  year: 2017
  ident: apjad60c0bib92
– volume: 442
  start-page: 38
  year: 2007
  ident: apjad60c0bib41
  publication-title: PhR
  doi: 10.1016/j.physrep.2007.02.002
– volume: 298
  start-page: 49
  year: 2005
  ident: apjad60c0bib20
  publication-title: Ap&SS
  doi: 10.1007/s10509-005-3911-7
– volume: 926
  start-page: 125
  year: 2022
  ident: apjad60c0bib66
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac3e63
– volume: 909
  start-page: 209
  year: 2021
  ident: apjad60c0bib69
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe2b1
– volume: 301
  start-page: 790
  year: 1986
  ident: apjad60c0bib94
  publication-title: ApJ
  doi: 10.1086/163944
– year: 1963
  ident: apjad60c0bib65
– volume: 932
  start-page: 84
  year: 2022
  ident: apjad60c0bib58
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac6d59
– volume: 821
  start-page: 36
  year: 2016
  ident: apjad60c0bib44
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/1/36
– volume: 204
  start-page: 7
  year: 2013
  ident: apjad60c0bib103
  publication-title: ApJS
  doi: 10.1088/0067-0049/204/1/7
– year: 1986
  ident: apjad60c0bib71
– year: 1979
  ident: apjad60c0bib76
– volume: 637
  start-page: A73
  year: 2020
  ident: apjad60c0bib62
  publication-title: A&A
  doi: 10.1051/0004-6361/201936097
– volume: 106
  start-page: 1025
  year: 1994
  ident: apjad60c0bib37
  publication-title: PASP
  doi: 10.1086/133478
– volume: 849
  start-page: 70
  year: 2017
  ident: apjad60c0bib89
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8fcb
– volume: 933
  start-page: 14
  year: 2022
  ident: apjad60c0bib35
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac67dd
– start-page: 195
  year: 2017
  ident: apjad60c0bib28
– volume: 131
  start-page: 078001
  year: 2019
  ident: apjad60c0bib31
  publication-title: PASP
  doi: 10.1088/1538-3873/ab006c
– volume: 794
  start-page: 23
  year: 2014
  ident: apjad60c0bib21
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/1/23
– volume: 362
  start-page: 201
  year: 2018
  ident: apjad60c0bib18
  publication-title: Sci
  doi: 10.1126/science.aas8693
– volume: 184
  start-page: 53
  year: 2003
  ident: apjad60c0bib36
  publication-title: JCoPh
  doi: 10.1016/S0021-9991(02)00015-3
– volume: 774
  start-page: 58
  year: 2013
  ident: apjad60c0bib22
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/1/58
– volume: 856
  start-page: 29
  year: 2018
  ident: apjad60c0bib57
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa96e
– volume: 940
  start-page: L27
  year: 2022
  ident: apjad60c0bib100
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac9b3d
– volume: 651
  start-page: 366
  year: 2006
  ident: apjad60c0bib45
  publication-title: ApJ
  doi: 10.1086/506190
– volume: 884
  start-page: 87
  year: 2019
  ident: apjad60c0bib87
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab40ba
– volume: 887
  start-page: 249
  year: 2019
  ident: apjad60c0bib84
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5a83
SSID ssj0004299
Score 2.5891955
Snippet The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into...
SourceID doaj
osti
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 140
SubjectTerms ASTRONOMY AND ASTROPHYSICS
Binary stars
Cooling curves
Core-collapse supernovae
Ejecta
Hydrodynamics
Kinetic energy
Late stellar evolution
Light
Light curve
Luminosity
Morphology
Parameters
Physical properties
Radiation
Radiative transfer
Shock cooling
Shocks
Spherical shells
Stellar mass loss
Supernova
Supernovae
Thermal transients
Transients (astronomy)
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFH-IReiltGpx1ZY5aMFDusnMbJKhJysVEdGCShd6GOYrIribZbN76H_f92biSlGklzAZkkyY9_H7zcd7A3AQrA_cK5Mpr_KMICCri0Jl3HFrEF8Qg2K2z8vy7Faej0fjNfi2ioVpZ73r_4rFlCg4dSHZt0BfOow2iihfDY0vc4fj9TcCeTmNvK7Er6egSK567iuzUlTjtEb54hf-waSYuh-RBpvHmxYN7Zmbjthz-h7e9aSRHadf_ABrYboJO8cdTWO3kz_sC4vlNEvRbcLGz1Tagt-oBuyCwnlpoxNrG4YV6IsfWAQpCobsGIWYsOvlLMzphNTA4iwhBTxM7xjN0zLDTu7nbjnpKOTEzBmt7iwn23B7-uPm5Czrz1PInJRikVVWNKXIZbw6wX1dCJPnFhGdG143FtHMV8jvGtEEtGQVfJDBcOOQpI3w7Y-wPm2nYQcY8rbSlqayReGlCFXtsEtLZ5TB8YkK-QCGjz2qXZ9snM68eNA46CAZaJKBJhnoJIMBHK3emKVEG688-52EtHqOUmTHClQX3auLto1XAfmVrayXo7q0OXdGNFw4WVljzAAOUcS6N9nulcb2SAk0qiWl1XW0_8gtNEcmh-xuAPuPuvH0KVo0UejdZLH7n43swVuObCltXtuH9cV8GT4h21nYz1Gr_wK3_vWg
  priority: 102
  providerName: IOP Publishing
Title The Landscape of Thermal Transients from Supernovae Interacting with a Circumstellar Medium
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad60c0
https://www.proquest.com/docview/3100905341
https://www.osti.gov/biblio/2439639
https://doaj.org/article/bfd9e658b7bd4586b02ca3f23c47baaa
Volume 972
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA8iCL1I1Ra3rpKDLfQwbCbJzkyOqyirlLpgRcFDyNeI4O4sO7uH_vd9L5lVi2AvvYRMyMyEvJf3--XjvRByHKwP3CuTKa9YhhCQVXmuMu64NYAvgEEx2ufPYnwjL--Gd6-u-sIzYSk8cOq4ga29CgCTtrReDqvCMu6MqLlwsrTGRGrEFFtPptYekWBl06akAPM7iMMaiEE5ML5gjv0FQjFWP0DLYzOHhwZG1hu7HMHm_CPZ7lgiHaXW7ZCNMNsl-6MW162b6W_6jcZ8WpZod8nWJOX2yD3Inf5A_1082USbmkIBGN8nGlEJvR9bij4l9Ho1Dwu8EjXQuCyIHg6zB4oLs9TQ08eFW01b9DExC4rbOavpJ3JzfvbrdJx1FyhkTkqxzEor6kIwGVMnuK9yYRizAOHc8Kq2AF--BEJXizrA0FXBBxkMNw5Y2RDe_kw2Z80s7BMKRK2whSltnnspQlk56NLCGWVgQqIC65HBuke166KL4yUXTxpmGSgDjTLQKAOdZNAj35_fmKfIGu_UPUEhPdfDmNixADRFd5qi_6UpPfIVRKy7Mdq-87MDVAINFATj6Do8cOSWmgN1AzrXI_21brx8CndJFJgzmX_5Hy09IB84cKd0lK1PNpeLVTgE7rO0R1HNIb24mkB6JW7_AHERAY0
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bTxQxFD5BCMYXoqhhBbUPasLDuDNtd2b6iOgGkCAJEDfxoeltjAm7s9nZfeDfe047QIyG-DLpNJ1Lei7f18s5BXgXrA_cK5Mpr_KMICCri0Jl3HFrEF8Qg2K2z7Py6EqeTEaT_pzTGAvTznvX_xGLKVFw6kKyb4G-dBhtFFG-Ghpf5i4fzn3zCDZGArkxKvQ38f0-MJKrnv_KrBTVJK1T_vMtf-BSTN-PaIO_gDctGttfrjriz_gpbPXEkR2k33wGa2G2DTsHHU1lt9Mb9oHFcpqp6LZh8zyVnsMPVAV2SiG9tNmJtQ3DCvTH1ywCFQVEdozCTNjFah4WdEpqYHGmkIIeZj8ZzdUyww5_Ldxq2lHYiVkwWuFZTV_A1fjL5eFR1p-pkDkpxTKrrGhKkct4dYL7uhAmzy2iOje8biwimq-Q4zWiCWjNKvggg-HGIVEb4dMvYX3WzsIOMORupS1NZYvCSxGq2mGXls4og2MUFfIBDG97VLs-4Tide3GtceBBMtAkA00y0EkGA9i_e2Kekm080PYTCemuHaXJjhWoMrpXGW0brwJyLFtZL0d1aXPujGi4cLKyxpgBvEcR695suwc-tktKoFE1KbWuoz1Ibqk5sjlkeAPYu9WN-1fRwolCDyeLV__5kbfw-PzzWJ8en33dhSccyVPay7YH68vFKrxG8rO0b6KC_wYV-fme
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Landscape+of+Thermal+Transients+from+Supernovae+Interacting+with+a+Circumstellar+Medium&rft.jtitle=The+Astrophysical+journal&rft.au=Khatami%2C+David+K.&rft.au=Kasen%2C+Daniel+N.&rft.date=2024-09-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=972&rft.issue=2&rft.spage=140&rft_id=info:doi/10.3847%2F1538-4357%2Fad60c0&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ad60c0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon