A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans
Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying such behavioral plasticity remain incompletely understood. Here, we show that mitochondrial disruption in nonneural tissues of Caenorhabditis e...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 11; pp. 1 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2115533119 |
Cover
Abstract | Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying such behavioral plasticity remain incompletely understood. Here, we show that mitochondrial disruption in nonneural tissues of Caenorhabditis elegans induces learned aversion for nutritious bacterial food that displays features of long-term associative memory. Serotonin secreted from the modulatory NSM neuron acts through the SER-4 receptor in the RIB interneuron to drive bacterial avoidance, with NSM and RIB required for the establishment and retrieval for learned aversion, respectively. NSM serotonin synthesis increases early in the induction of systemic mitochondrial stress. Calcium imaging reveals altered RIB responses to bacterial cues in a fraction of stress-primed but not naïve animals. These findings uncover cellular circuits and neuromodulation that enable aversive learning under stress, and lay the foundation for future exploration of behavioral plasticity governed by internal state changes. |
---|---|
AbstractList | Physiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode
Caenorhabditis elegans
to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.
Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying such behavioral plasticity remain incompletely understood. Here, we show that mitochondrial disruption in nonneural tissues of
Caenorhabditis elegans
induces learned aversion for nutritious bacterial food that displays features of long-term associative memory. Serotonin secreted from the modulatory NSM neuron acts through the SER-4 receptor in the RIB interneuron to drive bacterial avoidance, with NSM and RIB required for the establishment and retrieval for learned aversion, respectively. NSM serotonin synthesis increases early in the induction of systemic mitochondrial stress. Calcium imaging reveals altered RIB responses to bacterial cues in a fraction of stress-primed but not naïve animals. These findings uncover cellular circuits and neuromodulation that enable aversive learning under stress, and lay the foundation for future exploration of behavioral plasticity governed by internal state changes. SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode Caenorhabditis elegans to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode Caenorhabditis elegans to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior. Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying such behavioral plasticity remain incompletely understood. Here, we show that mitochondrial disruption in nonneural tissues of Caenorhabditis elegans induces learned aversion for nutritious bacterial food that displays features of long-term associative memory. Serotonin secreted from the modulatory NSM neuron acts through the SER-4 receptor in the RIB interneuron to drive bacterial avoidance, with NSM and RIB required for the establishment and retrieval for learned aversion, respectively. NSM serotonin synthesis increases early in the induction of systemic mitochondrial stress. Calcium imaging reveals altered RIB responses to bacterial cues in a fraction of stress-primed but not naïve animals. These findings uncover cellular circuits and neuromodulation that enable aversive learning under stress, and lay the foundation for future exploration of behavioral plasticity governed by internal state changes. SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior. |
Author | Chiang, Yueh-Chen Pan, Chun-Liang Liao, Chien-Po |
Author_xml | – sequence: 1 givenname: Yueh-Chen surname: Chiang fullname: Chiang, Yueh-Chen – sequence: 2 givenname: Chien-Po surname: Liao fullname: Liao, Chien-Po – sequence: 3 givenname: Chun-Liang surname: Pan fullname: Pan, Chun-Liang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35254908$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtrGzEUhUVJaZyk665aBNlkM46e89gUgknaQiCb7IWsuTORGUuursbQf18ZJ2kb6EYS3O8cztU5IychBiDkE2dLzhp5vQsWl4JzraXkvHtHFpx1vKpVx07IgjHRVK0S6pScIW4YY51u2QdyKrXQBWkXZLyhCCnmYptG76jzyc0-0wTjPNkMSO0eEvo9UIsYnbf58J7ApuDDSOfQQ6Jbn6N7iqFP3k4UcwJE6gNdLSlMMNqAF-T9YCeEj8_3OXm8u31cfa_uH779WN3cV04pmSvNQFjeNWrdy3I4GGxTNwNba9m2Q880cFmLXvRcOw1DJ6SohRNrroQYrJPn5OvRdjevt9A7CDnZyeyS39r0y0Trzb-T4J_MGPem7SQXUheDq2eDFH_OgNlsPTqYJhsgzmhELRvJO6Xqgl6-QTdxTqFsVyjFmW7KIoX68nei1ygvFRRAHwGXImKCwTifyy_HQ0A_Gc7MoWpzqNr8qbrort_oXqz_r_h8VGwwx_SKi4ZrzhiXvwGvprdL |
CitedBy_id | crossref_primary_10_1016_j_neures_2022_12_012 crossref_primary_10_1016_j_cub_2022_11_012 crossref_primary_10_1016_j_ecoenv_2024_117347 crossref_primary_10_7717_peerj_18289 crossref_primary_10_3390_mi14081576 crossref_primary_10_1093_genetics_iyae105 crossref_primary_10_1016_j_celrep_2024_113996 |
Cites_doi | 10.1016/j.neuron.2014.02.010 10.1523/JNEUROSCI.2674-19.2020 10.1126/science.6805073 10.1016/S0896-6273(00)81199-X 10.1038/nmeth1075 10.1016/j.neuron.2016.10.030 10.1016/j.cell.2016.01.007 10.1038/nature04216 10.1534/genetics.112.142125 10.1016/j.cub.2020.09.022 10.1038/nature12354 10.1016/j.cell.2012.02.050 10.1016/j.devcel.2021.04.021 10.1002/neu.10245 10.1016/S0021-9258(19)36543-3 10.1002/j.1460-2075.1991.tb04966.x 10.1371/journal.pbio.1000372 10.1016/j.neuron.2008.07.038 10.1002/iub.1021 10.1016/0166-4328(90)90074-O 10.1016/j.neuron.2014.10.035 10.1093/genetics/77.1.71 10.1016/j.cell.2013.08.001 10.1523/JNEUROSCI.19-01-00072.1999 10.1126/science.7886454 10.1038/nature13204 10.1038/nature13818 10.1016/j.cell.2018.11.023 10.1016/j.neuron.2019.05.036 10.1038/35000609 10.1016/S0896-6273(00)80527-9 10.1098/rstb.1986.0056 10.1038/nature09545 10.1016/0092-8674(93)80053-H 10.1016/j.neuron.2013.02.018 10.1038/s41583-019-0151-3 10.1038/336638a0 10.1073/pnas.1424954112 10.1016/j.neuron.2010.11.025 10.1073/pnas.1400615111 10.1038/nature06292 10.1016/S0092-8674(00)80399-2 10.1016/j.neuron.2019.05.029 10.1523/JNEUROSCI.19-21-09557.1999 10.1016/j.conb.2020.08.009 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Mar 15, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Mar 15, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2115533119 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 9 |
ExternalDocumentID | PMC8931235 35254908 10_1073_pnas_2115533119 27151001 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIH HHS grantid: P40 OD010440 – fundername: Ministry of Science and Technology, Taiwan (MOST) grantid: 109-2320-B-002-019-MY3 – fundername: Ministry of Education (MOE) grantid: 110L901402A – fundername: Ministry of Science and Technology, Taiwan (MOST) grantid: 107-2320-B-002-055-MY3 – fundername: Ministry of Science and Technology, Taiwan (MOST) grantid: 110-2634-F-002-044 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-50e2a1974bd374bcefa767f0b5388fd05e1362d2d15c5ef923262c2b1422fac3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:38:59 EDT 2025 Fri Sep 05 01:15:06 EDT 2025 Mon Jun 30 09:50:42 EDT 2025 Wed Feb 19 02:26:33 EST 2025 Tue Jul 01 01:03:12 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Thu May 29 08:48:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | stress C. elegans serotonin aversive learning mitochondria |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-50e2a1974bd374bcefa767f0b5388fd05e1362d2d15c5ef923262c2b1422fac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Piali Sengupta, Brandeis University, Waltham, MA; received August 23, 2021; accepted February 1, 2022 by Editorial Board Member Michael Rosbash Author contributions: Y.-C.C., C.-P.L., and C.-L.P. designed research; Y.-C.C. and C.-P.L. performed research; Y.-C.C., C.-P.L., and C.-L.P. analyzed data; and Y.-C.C. and C.-L.P. wrote the paper. 1Present address: Howard Hughes Medical Institute and Department of Biological Sciences, Columbia University, NY 10027. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8931235 |
PMID | 35254908 |
PQID | 2641057197 |
PQPubID | 42026 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8931235 proquest_miscellaneous_2637319446 proquest_journals_2641057197 pubmed_primary_35254908 crossref_citationtrail_10_1073_pnas_2115533119 crossref_primary_10_1073_pnas_2115533119 jstor_primary_27151001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_5_2 doi: 10.1016/j.neuron.2014.02.010 – ident: e_1_3_4_33_2 doi: 10.1523/JNEUROSCI.2674-19.2020 – ident: e_1_3_4_6_2 doi: 10.1126/science.6805073 – ident: e_1_3_4_10_2 doi: 10.1016/S0896-6273(00)81199-X – ident: e_1_3_4_45_2 doi: 10.1038/nmeth1075 – ident: e_1_3_4_2_2 doi: 10.1016/j.neuron.2016.10.030 – ident: e_1_3_4_35_2 doi: 10.1016/j.cell.2016.01.007 – ident: e_1_3_4_13_2 doi: 10.1038/nature04216 – ident: e_1_3_4_22_2 doi: 10.1534/genetics.112.142125 – ident: e_1_3_4_3_2 doi: 10.1016/j.cub.2020.09.022 – ident: e_1_3_4_25_2 doi: 10.1038/nature12354 – ident: e_1_3_4_12_2 doi: 10.1016/j.cell.2012.02.050 – ident: e_1_3_4_14_2 doi: 10.1016/j.devcel.2021.04.021 – ident: e_1_3_4_37_2 doi: 10.1002/neu.10245 – ident: e_1_3_4_20_2 doi: 10.1016/S0021-9258(19)36543-3 – ident: e_1_3_4_42_2 doi: 10.1002/j.1460-2075.1991.tb04966.x – ident: e_1_3_4_15_2 doi: 10.1371/journal.pbio.1000372 – ident: e_1_3_4_21_2 doi: 10.1016/j.neuron.2008.07.038 – ident: e_1_3_4_31_2 doi: 10.1002/iub.1021 – ident: e_1_3_4_16_2 doi: 10.1016/0166-4328(90)90074-O – ident: e_1_3_4_34_2 doi: 10.1016/j.neuron.2014.10.035 – ident: e_1_3_4_41_2 doi: 10.1093/genetics/77.1.71 – ident: e_1_3_4_11_2 doi: 10.1016/j.cell.2013.08.001 – ident: e_1_3_4_18_2 doi: 10.1523/JNEUROSCI.19-01-00072.1999 – ident: e_1_3_4_7_2 doi: 10.1126/science.7886454 – ident: e_1_3_4_27_2 doi: 10.1038/nature13204 – ident: e_1_3_4_29_2 doi: 10.1038/nature13818 – ident: e_1_3_4_23_2 doi: 10.1016/j.cell.2018.11.023 – ident: e_1_3_4_24_2 doi: 10.1016/j.neuron.2019.05.036 – ident: e_1_3_4_9_2 doi: 10.1038/35000609 – ident: e_1_3_4_8_2 doi: 10.1016/S0896-6273(00)80527-9 – ident: e_1_3_4_38_2 doi: 10.1098/rstb.1986.0056 – ident: e_1_3_4_39_2 doi: 10.1038/nature09545 – ident: e_1_3_4_43_2 doi: 10.1016/0092-8674(93)80053-H – ident: e_1_3_4_1_2 doi: 10.1016/j.neuron.2013.02.018 – ident: e_1_3_4_4_2 doi: 10.1038/s41583-019-0151-3 – ident: e_1_3_4_17_2 doi: 10.1038/336638a0 – ident: e_1_3_4_28_2 doi: 10.1073/pnas.1424954112 – ident: e_1_3_4_30_2 doi: 10.1016/j.neuron.2010.11.025 – ident: e_1_3_4_19_2 doi: 10.1073/pnas.1400615111 – ident: e_1_3_4_40_2 doi: 10.1038/nature06292 – ident: e_1_3_4_44_2 doi: 10.1016/S0092-8674(00)80399-2 – ident: e_1_3_4_32_2 doi: 10.1016/j.neuron.2019.05.029 – ident: e_1_3_4_26_2 doi: 10.1523/JNEUROSCI.19-21-09557.1999 – ident: e_1_3_4_36_2 doi: 10.1016/j.conb.2020.08.009 |
SSID | ssj0009580 |
Score | 2.449792 |
Snippet | Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying... Physiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial... SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival.... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Animals Associative learning Associative memory Aversion Avoidance Learning Bacteria Behavioral plasticity Biological Sciences Caenorhabditis elegans - physiology Calcium (mitochondrial) Calcium imaging Circuits Food aversion Host-Pathogen Interactions Interneurons - metabolism Learning Mitochondria Mitochondria - metabolism Neuromodulation Plasticity Receptors, Serotonin - metabolism Serotonergic Neurons - physiology Serotonin Serotonin - metabolism Stress (physiology) Stress, Physiological |
Title | A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans |
URI | https://www.jstor.org/stable/27151001 https://www.ncbi.nlm.nih.gov/pubmed/35254908 https://www.proquest.com/docview/2641057197 https://www.proquest.com/docview/2637319446 https://pubmed.ncbi.nlm.nih.gov/PMC8931235 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFbcAgMJCReBiKHJrEifNaVZsmVEofOqk8RY7j0EhbitJkEvz1nBM7P0aRBi9RlNhO2u_L-e58d0bog59EkYB5h1B36hOahJJEQrokChLXlxEVjCt_x5dleHVNP2-CzWTycxC1VFeJI34dzCv5H1ThGuCqsmT_AdluULgA54AvHAFhOD4I45kNj9mpctolCDBb5KWo88ou2_3l5d7mTdDFnbS5QQHOb4w3ROWPlfYtfNMgA4u0HOSOqFxAx1Z7UnDtztMK7Kqb8PYmvGBp_ImzPjtFi4y9TezVst_reL7NtX_6Wy23ZL7tE9EWOW-9tlvoSVa7fm1LhwXUBVmo3kM_BaCvgt6CgWgFzYSEtN0c1JEHrhl5rGWoJp47EK8SzNUAFFTd5A_xD_JK7Vlc8L0zbjkutL38Gl9eLxbx-mKzfoQeewzULuPo6eo1R20hC_2CpioU8z_dG36k0LQxrYeslftBtwMtZn2MnmrzA89aLp2giSyeoRODFj7XVcg_PkffZ3hILqzJhTtyYUMuPCAXNuTCDbnwiFy4JRfOCzx3sCbXC7S-vFjPr4jelYMISv2KBFPpcRfM0CT14SBkxlnIsmkCU2eUpdNAuqAUpV7qBiKQGRgQXugJr3E2Zlz4p-iogFd_hbAUSSSZF6bSlTRlXkI96oM5DWNlPOCphRzzz8ZCV6xXG6fcxE3kBPNjBUXcQ2Gh867Dj7ZYy9-bnjZQde08Brov6GwWOjPYxfpTh36hioZm8Kst9L67DYJYra7xQu5q1cZnMJ9RGlroZQt1N7iqOaxW2C3ERiToGqgi7-M7Rb5tir2DPaHS2V8_4Llv0JP-wztDR1VZy7egMlfJu4bcvwGQIsTj |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+serotonergic+circuit+regulates+aversive+associative+learning+under+mitochondrial+stress+in+C.+elegans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chiang%2C+Yueh-Chen&rft.au=Liao%2C+Chien-Po&rft.au=Pan%2C+Chun-Liang&rft.date=2022-03-15&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=11&rft.spage=e2115533119&rft_id=info:doi/10.1073%2Fpnas.2115533119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |