A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans

Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying such behavioral plasticity remain incompletely understood. Here, we show that mitochondrial disruption in nonneural tissues of Caenorhabditis e...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 11; pp. 1 - 9
Main Authors Chiang, Yueh-Chen, Liao, Chien-Po, Pan, Chun-Liang
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.03.2022
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2115533119

Cover

Abstract Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying such behavioral plasticity remain incompletely understood. Here, we show that mitochondrial disruption in nonneural tissues of Caenorhabditis elegans induces learned aversion for nutritious bacterial food that displays features of long-term associative memory. Serotonin secreted from the modulatory NSM neuron acts through the SER-4 receptor in the RIB interneuron to drive bacterial avoidance, with NSM and RIB required for the establishment and retrieval for learned aversion, respectively. NSM serotonin synthesis increases early in the induction of systemic mitochondrial stress. Calcium imaging reveals altered RIB responses to bacterial cues in a fraction of stress-primed but not naïve animals. These findings uncover cellular circuits and neuromodulation that enable aversive learning under stress, and lay the foundation for future exploration of behavioral plasticity governed by internal state changes.
AbstractList Physiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode Caenorhabditis elegans to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior. Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying such behavioral plasticity remain incompletely understood. Here, we show that mitochondrial disruption in nonneural tissues of Caenorhabditis elegans induces learned aversion for nutritious bacterial food that displays features of long-term associative memory. Serotonin secreted from the modulatory NSM neuron acts through the SER-4 receptor in the RIB interneuron to drive bacterial avoidance, with NSM and RIB required for the establishment and retrieval for learned aversion, respectively. NSM serotonin synthesis increases early in the induction of systemic mitochondrial stress. Calcium imaging reveals altered RIB responses to bacterial cues in a fraction of stress-primed but not naïve animals. These findings uncover cellular circuits and neuromodulation that enable aversive learning under stress, and lay the foundation for future exploration of behavioral plasticity governed by internal state changes.
SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode Caenorhabditis elegans to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode Caenorhabditis elegans to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.
Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying such behavioral plasticity remain incompletely understood. Here, we show that mitochondrial disruption in nonneural tissues of Caenorhabditis elegans induces learned aversion for nutritious bacterial food that displays features of long-term associative memory. Serotonin secreted from the modulatory NSM neuron acts through the SER-4 receptor in the RIB interneuron to drive bacterial avoidance, with NSM and RIB required for the establishment and retrieval for learned aversion, respectively. NSM serotonin synthesis increases early in the induction of systemic mitochondrial stress. Calcium imaging reveals altered RIB responses to bacterial cues in a fraction of stress-primed but not naïve animals. These findings uncover cellular circuits and neuromodulation that enable aversive learning under stress, and lay the foundation for future exploration of behavioral plasticity governed by internal state changes.
SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.
Author Chiang, Yueh-Chen
Pan, Chun-Liang
Liao, Chien-Po
Author_xml – sequence: 1
  givenname: Yueh-Chen
  surname: Chiang
  fullname: Chiang, Yueh-Chen
– sequence: 2
  givenname: Chien-Po
  surname: Liao
  fullname: Liao, Chien-Po
– sequence: 3
  givenname: Chun-Liang
  surname: Pan
  fullname: Pan, Chun-Liang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35254908$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtrGzEUhUVJaZyk665aBNlkM46e89gUgknaQiCb7IWsuTORGUuursbQf18ZJ2kb6EYS3O8cztU5IychBiDkE2dLzhp5vQsWl4JzraXkvHtHFpx1vKpVx07IgjHRVK0S6pScIW4YY51u2QdyKrXQBWkXZLyhCCnmYptG76jzyc0-0wTjPNkMSO0eEvo9UIsYnbf58J7ApuDDSOfQQ6Jbn6N7iqFP3k4UcwJE6gNdLSlMMNqAF-T9YCeEj8_3OXm8u31cfa_uH779WN3cV04pmSvNQFjeNWrdy3I4GGxTNwNba9m2Q880cFmLXvRcOw1DJ6SohRNrroQYrJPn5OvRdjevt9A7CDnZyeyS39r0y0Trzb-T4J_MGPem7SQXUheDq2eDFH_OgNlsPTqYJhsgzmhELRvJO6Xqgl6-QTdxTqFsVyjFmW7KIoX68nei1ygvFRRAHwGXImKCwTifyy_HQ0A_Gc7MoWpzqNr8qbrort_oXqz_r_h8VGwwx_SKi4ZrzhiXvwGvprdL
CitedBy_id crossref_primary_10_1016_j_neures_2022_12_012
crossref_primary_10_1016_j_cub_2022_11_012
crossref_primary_10_1016_j_ecoenv_2024_117347
crossref_primary_10_7717_peerj_18289
crossref_primary_10_3390_mi14081576
crossref_primary_10_1093_genetics_iyae105
crossref_primary_10_1016_j_celrep_2024_113996
Cites_doi 10.1016/j.neuron.2014.02.010
10.1523/JNEUROSCI.2674-19.2020
10.1126/science.6805073
10.1016/S0896-6273(00)81199-X
10.1038/nmeth1075
10.1016/j.neuron.2016.10.030
10.1016/j.cell.2016.01.007
10.1038/nature04216
10.1534/genetics.112.142125
10.1016/j.cub.2020.09.022
10.1038/nature12354
10.1016/j.cell.2012.02.050
10.1016/j.devcel.2021.04.021
10.1002/neu.10245
10.1016/S0021-9258(19)36543-3
10.1002/j.1460-2075.1991.tb04966.x
10.1371/journal.pbio.1000372
10.1016/j.neuron.2008.07.038
10.1002/iub.1021
10.1016/0166-4328(90)90074-O
10.1016/j.neuron.2014.10.035
10.1093/genetics/77.1.71
10.1016/j.cell.2013.08.001
10.1523/JNEUROSCI.19-01-00072.1999
10.1126/science.7886454
10.1038/nature13204
10.1038/nature13818
10.1016/j.cell.2018.11.023
10.1016/j.neuron.2019.05.036
10.1038/35000609
10.1016/S0896-6273(00)80527-9
10.1098/rstb.1986.0056
10.1038/nature09545
10.1016/0092-8674(93)80053-H
10.1016/j.neuron.2013.02.018
10.1038/s41583-019-0151-3
10.1038/336638a0
10.1073/pnas.1424954112
10.1016/j.neuron.2010.11.025
10.1073/pnas.1400615111
10.1038/nature06292
10.1016/S0092-8674(00)80399-2
10.1016/j.neuron.2019.05.029
10.1523/JNEUROSCI.19-21-09557.1999
10.1016/j.conb.2020.08.009
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Mar 15, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Mar 15, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2115533119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 9
ExternalDocumentID PMC8931235
35254908
10_1073_pnas_2115533119
27151001
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: P40 OD010440
– fundername: Ministry of Science and Technology, Taiwan (MOST)
  grantid: 109-2320-B-002-019-MY3
– fundername: Ministry of Education (MOE)
  grantid: 110L901402A
– fundername: Ministry of Science and Technology, Taiwan (MOST)
  grantid: 107-2320-B-002-055-MY3
– fundername: Ministry of Science and Technology, Taiwan (MOST)
  grantid: 110-2634-F-002-044
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-50e2a1974bd374bcefa767f0b5388fd05e1362d2d15c5ef923262c2b1422fac3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:38:59 EDT 2025
Fri Sep 05 01:15:06 EDT 2025
Mon Jun 30 09:50:42 EDT 2025
Wed Feb 19 02:26:33 EST 2025
Tue Jul 01 01:03:12 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Thu May 29 08:48:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords stress
C. elegans
serotonin
aversive learning
mitochondria
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-50e2a1974bd374bcefa767f0b5388fd05e1362d2d15c5ef923262c2b1422fac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Piali Sengupta, Brandeis University, Waltham, MA; received August 23, 2021; accepted February 1, 2022 by Editorial Board Member Michael Rosbash
Author contributions: Y.-C.C., C.-P.L., and C.-L.P. designed research; Y.-C.C. and C.-P.L. performed research; Y.-C.C., C.-P.L., and C.-L.P. analyzed data; and Y.-C.C. and C.-L.P. wrote the paper.
1Present address: Howard Hughes Medical Institute and Department of Biological Sciences, Columbia University, NY 10027.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8931235
PMID 35254908
PQID 2641057197
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8931235
proquest_miscellaneous_2637319446
proquest_journals_2641057197
pubmed_primary_35254908
crossref_citationtrail_10_1073_pnas_2115533119
crossref_primary_10_1073_pnas_2115533119
jstor_primary_27151001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_5_2
  doi: 10.1016/j.neuron.2014.02.010
– ident: e_1_3_4_33_2
  doi: 10.1523/JNEUROSCI.2674-19.2020
– ident: e_1_3_4_6_2
  doi: 10.1126/science.6805073
– ident: e_1_3_4_10_2
  doi: 10.1016/S0896-6273(00)81199-X
– ident: e_1_3_4_45_2
  doi: 10.1038/nmeth1075
– ident: e_1_3_4_2_2
  doi: 10.1016/j.neuron.2016.10.030
– ident: e_1_3_4_35_2
  doi: 10.1016/j.cell.2016.01.007
– ident: e_1_3_4_13_2
  doi: 10.1038/nature04216
– ident: e_1_3_4_22_2
  doi: 10.1534/genetics.112.142125
– ident: e_1_3_4_3_2
  doi: 10.1016/j.cub.2020.09.022
– ident: e_1_3_4_25_2
  doi: 10.1038/nature12354
– ident: e_1_3_4_12_2
  doi: 10.1016/j.cell.2012.02.050
– ident: e_1_3_4_14_2
  doi: 10.1016/j.devcel.2021.04.021
– ident: e_1_3_4_37_2
  doi: 10.1002/neu.10245
– ident: e_1_3_4_20_2
  doi: 10.1016/S0021-9258(19)36543-3
– ident: e_1_3_4_42_2
  doi: 10.1002/j.1460-2075.1991.tb04966.x
– ident: e_1_3_4_15_2
  doi: 10.1371/journal.pbio.1000372
– ident: e_1_3_4_21_2
  doi: 10.1016/j.neuron.2008.07.038
– ident: e_1_3_4_31_2
  doi: 10.1002/iub.1021
– ident: e_1_3_4_16_2
  doi: 10.1016/0166-4328(90)90074-O
– ident: e_1_3_4_34_2
  doi: 10.1016/j.neuron.2014.10.035
– ident: e_1_3_4_41_2
  doi: 10.1093/genetics/77.1.71
– ident: e_1_3_4_11_2
  doi: 10.1016/j.cell.2013.08.001
– ident: e_1_3_4_18_2
  doi: 10.1523/JNEUROSCI.19-01-00072.1999
– ident: e_1_3_4_7_2
  doi: 10.1126/science.7886454
– ident: e_1_3_4_27_2
  doi: 10.1038/nature13204
– ident: e_1_3_4_29_2
  doi: 10.1038/nature13818
– ident: e_1_3_4_23_2
  doi: 10.1016/j.cell.2018.11.023
– ident: e_1_3_4_24_2
  doi: 10.1016/j.neuron.2019.05.036
– ident: e_1_3_4_9_2
  doi: 10.1038/35000609
– ident: e_1_3_4_8_2
  doi: 10.1016/S0896-6273(00)80527-9
– ident: e_1_3_4_38_2
  doi: 10.1098/rstb.1986.0056
– ident: e_1_3_4_39_2
  doi: 10.1038/nature09545
– ident: e_1_3_4_43_2
  doi: 10.1016/0092-8674(93)80053-H
– ident: e_1_3_4_1_2
  doi: 10.1016/j.neuron.2013.02.018
– ident: e_1_3_4_4_2
  doi: 10.1038/s41583-019-0151-3
– ident: e_1_3_4_17_2
  doi: 10.1038/336638a0
– ident: e_1_3_4_28_2
  doi: 10.1073/pnas.1424954112
– ident: e_1_3_4_30_2
  doi: 10.1016/j.neuron.2010.11.025
– ident: e_1_3_4_19_2
  doi: 10.1073/pnas.1400615111
– ident: e_1_3_4_40_2
  doi: 10.1038/nature06292
– ident: e_1_3_4_44_2
  doi: 10.1016/S0092-8674(00)80399-2
– ident: e_1_3_4_32_2
  doi: 10.1016/j.neuron.2019.05.029
– ident: e_1_3_4_26_2
  doi: 10.1523/JNEUROSCI.19-21-09557.1999
– ident: e_1_3_4_36_2
  doi: 10.1016/j.conb.2020.08.009
SSID ssj0009580
Score 2.449792
Snippet Physiological stress profoundly alters the internal states of the animals and could drive aversive learning, but signaling and circuit mechanisms underlying...
Physiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial...
SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival....
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animals
Associative learning
Associative memory
Aversion
Avoidance Learning
Bacteria
Behavioral plasticity
Biological Sciences
Caenorhabditis elegans - physiology
Calcium (mitochondrial)
Calcium imaging
Circuits
Food aversion
Host-Pathogen Interactions
Interneurons - metabolism
Learning
Mitochondria
Mitochondria - metabolism
Neuromodulation
Plasticity
Receptors, Serotonin - metabolism
Serotonergic Neurons - physiology
Serotonin
Serotonin - metabolism
Stress (physiology)
Stress, Physiological
Title A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans
URI https://www.jstor.org/stable/27151001
https://www.ncbi.nlm.nih.gov/pubmed/35254908
https://www.proquest.com/docview/2641057197
https://www.proquest.com/docview/2637319446
https://pubmed.ncbi.nlm.nih.gov/PMC8931235
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFbcAgMJCReBiKHJrEifNaVZsmVEofOqk8RY7j0EhbitJkEvz1nBM7P0aRBi9RlNhO2u_L-e58d0bog59EkYB5h1B36hOahJJEQrokChLXlxEVjCt_x5dleHVNP2-CzWTycxC1VFeJI34dzCv5H1ThGuCqsmT_AdluULgA54AvHAFhOD4I45kNj9mpctolCDBb5KWo88ou2_3l5d7mTdDFnbS5QQHOb4w3ROWPlfYtfNMgA4u0HOSOqFxAx1Z7UnDtztMK7Kqb8PYmvGBp_ImzPjtFi4y9TezVst_reL7NtX_6Wy23ZL7tE9EWOW-9tlvoSVa7fm1LhwXUBVmo3kM_BaCvgt6CgWgFzYSEtN0c1JEHrhl5rGWoJp47EK8SzNUAFFTd5A_xD_JK7Vlc8L0zbjkutL38Gl9eLxbx-mKzfoQeewzULuPo6eo1R20hC_2CpioU8z_dG36k0LQxrYeslftBtwMtZn2MnmrzA89aLp2giSyeoRODFj7XVcg_PkffZ3hILqzJhTtyYUMuPCAXNuTCDbnwiFy4JRfOCzx3sCbXC7S-vFjPr4jelYMISv2KBFPpcRfM0CT14SBkxlnIsmkCU2eUpdNAuqAUpV7qBiKQGRgQXugJr3E2Zlz4p-iogFd_hbAUSSSZF6bSlTRlXkI96oM5DWNlPOCphRzzz8ZCV6xXG6fcxE3kBPNjBUXcQ2Gh867Dj7ZYy9-bnjZQde08Brov6GwWOjPYxfpTh36hioZm8Kst9L67DYJYra7xQu5q1cZnMJ9RGlroZQt1N7iqOaxW2C3ERiToGqgi7-M7Rb5tir2DPaHS2V8_4Llv0JP-wztDR1VZy7egMlfJu4bcvwGQIsTj
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+serotonergic+circuit+regulates+aversive+associative+learning+under+mitochondrial+stress+in+C.+elegans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chiang%2C+Yueh-Chen&rft.au=Liao%2C+Chien-Po&rft.au=Pan%2C+Chun-Liang&rft.date=2022-03-15&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=11&rft.spage=e2115533119&rft_id=info:doi/10.1073%2Fpnas.2115533119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon