Development of human white matter pathways in utero over the second and third trimester

During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient netw...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 20; pp. 1 - 7
Main Authors Wilson, Siân, Pietsch, Maximilian, Cordero-Grande, Lucilio, Price, Anthony N., Hutter, Jana, Xiao, Jiaxin, McCabe, Laura, Rutherford, Mary A., Hughes, Emer J., Counsell, Serena J., Tournier, Jacques-Donald, Arichi, Tomoki, Hajnal, Joseph V., Edwards, A. David, Christiaens, Daan, O’Muircheartaigh, Jonathan
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 18.05.2021
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2023598118

Cover

Abstract During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.
AbstractList During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.
This work uses state-of-the-art acquisition and analysis methods developed specifically for fetal MRI to delineate the developing brain’s association, projection, and callosal white matter pathways. We describe unique, heterogenous maturational trajectories for different tracts, suggesting that regionally distinct biological mechanisms are at play in building the structural connectome in utero. During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.
During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.
Author Rutherford, Mary A.
Hutter, Jana
Edwards, A. David
O’Muircheartaigh, Jonathan
Price, Anthony N.
Cordero-Grande, Lucilio
Counsell, Serena J.
Pietsch, Maximilian
Christiaens, Daan
Tournier, Jacques-Donald
Hughes, Emer J.
McCabe, Laura
Wilson, Siân
Xiao, Jiaxin
Arichi, Tomoki
Hajnal, Joseph V.
Author_xml – sequence: 1
  givenname: Siân
  surname: Wilson
  fullname: Wilson, Siân
– sequence: 2
  givenname: Maximilian
  surname: Pietsch
  fullname: Pietsch, Maximilian
– sequence: 3
  givenname: Lucilio
  surname: Cordero-Grande
  fullname: Cordero-Grande, Lucilio
– sequence: 4
  givenname: Anthony N.
  surname: Price
  fullname: Price, Anthony N.
– sequence: 5
  givenname: Jana
  surname: Hutter
  fullname: Hutter, Jana
– sequence: 6
  givenname: Jiaxin
  surname: Xiao
  fullname: Xiao, Jiaxin
– sequence: 7
  givenname: Laura
  surname: McCabe
  fullname: McCabe, Laura
– sequence: 8
  givenname: Mary A.
  surname: Rutherford
  fullname: Rutherford, Mary A.
– sequence: 9
  givenname: Emer J.
  surname: Hughes
  fullname: Hughes, Emer J.
– sequence: 10
  givenname: Serena J.
  surname: Counsell
  fullname: Counsell, Serena J.
– sequence: 11
  givenname: Jacques-Donald
  surname: Tournier
  fullname: Tournier, Jacques-Donald
– sequence: 12
  givenname: Tomoki
  surname: Arichi
  fullname: Arichi, Tomoki
– sequence: 13
  givenname: Joseph V.
  surname: Hajnal
  fullname: Hajnal, Joseph V.
– sequence: 14
  givenname: A. David
  surname: Edwards
  fullname: Edwards, A. David
– sequence: 15
  givenname: Daan
  surname: Christiaens
  fullname: Christiaens, Daan
– sequence: 16
  givenname: Jonathan
  surname: O’Muircheartaigh
  fullname: O’Muircheartaigh, Jonathan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33972435$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFMyeQJS5c0o6_NskFCRVokSpxAXG0Zh2HeJXYwXa26r_Hqy0L9MDBtjR-3pl3Zs7IiQ_eEvKSwQWDWlzOHtMFBy5U2zDWPCErBi2r1rKFE7IC4HXVSC5PyVlKWwBoVQPPyKkQbc2lUCvy_YPd2THMk_WZhp4Oy4Se3g0uWzphzjbSGfNwh_eJOk-XEgg07Eo4D5Yma4LvKJaTBxfLHd1kU4Gek6c9jsm-eHjPybdPH79e3VS3X64_X72_rYyUIle849zAumY1bIzkfS96bhRXBgQWs8AN9qgYojW8Y7hWnREMGrmBrjcbrMU5eXfIOy-byXamtBFx1HPxgfFeB3T63x_vBv0j7HTDVN0KKAnePiSI4edSvOvJJWPHEb0NS9K8uFkrzhtV0DeP0G1Yoi_tFUqAYkKBKNTrvx0drfyeeQEuD4CJIaVo-yPCQO-3qvdb1X-2WhTqkcK4jNmFfUtu_I_u1UG3TTnEYxleg4QyfvEL4ACxtQ
CitedBy_id crossref_primary_10_1002_hbm_26442
crossref_primary_10_1016_j_banm_2024_11_025
crossref_primary_10_1111_jcpp_13495
crossref_primary_10_1523_JNEUROSCI_1429_24_2025
crossref_primary_10_1007_s00429_022_02565_z
crossref_primary_10_1371_journal_pone_0262310
crossref_primary_10_1016_j_envres_2024_120638
crossref_primary_10_3389_fneur_2022_827816
crossref_primary_10_1001_jamanetworkopen_2023_46018
crossref_primary_10_1016_j_dr_2024_101184
crossref_primary_10_1016_j_media_2024_103186
crossref_primary_10_1002_jmri_29253
crossref_primary_10_1134_S0006350922020051
crossref_primary_10_1161_JAHA_124_035880
crossref_primary_10_1002_hbm_26238
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1073_pnas_2220200120
crossref_primary_10_1038_s41398_022_02073_y
crossref_primary_10_1016_j_neuroimage_2024_120660
crossref_primary_10_1016_j_nbd_2024_106577
crossref_primary_10_1016_j_compmedimag_2021_102000
crossref_primary_10_1101_cshperspect_a041496
crossref_primary_10_1148_rg_220141
crossref_primary_10_1523_JNEUROSCI_1024_23_2023
crossref_primary_10_3389_fnins_2022_1027084
crossref_primary_10_1038_s41390_023_02622_1
crossref_primary_10_1016_j_gene_2022_146823
crossref_primary_10_1159_000530317
crossref_primary_10_1002_hbm_70186
crossref_primary_10_1016_j_semcdb_2022_02_023
crossref_primary_10_1016_j_semcdb_2022_06_007
crossref_primary_10_1113_JP284191
crossref_primary_10_1016_j_copsyc_2021_10_010
crossref_primary_10_1159_000534124
crossref_primary_10_1038_s41586_023_06630_3
crossref_primary_10_1002_hbm_25653
crossref_primary_10_1016_j_bpsc_2021_09_009
crossref_primary_10_1016_j_neuroimage_2022_119700
crossref_primary_10_1523_JNEUROSCI_1567_23_2024
crossref_primary_10_1016_j_neuroimage_2022_118934
crossref_primary_10_7554_eLife_83727
crossref_primary_10_1073_pnas_2218007120
crossref_primary_10_1001_jamanetworkopen_2022_26696
crossref_primary_10_1016_j_dcn_2022_101083
crossref_primary_10_1038_s41598_023_39663_9
crossref_primary_10_1093_cercor_bhad409
crossref_primary_10_1073_pnas_2410341121
crossref_primary_10_1002_hbm_70132
crossref_primary_10_1016_j_neuroimage_2024_120723
crossref_primary_10_1186_s12916_023_03141_w
crossref_primary_10_1093_cercor_bhae462
crossref_primary_10_1523_JNEUROSCI_0874_22_2022
crossref_primary_10_3389_fnut_2022_1054431
crossref_primary_10_1016_j_mric_2024_03_004
crossref_primary_10_1111_cns_14917
crossref_primary_10_3390_brainsci11101360
crossref_primary_10_1093_schbul_sbab089
crossref_primary_10_1109_JBHI_2024_3411620
crossref_primary_10_1016_j_biopsych_2022_11_019
crossref_primary_10_1016_j_envpol_2022_120956
crossref_primary_10_1038_s41598_025_91886_0
crossref_primary_10_1146_annurev_neuro_091922_034237
crossref_primary_10_1186_s40478_025_01970_9
crossref_primary_10_3389_fneur_2024_1378362
crossref_primary_10_3390_children11050542
crossref_primary_10_1159_000542276
Cites_doi 10.1002/cne.901320103
10.1016/B978-0-7236-7017-9.50018-1
10.1093/cercor/bhr126
10.1523/JNEUROSCI.12-04-01194.1992
10.1002/mrm.26462
10.1136/jnnp.2006.110858
10.1111/joa.13011
10.1016/j.neuroimage.2018.08.030
10.1148/radiol.2212001702
10.1016/j.neuroimage.2017.01.065
10.1203/00006450-200111000-00003
10.1523/JNEUROSCI.4983-04.2005
10.1109/TMI.2019.2943565
10.1097/00005072-198805000-00003
10.1016/j.neuroimage.2008.07.026
10.1007/s00401-017-1718-6
10.1002/mrm.1105
10.1017/S0012162206000831
10.1007/s10334-019-00743-5
10.1523/JNEUROSCI.2769-08.2009
10.1148/radiology.166.1.3336675
10.1016/j.neuroimage.2014.07.061
10.1002/nbm.784
10.1038/s41390-018-0138-1
10.1007/s11548-010-0512-x
10.1006/nimg.2002.1267
10.1002/jmri.10205
10.1002/cne.902970309
10.1002/hbm.25006
10.1016/S0006-3495(94)80775-1
10.1016/j.neuroimage.2006.06.009
10.1016/j.neuroscience.2013.12.044
10.1542/peds.107.3.455
10.1203/00006450-199810000-00019
10.1016/j.neuroimage.2018.05.046
10.1523/JNEUROSCI.21-04-01302.2001
10.1093/cercor/bhs330
10.1016/S0140-6736(08)60380-3
10.1046/j.0960-7692.2001.00512.x
10.1097/00005072-198705000-00005
10.1016/S1474-4422(08)70294-1
10.1006/jmrb.1994.1037
10.1016/0006-8993(73)90741-5
10.1016/j.nicl.2014.08.005
10.1093/brain/awh618
10.1016/j.neuroimage.2017.10.046
10.1016/j.neuroimage.2007.02.016
10.1093/brain/awz412
10.1002/cne.20453
10.1098/rstb.1977.0040
10.1002/brb3.17
10.1201/9780203507483
10.1007/s00247-006-0266-3
10.1016/j.nicl.2017.06.013
10.1016/j.neuroimage.2018.10.060
10.1097/00004728-199501000-00005
10.1093/jnen/61.2.197
10.1016/j.neuroimage.2004.02.035
10.1371/journal.pone.0119536
10.1007/s00330-007-0634-x
10.1016/j.neuroimage.2019.116137
10.1038/nrn.2018.1
10.1016/j.neuroimage.2020.116553
10.1371/journal.pmed.0030265
10.1093/cercor/12.12.1237
10.1007/s00234-013-1231-0
10.1016/j.siny.2006.07.001
10.1016/j.ijdevneu.2013.06.005
10.1016/j.neuroimage.2020.117437
ContentType Journal Article
Copyright Copyright © 2021 the Author(s). Published by PNAS.
Copyright National Academy of Sciences May 18, 2021
Copyright © 2021 the Author(s). Published by PNAS. 2021
Copyright_xml – notice: Copyright © 2021 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences May 18, 2021
– notice: Copyright © 2021 the Author(s). Published by PNAS. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2023598118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7
ExternalDocumentID PMC8157930
33972435
10_1073_pnas_2023598118
27040443
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 206675/Z/17/Z
– fundername: Department of Health
– fundername: Medical Research Council
  grantid: MR/N026063/1
– fundername: Medical Research Council
  grantid: MR/P008712/1
– fundername: Medical Research Council
  grantid: MR/K006355/1
– fundername: Medical Research Council
  grantid: MR/L011530/1
– fundername: Medical Research Council
  grantid: MR/V036874/1
– fundername: Wellcome Trust
  grantid: 203148/Z/16/Z
– fundername: RCUK | Medical Research Council (MRC)
  grantid: MR/K006355/1
– fundername: RCUK | Medical Research Council (MRC)
  grantid: MR/P008712/1
– fundername: RCUK | Medical Research Council (MRC)
  grantid: MR/L011530/1
– fundername: Wellcome
  grantid: 206675/Z/17/Z
– fundername: EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas)
  grantid: 319456
– fundername: RCUK | Medical Research Council (MRC)
  grantid: MR/N026063/1
– fundername: Wellcome
  grantid: WT 203148/Z/16/Z
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:48:33 EDT 2025
Thu Sep 04 17:28:48 EDT 2025
Mon Jun 30 09:51:24 EDT 2025
Sat May 31 02:07:29 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Tue Jul 01 01:02:56 EDT 2025
Thu May 29 08:53:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords diffusion MRI
white matter
tractography
fetal
Language English
License Copyright © 2021 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: S.W., M.A.R., T.A., J.V.H., A.D.E., D.C., and J.O. designed research; S.W., A.N.P., J.H., L.M., M.A.R., E.J.H., T.A., J.V.H., and J.O. performed research; M.P., L.C.-G., A.N.P., J.H., J.-D.T., J.V.H., and D.C. contributed new reagents/analytic tools; S.W., M.P., J.X., S.J.C., T.A., A.D.E., D.C., and J.O. analyzed data; and S.W., M.P., L.C.-G., S.J.C., T.A., A.D.E., D.C., and J.O. wrote the paper.
2D.C. and J.O. contributed equally to this work.
Edited by David C. Van Essen, Washington University in St. Louis School of Medicine, St. Louis, MO, and approved March 28, 2021 (received for review November 26, 2020)
ORCID 0000-0003-3476-3500
0000-0003-4617-3583
0000-0002-8033-6959
0000-0001-5591-7383
0000-0001-8323-5451
0000-0003-4801-7066
0000-0002-3550-1644
0000-0001-8542-1370
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8157930
PMID 33972435
PQID 2530513503
PQPubID 42026
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157930
proquest_miscellaneous_2525652285
proquest_journals_2530513503
pubmed_primary_33972435
crossref_primary_10_1073_pnas_2023598118
crossref_citationtrail_10_1073_pnas_2023598118
jstor_primary_27040443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-18
PublicationDateYYYYMMDD 2021-05-18
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_46_2
e_1_3_5_67_2
e_1_3_5_48_2
e_1_3_5_69_2
e_1_3_5_29_2
e_1_3_5_1_2
e_1_3_5_40_2
e_1_3_5_61_2
e_1_3_5_42_2
e_1_3_5_63_2
e_1_3_5_9_2
Childs A.-M. (e_1_3_5_7_2) 2001; 20
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_56_2
e_1_3_5_58_2
Yakovlev P. L. (e_1_3_5_3_2) 1967
e_1_3_5_18_2
e_1_3_5_71_2
e_1_3_5_50_2
e_1_3_5_73_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_66_2
e_1_3_5_45_2
e_1_3_5_68_2
e_1_3_5_47_2
Volpe J. J. (e_1_3_5_57_2) 2017
e_1_3_5_49_2
Akaike H. (e_1_3_5_75_2) 1973
e_1_3_5_2_2
e_1_3_5_60_2
e_1_3_5_62_2
e_1_3_5_41_2
e_1_3_5_64_2
e_1_3_5_8_2
e_1_3_5_20_2
Jovanov-Milosević N. (e_1_3_5_65_2) 2006; 30
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_59_2
e_1_3_5_19_2
e_1_3_5_70_2
e_1_3_5_51_2
e_1_3_5_72_2
e_1_3_5_53_2
e_1_3_5_74_2
e_1_3_5_30_2
Flechsig P. (e_1_3_5_52_2) 1921; 67
References_xml – ident: e_1_3_5_55_2
  doi: 10.1002/cne.901320103
– ident: e_1_3_5_1_2
  doi: 10.1016/B978-0-7236-7017-9.50018-1
– ident: e_1_3_5_43_2
  doi: 10.1093/cercor/bhr126
– ident: e_1_3_5_47_2
  doi: 10.1523/JNEUROSCI.12-04-01194.1992
– ident: e_1_3_5_33_2
  doi: 10.1002/mrm.26462
– ident: e_1_3_5_13_2
  doi: 10.1136/jnnp.2006.110858
– ident: e_1_3_5_64_2
  doi: 10.1111/joa.13011
– ident: e_1_3_5_22_2
  doi: 10.1016/j.neuroimage.2018.08.030
– ident: e_1_3_5_53_2
  doi: 10.1148/radiol.2212001702
– ident: e_1_3_5_11_2
  doi: 10.1016/j.neuroimage.2017.01.065
– ident: e_1_3_5_70_2
  doi: 10.1203/00006450-200111000-00003
– ident: e_1_3_5_61_2
  doi: 10.1523/JNEUROSCI.4983-04.2005
– ident: e_1_3_5_37_2
  doi: 10.1109/TMI.2019.2943565
– ident: e_1_3_5_51_2
  doi: 10.1097/00005072-198805000-00003
– ident: e_1_3_5_17_2
  doi: 10.1016/j.neuroimage.2008.07.026
– ident: e_1_3_5_9_2
  doi: 10.1007/s00401-017-1718-6
– ident: e_1_3_5_41_2
  doi: 10.1002/mrm.1105
– ident: e_1_3_5_4_2
  doi: 10.1017/S0012162206000831
– ident: e_1_3_5_21_2
  doi: 10.1007/s10334-019-00743-5
– ident: e_1_3_5_42_2
  doi: 10.1523/JNEUROSCI.2769-08.2009
– ident: e_1_3_5_67_2
  doi: 10.1148/radiology.166.1.3336675
– ident: e_1_3_5_40_2
  doi: 10.1016/j.neuroimage.2014.07.061
– ident: e_1_3_5_54_2
  doi: 10.1002/nbm.784
– ident: e_1_3_5_31_2
  doi: 10.1038/s41390-018-0138-1
– ident: e_1_3_5_38_2
  doi: 10.1007/s11548-010-0512-x
– ident: e_1_3_5_50_2
  doi: 10.1006/nimg.2002.1267
– ident: e_1_3_5_74_2
  doi: 10.1002/jmri.10205
– ident: e_1_3_5_46_2
  doi: 10.1002/cne.902970309
– ident: e_1_3_5_23_2
  doi: 10.1002/hbm.25006
– ident: e_1_3_5_30_2
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_3_5_24_2
  doi: 10.1016/j.neuroimage.2006.06.009
– ident: e_1_3_5_44_2
  doi: 10.1016/j.neuroscience.2013.12.044
– ident: e_1_3_5_71_2
  doi: 10.1542/peds.107.3.455
– volume-title: Volpe’s Neurology of the Newborn
  year: 2017
  ident: e_1_3_5_57_2
– start-page: 3
  volume-title: Resional Development of the Brain in Early Life
  year: 1967
  ident: e_1_3_5_3_2
– ident: e_1_3_5_29_2
  doi: 10.1203/00006450-199810000-00019
– ident: e_1_3_5_26_2
  doi: 10.1016/j.neuroimage.2018.05.046
– ident: e_1_3_5_62_2
  doi: 10.1523/JNEUROSCI.21-04-01302.2001
– ident: e_1_3_5_63_2
  doi: 10.1093/cercor/bhs330
– ident: e_1_3_5_15_2
  doi: 10.1016/S0140-6736(08)60380-3
– ident: e_1_3_5_66_2
  doi: 10.1046/j.0960-7692.2001.00512.x
– ident: e_1_3_5_2_2
  doi: 10.1097/00005072-198705000-00005
– ident: e_1_3_5_10_2
  doi: 10.1016/S1474-4422(08)70294-1
– ident: e_1_3_5_49_2
  doi: 10.1006/jmrb.1994.1037
– ident: e_1_3_5_48_2
  doi: 10.1016/0006-8993(73)90741-5
– volume: 67
  start-page: 210
  year: 1921
  ident: e_1_3_5_52_2
  article-title: Anatomie des menschlichen gehirns und rückenmarks auf myelogenetischer grundlage
  publication-title: Journal of Mental Science
– ident: e_1_3_5_12_2
  doi: 10.1016/j.nicl.2014.08.005
– ident: e_1_3_5_14_2
  doi: 10.1093/brain/awh618
– ident: e_1_3_5_73_2
  doi: 10.1016/j.neuroimage.2017.10.046
– ident: e_1_3_5_39_2
  doi: 10.1016/j.neuroimage.2007.02.016
– ident: e_1_3_5_35_2
  doi: 10.1093/brain/awz412
– ident: e_1_3_5_58_2
  doi: 10.1002/cne.20453
– ident: e_1_3_5_45_2
  doi: 10.1098/rstb.1977.0040
– ident: e_1_3_5_18_2
  doi: 10.1002/brb3.17
– start-page: 199
  volume-title: Springer Series in Statistics (Perspectives in Statistics)
  year: 1973
  ident: e_1_3_5_75_2
– ident: e_1_3_5_6_2
  doi: 10.1201/9780203507483
– volume: 30
  start-page: 375
  year: 2006
  ident: e_1_3_5_65_2
  article-title: Transient cellular structures in developing corpus callosum of the human brain
  publication-title: Coll. Antropol.
– ident: e_1_3_5_16_2
  doi: 10.1007/s00247-006-0266-3
– ident: e_1_3_5_20_2
  doi: 10.1016/j.nicl.2017.06.013
– ident: e_1_3_5_34_2
  doi: 10.1016/j.neuroimage.2018.10.060
– ident: e_1_3_5_59_2
  doi: 10.1097/00004728-199501000-00005
– volume: 20
  start-page: 1349
  year: 2001
  ident: e_1_3_5_7_2
  article-title: American journal of neuroradiology
  publication-title: AJNR Am. J. Neuroradiol.
– ident: e_1_3_5_60_2
  doi: 10.1093/jnen/61.2.197
– ident: e_1_3_5_8_2
  doi: 10.1016/j.neuroimage.2004.02.035
– ident: e_1_3_5_19_2
  doi: 10.1371/journal.pone.0119536
– ident: e_1_3_5_32_2
  doi: 10.1007/s00330-007-0634-x
– ident: e_1_3_5_72_2
  doi: 10.1016/j.neuroimage.2019.116137
– ident: e_1_3_5_27_2
  doi: 10.1038/nrn.2018.1
– ident: e_1_3_5_56_2
  doi: 10.1016/j.neuroimage.2020.116553
– ident: e_1_3_5_68_2
  doi: 10.1371/journal.pmed.0030265
– ident: e_1_3_5_28_2
  doi: 10.1093/cercor/12.12.1237
– ident: e_1_3_5_69_2
  doi: 10.1007/s00234-013-1231-0
– ident: e_1_3_5_5_2
  doi: 10.1016/j.siny.2006.07.001
– ident: e_1_3_5_25_2
  doi: 10.1016/j.ijdevneu.2013.06.005
– ident: e_1_3_5_36_2
  doi: 10.1016/j.neuroimage.2020.117437
SSID ssj0009580
Score 2.6038969
Snippet During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration,...
This work uses state-of-the-art acquisition and analysis methods developed specifically for fetal MRI to delineate the developing brain’s association,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Abnormalities
Anisotropy
Biological Sciences
Cell migration
Cerebral Cortex - anatomy & histology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Connectome
Corpus callosum
Corpus Callosum - anatomy & histology
Corpus Callosum - diagnostic imaging
Corpus Callosum - physiology
Data acquisition
Diffusion Tensor Imaging
Female
Fetal Development - physiology
Fetus
Fetuses
Fibers
Gestation
Gestational Age
Human motion
Humans
Infant
Infant, Newborn
Magnetic resonance imaging
Maturation
Microstructure
Myelination
Neural networks
Neurodevelopment
Neurogenesis - physiology
Neurons - cytology
Neurons - physiology
Pregnancy
Pregnancy Trimester, Second
Pregnancy Trimester, Third
Premature birth
Substantia alba
Tensors
Thalamus
Thalamus - anatomy & histology
Thalamus - diagnostic imaging
Thalamus - physiology
Trends
Uterus - diagnostic imaging
Uterus - physiology
White Matter - anatomy & histology
White Matter - diagnostic imaging
White Matter - physiology
Title Development of human white matter pathways in utero over the second and third trimester
URI https://www.jstor.org/stable/27040443
https://www.ncbi.nlm.nih.gov/pubmed/33972435
https://www.proquest.com/docview/2530513503
https://www.proquest.com/docview/2525652285
https://pubmed.ncbi.nlm.nih.gov/PMC8157930
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWAQGMhIPAxVLok_mvRxmoAJaVUlNrG3ynEcLdKWoH5owI_ht3Jtx05addLgJaoa22pyTq_vta_PReh9VjKqaSGJ5lITnpScTJhICfgCqSqKQlKrW3A2HZ9e8K-X4nIw-NPLWlqv8pH6vfNcyf-gCt8BruaU7D8gGwaFL-Az4AtXQBiu98K4l_FjnT67IH9rNgaGN1Y308imXt3KXzbp1RRvaIYmZdN6m0sTChdtBmW1gKtR-l_6dN3WYZ2FCW7p0wmmfv3wuDuN0pqI5ZAMZ9OutnEnBvmtslvyNHBxVunV0tWhOpM_q5vqukfUE6sI2pAvC7PGbdcO1gpaNKG3r1bfih8Mp6P--gVNzNZ73-SawJhk3J2kHmlnhsGLIWPuCokGO931MvFyvHMCAItlqhbX0kixUyNP6LttSG1vTYEhMdFuyadsbgaYdwM8QA9pCr6ZXw0Kos6ZO-LUPoGXjkrZx61fsOH1uMTXXSHNdmZuz9U5f4IetzEKPnaE20cDXT9F-x5ifNRKlX94hr73GIibElsGYstA7BiIPQNxVWPLQGwYiIFI2DEQA8TYMhAHBj5HF58_nZ-ckrZUB1GcsxWhBaUKHJ8kjXPFaVmykipBhYqZhNcUUyVLKRIptaJFIseiUBBXZDyPi1LlMmUHaK9uav0SYQg5JiWd6LRgjOeJnMQypUIniio-ZppFaORf5Vy1OvamnMr1_A7wInQUOvxwEi53Nz2w2IR2NIVJDp4wQocerHlrAKCfgMkyYSKG2-_CbTDPZs9N1rpZmzYQU0CMk4kIvXDYhsEZxAIUwpUIpRuohwZG-n3zTl1dWQn4LBEwscav7v9or9Gj7t93iPZWi7V-A_70Kn9rSf0XWmPMgA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+human+white+matter+pathways+in+utero+over+the+second+and+third+trimester&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wilson%2C+Si%C3%A2n&rft.au=Pietsch%2C+Maximilian&rft.au=Cordero-Grande%2C+Lucilio&rft.au=Price%2C+Anthony+N.&rft.date=2021-05-18&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=118&rft.issue=20&rft_id=info:doi/10.1073%2Fpnas.2023598118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2023598118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon