Development of human white matter pathways in utero over the second and third trimester
During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient netw...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 20; pp. 1 - 7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
18.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2023598118 |
Cover
Abstract | During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth. |
---|---|
AbstractList | During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth. This work uses state-of-the-art acquisition and analysis methods developed specifically for fetal MRI to delineate the developing brain’s association, projection, and callosal white matter pathways. We describe unique, heterogenous maturational trajectories for different tracts, suggesting that regionally distinct biological mechanisms are at play in building the structural connectome in utero. During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth. During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth. |
Author | Rutherford, Mary A. Hutter, Jana Edwards, A. David O’Muircheartaigh, Jonathan Price, Anthony N. Cordero-Grande, Lucilio Counsell, Serena J. Pietsch, Maximilian Christiaens, Daan Tournier, Jacques-Donald Hughes, Emer J. McCabe, Laura Wilson, Siân Xiao, Jiaxin Arichi, Tomoki Hajnal, Joseph V. |
Author_xml | – sequence: 1 givenname: Siân surname: Wilson fullname: Wilson, Siân – sequence: 2 givenname: Maximilian surname: Pietsch fullname: Pietsch, Maximilian – sequence: 3 givenname: Lucilio surname: Cordero-Grande fullname: Cordero-Grande, Lucilio – sequence: 4 givenname: Anthony N. surname: Price fullname: Price, Anthony N. – sequence: 5 givenname: Jana surname: Hutter fullname: Hutter, Jana – sequence: 6 givenname: Jiaxin surname: Xiao fullname: Xiao, Jiaxin – sequence: 7 givenname: Laura surname: McCabe fullname: McCabe, Laura – sequence: 8 givenname: Mary A. surname: Rutherford fullname: Rutherford, Mary A. – sequence: 9 givenname: Emer J. surname: Hughes fullname: Hughes, Emer J. – sequence: 10 givenname: Serena J. surname: Counsell fullname: Counsell, Serena J. – sequence: 11 givenname: Jacques-Donald surname: Tournier fullname: Tournier, Jacques-Donald – sequence: 12 givenname: Tomoki surname: Arichi fullname: Arichi, Tomoki – sequence: 13 givenname: Joseph V. surname: Hajnal fullname: Hajnal, Joseph V. – sequence: 14 givenname: A. David surname: Edwards fullname: Edwards, A. David – sequence: 15 givenname: Daan surname: Christiaens fullname: Christiaens, Daan – sequence: 16 givenname: Jonathan surname: O’Muircheartaigh fullname: O’Muircheartaigh, Jonathan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33972435$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLeFMyeQJS5c0o6_NskFCRVokSpxAXG0Zh2HeJXYwXa26r_Hqy0L9MDBtjR-3pl3Zs7IiQ_eEvKSwQWDWlzOHtMFBy5U2zDWPCErBi2r1rKFE7IC4HXVSC5PyVlKWwBoVQPPyKkQbc2lUCvy_YPd2THMk_WZhp4Oy4Se3g0uWzphzjbSGfNwh_eJOk-XEgg07Eo4D5Yma4LvKJaTBxfLHd1kU4Gek6c9jsm-eHjPybdPH79e3VS3X64_X72_rYyUIle849zAumY1bIzkfS96bhRXBgQWs8AN9qgYojW8Y7hWnREMGrmBrjcbrMU5eXfIOy-byXamtBFx1HPxgfFeB3T63x_vBv0j7HTDVN0KKAnePiSI4edSvOvJJWPHEb0NS9K8uFkrzhtV0DeP0G1Yoi_tFUqAYkKBKNTrvx0drfyeeQEuD4CJIaVo-yPCQO-3qvdb1X-2WhTqkcK4jNmFfUtu_I_u1UG3TTnEYxleg4QyfvEL4ACxtQ |
CitedBy_id | crossref_primary_10_1002_hbm_26442 crossref_primary_10_1016_j_banm_2024_11_025 crossref_primary_10_1111_jcpp_13495 crossref_primary_10_1523_JNEUROSCI_1429_24_2025 crossref_primary_10_1007_s00429_022_02565_z crossref_primary_10_1371_journal_pone_0262310 crossref_primary_10_1016_j_envres_2024_120638 crossref_primary_10_3389_fneur_2022_827816 crossref_primary_10_1001_jamanetworkopen_2023_46018 crossref_primary_10_1016_j_dr_2024_101184 crossref_primary_10_1016_j_media_2024_103186 crossref_primary_10_1002_jmri_29253 crossref_primary_10_1134_S0006350922020051 crossref_primary_10_1161_JAHA_124_035880 crossref_primary_10_1002_hbm_26238 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1073_pnas_2220200120 crossref_primary_10_1038_s41398_022_02073_y crossref_primary_10_1016_j_neuroimage_2024_120660 crossref_primary_10_1016_j_nbd_2024_106577 crossref_primary_10_1016_j_compmedimag_2021_102000 crossref_primary_10_1101_cshperspect_a041496 crossref_primary_10_1148_rg_220141 crossref_primary_10_1523_JNEUROSCI_1024_23_2023 crossref_primary_10_3389_fnins_2022_1027084 crossref_primary_10_1038_s41390_023_02622_1 crossref_primary_10_1016_j_gene_2022_146823 crossref_primary_10_1159_000530317 crossref_primary_10_1002_hbm_70186 crossref_primary_10_1016_j_semcdb_2022_02_023 crossref_primary_10_1016_j_semcdb_2022_06_007 crossref_primary_10_1113_JP284191 crossref_primary_10_1016_j_copsyc_2021_10_010 crossref_primary_10_1159_000534124 crossref_primary_10_1038_s41586_023_06630_3 crossref_primary_10_1002_hbm_25653 crossref_primary_10_1016_j_bpsc_2021_09_009 crossref_primary_10_1016_j_neuroimage_2022_119700 crossref_primary_10_1523_JNEUROSCI_1567_23_2024 crossref_primary_10_1016_j_neuroimage_2022_118934 crossref_primary_10_7554_eLife_83727 crossref_primary_10_1073_pnas_2218007120 crossref_primary_10_1001_jamanetworkopen_2022_26696 crossref_primary_10_1016_j_dcn_2022_101083 crossref_primary_10_1038_s41598_023_39663_9 crossref_primary_10_1093_cercor_bhad409 crossref_primary_10_1073_pnas_2410341121 crossref_primary_10_1002_hbm_70132 crossref_primary_10_1016_j_neuroimage_2024_120723 crossref_primary_10_1186_s12916_023_03141_w crossref_primary_10_1093_cercor_bhae462 crossref_primary_10_1523_JNEUROSCI_0874_22_2022 crossref_primary_10_3389_fnut_2022_1054431 crossref_primary_10_1016_j_mric_2024_03_004 crossref_primary_10_1111_cns_14917 crossref_primary_10_3390_brainsci11101360 crossref_primary_10_1093_schbul_sbab089 crossref_primary_10_1109_JBHI_2024_3411620 crossref_primary_10_1016_j_biopsych_2022_11_019 crossref_primary_10_1016_j_envpol_2022_120956 crossref_primary_10_1038_s41598_025_91886_0 crossref_primary_10_1146_annurev_neuro_091922_034237 crossref_primary_10_1186_s40478_025_01970_9 crossref_primary_10_3389_fneur_2024_1378362 crossref_primary_10_3390_children11050542 crossref_primary_10_1159_000542276 |
Cites_doi | 10.1002/cne.901320103 10.1016/B978-0-7236-7017-9.50018-1 10.1093/cercor/bhr126 10.1523/JNEUROSCI.12-04-01194.1992 10.1002/mrm.26462 10.1136/jnnp.2006.110858 10.1111/joa.13011 10.1016/j.neuroimage.2018.08.030 10.1148/radiol.2212001702 10.1016/j.neuroimage.2017.01.065 10.1203/00006450-200111000-00003 10.1523/JNEUROSCI.4983-04.2005 10.1109/TMI.2019.2943565 10.1097/00005072-198805000-00003 10.1016/j.neuroimage.2008.07.026 10.1007/s00401-017-1718-6 10.1002/mrm.1105 10.1017/S0012162206000831 10.1007/s10334-019-00743-5 10.1523/JNEUROSCI.2769-08.2009 10.1148/radiology.166.1.3336675 10.1016/j.neuroimage.2014.07.061 10.1002/nbm.784 10.1038/s41390-018-0138-1 10.1007/s11548-010-0512-x 10.1006/nimg.2002.1267 10.1002/jmri.10205 10.1002/cne.902970309 10.1002/hbm.25006 10.1016/S0006-3495(94)80775-1 10.1016/j.neuroimage.2006.06.009 10.1016/j.neuroscience.2013.12.044 10.1542/peds.107.3.455 10.1203/00006450-199810000-00019 10.1016/j.neuroimage.2018.05.046 10.1523/JNEUROSCI.21-04-01302.2001 10.1093/cercor/bhs330 10.1016/S0140-6736(08)60380-3 10.1046/j.0960-7692.2001.00512.x 10.1097/00005072-198705000-00005 10.1016/S1474-4422(08)70294-1 10.1006/jmrb.1994.1037 10.1016/0006-8993(73)90741-5 10.1016/j.nicl.2014.08.005 10.1093/brain/awh618 10.1016/j.neuroimage.2017.10.046 10.1016/j.neuroimage.2007.02.016 10.1093/brain/awz412 10.1002/cne.20453 10.1098/rstb.1977.0040 10.1002/brb3.17 10.1201/9780203507483 10.1007/s00247-006-0266-3 10.1016/j.nicl.2017.06.013 10.1016/j.neuroimage.2018.10.060 10.1097/00004728-199501000-00005 10.1093/jnen/61.2.197 10.1016/j.neuroimage.2004.02.035 10.1371/journal.pone.0119536 10.1007/s00330-007-0634-x 10.1016/j.neuroimage.2019.116137 10.1038/nrn.2018.1 10.1016/j.neuroimage.2020.116553 10.1371/journal.pmed.0030265 10.1093/cercor/12.12.1237 10.1007/s00234-013-1231-0 10.1016/j.siny.2006.07.001 10.1016/j.ijdevneu.2013.06.005 10.1016/j.neuroimage.2020.117437 |
ContentType | Journal Article |
Copyright | Copyright © 2021 the Author(s). Published by PNAS. Copyright National Academy of Sciences May 18, 2021 Copyright © 2021 the Author(s). Published by PNAS. 2021 |
Copyright_xml | – notice: Copyright © 2021 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences May 18, 2021 – notice: Copyright © 2021 the Author(s). Published by PNAS. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2023598118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7 |
ExternalDocumentID | PMC8157930 33972435 10_1073_pnas_2023598118 27040443 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 206675/Z/17/Z – fundername: Department of Health – fundername: Medical Research Council grantid: MR/N026063/1 – fundername: Medical Research Council grantid: MR/P008712/1 – fundername: Medical Research Council grantid: MR/K006355/1 – fundername: Medical Research Council grantid: MR/L011530/1 – fundername: Medical Research Council grantid: MR/V036874/1 – fundername: Wellcome Trust grantid: 203148/Z/16/Z – fundername: RCUK | Medical Research Council (MRC) grantid: MR/K006355/1 – fundername: RCUK | Medical Research Council (MRC) grantid: MR/P008712/1 – fundername: RCUK | Medical Research Council (MRC) grantid: MR/L011530/1 – fundername: Wellcome grantid: 206675/Z/17/Z – fundername: EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas) grantid: 319456 – fundername: RCUK | Medical Research Council (MRC) grantid: MR/N026063/1 – fundername: Wellcome grantid: WT 203148/Z/16/Z |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:48:33 EDT 2025 Thu Sep 04 17:28:48 EDT 2025 Mon Jun 30 09:51:24 EDT 2025 Sat May 31 02:07:29 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Tue Jul 01 01:02:56 EDT 2025 Thu May 29 08:53:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | diffusion MRI white matter tractography fetal |
Language | English |
License | Copyright © 2021 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: S.W., M.A.R., T.A., J.V.H., A.D.E., D.C., and J.O. designed research; S.W., A.N.P., J.H., L.M., M.A.R., E.J.H., T.A., J.V.H., and J.O. performed research; M.P., L.C.-G., A.N.P., J.H., J.-D.T., J.V.H., and D.C. contributed new reagents/analytic tools; S.W., M.P., J.X., S.J.C., T.A., A.D.E., D.C., and J.O. analyzed data; and S.W., M.P., L.C.-G., S.J.C., T.A., A.D.E., D.C., and J.O. wrote the paper. 2D.C. and J.O. contributed equally to this work. Edited by David C. Van Essen, Washington University in St. Louis School of Medicine, St. Louis, MO, and approved March 28, 2021 (received for review November 26, 2020) |
ORCID | 0000-0003-3476-3500 0000-0003-4617-3583 0000-0002-8033-6959 0000-0001-5591-7383 0000-0001-8323-5451 0000-0003-4801-7066 0000-0002-3550-1644 0000-0001-8542-1370 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8157930 |
PMID | 33972435 |
PQID | 2530513503 |
PQPubID | 42026 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157930 proquest_miscellaneous_2525652285 proquest_journals_2530513503 pubmed_primary_33972435 crossref_primary_10_1073_pnas_2023598118 crossref_citationtrail_10_1073_pnas_2023598118 jstor_primary_27040443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-18 |
PublicationDateYYYYMMDD | 2021-05-18 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_5_27_2 e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_46_2 e_1_3_5_67_2 e_1_3_5_48_2 e_1_3_5_69_2 e_1_3_5_29_2 e_1_3_5_1_2 e_1_3_5_40_2 e_1_3_5_61_2 e_1_3_5_42_2 e_1_3_5_63_2 e_1_3_5_9_2 Childs A.-M. (e_1_3_5_7_2) 2001; 20 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_54_2 e_1_3_5_56_2 e_1_3_5_58_2 Yakovlev P. L. (e_1_3_5_3_2) 1967 e_1_3_5_18_2 e_1_3_5_71_2 e_1_3_5_50_2 e_1_3_5_73_2 e_1_3_5_31_2 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_22_2 e_1_3_5_43_2 e_1_3_5_66_2 e_1_3_5_45_2 e_1_3_5_68_2 e_1_3_5_47_2 Volpe J. J. (e_1_3_5_57_2) 2017 e_1_3_5_49_2 Akaike H. (e_1_3_5_75_2) 1973 e_1_3_5_2_2 e_1_3_5_60_2 e_1_3_5_62_2 e_1_3_5_41_2 e_1_3_5_64_2 e_1_3_5_8_2 e_1_3_5_20_2 Jovanov-Milosević N. (e_1_3_5_65_2) 2006; 30 e_1_3_5_4_2 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_55_2 e_1_3_5_59_2 e_1_3_5_19_2 e_1_3_5_70_2 e_1_3_5_51_2 e_1_3_5_72_2 e_1_3_5_53_2 e_1_3_5_74_2 e_1_3_5_30_2 Flechsig P. (e_1_3_5_52_2) 1921; 67 |
References_xml | – ident: e_1_3_5_55_2 doi: 10.1002/cne.901320103 – ident: e_1_3_5_1_2 doi: 10.1016/B978-0-7236-7017-9.50018-1 – ident: e_1_3_5_43_2 doi: 10.1093/cercor/bhr126 – ident: e_1_3_5_47_2 doi: 10.1523/JNEUROSCI.12-04-01194.1992 – ident: e_1_3_5_33_2 doi: 10.1002/mrm.26462 – ident: e_1_3_5_13_2 doi: 10.1136/jnnp.2006.110858 – ident: e_1_3_5_64_2 doi: 10.1111/joa.13011 – ident: e_1_3_5_22_2 doi: 10.1016/j.neuroimage.2018.08.030 – ident: e_1_3_5_53_2 doi: 10.1148/radiol.2212001702 – ident: e_1_3_5_11_2 doi: 10.1016/j.neuroimage.2017.01.065 – ident: e_1_3_5_70_2 doi: 10.1203/00006450-200111000-00003 – ident: e_1_3_5_61_2 doi: 10.1523/JNEUROSCI.4983-04.2005 – ident: e_1_3_5_37_2 doi: 10.1109/TMI.2019.2943565 – ident: e_1_3_5_51_2 doi: 10.1097/00005072-198805000-00003 – ident: e_1_3_5_17_2 doi: 10.1016/j.neuroimage.2008.07.026 – ident: e_1_3_5_9_2 doi: 10.1007/s00401-017-1718-6 – ident: e_1_3_5_41_2 doi: 10.1002/mrm.1105 – ident: e_1_3_5_4_2 doi: 10.1017/S0012162206000831 – ident: e_1_3_5_21_2 doi: 10.1007/s10334-019-00743-5 – ident: e_1_3_5_42_2 doi: 10.1523/JNEUROSCI.2769-08.2009 – ident: e_1_3_5_67_2 doi: 10.1148/radiology.166.1.3336675 – ident: e_1_3_5_40_2 doi: 10.1016/j.neuroimage.2014.07.061 – ident: e_1_3_5_54_2 doi: 10.1002/nbm.784 – ident: e_1_3_5_31_2 doi: 10.1038/s41390-018-0138-1 – ident: e_1_3_5_38_2 doi: 10.1007/s11548-010-0512-x – ident: e_1_3_5_50_2 doi: 10.1006/nimg.2002.1267 – ident: e_1_3_5_74_2 doi: 10.1002/jmri.10205 – ident: e_1_3_5_46_2 doi: 10.1002/cne.902970309 – ident: e_1_3_5_23_2 doi: 10.1002/hbm.25006 – ident: e_1_3_5_30_2 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_3_5_24_2 doi: 10.1016/j.neuroimage.2006.06.009 – ident: e_1_3_5_44_2 doi: 10.1016/j.neuroscience.2013.12.044 – ident: e_1_3_5_71_2 doi: 10.1542/peds.107.3.455 – volume-title: Volpe’s Neurology of the Newborn year: 2017 ident: e_1_3_5_57_2 – start-page: 3 volume-title: Resional Development of the Brain in Early Life year: 1967 ident: e_1_3_5_3_2 – ident: e_1_3_5_29_2 doi: 10.1203/00006450-199810000-00019 – ident: e_1_3_5_26_2 doi: 10.1016/j.neuroimage.2018.05.046 – ident: e_1_3_5_62_2 doi: 10.1523/JNEUROSCI.21-04-01302.2001 – ident: e_1_3_5_63_2 doi: 10.1093/cercor/bhs330 – ident: e_1_3_5_15_2 doi: 10.1016/S0140-6736(08)60380-3 – ident: e_1_3_5_66_2 doi: 10.1046/j.0960-7692.2001.00512.x – ident: e_1_3_5_2_2 doi: 10.1097/00005072-198705000-00005 – ident: e_1_3_5_10_2 doi: 10.1016/S1474-4422(08)70294-1 – ident: e_1_3_5_49_2 doi: 10.1006/jmrb.1994.1037 – ident: e_1_3_5_48_2 doi: 10.1016/0006-8993(73)90741-5 – volume: 67 start-page: 210 year: 1921 ident: e_1_3_5_52_2 article-title: Anatomie des menschlichen gehirns und rückenmarks auf myelogenetischer grundlage publication-title: Journal of Mental Science – ident: e_1_3_5_12_2 doi: 10.1016/j.nicl.2014.08.005 – ident: e_1_3_5_14_2 doi: 10.1093/brain/awh618 – ident: e_1_3_5_73_2 doi: 10.1016/j.neuroimage.2017.10.046 – ident: e_1_3_5_39_2 doi: 10.1016/j.neuroimage.2007.02.016 – ident: e_1_3_5_35_2 doi: 10.1093/brain/awz412 – ident: e_1_3_5_58_2 doi: 10.1002/cne.20453 – ident: e_1_3_5_45_2 doi: 10.1098/rstb.1977.0040 – ident: e_1_3_5_18_2 doi: 10.1002/brb3.17 – start-page: 199 volume-title: Springer Series in Statistics (Perspectives in Statistics) year: 1973 ident: e_1_3_5_75_2 – ident: e_1_3_5_6_2 doi: 10.1201/9780203507483 – volume: 30 start-page: 375 year: 2006 ident: e_1_3_5_65_2 article-title: Transient cellular structures in developing corpus callosum of the human brain publication-title: Coll. Antropol. – ident: e_1_3_5_16_2 doi: 10.1007/s00247-006-0266-3 – ident: e_1_3_5_20_2 doi: 10.1016/j.nicl.2017.06.013 – ident: e_1_3_5_34_2 doi: 10.1016/j.neuroimage.2018.10.060 – ident: e_1_3_5_59_2 doi: 10.1097/00004728-199501000-00005 – volume: 20 start-page: 1349 year: 2001 ident: e_1_3_5_7_2 article-title: American journal of neuroradiology publication-title: AJNR Am. J. Neuroradiol. – ident: e_1_3_5_60_2 doi: 10.1093/jnen/61.2.197 – ident: e_1_3_5_8_2 doi: 10.1016/j.neuroimage.2004.02.035 – ident: e_1_3_5_19_2 doi: 10.1371/journal.pone.0119536 – ident: e_1_3_5_32_2 doi: 10.1007/s00330-007-0634-x – ident: e_1_3_5_72_2 doi: 10.1016/j.neuroimage.2019.116137 – ident: e_1_3_5_27_2 doi: 10.1038/nrn.2018.1 – ident: e_1_3_5_56_2 doi: 10.1016/j.neuroimage.2020.116553 – ident: e_1_3_5_68_2 doi: 10.1371/journal.pmed.0030265 – ident: e_1_3_5_28_2 doi: 10.1093/cercor/12.12.1237 – ident: e_1_3_5_69_2 doi: 10.1007/s00234-013-1231-0 – ident: e_1_3_5_5_2 doi: 10.1016/j.siny.2006.07.001 – ident: e_1_3_5_25_2 doi: 10.1016/j.ijdevneu.2013.06.005 – ident: e_1_3_5_36_2 doi: 10.1016/j.neuroimage.2020.117437 |
SSID | ssj0009580 |
Score | 2.6038969 |
Snippet | During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration,... This work uses state-of-the-art acquisition and analysis methods developed specifically for fetal MRI to delineate the developing brain’s association,... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Abnormalities Anisotropy Biological Sciences Cell migration Cerebral Cortex - anatomy & histology Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Connectome Corpus callosum Corpus Callosum - anatomy & histology Corpus Callosum - diagnostic imaging Corpus Callosum - physiology Data acquisition Diffusion Tensor Imaging Female Fetal Development - physiology Fetus Fetuses Fibers Gestation Gestational Age Human motion Humans Infant Infant, Newborn Magnetic resonance imaging Maturation Microstructure Myelination Neural networks Neurodevelopment Neurogenesis - physiology Neurons - cytology Neurons - physiology Pregnancy Pregnancy Trimester, Second Pregnancy Trimester, Third Premature birth Substantia alba Tensors Thalamus Thalamus - anatomy & histology Thalamus - diagnostic imaging Thalamus - physiology Trends Uterus - diagnostic imaging Uterus - physiology White Matter - anatomy & histology White Matter - diagnostic imaging White Matter - physiology |
Title | Development of human white matter pathways in utero over the second and third trimester |
URI | https://www.jstor.org/stable/27040443 https://www.ncbi.nlm.nih.gov/pubmed/33972435 https://www.proquest.com/docview/2530513503 https://www.proquest.com/docview/2525652285 https://pubmed.ncbi.nlm.nih.gov/PMC8157930 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWAQGMhIPAxVLok_mvRxmoAJaVUlNrG3ynEcLdKWoH5owI_ht3Jtx05addLgJaoa22pyTq_vta_PReh9VjKqaSGJ5lITnpScTJhICfgCqSqKQlKrW3A2HZ9e8K-X4nIw-NPLWlqv8pH6vfNcyf-gCt8BruaU7D8gGwaFL-Az4AtXQBiu98K4l_FjnT67IH9rNgaGN1Y308imXt3KXzbp1RRvaIYmZdN6m0sTChdtBmW1gKtR-l_6dN3WYZ2FCW7p0wmmfv3wuDuN0pqI5ZAMZ9OutnEnBvmtslvyNHBxVunV0tWhOpM_q5vqukfUE6sI2pAvC7PGbdcO1gpaNKG3r1bfih8Mp6P--gVNzNZ73-SawJhk3J2kHmlnhsGLIWPuCokGO931MvFyvHMCAItlqhbX0kixUyNP6LttSG1vTYEhMdFuyadsbgaYdwM8QA9pCr6ZXw0Kos6ZO-LUPoGXjkrZx61fsOH1uMTXXSHNdmZuz9U5f4IetzEKPnaE20cDXT9F-x5ifNRKlX94hr73GIibElsGYstA7BiIPQNxVWPLQGwYiIFI2DEQA8TYMhAHBj5HF58_nZ-ckrZUB1GcsxWhBaUKHJ8kjXPFaVmykipBhYqZhNcUUyVLKRIptaJFIseiUBBXZDyPi1LlMmUHaK9uav0SYQg5JiWd6LRgjOeJnMQypUIniio-ZppFaORf5Vy1OvamnMr1_A7wInQUOvxwEi53Nz2w2IR2NIVJDp4wQocerHlrAKCfgMkyYSKG2-_CbTDPZs9N1rpZmzYQU0CMk4kIvXDYhsEZxAIUwpUIpRuohwZG-n3zTl1dWQn4LBEwscav7v9or9Gj7t93iPZWi7V-A_70Kn9rSf0XWmPMgA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+human+white+matter+pathways+in+utero+over+the+second+and+third+trimester&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wilson%2C+Si%C3%A2n&rft.au=Pietsch%2C+Maximilian&rft.au=Cordero-Grande%2C+Lucilio&rft.au=Price%2C+Anthony+N.&rft.date=2021-05-18&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=118&rft.issue=20&rft_id=info:doi/10.1073%2Fpnas.2023598118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2023598118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |