Genomic kinship construction to enhance genetic analyses in the human connectome project data

Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using geno...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 40; no. 5; pp. 1677 - 1688
Main Authors Kochunov, Peter, Donohue, Brian, Mitchell, Braxton D., Ganjgahi, Habib, Adhikari, Bhim, Ryan, Meghann, Medland, Sarah E., Jahanshad, Neda, Thompson, Paul M., Blangero, John, Fieremans, Els, Novikov, Dmitry S., Marcus, Daniel, Van Essen, David C., Glahn, David C, Elliot Hong, L., Nichols, Thomas E.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2019
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.24479

Cover

Abstract Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using genome‐wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self‐reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self‐reported and empirical CR methods Kinship‐based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole‐genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self‐reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web‐based calculator (www.solar-eclipse-genetics.org/HCP).
AbstractList Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using genome‐wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self‐reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self‐reported and empirical CR methods Kinship‐based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole‐genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self‐reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web‐based calculator (http://www.solar-eclipse-genetics.org/HCP).
Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using genome‐wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self‐reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self‐reported and empirical CR methods Kinship‐based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole‐genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self‐reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web‐based calculator (www.solar-eclipse-genetics.org/HCP).
Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self-reported relatedness or calculated empirically using genome-wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self-reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self-reported and empirical CR methods Kinship-based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole-genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self-reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web-based calculator (www.solar-eclipse-genetics.org/HCP).Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self-reported relatedness or calculated empirically using genome-wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self-reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self-reported and empirical CR methods Kinship-based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole-genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self-reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web-based calculator (www.solar-eclipse-genetics.org/HCP).
Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using genome‐wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self‐reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self‐reported and empirical CR methods Kinship‐based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole‐genome empirical CR were higher but remained significantly correlated ( r ∼0.9) with those obtained using self‐reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length ( r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web‐based calculator ( www.solar-eclipse-genetics.org/HCP ).
Author Ryan, Meghann
Adhikari, Bhim
Ganjgahi, Habib
Novikov, Dmitry S.
Fieremans, Els
Nichols, Thomas E.
Jahanshad, Neda
Mitchell, Braxton D.
Marcus, Daniel
Donohue, Brian
Glahn, David C
Kochunov, Peter
Elliot Hong, L.
Blangero, John
Medland, Sarah E.
Thompson, Paul M.
Van Essen, David C.
AuthorAffiliation 5 QIMR Berghofer Medical Research Institute Herston Australia
7 University of Texas Rio Grand Valley Harlingen Texas
2 Department of Medicine University of Maryland School of Medicine Baltimore Maryland
10 Department of Neuroscience, Washington University in St. Louis St. Louis Missouri
1 Present address: Maryland Psychiatric Research Center, Department of Psychiatry University of Maryland School of Medicine Baltimore Maryland
8 Center for Biomedical Imaging, Department of Radiology New York University School of Medicine New York New York
4 Department of Statistics University of Oxford Oxford United Kingdom
13 Big Data Science Institute, Department of Statistics University of Oxford Oxford United Kingdom
11 Olin Neuropsychiatry Research Center Institute of Living, Hartford Hospital Hartford Connecticut
9 Department of Radiology Washington University School of Medicine St. Louis Missouri
12 Department of Psychiatry Yale University School of Medicine New Haven Connecticut
6 Imaging Genetics Center,
AuthorAffiliation_xml – name: 10 Department of Neuroscience, Washington University in St. Louis St. Louis Missouri
– name: 12 Department of Psychiatry Yale University School of Medicine New Haven Connecticut
– name: 11 Olin Neuropsychiatry Research Center Institute of Living, Hartford Hospital Hartford Connecticut
– name: 1 Present address: Maryland Psychiatric Research Center, Department of Psychiatry University of Maryland School of Medicine Baltimore Maryland
– name: 9 Department of Radiology Washington University School of Medicine St. Louis Missouri
– name: 8 Center for Biomedical Imaging, Department of Radiology New York University School of Medicine New York New York
– name: 3 Geriatrics Research and Education Clinical Center Baltimore Veterans Administration Medical Center Baltimore Maryland
– name: 6 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Department of Neurology Keck School of Medicine, University of Southern California Los Angeles California
– name: 2 Department of Medicine University of Maryland School of Medicine Baltimore Maryland
– name: 13 Big Data Science Institute, Department of Statistics University of Oxford Oxford United Kingdom
– name: 5 QIMR Berghofer Medical Research Institute Herston Australia
– name: 7 University of Texas Rio Grand Valley Harlingen Texas
– name: 4 Department of Statistics University of Oxford Oxford United Kingdom
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0003-3656-4281
  surname: Kochunov
  fullname: Kochunov, Peter
  email: pkochunov@som.umaryland.edu
  organization: University of Maryland School of Medicine
– sequence: 2
  givenname: Brian
  surname: Donohue
  fullname: Donohue, Brian
  organization: University of Maryland School of Medicine
– sequence: 3
  givenname: Braxton D.
  surname: Mitchell
  fullname: Mitchell, Braxton D.
  organization: Baltimore Veterans Administration Medical Center
– sequence: 4
  givenname: Habib
  surname: Ganjgahi
  fullname: Ganjgahi, Habib
  organization: University of Oxford
– sequence: 5
  givenname: Bhim
  surname: Adhikari
  fullname: Adhikari, Bhim
  organization: University of Maryland School of Medicine
– sequence: 6
  givenname: Meghann
  surname: Ryan
  fullname: Ryan, Meghann
  organization: University of Maryland School of Medicine
– sequence: 7
  givenname: Sarah E.
  surname: Medland
  fullname: Medland, Sarah E.
  organization: QIMR Berghofer Medical Research Institute
– sequence: 8
  givenname: Neda
  surname: Jahanshad
  fullname: Jahanshad, Neda
  organization: Keck School of Medicine, University of Southern California
– sequence: 9
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: Keck School of Medicine, University of Southern California
– sequence: 10
  givenname: John
  surname: Blangero
  fullname: Blangero, John
  organization: University of Texas Rio Grand Valley
– sequence: 11
  givenname: Els
  surname: Fieremans
  fullname: Fieremans, Els
  organization: New York University School of Medicine
– sequence: 12
  givenname: Dmitry S.
  surname: Novikov
  fullname: Novikov, Dmitry S.
  organization: New York University School of Medicine
– sequence: 13
  givenname: Daniel
  surname: Marcus
  fullname: Marcus, Daniel
  organization: Washington University School of Medicine
– sequence: 14
  givenname: David C.
  surname: Van Essen
  fullname: Van Essen, David C.
  organization: Department of Neuroscience, Washington University in St. Louis
– sequence: 15
  givenname: David C
  orcidid: 0000-0002-4749-6977
  surname: Glahn
  fullname: Glahn, David C
  organization: Yale University School of Medicine
– sequence: 16
  givenname: L.
  surname: Elliot Hong
  fullname: Elliot Hong, L.
  organization: University of Maryland School of Medicine
– sequence: 17
  givenname: Thomas E.
  surname: Nichols
  fullname: Nichols, Thomas E.
  organization: University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30496643$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URNstB74AssSFVkprx06yuSDRClqkol7giKxZZ9J4SezUdqj22-OwW_5UwMkjze89Pb85JHvWWSTkBWennLH8rFsNp7mUVf2EHHBWVxnjtdib57LIalnxfXIYwpoxzgvGn5F9wWRdllIckC-XaN1gNP1qbOjMSLWzIfpJR-MsjY6i7cBqpLdoMSYOLPSbgIGatO6QdtMAdlZZ1NENSEfv1mmkDUQ4Ik9b6AM-370L8vn9u08XV9n1zeWHi7fXmZZS1BlIWcpK6hZTKNbkddtq1LxFaFeY4jdSV00FYgnIC94WvJSyKZhAXgoBCGJBTra-kx1hcw99r0ZvBvAbxZmaO1KpI_WjowS_2cLjtBqw0Wijh18CB0b9ubGmU7fumyrlUrBKJIPXOwPv7iYMUQ0maOx7sOimoHIuOSv4HG5BXj1C127yqcKZWpb1UuaSJerl74l-Rnk4UwLOtoD2LgSPrdImwnyiFND0f_3k8SPF_wrZud-bHjf_BtXV-cet4jvLPMLS
CitedBy_id crossref_primary_10_1093_cercor_bhaa174
crossref_primary_10_1016_j_biopsych_2023_03_009
crossref_primary_10_1038_s42003_020_0892_6
crossref_primary_10_1016_j_neuroimage_2021_118700
crossref_primary_10_1016_j_plrev_2024_07_003
crossref_primary_10_1007_s00221_021_06057_0
crossref_primary_10_1161_CIRCIMAGING_121_012943
crossref_primary_10_1002_ajmg_b_32840
crossref_primary_10_1016_j_neuroimage_2020_117067
crossref_primary_10_1002_hbm_70044
crossref_primary_10_1126_sciadv_abb3417
crossref_primary_10_1038_s41467_022_29886_1
Cites_doi 10.1016/j.neuroimage.2015.03.005
10.1016/j.neuroimage.2018.07.066
10.1016/j.neuroimage.2012.02.018
10.1038/ng.608
10.1016/j.neuroimage.2013.05.033
10.1161/STROKEAHA.109.565390
10.1002/nbm.1020
10.3389/fgene.2012.00065
10.1161/01.HYP.0000154685.54766.2d
10.1002/mrm.20508
10.1073/pnas.1608246113
10.1016/j.neuroimage.2013.04.061
10.1097/ADM.0b013e3181af111e
10.1109/TMI.2009.2037915
10.1038/ng.3865
10.1016/j.neuroimage.2013.04.127
10.1002/mrm.25866
10.1002/oby.21946
10.1093/bioinformatics/btq559
10.1534/genetics.117.1122
10.1016/j.neuroimage.2006.02.024
10.1371/journal.pgen.0020041
10.1002/mrm.26054
10.1016/j.neuroimage.2015.10.050
10.1111/mono.12036
10.1038/ng.3097
10.1016/j.neuroimage.2009.12.028
10.1016/j.neuroimage.2016.08.016
10.3389/fgene.2015.00026
10.1371/journal.pgen.1003520
10.1002/(SICI)1098-2272(1997)14:6<953::AID-GEPI65>3.0.CO;2-K
10.1016/j.neuroimage.2013.05.012
10.1002/mrm.26059
10.1016/j.neuroimage.2013.05.057
10.1038/mp.2014.99
10.1017/S0033291710002072
10.1016/j.neuroimage.2014.12.009
10.1073/pnas.1313735110
10.1016/j.neuroimage.2009.09.052
10.1017/S0016672308009981
10.1002/mrm.10609
10.1161/HYPERTENSIONAHA.110.162206
10.1161/01.CIR.94.9.2159
10.1086/522934
10.1002/nbm.1518
10.1016/j.neuroimage.2013.05.077
10.1002/mrm.1910340618
10.1016/j.ajhg.2012.10.010
10.1016/j.neuroimage.2011.06.006
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.24479
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate KOCHUNOV et al
EISSN 1097-0193
EndPage 1688
ExternalDocumentID oai:pubmedcentral.nih.gov:6483073
PMC6483073
30496643
10_1002_hbm_24479
HBM24479
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Australian National Health and Medical Research Council
  funderid: APP1103623
– fundername: NIH Institutes and Centers
  funderid: 1U54MH091657
– fundername: NIH
  funderid: EB007813; EB008281; EB008432; U54 EB020403; R01 EB015611
– fundername: Foundation for the National Institutes of Health
  funderid: R01 EB015611
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: Wellcome Trust
– fundername: NIH HHS
  grantid: EB008432
– fundername: NIBIB NIH HHS
  grantid: U54 EB020403
– fundername: Australian National Health and Medical Research Council
  grantid: APP1103623
– fundername: NIMH NIH HHS
  grantid: U01 MH105632
– fundername: NIMH NIH HHS
  grantid: R01 MH116948
– fundername: NIMH NIH HHS
  grantid: R01 MH083824
– fundername: NIMH NIH HHS
  grantid: R01 MH078111
– fundername: NIH Institutes and Centers
  grantid: 1U54MH091657
– fundername: ;
  grantid: R01 EB015611
– fundername: ;
  grantid: EB007813; EB008281; EB008432; U54 EB020403; R01 EB015611
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFPKN
AFRAH
AFZJQ
AGXDD
AHMBA
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
7X7
8FI
8FJ
AANHP
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACCMX
ACRPL
ACSCC
ACYXJ
ADNMO
AFKRA
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
BENPR
CCPQU
CITATION
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
PUEGO
RIWAO
RJQFR
SAMSI
UKHRP
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
C45
CGR
CUY
CVF
ECM
EIF
NPM
RWD
RWI
WRC
WUP
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4439-a446474cfe6640d29ffcec1feafbe471d4c7d7a38ae151f51644d503e1633aea3
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 03:58:50 EDT 2025
Tue Sep 30 16:51:08 EDT 2025
Thu Oct 02 10:52:01 EDT 2025
Tue Oct 07 06:35:10 EDT 2025
Wed Feb 19 02:31:03 EST 2025
Thu Apr 24 23:07:57 EDT 2025
Wed Oct 01 01:55:38 EDT 2025
Thu Sep 25 07:33:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords pedigree
DTI
diffusion
imaging genetics
DWI
human connectome project
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-a446474cfe6640d29ffcec1feafbe471d4c7d7a38ae151f51644d503e1633aea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Peter Kochunov and Brian Donohue have contributed equally to this work.
Funding information Foundation for the National Institutes of Health, Grant/Award Number: R01 EB015611; NIH Institutes and Centers, Grant/Award Number: 1U54MH091657; Australian National Health and Medical Research Council, Grant/Award Number: APP1103623; NIH, Grant/Award Numbers: EB007813, EB008281, EB008432, U54 EB020403, R01 EB015611
ORCID 0000-0002-4749-6977
0000-0003-3656-4281
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6483073
PMID 30496643
PQID 2186984240
PQPubID 996345
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_hbm_24479
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6483073
proquest_miscellaneous_2141051163
proquest_journals_2186984240
pubmed_primary_30496643
crossref_citationtrail_10_1002_hbm_24479
crossref_primary_10_1002_hbm_24479
wiley_primary_10_1002_hbm_24479_HBM24479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 1, 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 53
2015; 6
2009; 40
2006; 31
2018; 183
2017; 25
2017b; 49
2015; 125
2013; 62
1995; 34
2016b; 76
2011a; 5
2016; 76
1996; 94
2006; 19
2014; 46
2011; 58
2006; 2
2003; 50
2010; 41
2005; 45
2013; 9
2014; 20
2014; 107
2010; 23
2017; 207
2012; 91
2010; 42
2010; 49
2014; 80
2012; 3
2010; 26
2015; 115
2009; 91
2010; 29
2013; 78
1997; 14
2011b; 57
2013; 80
2016; 113
2005; 53
2013; 81
2017a; 49
2007; 81
2013; 110
2010; 4
2016a; 76
2016c; 142
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
Kochunov P. (e_1_2_8_20_1) 2011; 5
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 14
  start-page: 953
  issue: 6
  year: 1997
  end-page: 958
  article-title: Bivariate quantitative trait linkage analysis: Pleiotropy versus co‐incident linkages
  publication-title: Genetic Epidemiology
– volume: 50
  start-page: 1077
  issue: 5
  year: 2003
  end-page: 1088
  article-title: Characterization and propagation of uncertainty in diffusion‐weighted MR imaging
  publication-title: Magnetic Resonance in Medicine
– volume: 25
  start-page: 1876
  issue: 11
  year: 2017
  end-page: 1880
  article-title: Lipid metabolism, abdominal adiposity and cerebral health in the Amish
  publication-title: Obesity (Silver Spring, Md.)
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  article-title: Advances in diffusion MRI acquisition and processing in the human Connectome project
  publication-title: NeuroImage
– volume: 115
  start-page: 256
  year: 2015
  end-page: 268
  article-title: Fast and powerful heritability inference for family‐based neuroimaging studies
  publication-title: NeuroImage
– volume: 40
  start-page: 3685
  issue: 12
  year: 2009
  end-page: 3690
  article-title: Analysis of genetic variability and whole genome linkage of whole‐brain, subcortical and ependymal Hyperintense white matter volume
  publication-title: Stroke
– volume: 207
  start-page: 75
  issue: 1
  year: 2017
  end-page: 82
  article-title: Benchmarking relatedness inference methods with genome‐wide data from thousands of relatives
  publication-title: Genetics
– volume: 3
  start-page: 65
  year: 2012
  article-title: P‐selectin expression tracks cerebral atrophy in Mexican‐Americans
  publication-title: Frontiers in Genetics
– volume: 78
  start-page: 88
  issue: 4
  year: 2013
  end-page: 102
  article-title: VI. NIH toolbox cognition battery (CB): Measuring processing speed
  publication-title: Monographs of the Society for Research in Child Development
– volume: 2
  start-page: e41
  issue: 3
  year: 2006
  article-title: Assumption‐free estimation of heritability from genome‐wide identity‐by‐descent sharing between full siblings
  publication-title: PLoS Genetics
– volume: 41
  start-page: 1497
  issue: 7
  year: 2010
  end-page: 1505
  article-title: Common genetic and environmental contributions to post‐traumatic stress disorder and alcohol dependence in young women
  publication-title: Psychological Medicine
– volume: 49
  start-page: 986
  year: 2017b
  end-page: 992
  article-title: Reevaluation of SNP heritability in complex human traits
  publication-title: Nature Genetics
– volume: 81
  start-page: 1104
  issue: 5
  year: 2007
  end-page: 1110
  article-title: Genome partitioning of genetic variation for height from 11,214 sibling pairs
  publication-title: American Journal of Human Genetics
– volume: 46
  start-page: 1173
  issue: 11
  year: 2014
  end-page: 1186
  article-title: Defining the role of common variation in the genomic and biological architecture of adult human height
  publication-title: Nature Genetics
– volume: 4
  start-page: 55
  issue: 1
  year: 2010
  end-page: 60
  article-title: Nicotine addiction in light smoking African American mothers
  publication-title: Journal of Addiction Medicine
– volume: 80
  start-page: 80
  year: 2013
  end-page: 104
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the human Connectome project
  publication-title: NeuroImage
– volume: 142
  start-page: 394
  year: 2016c
  end-page: 406
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: NeuroImage
– volume: 80
  start-page: 202
  year: 2013
  end-page: 219
  article-title: Human Connectome project informatics: Quality control, database services, and data visualization
  publication-title: NeuroImage
– volume: 62
  start-page: 2222
  issue: 4
  year: 2013
  end-page: 2231
  article-title: The human connectome project: A data acquisition perspective
  publication-title: NeuroImage
– volume: 76
  start-page: 1574
  issue: 5
  year: 2016
  end-page: 1581
  article-title: Gibbs‐ringing artifact removal based on local subvoxel‐shifts
  publication-title: Magnetic Resonance in Medicine
– volume: 53
  start-page: 1135
  issue: 3
  year: 2010
  end-page: 1146
  article-title: Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies
  publication-title: NeuroImage
– volume: 107
  start-page: 242
  year: 2014
  end-page: 256
  article-title: One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI?
  publication-title: NeuroImage
– volume: 31
  start-page: 1487
  issue: 4
  year: 2006
  end-page: 1505
  article-title: Tract‐based spatial statistics: Voxelwise analysis of multi‐subject diffusion data
  publication-title: NeuroImage
– volume: 76
  start-page: 301
  issue: 1
  year: 2016a
  end-page: 314
  article-title: Gibbs ringing in diffusion MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 80
  start-page: 169
  year: 2014
  end-page: 189
  article-title: Function in the human connectome: Task‐fMRI and individual differences in behavior
  publication-title: NeuroImage
– volume: 45
  start-page: 793
  issue: 4
  year: 2005
  end-page: 798
  article-title: Genomic susceptibility loci for brain atrophy in hypertensive sibships from the GENOA study
  publication-title: Hypertension
– volume: 34
  start-page: 910
  issue: 6
  year: 1995
  end-page: 914
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magnetic Resonance in Medicine
– volume: 20
  start-page: 1011
  issue: 8
  year: 2014
  end-page: 1016
  article-title: Genomic architecture of human neuroanatomical diversity
  publication-title: Molecular Psychiatry
– volume: 42
  start-page: 565
  issue: 7
  year: 2010
  end-page: 569
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nature Genetics
– volume: 113
  start-page: 13504
  issue: 47
  year: 2016
  end-page: 13509
  article-title: Diffusion‐weighted imaging uncovers likely sources of processing‐speed deficits in schizophrenia
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 183
  start-page: 532
  year: 2018
  end-page: 543
  article-title: Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline
  publication-title: NeuroImage
– volume: 9
  start-page: e1003520
  issue: 5
  year: 2013
  article-title: Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits
  publication-title: PLoS Genetics
– volume: 76
  start-page: 1582
  issue: 5
  year: 2016b
  end-page: 1593
  article-title: Diffusion MRI noise mapping using random matrix theory
  publication-title: Magnetic Resonance in Medicine
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 57
  start-page: 330
  issue: 2
  year: 2011b
  end-page: 335
  article-title: Blood pressure and cerebral white matter share common genetic factors in Mexican Americans
  publication-title: Hypertension
– volume: 91
  start-page: 1011
  issue: 6
  year: 2012
  end-page: 1021
  article-title: Improved heritability estimation from genome‐wide SNPs
  publication-title: American Journal of Human Genetics
– volume: 110
  start-page: 19006
  issue: 47
  year: 2013
  end-page: 19011
  article-title: Genetic basis of neurocognitive decline and reduced white‐matter integrity in normal human brain aging
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 6
  start-page: 26
  year: 2015
  article-title: Shared genetic variance between obesity and white matter integrity in Mexican Americans
  publication-title: Frontiers in Genetics
– volume: 26
  start-page: 2867
  issue: 22
  year: 2010
  end-page: 2873
  article-title: Robust relationship inference in genome‐wide association studies
  publication-title: Bioinformatics
– volume: 49
  start-page: 986
  issue: 7
  year: 2017a
  end-page: 992
  article-title: Re‐evaluation of SNP heritability in complex human traits
  publication-title: Nature Genetics
– volume: 5
  start-page: 1
  issue: 120
  year: 2011a
  end-page: 15
  article-title: Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain
  publication-title: Frontiers in Neuroscience
– volume: 58
  start-page: 177
  year: 2011
  end-page: 188
  article-title: White matter characterization with diffusional kurtosis imaging
  publication-title: NeuroImage
– volume: 53
  start-page: 1432
  issue: 6
  year: 2005
  end-page: 1440
  article-title: Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magnetic Resonance in Medicine
– volume: 94
  start-page: 2159
  issue: 9
  year: 1996
  end-page: 2170
  article-title: Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio family heart study
  publication-title: Circulation
– volume: 29
  start-page: 819
  issue: 3
  year: 2010
  end-page: 829
  article-title: Optimal experimental design for diffusion kurtosis imaging
  publication-title: IEEE Transactions on Medical Imaging
– volume: 91
  start-page: 47
  issue: 1
  year: 2009
  end-page: 60
  article-title: Increased accuracy of artificial selection by using the realized relationship matrix
  publication-title: Genetics Research
– volume: 23
  start-page: 698
  issue: 7
  year: 2010
  end-page: 710
  article-title: MRI quantification of non‐Gaussian water diffusion by kurtosis analysis
  publication-title: NMR in Biomedicine
– volume: 125
  start-page: 189
  year: 2015
  end-page: 197
  article-title: The common genetic influence over processing speed and white matter microstructure: Evidence from the old order Amish and human Connectome projects
  publication-title: NeuroImage
– volume: 81
  start-page: 455
  year: 2013
  end-page: 469
  article-title: Multi‐site Genetic Analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA‐DTI working Group
  publication-title: Neuroimage
– volume: 49
  start-page: 1190
  issue: 2
  year: 2010
  end-page: 1199
  article-title: Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging
  publication-title: NeuroImage
– volume: 19
  start-page: 236
  issue: 2
  year: 2006
  end-page: 247
  article-title: Three‐dimensional characterization of non‐gaussian water diffusion in humans using diffusion kurtosis imaging
  publication-title: NMR in Biomedicine
– ident: e_1_2_8_9_1
  doi: 10.1016/j.neuroimage.2015.03.005
– ident: e_1_2_8_2_1
  doi: 10.1016/j.neuroimage.2018.07.066
– ident: e_1_2_8_43_1
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: e_1_2_8_51_1
  doi: 10.1038/ng.608
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: e_1_2_8_21_1
  doi: 10.1161/STROKEAHA.109.565390
– ident: e_1_2_8_26_1
  doi: 10.1002/nbm.1020
– ident: e_1_2_8_22_1
  doi: 10.3389/fgene.2012.00065
– ident: e_1_2_8_41_1
  doi: 10.1161/01.HYP.0000154685.54766.2d
– ident: e_1_2_8_17_1
  doi: 10.1002/mrm.20508
– ident: e_1_2_8_24_1
  doi: 10.1073/pnas.1608246113
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuroimage.2013.04.061
– ident: e_1_2_8_7_1
  doi: 10.1097/ADM.0b013e3181af111e
– ident: e_1_2_8_30_1
  doi: 10.1109/TMI.2009.2037915
– ident: e_1_2_8_37_1
  doi: 10.1038/ng.3865
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.25866
– ident: e_1_2_8_32_1
  doi: 10.1002/oby.21946
– ident: e_1_2_8_27_1
  doi: 10.1093/bioinformatics/btq559
– ident: e_1_2_8_31_1
  doi: 10.1534/genetics.117.1122
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2006.02.024
– ident: e_1_2_8_48_1
  doi: 10.1371/journal.pgen.0020041
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.26054
– ident: e_1_2_8_25_1
  doi: 10.1016/j.neuroimage.2015.10.050
– ident: e_1_2_8_6_1
  doi: 10.1111/mono.12036
– ident: e_1_2_8_50_1
  doi: 10.1038/ng.3097
– ident: e_1_2_8_49_1
  doi: 10.1016/j.neuroimage.2009.12.028
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2016.08.016
– ident: e_1_2_8_39_1
  doi: 10.3389/fgene.2015.00026
– ident: e_1_2_8_52_1
  doi: 10.1371/journal.pgen.1003520
– ident: e_1_2_8_3_1
  doi: 10.1002/(SICI)1098-2272(1997)14:6<953::AID-GEPI65>3.0.CO;2-K
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuroimage.2013.05.012
– volume: 5
  start-page: 1
  issue: 120
  year: 2011
  ident: e_1_2_8_20_1
  article-title: Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain
  publication-title: Frontiers in Neuroscience
– ident: e_1_2_8_45_1
  doi: 10.1002/mrm.26059
– ident: e_1_2_8_35_1
  doi: 10.1016/j.neuroimage.2013.05.057
– ident: e_1_2_8_40_1
  doi: 10.1038/mp.2014.99
– ident: e_1_2_8_33_1
  doi: 10.1017/S0033291710002072
– ident: e_1_2_8_15_1
  doi: 10.1016/j.neuroimage.2014.12.009
– ident: e_1_2_8_10_1
  doi: 10.1073/pnas.1313735110
– ident: e_1_2_8_19_1
  doi: 10.1016/j.neuroimage.2009.09.052
– ident: e_1_2_8_13_1
  doi: 10.1017/S0016672308009981
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.10609
– ident: e_1_2_8_23_1
  doi: 10.1161/HYPERTENSIONAHA.110.162206
– ident: e_1_2_8_29_1
  doi: 10.1161/01.CIR.94.9.2159
– ident: e_1_2_8_47_1
  doi: 10.1086/522934
– ident: e_1_2_8_16_1
  doi: 10.1002/nbm.1518
– ident: e_1_2_8_28_1
  doi: 10.1016/j.neuroimage.2013.05.077
– ident: e_1_2_8_36_1
  doi: 10.1038/ng.3865
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ajhg.2012.10.010
– ident: e_1_2_8_8_1
  doi: 10.1016/j.neuroimage.2011.06.006
SSID ssj0011501
Score 2.3517423
Snippet Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1677
SubjectTerms Adult
Alleles
Biological activity
Brain
Chromosomes - genetics
Chromosomes - ultrastructure
Cognition
Cognition - physiology
Connectome - methods
Correlation
Data imaging
Data processing
diffusion
Diffusion Tensor Imaging
Domains
DTI
DWI
Empirical analysis
Estimates
Female
Functional anatomy
Genetic analysis
Genetic control
Genetics
Genome-Wide Association Study
Genomes
Genomics - methods
Genotype
Heritability
human connectome project
Humans
imaging genetics
Male
Mathematical analysis
Models, Genetic
Neuroimaging
Pedigree
Polygenic inheritance
Polymorphism, Single Nucleotide - genetics
Registries
Single-nucleotide polymorphism
Solar eclipses
Structure-function relationships
Twins
Young Adult
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NewBe-NiAZYzJfAjtJV3SOHGsPW2IUSGVB8SkPYAi27koFa1bqa2m8dfv7HxMZYAQb5V8UWrnd77f2eefAd6WFOZMrKPQxORNnJcYyipJwwhNKk0sRKJdojj-nI0u-KfL9HILTrqzMI0-RL_g5jzDz9fOwZVeHt-KhtZ6NqDYJNzhvTjJfDr1pZeOckTHJ1sUYkNJM3CnKhQNj_snN2PRHYJ5t07y_tou1PWVmk43uawPRueP4FvXjaYG5cdgvdID8_MXhcf_7OdjeNiSVHbaoOoJbKHdgd1TSwn67Jq9Y75s1K_H78C9cbs7vwvfP6I_5Mxc3U09WTAzv9WnZas5Q1s7kDECrTs7yZRXRMElm1BzjcxfGOiesm4vYYasXSdiro71KVycf_j6fhS21zeEhhPNCRVlmlxwU2GW8agcyqoyaOIKVaWRvkjJjSiFSnKFRDuqlBI3XqZRgkQRE4UqeQbbdm5xD5hRUscZRkJWOU80Sgq7Js2zXBlKeIQM4Kj7kIVptc3dFRvTolFlHhY0ioUfxQBe96aLRtDjd0YHHRqK1qeXhb-9K-dEgQJ41TeTN7otFmVxvnY2rmw2ph4E8LwBT_8Wt6FJI0EtYgNWvYFT-t5ssZPaK35nPHdzcQBvegD-7c8feTz92aIYnY39j_1_N30BD4gryqZo6QC2CT34kvjYSh96x7sB4XQyaQ
  priority: 102
  providerName: Wiley-Blackwell
Title Genomic kinship construction to enhance genetic analyses in the human connectome project data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24479
https://www.ncbi.nlm.nih.gov/pubmed/30496643
https://www.proquest.com/docview/2186984240
https://www.proquest.com/docview/2141051163
https://pubmed.ncbi.nlm.nih.gov/PMC6483073
https://www.ncbi.nlm.nih.gov/pmc/articles/6483073
UnpaywallVersion submittedVersion
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQS8DNgYBMZkPoT2kjRpnK_HghgVUic0UWk8oMh2bpSKxq20VtP49Vw7H1AGCN4q-bZN4mPdc3OPjwFeFZTmVCB9VwW0mjgv0M3KMHJ9VFGmgiQJpSkUp2fxZMY_XEQXOxB0e2GsaF_JuacXtafnldVWrmo17HRiw5inBpe3YDeOiH4PYHd29nH82XY148jN2iLLNy6jxE46NyF_NKxk7VE2M6qtn3PQDWJ5Ux95Z6NX4vpKLBbbHNYmodN7cN5dfqM9-ept1tJT335xdvyv-7sPey0lZeNm6AHsoN6Hg7Gmcry-Zq-ZFYnat-_7cHva9uIP4Mt7tFuamVHZVPMVU8sfbrRsvWSoKwMpRhA1OyWZsP4neMnmNFwhs8cDmm9p0zmokbVvhZhRrT6E2em7T28nbntYg6s4kRpXUF3JE65KjGPuF6OsLBWqoERRSqQ5KbhKikSEqUAiGWVEZRovIj9EIoShQBEewkAvNT4GpkQmgxj9JCtTHkrMKMmqKI1Toai8STIHTrrpy1XrZG4O1FjkjQfzKKeZzu1MO_CiD1019h2_CzrqMJC3K_gyt2d1pZwIjwPP-2Fae6ahIjQuNybGiGQDugMHHjWQ6f_FtC_pSdBIsgWmPsD4em-PEBysv3eLAAde9rD728WfWED-OSKfvJnaD0_-6Qefwl0ihVmjTjqCAQEHnxHxWstjKjnOR8ftgvsO1hYunw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gJuILIIhWQdePGF56tNftxya8oBFP5XgwkPBCmu12ml68613CXQj-9c5sP8iJGuNbk52m3d2Znd_Mzv4W4G1Obs74mecan6xJyhxdVQSh66EJlfHjOMg4UByeRoNz-eUivFiBw_YsTM0P0SXc2DLses0Gzgnpg1vW0DKb9Mg5xeoe3JcRxSkMib515FEMdWy4RU7WVbQGt7xCXv-ge3XZG92BmHcrJdcW1UzfXOvxeBnNWnd0vAGXbUfqKpTvvcU865kfv3A8_m9PN2G9waniqFasR7CC1RZsH1UUo09uxDthK0dtSn4LHgybDfptuPyE9pyz4NKbcjQTZnpLUSvmU4FVyXomSG_5-KTQlhQFr8SImksU9s5Afqvi7YQJiiZVJLiU9TGcH388-zBwmxscXCMJ6biagk0ZS1NgRBOU91VRGDR-gbrIkKYklybOYx0kGgl5FCHFbjIPvQAJJQYadbADq9W0wqcgjFaZH6EXqyKRQYaKPK8JkyjRhmKeWDmw385kahp6c75lY5zWxMz9lEYxtaPowOtOdFZzevxOaLdVh7Qx66vUXuCVSEJBDrzqmskgeZdFVzhdsAxXzvrUAwee1NrTfYX3NGkkqCVe0qtOgMm-l1uqUWlJvyOZ8HLswJtOA__28_tWof4skQ7eD-3Ds38XfQlrg7PhSXry-fTrc3hI0FHVNUy7sEqahHsEz-bZC2uFPwHx3DaK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzR4gbFxCWxgLkJ7SZc0zsXSXgajlEsnhJi0lylynGOlonUrrRUav55j5zKVAUK8VfKJUjvf8fmOffwZ4GVJYU6FReCrkLyJ8xJ9oaPYD1DFQoVpGhU2URydJMNT_uEsPluDw_YsTK0P0S24Wc9w87V1cJyX-uBKNbQqpj0KTqm4ARs8Fpkt6Dv-0olHWarj0i0Ksr6gObjVFQr6B92jq9HoGsW8Xil5c2nm8vK7nExW2awLR4M7cN52pK5C-dZbLoqe-vGLxuP_9nQLbjc8lR3VwLoLa2i2YefIUI4-vWSvmKscdUvy27A5ajbod-D8HbpzzsyW3lTjOVOzK4latpgxNJXFGSPc2uOTTDpRFLxgY2qukLk7A-1Txm4nTJE1S0XMlrLeg9PB269vhn5zg4OvODEdX1KyyVOuNCYJD8q-0FqhCjVKXSB9kpKrtExllEkk5qFjyt14GQcREkuMJMroPqybmcGHwJQURZhgkAqd8ahAQZFXxVmSSUU5Tyo82G-_ZK4aeXN7y8Ykr4WZ-zmNYu5G0YPnnem81vT4ndFuC4e8ceuL3F3glXFiQR4865rJIe0uizQ4W1obWzkbUg88eFCjp3uL3dOkkaCWdAVXnYEV-15tMePKiX4nPLPTsQcvOgT-7c_vO0D92SIfvh65H4_-3fQpbH4-HuSf3p98fAy3iDmKuoRpF9YJSLhH7GxRPHFO-BNSETYO
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anQS8cNkYZBvIXIT2kjRpnNtjhxgVUieEqDQeUGQ7J0pF41ZaKzR-PcfOBboBgrdKPm2T-LPOd3I-fwZ4VVCaU4H0XRXQauK8QDcrw8j1UUWZCpIklKZQnJ7Hkxl_fxFd7EDQ7YWxon0l555e1J6eV1ZbuarVsNOJDWOeGlzegt04Ivo9gN3Z-YfxZ9vVjCM3a4ss37iMEjvp3IT80bCStUfZzKi2fs1BN4jlTX3knY1eiatvYrHY5rA2CZ3dh4_d5Tfak6_eZi099f2as-N_3d8DuNdSUjZuhh7CDuo92B9rKsfrK_aaWZGoffu-B7enbS9-H768Q7ulmRmVTTVfMbX86UbL1kuGujKQYgRRs1OSCet_gpdsTsMVMns8oPmWNp2DGln7VogZ1eojmJ29_fRm4raHNbiKE6lxBdWVPOGqxDjmfjHKylKhCkoUpUSak4KrpEhEmAokklFGVKbxIvJDJEIYChThAQz0UuMTYEpkMojRT7Iy5aHEjJKsitI4FYrKmyRz4KSbvly1TubmQI1F3ngwj3Ka6dzOtAMv-tBVY9_xu6DjDgN5u4Ivc3tWV8qJ8DjwvB-mtWcaKkLjcmNijEg2oDtw4HEDmf5fTPuSngSNJFtg6gOMr_f2CMHB-nu3CHDgZQ-7v138iQXknyPyyenUfjj8px88grtECrNGnXQMAwIOPiXitZbP2qX2A8Q5LbY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+kinship+construction+to+enhance+genetic+analyses+in+the+human+connectome+project+data&rft.jtitle=Human+brain+mapping&rft.au=Kochunov%2C+Peter&rft.au=Donohue%2C+Brian&rft.au=Mitchell%2C+Braxton+D.&rft.au=Ganjgahi%2C+Habib&rft.date=2019-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=5&rft.spage=1677&rft.epage=1688&rft_id=info:doi/10.1002%2Fhbm.24479&rft_id=info%3Apmid%2F30496643&rft.externalDocID=PMC6483073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon