Genomic kinship construction to enhance genetic analyses in the human connectome project data
Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using geno...
        Saved in:
      
    
          | Published in | Human brain mapping Vol. 40; no. 5; pp. 1677 - 1688 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.04.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1065-9471 1097-0193 1097-0193  | 
| DOI | 10.1002/hbm.24479 | 
Cover
| Abstract | Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using genome‐wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self‐reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self‐reported and empirical CR methods Kinship‐based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole‐genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self‐reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web‐based calculator (www.solar-eclipse-genetics.org/HCP). | 
    
|---|---|
| AbstractList | Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using genome‐wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self‐reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self‐reported and empirical CR methods Kinship‐based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole‐genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self‐reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web‐based calculator (http://www.solar-eclipse-genetics.org/HCP). Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using genome‐wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self‐reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self‐reported and empirical CR methods Kinship‐based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole‐genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self‐reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web‐based calculator (www.solar-eclipse-genetics.org/HCP). Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self-reported relatedness or calculated empirically using genome-wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self-reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self-reported and empirical CR methods Kinship-based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole-genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self-reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web-based calculator (www.solar-eclipse-genetics.org/HCP).Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self-reported relatedness or calculated empirically using genome-wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self-reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self-reported and empirical CR methods Kinship-based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole-genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self-reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web-based calculator (www.solar-eclipse-genetics.org/HCP). Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self‐reported relatedness or calculated empirically using genome‐wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self‐reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self‐reported and empirical CR methods Kinship‐based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole‐genome empirical CR were higher but remained significantly correlated ( r ∼0.9) with those obtained using self‐reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length ( r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web‐based calculator ( www.solar-eclipse-genetics.org/HCP ).  | 
    
| Author | Ryan, Meghann Adhikari, Bhim Ganjgahi, Habib Novikov, Dmitry S. Fieremans, Els Nichols, Thomas E. Jahanshad, Neda Mitchell, Braxton D. Marcus, Daniel Donohue, Brian Glahn, David C Kochunov, Peter Elliot Hong, L. Blangero, John Medland, Sarah E. Thompson, Paul M. Van Essen, David C.  | 
    
| AuthorAffiliation | 5 QIMR Berghofer Medical Research Institute Herston Australia 7 University of Texas Rio Grand Valley Harlingen Texas 2 Department of Medicine University of Maryland School of Medicine Baltimore Maryland 10 Department of Neuroscience, Washington University in St. Louis St. Louis Missouri 1 Present address: Maryland Psychiatric Research Center, Department of Psychiatry University of Maryland School of Medicine Baltimore Maryland 8 Center for Biomedical Imaging, Department of Radiology New York University School of Medicine New York New York 4 Department of Statistics University of Oxford Oxford United Kingdom 13 Big Data Science Institute, Department of Statistics University of Oxford Oxford United Kingdom 11 Olin Neuropsychiatry Research Center Institute of Living, Hartford Hospital Hartford Connecticut 9 Department of Radiology Washington University School of Medicine St. Louis Missouri 12 Department of Psychiatry Yale University School of Medicine New Haven Connecticut 6 Imaging Genetics Center,  | 
    
| AuthorAffiliation_xml | – name: 10 Department of Neuroscience, Washington University in St. Louis St. Louis Missouri – name: 12 Department of Psychiatry Yale University School of Medicine New Haven Connecticut – name: 11 Olin Neuropsychiatry Research Center Institute of Living, Hartford Hospital Hartford Connecticut – name: 1 Present address: Maryland Psychiatric Research Center, Department of Psychiatry University of Maryland School of Medicine Baltimore Maryland – name: 9 Department of Radiology Washington University School of Medicine St. Louis Missouri – name: 8 Center for Biomedical Imaging, Department of Radiology New York University School of Medicine New York New York – name: 3 Geriatrics Research and Education Clinical Center Baltimore Veterans Administration Medical Center Baltimore Maryland – name: 6 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Department of Neurology Keck School of Medicine, University of Southern California Los Angeles California – name: 2 Department of Medicine University of Maryland School of Medicine Baltimore Maryland – name: 13 Big Data Science Institute, Department of Statistics University of Oxford Oxford United Kingdom – name: 5 QIMR Berghofer Medical Research Institute Herston Australia – name: 7 University of Texas Rio Grand Valley Harlingen Texas – name: 4 Department of Statistics University of Oxford Oxford United Kingdom  | 
    
| Author_xml | – sequence: 1 givenname: Peter orcidid: 0000-0003-3656-4281 surname: Kochunov fullname: Kochunov, Peter email: pkochunov@som.umaryland.edu organization: University of Maryland School of Medicine – sequence: 2 givenname: Brian surname: Donohue fullname: Donohue, Brian organization: University of Maryland School of Medicine – sequence: 3 givenname: Braxton D. surname: Mitchell fullname: Mitchell, Braxton D. organization: Baltimore Veterans Administration Medical Center – sequence: 4 givenname: Habib surname: Ganjgahi fullname: Ganjgahi, Habib organization: University of Oxford – sequence: 5 givenname: Bhim surname: Adhikari fullname: Adhikari, Bhim organization: University of Maryland School of Medicine – sequence: 6 givenname: Meghann surname: Ryan fullname: Ryan, Meghann organization: University of Maryland School of Medicine – sequence: 7 givenname: Sarah E. surname: Medland fullname: Medland, Sarah E. organization: QIMR Berghofer Medical Research Institute – sequence: 8 givenname: Neda surname: Jahanshad fullname: Jahanshad, Neda organization: Keck School of Medicine, University of Southern California – sequence: 9 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: Keck School of Medicine, University of Southern California – sequence: 10 givenname: John surname: Blangero fullname: Blangero, John organization: University of Texas Rio Grand Valley – sequence: 11 givenname: Els surname: Fieremans fullname: Fieremans, Els organization: New York University School of Medicine – sequence: 12 givenname: Dmitry S. surname: Novikov fullname: Novikov, Dmitry S. organization: New York University School of Medicine – sequence: 13 givenname: Daniel surname: Marcus fullname: Marcus, Daniel organization: Washington University School of Medicine – sequence: 14 givenname: David C. surname: Van Essen fullname: Van Essen, David C. organization: Department of Neuroscience, Washington University in St. Louis – sequence: 15 givenname: David C orcidid: 0000-0002-4749-6977 surname: Glahn fullname: Glahn, David C organization: Yale University School of Medicine – sequence: 16 givenname: L. surname: Elliot Hong fullname: Elliot Hong, L. organization: University of Maryland School of Medicine – sequence: 17 givenname: Thomas E. surname: Nichols fullname: Nichols, Thomas E. organization: University of Oxford  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30496643$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU9v1DAQxS1URNstB74AssSFVkprx06yuSDRClqkol7giKxZZ9J4SezUdqj22-OwW_5UwMkjze89Pb85JHvWWSTkBWennLH8rFsNp7mUVf2EHHBWVxnjtdib57LIalnxfXIYwpoxzgvGn5F9wWRdllIckC-XaN1gNP1qbOjMSLWzIfpJR-MsjY6i7cBqpLdoMSYOLPSbgIGatO6QdtMAdlZZ1NENSEfv1mmkDUQ4Ik9b6AM-370L8vn9u08XV9n1zeWHi7fXmZZS1BlIWcpK6hZTKNbkddtq1LxFaFeY4jdSV00FYgnIC94WvJSyKZhAXgoBCGJBTra-kx1hcw99r0ZvBvAbxZmaO1KpI_WjowS_2cLjtBqw0Wijh18CB0b9ubGmU7fumyrlUrBKJIPXOwPv7iYMUQ0maOx7sOimoHIuOSv4HG5BXj1C127yqcKZWpb1UuaSJerl74l-Rnk4UwLOtoD2LgSPrdImwnyiFND0f_3k8SPF_wrZud-bHjf_BtXV-cet4jvLPMLS | 
    
| CitedBy_id | crossref_primary_10_1093_cercor_bhaa174 crossref_primary_10_1016_j_biopsych_2023_03_009 crossref_primary_10_1038_s42003_020_0892_6 crossref_primary_10_1016_j_neuroimage_2021_118700 crossref_primary_10_1016_j_plrev_2024_07_003 crossref_primary_10_1007_s00221_021_06057_0 crossref_primary_10_1161_CIRCIMAGING_121_012943 crossref_primary_10_1002_ajmg_b_32840 crossref_primary_10_1016_j_neuroimage_2020_117067 crossref_primary_10_1002_hbm_70044 crossref_primary_10_1126_sciadv_abb3417 crossref_primary_10_1038_s41467_022_29886_1  | 
    
| Cites_doi | 10.1016/j.neuroimage.2015.03.005 10.1016/j.neuroimage.2018.07.066 10.1016/j.neuroimage.2012.02.018 10.1038/ng.608 10.1016/j.neuroimage.2013.05.033 10.1161/STROKEAHA.109.565390 10.1002/nbm.1020 10.3389/fgene.2012.00065 10.1161/01.HYP.0000154685.54766.2d 10.1002/mrm.20508 10.1073/pnas.1608246113 10.1016/j.neuroimage.2013.04.061 10.1097/ADM.0b013e3181af111e 10.1109/TMI.2009.2037915 10.1038/ng.3865 10.1016/j.neuroimage.2013.04.127 10.1002/mrm.25866 10.1002/oby.21946 10.1093/bioinformatics/btq559 10.1534/genetics.117.1122 10.1016/j.neuroimage.2006.02.024 10.1371/journal.pgen.0020041 10.1002/mrm.26054 10.1016/j.neuroimage.2015.10.050 10.1111/mono.12036 10.1038/ng.3097 10.1016/j.neuroimage.2009.12.028 10.1016/j.neuroimage.2016.08.016 10.3389/fgene.2015.00026 10.1371/journal.pgen.1003520 10.1002/(SICI)1098-2272(1997)14:6<953::AID-GEPI65>3.0.CO;2-K 10.1016/j.neuroimage.2013.05.012 10.1002/mrm.26059 10.1016/j.neuroimage.2013.05.057 10.1038/mp.2014.99 10.1017/S0033291710002072 10.1016/j.neuroimage.2014.12.009 10.1073/pnas.1313735110 10.1016/j.neuroimage.2009.09.052 10.1017/S0016672308009981 10.1002/mrm.10609 10.1161/HYPERTENSIONAHA.110.162206 10.1161/01.CIR.94.9.2159 10.1086/522934 10.1002/nbm.1518 10.1016/j.neuroimage.2013.05.077 10.1002/mrm.1910340618 10.1016/j.ajhg.2012.10.010 10.1016/j.neuroimage.2011.06.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc.  | 
    
| Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/hbm.24479 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic  | 
    
| DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Anatomy & Physiology  | 
    
| DocumentTitleAlternate | KOCHUNOV et al | 
    
| EISSN | 1097-0193 | 
    
| EndPage | 1688 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6483073 PMC6483073 30496643 10_1002_hbm_24479 HBM24479  | 
    
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: Australian National Health and Medical Research Council funderid: APP1103623 – fundername: NIH Institutes and Centers funderid: 1U54MH091657 – fundername: NIH funderid: EB007813; EB008281; EB008432; U54 EB020403; R01 EB015611 – fundername: Foundation for the National Institutes of Health funderid: R01 EB015611 – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: Wellcome Trust – fundername: NIH HHS grantid: EB008432 – fundername: NIBIB NIH HHS grantid: U54 EB020403 – fundername: Australian National Health and Medical Research Council grantid: APP1103623 – fundername: NIMH NIH HHS grantid: U01 MH105632 – fundername: NIMH NIH HHS grantid: R01 MH116948 – fundername: NIMH NIH HHS grantid: R01 MH083824 – fundername: NIMH NIH HHS grantid: R01 MH078111 – fundername: NIH Institutes and Centers grantid: 1U54MH091657 – fundername: ; grantid: R01 EB015611 – fundername: ; grantid: EB007813; EB008281; EB008432; U54 EB020403; R01 EB015611  | 
    
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFGKR AFPKN AFRAH AFZJQ AGXDD AHMBA AIDQK AIDYY AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ 7X7 8FI 8FJ AANHP AAYXX ABEML ABJNI ABUWG ACBWZ ACCMX ACRPL ACSCC ACYXJ ADNMO AFKRA AGQPQ AIQQE ASPBG AVWKF AZFZN BENPR CCPQU CITATION FEDTE FYUFA GAKWD HF~ HMCUK HVGLF LW6 M6M PHGZM PHGZT PUEGO RIWAO RJQFR SAMSI UKHRP 33P AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV C45 CGR CUY CVF ECM EIF NPM RWD RWI WRC WUP 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4439-a446474cfe6640d29ffcec1feafbe471d4c7d7a38ae151f51644d503e1633aea3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1065-9471 1097-0193  | 
    
| IngestDate | Sun Oct 26 03:58:50 EDT 2025 Tue Sep 30 16:51:08 EDT 2025 Thu Oct 02 10:52:01 EDT 2025 Tue Oct 07 06:35:10 EDT 2025 Wed Feb 19 02:31:03 EST 2025 Thu Apr 24 23:07:57 EDT 2025 Wed Oct 01 01:55:38 EDT 2025 Thu Sep 25 07:33:56 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | pedigree DTI diffusion imaging genetics DWI human connectome project  | 
    
| Language | English | 
    
| License | 2018 Wiley Periodicals, Inc. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4439-a446474cfe6640d29ffcec1feafbe471d4c7d7a38ae151f51644d503e1633aea3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Peter Kochunov and Brian Donohue have contributed equally to this work. Funding information Foundation for the National Institutes of Health, Grant/Award Number: R01 EB015611; NIH Institutes and Centers, Grant/Award Number: 1U54MH091657; Australian National Health and Medical Research Council, Grant/Award Number: APP1103623; NIH, Grant/Award Numbers: EB007813, EB008281, EB008432, U54 EB020403, R01 EB015611  | 
    
| ORCID | 0000-0002-4749-6977 0000-0003-3656-4281  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6483073 | 
    
| PMID | 30496643 | 
    
| PQID | 2186984240 | 
    
| PQPubID | 996345 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_hbm_24479 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6483073 proquest_miscellaneous_2141051163 proquest_journals_2186984240 pubmed_primary_30496643 crossref_citationtrail_10_1002_hbm_24479 crossref_primary_10_1002_hbm_24479 wiley_primary_10_1002_hbm_24479_HBM24479  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 1, 2019 | 
    
| PublicationDateYYYYMMDD | 2019-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2019 text: April 1, 2019 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio  | 
    
| PublicationTitle | Human brain mapping | 
    
| PublicationTitleAlternate | Hum Brain Mapp | 
    
| PublicationYear | 2019 | 
    
| Publisher | John Wiley & Sons, Inc | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc | 
    
| References | 2010; 53 2015; 6 2009; 40 2006; 31 2018; 183 2017; 25 2017b; 49 2015; 125 2013; 62 1995; 34 2016b; 76 2011a; 5 2016; 76 1996; 94 2006; 19 2014; 46 2011; 58 2006; 2 2003; 50 2010; 41 2005; 45 2013; 9 2014; 20 2014; 107 2010; 23 2017; 207 2012; 91 2010; 42 2010; 49 2014; 80 2012; 3 2010; 26 2015; 115 2009; 91 2010; 29 2013; 78 1997; 14 2011b; 57 2013; 80 2016; 113 2005; 53 2013; 81 2017a; 49 2007; 81 2013; 110 2010; 4 2016a; 76 2016c; 142 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 Kochunov P. (e_1_2_8_20_1) 2011; 5 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1  | 
    
| References_xml | – volume: 14 start-page: 953 issue: 6 year: 1997 end-page: 958 article-title: Bivariate quantitative trait linkage analysis: Pleiotropy versus co‐incident linkages publication-title: Genetic Epidemiology – volume: 50 start-page: 1077 issue: 5 year: 2003 end-page: 1088 article-title: Characterization and propagation of uncertainty in diffusion‐weighted MR imaging publication-title: Magnetic Resonance in Medicine – volume: 25 start-page: 1876 issue: 11 year: 2017 end-page: 1880 article-title: Lipid metabolism, abdominal adiposity and cerebral health in the Amish publication-title: Obesity (Silver Spring, Md.) – volume: 80 start-page: 125 year: 2013 end-page: 143 article-title: Advances in diffusion MRI acquisition and processing in the human Connectome project publication-title: NeuroImage – volume: 115 start-page: 256 year: 2015 end-page: 268 article-title: Fast and powerful heritability inference for family‐based neuroimaging studies publication-title: NeuroImage – volume: 40 start-page: 3685 issue: 12 year: 2009 end-page: 3690 article-title: Analysis of genetic variability and whole genome linkage of whole‐brain, subcortical and ependymal Hyperintense white matter volume publication-title: Stroke – volume: 207 start-page: 75 issue: 1 year: 2017 end-page: 82 article-title: Benchmarking relatedness inference methods with genome‐wide data from thousands of relatives publication-title: Genetics – volume: 3 start-page: 65 year: 2012 article-title: P‐selectin expression tracks cerebral atrophy in Mexican‐Americans publication-title: Frontiers in Genetics – volume: 78 start-page: 88 issue: 4 year: 2013 end-page: 102 article-title: VI. NIH toolbox cognition battery (CB): Measuring processing speed publication-title: Monographs of the Society for Research in Child Development – volume: 2 start-page: e41 issue: 3 year: 2006 article-title: Assumption‐free estimation of heritability from genome‐wide identity‐by‐descent sharing between full siblings publication-title: PLoS Genetics – volume: 41 start-page: 1497 issue: 7 year: 2010 end-page: 1505 article-title: Common genetic and environmental contributions to post‐traumatic stress disorder and alcohol dependence in young women publication-title: Psychological Medicine – volume: 49 start-page: 986 year: 2017b end-page: 992 article-title: Reevaluation of SNP heritability in complex human traits publication-title: Nature Genetics – volume: 81 start-page: 1104 issue: 5 year: 2007 end-page: 1110 article-title: Genome partitioning of genetic variation for height from 11,214 sibling pairs publication-title: American Journal of Human Genetics – volume: 46 start-page: 1173 issue: 11 year: 2014 end-page: 1186 article-title: Defining the role of common variation in the genomic and biological architecture of adult human height publication-title: Nature Genetics – volume: 4 start-page: 55 issue: 1 year: 2010 end-page: 60 article-title: Nicotine addiction in light smoking African American mothers publication-title: Journal of Addiction Medicine – volume: 80 start-page: 80 year: 2013 end-page: 104 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the human Connectome project publication-title: NeuroImage – volume: 142 start-page: 394 year: 2016c end-page: 406 article-title: Denoising of diffusion MRI using random matrix theory publication-title: NeuroImage – volume: 80 start-page: 202 year: 2013 end-page: 219 article-title: Human Connectome project informatics: Quality control, database services, and data visualization publication-title: NeuroImage – volume: 62 start-page: 2222 issue: 4 year: 2013 end-page: 2231 article-title: The human connectome project: A data acquisition perspective publication-title: NeuroImage – volume: 76 start-page: 1574 issue: 5 year: 2016 end-page: 1581 article-title: Gibbs‐ringing artifact removal based on local subvoxel‐shifts publication-title: Magnetic Resonance in Medicine – volume: 53 start-page: 1135 issue: 3 year: 2010 end-page: 1146 article-title: Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies publication-title: NeuroImage – volume: 107 start-page: 242 year: 2014 end-page: 256 article-title: One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI? publication-title: NeuroImage – volume: 31 start-page: 1487 issue: 4 year: 2006 end-page: 1505 article-title: Tract‐based spatial statistics: Voxelwise analysis of multi‐subject diffusion data publication-title: NeuroImage – volume: 76 start-page: 301 issue: 1 year: 2016a end-page: 314 article-title: Gibbs ringing in diffusion MRI publication-title: Magnetic Resonance in Medicine – volume: 80 start-page: 169 year: 2014 end-page: 189 article-title: Function in the human connectome: Task‐fMRI and individual differences in behavior publication-title: NeuroImage – volume: 45 start-page: 793 issue: 4 year: 2005 end-page: 798 article-title: Genomic susceptibility loci for brain atrophy in hypertensive sibships from the GENOA study publication-title: Hypertension – volume: 34 start-page: 910 issue: 6 year: 1995 end-page: 914 article-title: The Rician distribution of noisy MRI data publication-title: Magnetic Resonance in Medicine – volume: 20 start-page: 1011 issue: 8 year: 2014 end-page: 1016 article-title: Genomic architecture of human neuroanatomical diversity publication-title: Molecular Psychiatry – volume: 42 start-page: 565 issue: 7 year: 2010 end-page: 569 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nature Genetics – volume: 113 start-page: 13504 issue: 47 year: 2016 end-page: 13509 article-title: Diffusion‐weighted imaging uncovers likely sources of processing‐speed deficits in schizophrenia publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 183 start-page: 532 year: 2018 end-page: 543 article-title: Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline publication-title: NeuroImage – volume: 9 start-page: e1003520 issue: 5 year: 2013 article-title: Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits publication-title: PLoS Genetics – volume: 76 start-page: 1582 issue: 5 year: 2016b end-page: 1593 article-title: Diffusion MRI noise mapping using random matrix theory publication-title: Magnetic Resonance in Medicine – volume: 80 start-page: 105 year: 2013 end-page: 124 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 57 start-page: 330 issue: 2 year: 2011b end-page: 335 article-title: Blood pressure and cerebral white matter share common genetic factors in Mexican Americans publication-title: Hypertension – volume: 91 start-page: 1011 issue: 6 year: 2012 end-page: 1021 article-title: Improved heritability estimation from genome‐wide SNPs publication-title: American Journal of Human Genetics – volume: 110 start-page: 19006 issue: 47 year: 2013 end-page: 19011 article-title: Genetic basis of neurocognitive decline and reduced white‐matter integrity in normal human brain aging publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 start-page: 26 year: 2015 article-title: Shared genetic variance between obesity and white matter integrity in Mexican Americans publication-title: Frontiers in Genetics – volume: 26 start-page: 2867 issue: 22 year: 2010 end-page: 2873 article-title: Robust relationship inference in genome‐wide association studies publication-title: Bioinformatics – volume: 49 start-page: 986 issue: 7 year: 2017a end-page: 992 article-title: Re‐evaluation of SNP heritability in complex human traits publication-title: Nature Genetics – volume: 5 start-page: 1 issue: 120 year: 2011a end-page: 15 article-title: Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain publication-title: Frontiers in Neuroscience – volume: 58 start-page: 177 year: 2011 end-page: 188 article-title: White matter characterization with diffusional kurtosis imaging publication-title: NeuroImage – volume: 53 start-page: 1432 issue: 6 year: 2005 end-page: 1440 article-title: Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging publication-title: Magnetic Resonance in Medicine – volume: 94 start-page: 2159 issue: 9 year: 1996 end-page: 2170 article-title: Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio family heart study publication-title: Circulation – volume: 29 start-page: 819 issue: 3 year: 2010 end-page: 829 article-title: Optimal experimental design for diffusion kurtosis imaging publication-title: IEEE Transactions on Medical Imaging – volume: 91 start-page: 47 issue: 1 year: 2009 end-page: 60 article-title: Increased accuracy of artificial selection by using the realized relationship matrix publication-title: Genetics Research – volume: 23 start-page: 698 issue: 7 year: 2010 end-page: 710 article-title: MRI quantification of non‐Gaussian water diffusion by kurtosis analysis publication-title: NMR in Biomedicine – volume: 125 start-page: 189 year: 2015 end-page: 197 article-title: The common genetic influence over processing speed and white matter microstructure: Evidence from the old order Amish and human Connectome projects publication-title: NeuroImage – volume: 81 start-page: 455 year: 2013 end-page: 469 article-title: Multi‐site Genetic Analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA‐DTI working Group publication-title: Neuroimage – volume: 49 start-page: 1190 issue: 2 year: 2010 end-page: 1199 article-title: Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging publication-title: NeuroImage – volume: 19 start-page: 236 issue: 2 year: 2006 end-page: 247 article-title: Three‐dimensional characterization of non‐gaussian water diffusion in humans using diffusion kurtosis imaging publication-title: NMR in Biomedicine – ident: e_1_2_8_9_1 doi: 10.1016/j.neuroimage.2015.03.005 – ident: e_1_2_8_2_1 doi: 10.1016/j.neuroimage.2018.07.066 – ident: e_1_2_8_43_1 doi: 10.1016/j.neuroimage.2012.02.018 – ident: e_1_2_8_51_1 doi: 10.1038/ng.608 – ident: e_1_2_8_4_1 doi: 10.1016/j.neuroimage.2013.05.033 – ident: e_1_2_8_21_1 doi: 10.1161/STROKEAHA.109.565390 – ident: e_1_2_8_26_1 doi: 10.1002/nbm.1020 – ident: e_1_2_8_22_1 doi: 10.3389/fgene.2012.00065 – ident: e_1_2_8_41_1 doi: 10.1161/01.HYP.0000154685.54766.2d – ident: e_1_2_8_17_1 doi: 10.1002/mrm.20508 – ident: e_1_2_8_24_1 doi: 10.1073/pnas.1608246113 – ident: e_1_2_8_14_1 doi: 10.1016/j.neuroimage.2013.04.061 – ident: e_1_2_8_7_1 doi: 10.1097/ADM.0b013e3181af111e – ident: e_1_2_8_30_1 doi: 10.1109/TMI.2009.2037915 – ident: e_1_2_8_37_1 doi: 10.1038/ng.3865 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuroimage.2013.04.127 – ident: e_1_2_8_44_1 doi: 10.1002/mrm.25866 – ident: e_1_2_8_32_1 doi: 10.1002/oby.21946 – ident: e_1_2_8_27_1 doi: 10.1093/bioinformatics/btq559 – ident: e_1_2_8_31_1 doi: 10.1534/genetics.117.1122 – ident: e_1_2_8_34_1 doi: 10.1016/j.neuroimage.2006.02.024 – ident: e_1_2_8_48_1 doi: 10.1371/journal.pgen.0020041 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.26054 – ident: e_1_2_8_25_1 doi: 10.1016/j.neuroimage.2015.10.050 – ident: e_1_2_8_6_1 doi: 10.1111/mono.12036 – ident: e_1_2_8_50_1 doi: 10.1038/ng.3097 – ident: e_1_2_8_49_1 doi: 10.1016/j.neuroimage.2009.12.028 – ident: e_1_2_8_46_1 doi: 10.1016/j.neuroimage.2016.08.016 – ident: e_1_2_8_39_1 doi: 10.3389/fgene.2015.00026 – ident: e_1_2_8_52_1 doi: 10.1371/journal.pgen.1003520 – ident: e_1_2_8_3_1 doi: 10.1002/(SICI)1098-2272(1997)14:6<953::AID-GEPI65>3.0.CO;2-K – ident: e_1_2_8_42_1 doi: 10.1016/j.neuroimage.2013.05.012 – volume: 5 start-page: 1 issue: 120 year: 2011 ident: e_1_2_8_20_1 article-title: Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain publication-title: Frontiers in Neuroscience – ident: e_1_2_8_45_1 doi: 10.1002/mrm.26059 – ident: e_1_2_8_35_1 doi: 10.1016/j.neuroimage.2013.05.057 – ident: e_1_2_8_40_1 doi: 10.1038/mp.2014.99 – ident: e_1_2_8_33_1 doi: 10.1017/S0033291710002072 – ident: e_1_2_8_15_1 doi: 10.1016/j.neuroimage.2014.12.009 – ident: e_1_2_8_10_1 doi: 10.1073/pnas.1313735110 – ident: e_1_2_8_19_1 doi: 10.1016/j.neuroimage.2009.09.052 – ident: e_1_2_8_13_1 doi: 10.1017/S0016672308009981 – ident: e_1_2_8_5_1 doi: 10.1002/mrm.10609 – ident: e_1_2_8_23_1 doi: 10.1161/HYPERTENSIONAHA.110.162206 – ident: e_1_2_8_29_1 doi: 10.1161/01.CIR.94.9.2159 – ident: e_1_2_8_47_1 doi: 10.1086/522934 – ident: e_1_2_8_16_1 doi: 10.1002/nbm.1518 – ident: e_1_2_8_28_1 doi: 10.1016/j.neuroimage.2013.05.077 – ident: e_1_2_8_36_1 doi: 10.1038/ng.3865 – ident: e_1_2_8_12_1 doi: 10.1002/mrm.1910340618 – ident: e_1_2_8_38_1 doi: 10.1016/j.ajhg.2012.10.010 – ident: e_1_2_8_8_1 doi: 10.1016/j.neuroimage.2011.06.006  | 
    
| SSID | ssj0011501 | 
    
| Score | 2.3517423 | 
    
| Snippet | Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1677 | 
    
| SubjectTerms | Adult Alleles Biological activity Brain Chromosomes - genetics Chromosomes - ultrastructure Cognition Cognition - physiology Connectome - methods Correlation Data imaging Data processing diffusion Diffusion Tensor Imaging Domains DTI DWI Empirical analysis Estimates Female Functional anatomy Genetic analysis Genetic control Genetics Genome-Wide Association Study Genomes Genomics - methods Genotype Heritability human connectome project Humans imaging genetics Male Mathematical analysis Models, Genetic Neuroimaging Pedigree Polygenic inheritance Polymorphism, Single Nucleotide - genetics Registries Single-nucleotide polymorphism Solar eclipses Structure-function relationships Twins Young Adult  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NewBe-NiAZYzJfAjtJV3SOHGsPW2IUSGVB8SkPYAi27koFa1bqa2m8dfv7HxMZYAQb5V8UWrnd77f2eefAd6WFOZMrKPQxORNnJcYyipJwwhNKk0sRKJdojj-nI0u-KfL9HILTrqzMI0-RL_g5jzDz9fOwZVeHt-KhtZ6NqDYJNzhvTjJfDr1pZeOckTHJ1sUYkNJM3CnKhQNj_snN2PRHYJ5t07y_tou1PWVmk43uawPRueP4FvXjaYG5cdgvdID8_MXhcf_7OdjeNiSVHbaoOoJbKHdgd1TSwn67Jq9Y75s1K_H78C9cbs7vwvfP6I_5Mxc3U09WTAzv9WnZas5Q1s7kDECrTs7yZRXRMElm1BzjcxfGOiesm4vYYasXSdiro71KVycf_j6fhS21zeEhhPNCRVlmlxwU2GW8agcyqoyaOIKVaWRvkjJjSiFSnKFRDuqlBI3XqZRgkQRE4UqeQbbdm5xD5hRUscZRkJWOU80Sgq7Js2zXBlKeIQM4Kj7kIVptc3dFRvTolFlHhY0ioUfxQBe96aLRtDjd0YHHRqK1qeXhb-9K-dEgQJ41TeTN7otFmVxvnY2rmw2ph4E8LwBT_8Wt6FJI0EtYgNWvYFT-t5ssZPaK35nPHdzcQBvegD-7c8feTz92aIYnY39j_1_N30BD4gryqZo6QC2CT34kvjYSh96x7sB4XQyaQ priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Genomic kinship construction to enhance genetic analyses in the human connectome project data | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24479 https://www.ncbi.nlm.nih.gov/pubmed/30496643 https://www.proquest.com/docview/2186984240 https://www.proquest.com/docview/2141051163 https://pubmed.ncbi.nlm.nih.gov/PMC6483073 https://www.ncbi.nlm.nih.gov/pmc/articles/6483073  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 40 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQS8DNgYBMZkPoT2kjRpnK_HghgVUic0UWk8oMh2bpSKxq20VtP49Vw7H1AGCN4q-bZN4mPdc3OPjwFeFZTmVCB9VwW0mjgv0M3KMHJ9VFGmgiQJpSkUp2fxZMY_XEQXOxB0e2GsaF_JuacXtafnldVWrmo17HRiw5inBpe3YDeOiH4PYHd29nH82XY148jN2iLLNy6jxE46NyF_NKxk7VE2M6qtn3PQDWJ5Ux95Z6NX4vpKLBbbHNYmodN7cN5dfqM9-ept1tJT335xdvyv-7sPey0lZeNm6AHsoN6Hg7Gmcry-Zq-ZFYnat-_7cHva9uIP4Mt7tFuamVHZVPMVU8sfbrRsvWSoKwMpRhA1OyWZsP4neMnmNFwhs8cDmm9p0zmokbVvhZhRrT6E2em7T28nbntYg6s4kRpXUF3JE65KjGPuF6OsLBWqoERRSqQ5KbhKikSEqUAiGWVEZRovIj9EIoShQBEewkAvNT4GpkQmgxj9JCtTHkrMKMmqKI1Toai8STIHTrrpy1XrZG4O1FjkjQfzKKeZzu1MO_CiD1019h2_CzrqMJC3K_gyt2d1pZwIjwPP-2Fae6ahIjQuNybGiGQDugMHHjWQ6f_FtC_pSdBIsgWmPsD4em-PEBysv3eLAAde9rD728WfWED-OSKfvJnaD0_-6Qefwl0ihVmjTjqCAQEHnxHxWstjKjnOR8ftgvsO1hYunw | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gJuILIIhWQdePGF56tNftxya8oBFP5XgwkPBCmu12ml68613CXQj-9c5sP8iJGuNbk52m3d2Znd_Mzv4W4G1Obs74mecan6xJyhxdVQSh66EJlfHjOMg4UByeRoNz-eUivFiBw_YsTM0P0SXc2DLses0Gzgnpg1vW0DKb9Mg5xeoe3JcRxSkMib515FEMdWy4RU7WVbQGt7xCXv-ge3XZG92BmHcrJdcW1UzfXOvxeBnNWnd0vAGXbUfqKpTvvcU865kfv3A8_m9PN2G9waniqFasR7CC1RZsH1UUo09uxDthK0dtSn4LHgybDfptuPyE9pyz4NKbcjQTZnpLUSvmU4FVyXomSG_5-KTQlhQFr8SImksU9s5Afqvi7YQJiiZVJLiU9TGcH388-zBwmxscXCMJ6biagk0ZS1NgRBOU91VRGDR-gbrIkKYklybOYx0kGgl5FCHFbjIPvQAJJQYadbADq9W0wqcgjFaZH6EXqyKRQYaKPK8JkyjRhmKeWDmw385kahp6c75lY5zWxMz9lEYxtaPowOtOdFZzevxOaLdVh7Qx66vUXuCVSEJBDrzqmskgeZdFVzhdsAxXzvrUAwee1NrTfYX3NGkkqCVe0qtOgMm-l1uqUWlJvyOZ8HLswJtOA__28_tWof4skQ7eD-3Ds38XfQlrg7PhSXry-fTrc3hI0FHVNUy7sEqahHsEz-bZC2uFPwHx3DaK | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzR4gbFxCWxgLkJ7SZc0zsXSXgajlEsnhJi0lylynGOlonUrrRUav55j5zKVAUK8VfKJUjvf8fmOffwZ4GVJYU6FReCrkLyJ8xJ9oaPYD1DFQoVpGhU2URydJMNT_uEsPluDw_YsTK0P0S24Wc9w87V1cJyX-uBKNbQqpj0KTqm4ARs8Fpkt6Dv-0olHWarj0i0Ksr6gObjVFQr6B92jq9HoGsW8Xil5c2nm8vK7nExW2awLR4M7cN52pK5C-dZbLoqe-vGLxuP_9nQLbjc8lR3VwLoLa2i2YefIUI4-vWSvmKscdUvy27A5ajbod-D8HbpzzsyW3lTjOVOzK4latpgxNJXFGSPc2uOTTDpRFLxgY2qukLk7A-1Txm4nTJE1S0XMlrLeg9PB269vhn5zg4OvODEdX1KyyVOuNCYJD8q-0FqhCjVKXSB9kpKrtExllEkk5qFjyt14GQcREkuMJMroPqybmcGHwJQURZhgkAqd8ahAQZFXxVmSSUU5Tyo82G-_ZK4aeXN7y8Ykr4WZ-zmNYu5G0YPnnem81vT4ndFuC4e8ceuL3F3glXFiQR4865rJIe0uizQ4W1obWzkbUg88eFCjp3uL3dOkkaCWdAVXnYEV-15tMePKiX4nPLPTsQcvOgT-7c_vO0D92SIfvh65H4_-3fQpbH4-HuSf3p98fAy3iDmKuoRpF9YJSLhH7GxRPHFO-BNSETYO | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anQS8cNkYZBvIXIT2kjRpnNtjhxgVUieEqDQeUGQ7J0pF41ZaKzR-PcfOBboBgrdKPm2T-LPOd3I-fwZ4VVCaU4H0XRXQauK8QDcrw8j1UUWZCpIklKZQnJ7Hkxl_fxFd7EDQ7YWxon0l555e1J6eV1ZbuarVsNOJDWOeGlzegt04Ivo9gN3Z-YfxZ9vVjCM3a4ss37iMEjvp3IT80bCStUfZzKi2fs1BN4jlTX3knY1eiatvYrHY5rA2CZ3dh4_d5Tfak6_eZi099f2as-N_3d8DuNdSUjZuhh7CDuo92B9rKsfrK_aaWZGoffu-B7enbS9-H768Q7ulmRmVTTVfMbX86UbL1kuGujKQYgRRs1OSCet_gpdsTsMVMns8oPmWNp2DGln7VogZ1eojmJ29_fRm4raHNbiKE6lxBdWVPOGqxDjmfjHKylKhCkoUpUSak4KrpEhEmAokklFGVKbxIvJDJEIYChThAQz0UuMTYEpkMojRT7Iy5aHEjJKsitI4FYrKmyRz4KSbvly1TubmQI1F3ngwj3Ka6dzOtAMv-tBVY9_xu6DjDgN5u4Ivc3tWV8qJ8DjwvB-mtWcaKkLjcmNijEg2oDtw4HEDmf5fTPuSngSNJFtg6gOMr_f2CMHB-nu3CHDgZQ-7v138iQXknyPyyenUfjj8px88grtECrNGnXQMAwIOPiXitZbP2qX2A8Q5LbY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+kinship+construction+to+enhance+genetic+analyses+in+the+human+connectome+project+data&rft.jtitle=Human+brain+mapping&rft.au=Kochunov%2C+Peter&rft.au=Donohue%2C+Brian&rft.au=Mitchell%2C+Braxton+D.&rft.au=Ganjgahi%2C+Habib&rft.date=2019-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=5&rft.spage=1677&rft.epage=1688&rft_id=info:doi/10.1002%2Fhbm.24479&rft_id=info%3Apmid%2F30496643&rft.externalDocID=PMC6483073 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |