Dyconnmap: Dynamic connectome mapping—A neuroimaging python module
Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For t...
        Saved in:
      
    
          | Published in | Human brain mapping Vol. 42; no. 15; pp. 4909 - 4939 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        15.10.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1065-9471 1097-0193 1097-0193  | 
| DOI | 10.1002/hbm.25589 | 
Cover
| Abstract | Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.
In this article, we presented a python module, called dyconnmap, for static and dynamic brain network construction in multiple ways, mining time‐resolved function brain networks, network comparison and brain network classification. | 
    
|---|---|
| AbstractList | Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time-averaged approaches and sophisticated algorithms that can capture the time-varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word 'chronnectome' (integration of the Greek word 'Chronos', which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well-known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi-faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans. Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans. In this article, we presented a python module, called dyconnmap, for static and dynamic brain network construction in multiple ways, mining time‐resolved function brain networks, network comparison and brain network classification. Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans. In this article, we presented a python module, called dyconnmap, for static and dynamic brain network construction in multiple ways, mining time‐resolved function brain networks, network comparison and brain network classification. Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module ( https://github.com/makism/dyconnmap ) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans. Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time-averaged approaches and sophisticated algorithms that can capture the time-varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word 'chronnectome' (integration of the Greek word 'Chronos', which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well-known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi-faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time-averaged approaches and sophisticated algorithms that can capture the time-varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word 'chronnectome' (integration of the Greek word 'Chronos', which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well-known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi-faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.  | 
    
| Author | Dimitriadis, Stavros I. Marimpis, Avraam D. Goebel, Rainer  | 
    
| AuthorAffiliation | 6 School of Psychology Cardiff University Cardiff United Kingdom 1 Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands 2 Neuroinformatics Group, Cardiff University Brain Research Imaging Center (CUBRIC) School of Psychology, Cardiff University Cardiff United Kingdom 3 Brain Innovation B.V Maastricht The Netherlands 7 Neuroscience and Mental Health Research Institute Cardiff University Cardiff United Kingdom 4 Institute of Psychological Medicine and Clinical Neurosciences Cardiff University School of Medicine Cardiff United Kingdom 5 Cardiff University Brain Research Imaging Center (CUBRIC) School of Psychology, Cardiff University Cardiff United Kingdom 8 MRC Centre for Neuropsychiatric Genetics and Genomics School of Medicine, Cardiff University Cardiff United Kingdom  | 
    
| AuthorAffiliation_xml | – name: 5 Cardiff University Brain Research Imaging Center (CUBRIC) School of Psychology, Cardiff University Cardiff United Kingdom – name: 7 Neuroscience and Mental Health Research Institute Cardiff University Cardiff United Kingdom – name: 1 Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands – name: 3 Brain Innovation B.V Maastricht The Netherlands – name: 2 Neuroinformatics Group, Cardiff University Brain Research Imaging Center (CUBRIC) School of Psychology, Cardiff University Cardiff United Kingdom – name: 6 School of Psychology Cardiff University Cardiff United Kingdom – name: 4 Institute of Psychological Medicine and Clinical Neurosciences Cardiff University School of Medicine Cardiff United Kingdom – name: 8 MRC Centre for Neuropsychiatric Genetics and Genomics School of Medicine, Cardiff University Cardiff United Kingdom  | 
    
| Author_xml | – sequence: 1 givenname: Avraam D. orcidid: 0000-0003-1551-9940 surname: Marimpis fullname: Marimpis, Avraam D. email: avraam.marimpis@maastrichtuniversity.nl organization: Brain Innovation B.V – sequence: 2 givenname: Stavros I. orcidid: 0000-0002-0000-5392 surname: Dimitriadis fullname: Dimitriadis, Stavros I. organization: School of Medicine, Cardiff University – sequence: 3 givenname: Rainer surname: Goebel fullname: Goebel, Rainer organization: Brain Innovation B.V  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34250674$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kctuEzEUhi3UilxgwQugkdjQStPaHo8vLJDapG2QgtjA2vI4TuJoxp7OhWh2PARPyJPg6aQFImBl-_g7__n9ewJOnHcGgFcIXiAI8eU2Ky5wmnLxDIwRFCyGSCQn_Z6msSAMjcCkrncQIpRC9ByMEoJTSBkZg_m80965QpXvonnnVGF11BeMbnxholAvrdv8-Pb9KnKmrbwt1CYUorJrtt5FhV-1uXkBTtcqr83LwzoFX25vPs8W8fLT3YfZ1TLWhCQiVjhLNacoMVhzoZURbJ1kgiqsDIaccbrClCgYjhxxxlZ4LRTLGCaQCgZ1MgXng27rStXtVZ7LsgqOqk4iKPsoZIhCPkQR4PcDXLZZYVbauKZSvxq8svLPG2e3cuO_Sk6IQKgXeHsQqPx9a-pGFrbWJs-VM76t-zGQYo4JC-ibI3Tn28qFLALFEioEpjBQr3939GTl8TcCcDkAuvJ1XZm11LZRjfW9QZv_9ZFnRx3_C-Sgvre56f4NysX1x6HjJ009uXI | 
    
| CitedBy_id | crossref_primary_10_3390_brainsci12101404 crossref_primary_10_1098_rstb_2022_0336 crossref_primary_10_1016_j_neuroscience_2023_05_033 crossref_primary_10_3390_diagnostics13182963 crossref_primary_10_1007_s00406_023_01550_9  | 
    
| Cites_doi | 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2017.02.005 10.3389/fninf.2014.00014 10.1016/S0167-2789(00)00043-9 10.1002/hbm.20346 10.1103/PhysRevE.74.026205 10.1016/j.neuroimage.2018.02.032 10.3389/fninf.2017.00028 10.1109/EMBC.2016.7591989 10.1016/j.jneumeth.2010.08.027 10.1073/pnas.0903641106 10.1016/j.neuroimage.2009.05.089 10.1016/s1053-8119(03)00112-5 10.1002/hbm.23699 10.1016/0167-2789(92)90102-S 10.1089/brain.2011.0008 10.1097/00001756-200005150-00029 10.1186/1471-2202-12-119 10.1016/j.neuroimage.2016.12.061 10.1016/j.nicl.2019.101841 10.1126/science.1065103 10.1126/science.1128115 10.1007/s12021-013-9186-1 10.1038/nn.3101 10.1007/s12021-013-9178-1 10.1371/journal.pcbi.0010042 10.1007/s11571-015-9330-8 10.1016/j.nicl.2020.102251 10.1016/j.neurobiolaging.2016.03.018 10.1137/S003614450342480 10.1002/jnr.24316 10.1016/j.neuroimage.2015.05.046 10.1016/j.pscychresns.2013.07.008 10.1002/hbm.460010207 10.1007/s10548-008-0071-4 10.1038/nn.4125 10.1038/nn.4502 10.1126/science.1184819 10.1007/978-3-540-74565-5_16 10.1073/pnas.1604898113 10.1146/annurev-clinpsy-040510-143934 10.1109/TBME.2014.2372011 10.3389/neuro.11.003.2009 10.1126/science.1099745 10.1016/j.patcog.2008.03.011 10.1016/j.jneumeth.2018.07.001 10.1109/TBME.2007.905419 10.1089/brain.2012.0073 10.3389/fnins.2018.00506 10.1007/978-3-0348-7895-1_23 10.1073/pnas.1312902110 10.1109/TIT.1982.1056489 10.1109/TPAMI.2004.75 10.1038/30918 10.1109/TBME.2012.2186568 10.3389/fnins.2015.00350 10.1214/18-AOAS1176 10.1109/msp.2012.2235192 10.3389/fnins.2018.00306 10.1038/s41598-017-06509-0 10.3389/fnins.2017.00694 10.1016/j.nicl.2014.07.003 10.1016/j.tics.2007.05.003 10.1038/44565 10.1089/brain.2017.0512 10.3389/fnins.2013.00267 10.1016/j.nicl.2015.09.011 10.1140/epjb/e2003-00095-5 10.1016/j.tics.2016.03.001 10.1016/j.neuroimage.2017.09.020 10.1016/j.neuroimage.2010.06.041 10.1371/journal.pone.0068910 10.1103/PhysRevE.89.032804 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c 10.1109/10.623056 10.1523/JNEUROSCI.5335-08.2009 10.1371/journal.pone.0149849 10.3389/fnhum.2010.00191 10.1109/JPROC.2018.2798928 10.1073/pnas.1705120114 10.3389/fnins.2016.00466 10.3389/fnhum.2017.00423 10.1016/j.neuroimage.2019.05.052 10.1007/978-1-4757-1083-0_10 10.1073/pnas.1018985108 10.1016/j.neuroimage.2018.01.056 10.1038/nrn.2017.149 10.1126/science.1171022 10.1016/j.conb.2014.08.002 10.1073/pnas.1905534116 10.1016/j.jneumeth.2020.108651 10.3389/fnins.2019.00542 10.1073/pnas.1216402109 10.1007/s10548-017-0546-2 10.1038/srep34944 10.1109/10.391164 10.21914/anziamj.v48i0.62 10.1016/j.jneumeth.2008.06.035 10.1109/TSP.2013.2259825 10.1007/s11222-007-9033-z 10.1109/EMBC.2019.8856284 10.1016/j.jneumeth.2003.10.009 10.1016/0013-4694(87)90025-3 10.3389/conf.fninf.2016.20.00022 10.1016/j.jneumeth.2007.10.012 10.1089/brain.2016.0481 10.1038/nrn2575 10.1073/pnas.0810524105 10.1103/PhysRevLett.87.198701 10.1109/GlobalSIP.2013.6736904 10.1016/j.ijpsycho.2003.07.001 10.1016/j.ijpsycho.2016.02.002 10.1016/j.clinph.2004.04.029 10.1016/j.conb.2007.03.008 10.1016/j.neuroimage.2012.05.050 10.1073/pnas.0911531107 10.1002/hipo.20117 10.1371/journal.pone.0013701 10.1093/cercor/bhs352 10.1007/s10439-014-1143-0 10.1016/j.neuroimage.2015.07.002 10.1038/ncomms9885 10.1038/nrn3801 10.3389/fncom.2015.00133 10.1523/JNEUROSCI.1358-12.2012 10.3389/fncom.2013.00189 10.1016/j.bbr.2016.06.043 10.1109/TPAMI.1979.4766909 10.1016/j.neuron.2014.10.015 10.1016/j.neuroimage.2012.03.048 10.1016/j.neuroimage.2010.02.082 10.1016/j.neuroimage.2014.11.054 10.1016/j.bandc.2012.04.001 10.1007/978-3-642-56927-2 10.1007/s40708-015-0020-4 10.1007/978-3-540-27801-6_6 10.1371/journal.pcbi.1005893 10.1371/journal.pcbi.1005305 10.1073/pnas.1121049109 10.1016/j.neuroimage.2014.10.015 10.1038/ncomms13928 10.1016/j.jmva.2006.11.013 10.1016/j.neuron.2010.02.006 10.1155/2011/156869 10.1007/s10548-013-0276-z 10.1093/brain/awx050 10.1016/j.neuroimage.2009.12.011 10.1016/s1053-8119(03)00202-7 10.1016/j.neuroimage.2009.07.054 10.1016/j.jneumeth.2015.02.021 10.1371/journal.pbio.3000685 10.1038/s41598-017-07846-w 10.1016/j.laa.2005.09.008 10.1007/s10044-008-0141-y 10.1109/72.238311 10.7554/eLife.44287.001 10.1162/153244303321897735 10.3389/fnsys.2020.00020 10.1016/j.neuroimage.2011.01.055 10.1162/netn_a_00079 10.1038/s41598-017-05425-7 10.1016/j.neuroimage.2013.07.019  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 The Authors. published by Wiley Periodicals LLC. 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. – notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/hbm.25589 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE CrossRef Technology Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Anatomy & Physiology  | 
    
| DocumentTitleAlternate | Marimpis et al | 
    
| EISSN | 1097-0193 | 
    
| EndPage | 4939 | 
    
| ExternalDocumentID | 10.1002/hbm.25589 PMC8449119 34250674 10_1002_hbm_25589 HBM25589  | 
    
| Genre | article Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Medical Research Council grantid: MR/L010305/1 – fundername: Medical Research Council grantid: MR/K004360/1 – fundername: Medical Research Council grantid: MR/K005464/1  | 
    
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PUEGO CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM .Y3 31~ AANHP ABEML ABJNI ACBWZ ACRPL ACSCC ACYXJ ADNMO ADTOC AGQPQ AIQQE ASPBG AVWKF AZFZN BFHJK EJD FEDTE GAKWD HF~ HVGLF LW6 M6M RIWAO RJQFR SAMSI UNPAY WXSBR  | 
    
| ID | FETCH-LOGICAL-c4439-a2b5c8613e2c89cae97f3b96a2ae208786d264a02ae81877d2f9a7b72406970c3 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 1065-9471 1097-0193  | 
    
| IngestDate | Sun Oct 26 03:28:12 EDT 2025 Tue Sep 30 15:57:12 EDT 2025 Wed Oct 01 13:44:13 EDT 2025 Tue Oct 07 06:19:37 EDT 2025 Mon Jul 21 06:03:03 EDT 2025 Wed Oct 01 01:55:46 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Wed Jan 22 16:28:56 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 15 | 
    
| Keywords | fMRI python functional connectivity graph theory EEG dynamic connectivity chronnectomics complex networks statistical analysis human connectome MEG  | 
    
| Language | English | 
    
| License | Attribution 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4439-a2b5c8613e2c89cae97f3b96a2ae208786d264a02ae81877d2f9a7b72406970c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-0000-5392 0000-0003-1551-9940  | 
    
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25589 | 
    
| PMID | 34250674 | 
    
| PQID | 2573699260 | 
    
| PQPubID | 996345 | 
    
| PageCount | 31 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_hbm_25589 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449119 proquest_miscellaneous_2550628247 proquest_journals_2573699260 pubmed_primary_34250674 crossref_citationtrail_10_1002_hbm_25589 crossref_primary_10_1002_hbm_25589 wiley_primary_10_1002_hbm_25589_HBM25589  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 15, 2021 | 
    
| PublicationDateYYYYMMDD | 2021-10-15 | 
    
| PublicationDate_xml | – month: 10 year: 2021 text: October 15, 2021 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio  | 
    
| PublicationTitle | Human brain mapping | 
    
| PublicationTitleAlternate | Hum Brain Mapp | 
    
| PublicationYear | 2021 | 
    
| Publisher | John Wiley & Sons, Inc | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc | 
    
| References | 2010; 13 2010; 107 1997; 44 1960; 5 2019; 13 2004; 26 2013; 61 2011; 55 2014; 24 2020; 14 2008; 105 1992; 58 2017; 152 2012; 15 2013; 7 2013; 8 1998; 393 2020; 18 2009; 10 2018; 173 1990 2000; 11 2019; 23 2014; 15 2016; 42 2017; 160 2020; 337 1979; 2 2017; 163 2013; 110 2010; 193 2010; 5 2018; 31 2010; 4 2003; 45 2007; 17 2019; 8 2019; 3 2011; 1 2018; 106 2010; 328 2015; 245 2013; 83 2015; 120 2016; 10 2016; 322 2002; 3 2008; 55 2007; 98 2007; 11 2004; 304 2012; 32 2011; 7 2003; 32 2012; 109 1995; 7 2016; 11 1999 1995; 42 2018; 19 2016; 6 1987; 67 2010; 49 2004; 51 2006; 48 2016; 20 2020; 26 2018; 96 2005; 1 2017; 140 2008; 41 2015; 118 2018; 12 2005; 15 2010; 52 2010; 51 2010; 50 2009; 106 2017; 7 2009; 47 2017; 8 2010; 53 2013; 26 2006; 74 2015; 104 2015; 31 2016; 102 2011; 12 2003; 19 2012; 59 2015; 107 2014; 62 1999; 401 2006; 414 2011; 18 2017; 114 1993; 4 2001; 87 2004; 134 2007; 28 2010; 65 2014; 5 1982; 28 1997; 92 2001 2013; 11 2000 2017; 38 2015; 43 2016; 113 2019; 116 2014; 8 2014; 7 2019; 199 2012; 63 2009; 325 2012; 62 2015; 2 2009; 22 2017; 20 2012; 80 1991; 1 2015; 6 2015; 18 2002; 296 2012 2011 2007 2018; 308 2004 2003 2008; 168 1999; 8 2014; 84 2006; 313 2015; 9 2014; 89 2009; 29 2011; 2011 2012; 2 2011; 108 2004; 115 2017; 11 2017; 13 2013; 30 2019 2018 2016 2000; 142 2013 1994; 1 2009; 3 2014; 221 2008; 174 2007; 48 e_1_2_16_23_1 e_1_2_16_46_1 e_1_2_16_27_1 e_1_2_16_69_1 e_1_2_16_117_1 e_1_2_16_42_1 e_1_2_16_88_1 e_1_2_16_65_1 e_1_2_16_113_1 e_1_2_16_136_1 e_1_2_16_159_1 e_1_2_16_84_1 e_1_2_16_61_1 e_1_2_16_120_1 e_1_2_16_143_1 e_1_2_16_166_1 e_1_2_16_80_1 e_1_2_16_101_1 e_1_2_16_162_1 Erdos P. (e_1_2_16_62_1) 1960; 5 e_1_2_16_15_1 e_1_2_16_38_1 e_1_2_16_19_1 e_1_2_16_34_1 e_1_2_16_57_1 e_1_2_16_30_1 e_1_2_16_53_1 e_1_2_16_76_1 e_1_2_16_99_1 e_1_2_16_105_1 e_1_2_16_128_1 Strickert M. (e_1_2_16_147_1) 2003 e_1_2_16_11_1 e_1_2_16_95_1 e_1_2_16_72_1 e_1_2_16_91_1 Pedregosa F. (e_1_2_16_122_1) 2011; 12 e_1_2_16_131_1 e_1_2_16_177_1 Chung F. (e_1_2_16_31_1) 1997; 92 Meunier D. (e_1_2_16_109_1) 2019 e_1_2_16_9_1 e_1_2_16_112_1 e_1_2_16_154_1 e_1_2_16_173_1 e_1_2_16_5_1 e_1_2_16_150_1 e_1_2_16_26_1 e_1_2_16_49_1 e_1_2_16_45_1 e_1_2_16_68_1 e_1_2_16_41_1 e_1_2_16_64_1 e_1_2_16_87_1 e_1_2_16_118_1 e_1_2_16_22_1 e_1_2_16_60_1 Fritzke B. (e_1_2_16_67_1) 1995 e_1_2_16_83_1 e_1_2_16_114_1 e_1_2_16_137_1 e_1_2_16_121_1 e_1_2_16_167_1 e_1_2_16_144_1 e_1_2_16_163_1 e_1_2_16_140_1 e_1_2_16_14_1 e_1_2_16_18_1 e_1_2_16_56_1 e_1_2_16_37_1 e_1_2_16_79_1 e_1_2_16_98_1 e_1_2_16_52_1 e_1_2_16_33_1 e_1_2_16_75_1 e_1_2_16_102_1 e_1_2_16_71_1 e_1_2_16_94_1 e_1_2_16_10_1 e_1_2_16_125_1 e_1_2_16_106_1 e_1_2_16_148_1 e_1_2_16_90_1 e_1_2_16_132_1 e_1_2_16_155_1 e_1_2_16_4_1 e_1_2_16_151_1 e_1_2_16_174_1 e_1_2_16_170_1 e_1_2_16_25_1 e_1_2_16_29_1 e_1_2_16_48_1 e_1_2_16_63_1 e_1_2_16_119_1 e_1_2_16_44_1 e_1_2_16_86_1 e_1_2_16_21_1 e_1_2_16_115_1 e_1_2_16_138_1 e_1_2_16_157_1 e_1_2_16_40_1 e_1_2_16_82_1 e_1_2_16_145_1 e_1_2_16_164_1 e_1_2_16_141_1 e_1_2_16_160_1 e_1_2_16_13_1 Ray S. (e_1_2_16_129_1) 1999 e_1_2_16_17_1 e_1_2_16_36_1 e_1_2_16_59_1 e_1_2_16_78_1 e_1_2_16_32_1 e_1_2_16_55_1 e_1_2_16_74_1 e_1_2_16_103_1 e_1_2_16_97_1 e_1_2_16_70_1 e_1_2_16_51_1 e_1_2_16_107_1 e_1_2_16_126_1 e_1_2_16_149_1 e_1_2_16_168_1 e_1_2_16_93_1 e_1_2_16_7_1 e_1_2_16_110_1 e_1_2_16_156_1 e_1_2_16_133_1 e_1_2_16_175_1 e_1_2_16_3_1 e_1_2_16_152_1 e_1_2_16_171_1 Martinetz T. (e_1_2_16_104_1) 1991; 1 e_1_2_16_24_1 e_1_2_16_28_1 e_1_2_16_47_1 e_1_2_16_89_1 e_1_2_16_139_1 e_1_2_16_2_1 e_1_2_16_43_1 e_1_2_16_66_1 e_1_2_16_85_1 e_1_2_16_135_1 e_1_2_16_20_1 e_1_2_16_81_1 e_1_2_16_116_1 e_1_2_16_158_1 e_1_2_16_142_1 e_1_2_16_123_1 e_1_2_16_165_1 e_1_2_16_100_1 e_1_2_16_161_1 e_1_2_16_39_1 e_1_2_16_12_1 e_1_2_16_35_1 Penny W. D. (e_1_2_16_124_1) 2011 e_1_2_16_16_1 e_1_2_16_58_1 e_1_2_16_77_1 e_1_2_16_96_1 e_1_2_16_54_1 e_1_2_16_73_1 e_1_2_16_108_1 e_1_2_16_146_1 e_1_2_16_92_1 e_1_2_16_50_1 e_1_2_16_127_1 e_1_2_16_169_1 Arthur D. (e_1_2_16_8_1) 2007 e_1_2_16_111_1 e_1_2_16_134_1 e_1_2_16_153_1 e_1_2_16_176_1 e_1_2_16_6_1 e_1_2_16_130_1 e_1_2_16_172_1  | 
    
| References_xml | – year: 2011 – volume: 14 year: 2020 article-title: Ghost attractors in spontaneous brain activity: Recurrent excursions into functionally‐relevant BOLD phase‐locking states publication-title: Frontiers in Systems Neuroscience – volume: 142 start-page: 346 issue: 3–4 year: 2000 end-page: 382 article-title: Surrogate time series publication-title: Physica D: Nonlinear Phenomena – volume: 50 start-page: 81 issue: 1 year: 2010 end-page: 98 article-title: Time–frequency dynamics of resting‐state brain connectivity measured with fMRI publication-title: NeuroImage – volume: 55 start-page: 1548 issue: 4 year: 2011 end-page: 1565 article-title: An improved index of phase‐synchronization for electrophysiological data in the presence of volume‐conduction, noise and sample‐size bias publication-title: NeuroImage – volume: 107 start-page: 3228 year: 2010 end-page: 3233 article-title: Cross‐frequency coupling supports multi‐item working memory in the human hippocampus publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 393 start-page: 440 year: 1998 end-page: 442 article-title: Collective dynamics of small‐world networks publication-title: Nature – volume: 1 start-page: 397 year: 1991 end-page: 402 article-title: A ‘neural‐gas’ network learns topologies publication-title: Proceedings International Conference on Artificial Neural Networks – volume: 11 start-page: 319 issue: 3 year: 2013 end-page: 337 article-title: PRoNTo: Pattern recognition for neuroimaging toolbox publication-title: Neuroinformatics – volume: 3 start-page: 583 year: 2002 end-page: 617 article-title: Cluster ensemblesa knowledge reuse framework for combining multiple partitions publication-title: The Journal of Machine Learning Research – volume: 3 start-page: 539 issue: 2 year: 2019 end-page: 550 article-title: Psychological resilience correlates with EEG source‐space brain network flexibility publication-title: Network Neuroscience – volume: 61 start-page: 3357 issue: 13 year: 2013 end-page: 3367 article-title: Tight wavelet frames on multislice graphs publication-title: IEEE Transactions on Signal Processing – year: 1990 – volume: 113 start-page: 9888 issue: 35 year: 2016 end-page: 9891 article-title: Temporal metastates are associated with differential patterns of time‐resolved connectivity, network topology, and attention publication-title: Proceedings of the National Academy of Sciences – volume: 337 year: 2020 article-title: Determining the number of states in dynamic functional connectivity using cluster validity indexes publication-title: Journal of Neuroscience Methods – volume: 29 start-page: 7591 issue: 23 year: 2009 end-page: 7598 article-title: Nuclei accumbens phase synchrony predicts decision‐making reversals following negative feedback publication-title: The Journal of Neuroscience – volume: 49 start-page: 1073 issue: 1 year: 2010 end-page: 1079 article-title: Core networks for visual‐concrete and abstract thought content: A brain electric microstate analysis publication-title: NeuroImage – volume: 174 start-page: 50 issue: 1 year: 2008 end-page: 61 article-title: Testing for nested oscillation publication-title: Journal of Neuroscience Methods – volume: 26 year: 2020 article-title: Early childhood developmental functional connectivity of autistic brains with non‐negative matrix factorization publication-title: NeuroImage: Clinical – volume: 83 start-page: 937 year: 2013 end-page: 950 article-title: Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest publication-title: NeuroImage – volume: 18 issue: 12 year: 2011 article-title: TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy publication-title: BMC Neuroscience – volume: 48 start-page: 450 year: 2007 end-page: 473 article-title: Detecting changes in time series of network graphs using minimum mean squared error and cumulative summation publication-title: ANZIAM Journal – volume: 26 start-page: 1367 issue: 10 year: 2004 end-page: 1372 article-title: A (sub) graph isomorphism algorithm for matching large graphs publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 173 start-page: 632 year: 2018 end-page: 643 article-title: Ghost interactions in MEG/EEG source space: A note of caution on inter‐areal coupling measures publication-title: NeuroImage – volume: 13 year: 2019 article-title: Modeling the switching behavior of functional connectivity microstates (FCμstates) as a novel biomarker for mild cognitive impairment publication-title: Frontiers in Neuroscience – volume: 87 issue: 19 year: 2001 article-title: Efficient behavior of small‐world networks publication-title: Physical Review Letters – volume: 11 start-page: 1509 issue: 7 year: 2000 end-page: 1514 article-title: Amplitude envelope correlation detects coupling among incoherent brain signals publication-title: NeuroReport – volume: 5 start-page: 298 year: 2014 end-page: 308 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage: Clinical – start-page: 53 year: 2003 end-page: 57 – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 13 article-title: Loss of brain inter‐frequency hubs in Alzheimer's disease publication-title: Scientific Reports – volume: 11 start-page: 267 year: 2007 end-page: 269 article-title: Cross‐frequency coupling between neuronal oscillations publication-title: Trends on Cognitive Science – volume: 106 start-page: 11747 issue: 28 year: 2009 end-page: 11752 article-title: Cognitive fitness of cost‐efficient brain functional networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 199 start-page: 495 year: 2019 end-page: 511 article-title: Optimization of graph construction can significantly increase the power of structural brain network studies publication-title: NeuroImage – volume: 116 start-page: 18088 year: 2019 end-page: 18097 article-title: Awakening: Predicting external stimulation to force transitions between different brain states publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 96 start-page: 1741 year: 2018 end-page: 1757 article-title: Complexity of brain activity and connectivity in functional neuroimaging publication-title: Journal of Neuroscience Research – volume: 8 year: 2014 article-title: Machine learning for neuroimagingwith scikit‐learn publication-title: Frontiers in Neuroinformatics – volume: 296 start-page: 910 year: 2002 end-page: 913 article-title: Specificity and stability in topology of protein networks publication-title: Science – year: 2019 – volume: 6 start-page: 1 issue: 1 year: 2015 end-page: 15 article-title: Long‐term neural and physiological phenotyping of a single human publication-title: Nature Communications – volume: 11 start-page: 694 year: 2017 article-title: Improving the reliability of network metrics in structural brain networks by integrating different network weighting strategies into a single graph publication-title: Frontiers in Neuroscience – volume: 114 start-page: 12827 issue: 48 year: 2017 end-page: 12832 article-title: Brain network dynamics are hierarchically organized in time publication-title: In Proceedings of National Academy of Sciences of the U.S.A. – volume: 26 start-page: 397 issue: 3 year: 2013 end-page: 409 article-title: On the quantization of time‐varying phase synchrony patterns into distinct functional connectivity microstates (FCμstates) in a multi‐trial visual ERP paradigm publication-title: Brain Tpography – volume: 44 start-page: 867 issue: 9 year: 1997 end-page: 880 article-title: Localization of brain electric activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Transactions on Biomedical Engeeniring – volume: 7 start-page: 331 issue: 6 year: 2017 end-page: 346 article-title: Integrative structural brain network analysis in diffusion tensor imaging publication-title: Brain Connectivity – volume: 80 start-page: 45 year: 2012 end-page: 52 article-title: Surface EEG shows that functional segregation via phase coupling contributes to the neural substrate of mental calculations publication-title: Brain and Cognition – volume: 7 start-page: 661 year: 2017 end-page: 670 article-title: Data‐driven topological filtering based on orthogonal minimal spanning trees: Application to multi‐group MEG resting‐state connectivity publication-title: Brain Connectivity – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine learning in Python publication-title: The Journal of Machine Learning Research – volume: 109 start-page: 18627 issue: 46 year: 2012 end-page: 18628 article-title: Dynamic network structure of interhemispheric coordination publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 issue: 10 year: 2010 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS One – volume: 118 start-page: 651 year: 2015 end-page: 661 article-title: The (in) stability of functional brain network measures across thresholds publication-title: NeuroImage – volume: 401 start-page: 788 year: 1999 end-page: 791 article-title: Learning the parts of objects by non‐negative matrix factorization publication-title: Nature – volume: 7 start-page: 267 year: 2013 article-title: MEG and EEG data analysis with MNE‐Python publication-title: Frontiers in Neuroscience – volume: 7 start-page: 1 year: 2017 end-page: 13 article-title: Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest publication-title: Scientifc Reports – volume: 22 start-page: 119 issue: 2 year: 2009 end-page: 133 article-title: Characterizing dynamic functional connectivity across sleep stages from EEG publication-title: Brain Topography – volume: 313 start-page: 1626 year: 2006 end-page: 1628 article-title: High gamma power is phase‐locked to theta oscillations in human neocortex publication-title: Science – volume: 42 start-page: 658 issue: 7 year: 1995 end-page: 665 article-title: Segmentation of brain electrical activity into microstates: Model estimation and validation publication-title: IEEE Transactions on Biomedical Engineering – volume: 109 start-page: 5487 issue: 14 year: 2012 end-page: 5492 article-title: Whole‐brain, time‐locked activation with simple tasks revealed using massive averaging and model‐free analysis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 84 start-page: 262 issue: 2 year: 2014 end-page: 274 article-title: The chronnectome: Time‐varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron – year: 2016 – volume: 245 start-page: 107 year: 2015 end-page: 115 article-title: GraphVar: A user‐friendly toolbox for comprehensive graph analyses of functional brain connectivity publication-title: Journal of Neuroscience Methods – volume: 325 start-page: 414 year: 2009 end-page: 416 article-title: Revisiting the foundations of network analysis publication-title: Science – volume: 8 issue: 7 year: 2013 article-title: BrainNet viewer: A network visualization tool for human brain connectomics publication-title: PLoS One – volume: 163 start-page: 160 year: 2017 end-page: 176 article-title: Replicability of time‐varying connectivity patterns in large resting state fMRI samples publication-title: NeuroImage – volume: 1 start-page: 13 year: 2011 end-page: 36 article-title: Functional and effective connectivity: A review publication-title: Brain Connectivity – volume: 19 start-page: 1273 year: 2003 end-page: 1302 article-title: Dynamic causal modelling publication-title: NeuroImage – volume: 11 issue: 3 year: 2016 article-title: Higher dimensional meta‐state analysis reveals reduced resting fMRI connectivity dynamism in schizophrenia patients publication-title: PLOS ONE – volume: 62 start-page: 1415 issue: 3 year: 2012 end-page: 1428 article-title: Go with the flow: Use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large‐scale model of brain dynamics publication-title: NeuroImage – volume: 89 year: 2014 article-title: Structural measures for multiplex networks publication-title: Physical Review E – volume: 28 start-page: 1178 issue: 11 year: 2007 end-page: 1193 article-title: Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources publication-title: Human Brain Mapping – volume: 193 start-page: 145 year: 2010 end-page: 155 article-title: Tracking brain dynamics via timedependent network analysis publication-title: Journal of Neuroscience Methods – volume: 65 start-page: 541 year: 2010 end-page: 549 article-title: Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens publication-title: Neuron – volume: 322 start-page: 339 year: 2016 end-page: 350 article-title: Classification of patients with MCI and AD from healthy controls using directed graph measures of resting‐state fMRI publication-title: Behavioural Brain Research – volume: 20 start-page: 353 issue: 3 year: 2017 article-title: Network neuroscience publication-title: Nature Neuroscience – volume: 23 year: 2019 article-title: Decreased integration of EEG source‐space networks in disorders of consciousness publication-title: NeuroImage: Clinical – start-page: 241 year: 2004 end-page: 249 – year: 2013 – volume: 10 year: 2016 article-title: NNMF connectivity microstates: A new approach to represent the dynamic brain coordination publication-title: Frontiers in Neuroinformatics – volume: 12 year: 2018 article-title: How to build a functional connectomic biomarker for mild cognitive impairment from source reconstructed MEG resting‐state activity: The combination of ROI representation and connectivity estimator matters publication-title: Frontiers in Neuroscience – volume: 3 start-page: 3 year: 2009 article-title: PyMvpa: A unifying approach to the analysis of neuroscientific data publication-title: Frontiers in Neuroinformatics – volume: 9 start-page: 519 year: 2015 end-page: 531 article-title: Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury publication-title: NeuroImage: Clinical – volume: 10 year: 2016 article-title: Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures publication-title: Frontiers in Neuroscience – volume: 98 start-page: 873 year: 2007 end-page: 895 article-title: Comparing clusterings. An information based distance publication-title: Journal of Multivariate Analysis – volume: 308 start-page: 21 year: 2018 end-page: 33 article-title: Graphvar 2.0: A user‐friendly toolbox for machine learning on functional connectivity measures publication-title: Journal of Neuroscience Methods – volume: 24 start-page: 663 issue: 3 year: 2014 end-page: 676 article-title: Tracking whole‐brain connectivity dynamics in the resting state publication-title: Cerebral Cortex – volume: 11 start-page: 423 year: 2017 article-title: Mining time‐resolved functional brain graphs to an EEG‐based chronnectomic brain aged index (CBAI) publication-title: Frontiers in Human Neuroscience – start-page: 1027 year: 2007 end-page: 1035 – volume: 8 start-page: 194 issue: 4 year: 1999 end-page: 208 article-title: Measuring phase synchrony in brain signals publication-title: Human Brain Mapping – volume: 152 start-page: 437 year: 2017 end-page: 449 article-title: Proportional thresholding in resting‐state fMRI functional connectivity networks and consequences for patient‐control connectome studies: Issues and recommendations publication-title: NeuroImage – year: 2001 – volume: 18 start-page: 1565 issue: 11 year: 2015 end-page: 1567 article-title: A positive‐negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nature Neuroscience – volume: 304 start-page: 1926 year: 2004 end-page: 1929 article-title: Neuronal oscillations in cortical networks publication-title: Science – volume: 63 start-page: 910 year: 2012 end-page: 920 article-title: Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage publication-title: NeuroImage – volume: 102 start-page: 1 year: 2016 end-page: 11 article-title: Altered crossfrequency coupling in resting‐state MEG after mild traumatic brain injury publication-title: International Journal of Psychophysiology – volume: 168 start-page: 494 issue: 2 year: 2008 end-page: 499 article-title: Assessing transient cross‐frequency coupling in EEG data publication-title: Journal of Neuroscience Methods – volume: 11 year: 2017 article-title: Topological filtering of dynamic functional brain networks unfolds informative chronnectomics: A novel data‐driven thresholding scheme based on orthogonal minimal spanning trees (OMSTs) publication-title: Frontiers in Neuroinformatics – year: 2018 – volume: 48 start-page: 450 year: 2006 end-page: 473 article-title: Detecting changes in time series of network graphs using minimum mean squared error and cumulative summation publication-title: The ANZIAM Journal – volume: 32 start-page: 249 issue: 2 year: 2003 end-page: 263 article-title: Economic small‐world behavior in weighted networks publication-title: The European Physical Journal B‐Condensed Matter and Complex Systems – volume: 2 start-page: 125 issue: 3 year: 2012 end-page: 141 article-title: Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain Connectivity – volume: 41 start-page: 2833 issue: 9 year: 2008 end-page: 2841 article-title: A study of graph spectra for comparing graphs and trees publication-title: Pattern Recognition – volume: 134 start-page: 9 year: 2004 end-page: 21 article-title: EEGLAB: An open‐source toolbox for analysis of single‐trial EEG dynamics publication-title: Journal of Neuroscience Methods – volume: 42 start-page: 150 year: 2016 end-page: 162 article-title: Different functional connectivity and network topology in behavioral variant of frontotemporal dementia and Alzheimer's disease: An EEG study publication-title: Neurobiology of Aging – volume: 17 start-page: 161 issue: 2 year: 2007 end-page: 170 article-title: Dynamic functional connectivity publication-title: Current Opinion in Neurobiology – volume: 19 start-page: 17 issue: 1 year: 2018 article-title: Communication dynamics in complex brain networks publication-title: Nature Reviews Neuroscience – volume: 38 start-page: 4744 issue: 9 year: 2017 end-page: 4759 article-title: Cohesive network reconfiguration accompanies extended training publication-title: Human Brain Mapping – volume: 108 start-page: 7641 issue: 18 year: 2011 end-page: 7646 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 67 start-page: 271 issue: 3 year: 1987 end-page: 288 article-title: EEG alpha map series: Brain micro‐states by space‐oriented adaptive segmentation publication-title: Electroencephalography and Clinical Neurophysiology – volume: 120 start-page: 133 year: 2015 end-page: 142 article-title: Dynamic coherence analysis of resting fMRI data to jointly capture state‐based phase, frequency, and time‐domain information publication-title: NeuroImage – volume: 15 start-page: 890 year: 2005 end-page: 900 article-title: Phase/amplitude reset and theta‐gamma interaction in the human medial temporal lobe during a continuous word recognition memory task publication-title: Hippocampus – volume: 53 start-page: 1197 issue: 4 year: 2010 end-page: 1207 article-title: Network‐based statistic: Identifying differences in brain networks publication-title: NeuroImage – volume: 74 start-page: 1 issue: 026205 year: 2006 end-page: 8 article-title: Testing for nonlinearity in irreguar fluctuations with long‐term trends publication-title: Physical Review E – volume: 11 start-page: 405 issue: 4 year: 2013 end-page: 434 article-title: HERMES: Towards an integrated toolbox to characterize functional and effective brain connectivity publication-title: Neuroinformatics – volume: 8 year: 2019 article-title: A statistical framework to assess cross‐frequency coupling while accounting for confounding analysis effects publication-title: eLife – volume: 8 year: 2017 article-title: Quantification of network structural dissimilarities publication-title: Nature Communications – volume: 173 start-page: 610 year: 2018 end-page: 622 article-title: Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses publication-title: NeuroImage – year: 2004 – volume: 1 issue: 4 year: 2005 article-title: The human connectome: A structural description of the human brain publication-title: PLoS Computational Biology – volume: 17 start-page: 395 issue: 4 year: 2007 end-page: 416 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing – volume: 10 start-page: 186 issue: 3 year: 2009 article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience – volume: 110 start-page: 18692 issue: 46 year: 2013 end-page: 18697 article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 start-page: 17 year: 1960 end-page: 60 article-title: On the evolution of random graphs publication-title: Publication of the Mathematical Institute of the Hungarian Academy of Sciences – volume: 4 year: 2010 article-title: Shifts in gamma phase–amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks publication-title: Frontiers in Human Neuroscience – volume: 51 start-page: 97 issue: 2 year: 2004 end-page: 116 article-title: Task‐related coupling from high‐ to low‐frequency signals among visual cortical areas in human subdural recordings publication-title: International Journal of Psychophysiology – volume: 221 start-page: 69 issue: 1 year: 2014 end-page: 77 article-title: Multimodal voxel‐based meta‐analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia publication-title: Psychiatry Research: Neuroimaging – volume: 7 start-page: 189 year: 2014 article-title: The Laplacian spectrum of neural networks publication-title: Frontiers in Computational Neuroscience – start-page: 190 year: 2007 end-page: 204 – volume: 2 start-page: 181 issue: 3 year: 2015 end-page: 195 article-title: Multimodal neuroimaging computing: The workflows, methods, and platforms publication-title: Brain Informatics – volume: 47 start-page: 1590 issue: 4 year: 2009 end-page: 1607 article-title: MATLAB toolbox for functional connectivity publication-title: NeuroImage – volume: 2011 start-page: 41 year: 2011 end-page: 49 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Computational Intelligence and Neuroscience – volume: 105 start-page: 20517 year: 2008 end-page: 20522 article-title: Dynamic cross‐frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T‐maze task publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 13 start-page: 113 issue: 1 year: 2010 end-page: 129 article-title: A survey of graph edit distance publication-title: Pattern Analysis and Applications – volume: 92 year: 1997 article-title: Spectral graph theory publication-title: American Mathematical Society – volume: 59 start-page: 1302 year: 2012 end-page: 1309 article-title: Analyzing functional brain connectivity by means of commute times: A new approach and its application to track event‐related dynamics publication-title: IEEE Transactions on Biomedical Engineering – volume: 52 start-page: 1059 issue: 3 year: 2010 end-page: 1069 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage – volume: 4 start-page: 558 issue: 4 year: 1993 end-page: 569 article-title: Neural‐gas' network for vector quantization and its application to time‐series prediction publication-title: IEEE Transactions on Neural Networks – volume: 45 start-page: 167 year: 2003 end-page: 256 article-title: The structure and function of complex networks publication-title: SIAM Review – volume: 9 start-page: 371 issue: 4 year: 2015 end-page: 387 article-title: Transition dynamics of EEG network microstates unmask developmental and task differences during mental arithmetic and resting wakefulness publication-title: Cognitive Neurodynamics – year: 2000 – volume: 12 year: 2018 article-title: Reliability of static and dynamic network metrics in the resting‐state: A MEG‐beamformed connectivity analysis publication-title: Frontiers in Neuroscience – volume: 43 start-page: 977 year: 2015 end-page: 989 article-title: Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross‐frequency phase interactions publication-title: Annals of Biomedical Engineering – volume: 30 start-page: 83 issue: 3 year: 2013 end-page: 98 article-title: The emerging field of signal processing on graphs: Extending high‐dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Processing Magazine – volume: 1 start-page: 153 issue: 2 year: 1994 end-page: 171 article-title: Analysis of functional MRI time‐series publication-title: Human Brain Mapping – volume: 160 start-page: 41 year: 2017 end-page: 54 article-title: The dynamic functional connectome: State‐of‐the‐art and perspectives publication-title: NeuroImage – volume: 7 start-page: 113 year: 2011 end-page: 140 article-title: Brain graphs: Graphical models of the human brain connectome publication-title: The Annual Review of Clinical Psychology – volume: 115 start-page: 2292 issue: 10 year: 2004 end-page: 2307 article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency publication-title: Clinical Neurophysiology – volume: 13 issue: 12 year: 2017 article-title: Non‐linear auto‐regressive models for cross‐frequency coupling in neural time series publication-title: PLoS Computational Biology – volume: 15 start-page: 884 year: 2012 end-page: 890 article-title: Large‐scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nature Neuroscience – volume: 31 start-page: 51 year: 2015 end-page: 61 article-title: Untangling cross‐frequency coupling in neuroscience publication-title: Current Opinion in Neurobiology – year: 2012 – volume: 58 start-page: 77 issue: 1–4 year: 1992 end-page: 94 article-title: Testing for nonlinearity in time series: The method of surrogate data publication-title: Physica D: Nonlinear Phenomena – volume: 107 start-page: 85 year: 2015 end-page: 94 article-title: Mutually temporally independent connectivity patterns: A new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender publication-title: NeuroImage – volume: 15 start-page: 683 issue: 10 year: 2014 end-page: 695 article-title: Modern network science of neurological disorders publication-title: Nature Reviews Neuroscience – volume: 7 start-page: 625 year: 1995 end-page: 632 – volume: 18 issue: 5 year: 2020 article-title: Genuine cross‐frequency coupling networks in human resting‐state electrophysiological recordings publication-title: PLoS Biology – volume: 6 issue: 1 year: 2016 article-title: Graph distance for complex networks publication-title: Scientific Reports – volume: 13 issue: 1 year: 2017 article-title: A topological criterion for filtering information in complex brain networks publication-title: PLoS Computational Biology – volume: 62 start-page: 1132 issue: 4 year: 2014 end-page: 1140 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease publication-title: IEEE Transactions on Biomedical Engineering – volume: 51 start-page: 1126 issue: 3 year: 2010 end-page: 1139 article-title: Multi‐level bootstrap analysis of stable clusters in resting‐state fMRI publication-title: NeuroImage – volume: 9 year: 2015 article-title: A novel biomarker of amnestic MCI based on dynamic cross‐frequency coupling patterns during cognitive brain responses publication-title: Frontiers in Neuroscience – volume: 414 start-page: 29 issue: 1 year: 2006 end-page: 37 article-title: Laplacian energy of a graph publication-title: Linear Algebra and its Applications – volume: 28 start-page: 129 issue: 2 year: 1982 end-page: 137 article-title: Least squares quantization in PCM publication-title: IEEE Transactions on Information Theory – volume: 32 start-page: 14305 issue: 41 year: 2012 end-page: 14310 article-title: Alpha‐band phase synchrony is related to activity in the fronto‐parietal adaptive control network publication-title: Journal of Neuroscience – volume: 55 start-page: 902 year: 2008 end-page: 913 article-title: Tracking the time‐varying cortical connectivity patterns by adaptive multivariate estimators publication-title: IEEE Transactions on Biomedical Engineering – volume: 20 start-page: 345 issue: 5 year: 2016 end-page: 361 article-title: Comparative connectomics publication-title: Trends in Cognitive Sciences – volume: 104 start-page: 177 year: 2015 end-page: 188 article-title: The minimum spanning tree: An unbiased method for brain network analysis publication-title: NeuroImage – volume: 2 start-page: 224 year: 1979 end-page: 227 article-title: A cluster separation measure publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 9 year: 2015 article-title: Complex network analysis of resting‐state EEG in amnestic mild cognitive impairment patients with type 2 diabetes publication-title: Frontiers in Computational Neuroscience – volume: 31 start-page: 101 issue: 1 year: 2018 end-page: 116 article-title: EEG signatures of dynamic functional network connectivity states publication-title: Brain Topography – volume: 106 start-page: 5 year: 2018 article-title: A graph signal processing perspective on functional brain imaging publication-title: Proceedings of the IEEE – volume: 328 start-page: 876 issue: 5980 year: 2010 end-page: 878 article-title: Community structure in time‐dependent, multiscale, and multiplex networks publication-title: Science – volume: 140 start-page: 1466 issue: 5 year: 2017 end-page: 1485 article-title: Selective impairment of hippocampus and posterior hub areas in Alzheimer's disease: an MEG‐based multiplex network study publication-title: Brain – volume: 7 issue: 1 year: 2017 article-title: Hybrid high‐order functional connectivity networks using resting‐state functional MRI for mild cognitive impairment diagnosis publication-title: Scientific Reports – volume: 19 start-page: 466 year: 2003 end-page: 470 article-title: The elusive concept of brain connectivity publication-title: NeuroImage – year: 1999 – ident: e_1_2_16_131_1 doi: 10.1016/j.neuroimage.2009.10.003 – ident: e_1_2_16_153_1 doi: 10.1016/j.neuroimage.2017.02.005 – ident: e_1_2_16_2_1 doi: 10.3389/fninf.2014.00014 – ident: e_1_2_16_135_1 doi: 10.1016/S0167-2789(00)00043-9 – ident: e_1_2_16_144_1 doi: 10.1002/hbm.20346 – ident: e_1_2_16_114_1 doi: 10.1103/PhysRevE.74.026205 – ident: e_1_2_16_120_1 doi: 10.1016/j.neuroimage.2018.02.032 – ident: e_1_2_16_56_1 doi: 10.3389/fninf.2017.00028 – ident: e_1_2_16_82_1 – ident: e_1_2_16_3_1 doi: 10.1109/EMBC.2016.7591989 – ident: e_1_2_16_49_1 doi: 10.1016/j.jneumeth.2010.08.027 – ident: e_1_2_16_14_1 doi: 10.1073/pnas.0903641106 – ident: e_1_2_16_176_1 doi: 10.1016/j.neuroimage.2009.05.089 – ident: e_1_2_16_78_1 doi: 10.1016/s1053-8119(03)00112-5 – ident: e_1_2_16_148_1 doi: 10.1002/hbm.23699 – ident: e_1_2_16_150_1 doi: 10.1016/0167-2789(92)90102-S – ident: e_1_2_16_64_1 doi: 10.1089/brain.2011.0008 – ident: e_1_2_16_21_1 doi: 10.1097/00001756-200005150-00029 – ident: e_1_2_16_99_1 doi: 10.1186/1471-2202-12-119 – ident: e_1_2_16_128_1 doi: 10.1016/j.neuroimage.2016.12.061 – ident: e_1_2_16_130_1 doi: 10.1016/j.nicl.2019.101841 – ident: e_1_2_16_106_1 doi: 10.1126/science.1065103 – ident: e_1_2_16_28_1 doi: 10.1126/science.1128115 – ident: e_1_2_16_116_1 doi: 10.1007/s12021-013-9186-1 – ident: e_1_2_16_77_1 doi: 10.1038/nn.3101 – ident: e_1_2_16_136_1 doi: 10.1007/s12021-013-9178-1 – ident: e_1_2_16_142_1 doi: 10.1371/journal.pcbi.0010042 – ident: e_1_2_16_48_1 doi: 10.1007/s11571-015-9330-8 – ident: e_1_2_16_177_1 doi: 10.1016/j.nicl.2020.102251 – ident: e_1_2_16_172_1 doi: 10.1016/j.neurobiolaging.2016.03.018 – ident: e_1_2_16_115_1 doi: 10.1137/S003614450342480 – ident: e_1_2_16_42_1 doi: 10.1002/jnr.24316 – ident: e_1_2_16_69_1 doi: 10.1016/j.neuroimage.2015.05.046 – ident: e_1_2_16_35_1 doi: 10.1016/j.pscychresns.2013.07.008 – ident: e_1_2_16_66_1 doi: 10.1002/hbm.460010207 – ident: e_1_2_16_47_1 doi: 10.1007/s10548-008-0071-4 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_16_122_1 article-title: Scikit‐learn: Machine learning in Python publication-title: The Journal of Machine Learning Research – ident: e_1_2_16_141_1 doi: 10.1038/nn.4125 – volume-title: In Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Technique, 137–143 year: 1999 ident: e_1_2_16_129_1 – ident: e_1_2_16_15_1 doi: 10.1038/nn.4502 – ident: e_1_2_16_112_1 doi: 10.1126/science.1184819 – ident: e_1_2_16_74_1 doi: 10.1007/978-3-540-74565-5_16 – ident: e_1_2_16_138_1 doi: 10.1073/pnas.1604898113 – ident: e_1_2_16_23_1 doi: 10.1146/annurev-clinpsy-040510-143934 – ident: e_1_2_16_101_1 doi: 10.1109/TBME.2014.2372011 – ident: e_1_2_16_76_1 doi: 10.3389/neuro.11.003.2009 – ident: e_1_2_16_25_1 doi: 10.1126/science.1099745 – ident: e_1_2_16_167_1 doi: 10.1016/j.patcog.2008.03.011 – ident: e_1_2_16_163_1 doi: 10.1016/j.jneumeth.2018.07.001 – ident: e_1_2_16_10_1 doi: 10.1109/TBME.2007.905419 – start-page: 625 volume-title: Advances in neural information processing systems year: 1995 ident: e_1_2_16_67_1 – ident: e_1_2_16_166_1 doi: 10.1089/brain.2012.0073 – ident: e_1_2_16_54_1 doi: 10.3389/fnins.2018.00506 – ident: e_1_2_16_81_1 doi: 10.1007/978-3-0348-7895-1_23 – ident: e_1_2_16_88_1 doi: 10.1073/pnas.1312902110 – ident: e_1_2_16_102_1 doi: 10.1109/TIT.1982.1056489 – ident: e_1_2_16_36_1 doi: 10.1109/TPAMI.2004.75 – ident: e_1_2_16_165_1 doi: 10.1038/30918 – ident: e_1_2_16_51_1 doi: 10.1109/TBME.2012.2186568 – ident: e_1_2_16_46_1 doi: 10.3389/fnins.2015.00350 – ident: e_1_2_16_60_1 doi: 10.1214/18-AOAS1176 – ident: e_1_2_16_139_1 doi: 10.1109/msp.2012.2235192 – ident: e_1_2_16_52_1 doi: 10.3389/fnins.2018.00306 – ident: e_1_2_16_175_1 doi: 10.1038/s41598-017-06509-0 – ident: e_1_2_16_133_1 – ident: e_1_2_16_44_1 doi: 10.3389/fnins.2017.00694 – ident: e_1_2_16_59_1 – ident: e_1_2_16_37_1 doi: 10.1016/j.nicl.2014.07.003 – start-page: 53 volume-title: In proceedings of the workshop on self‐organizing maps (WSOM'03) year: 2003 ident: e_1_2_16_147_1 – ident: e_1_2_16_84_1 doi: 10.1016/j.tics.2007.05.003 – ident: e_1_2_16_93_1 doi: 10.1038/44565 – ident: e_1_2_16_43_1 doi: 10.1089/brain.2017.0512 – ident: e_1_2_16_71_1 doi: 10.3389/fnins.2013.00267 – volume-title: Statistical parametric mapping: The analysis of functional brain images year: 2011 ident: e_1_2_16_124_1 – ident: e_1_2_16_58_1 doi: 10.1016/j.nicl.2015.09.011 – ident: e_1_2_16_92_1 doi: 10.1140/epjb/e2003-00095-5 – ident: e_1_2_16_152_1 doi: 10.1016/j.tics.2016.03.001 – ident: e_1_2_16_4_1 doi: 10.1016/j.neuroimage.2017.09.020 – ident: e_1_2_16_173_1 doi: 10.1016/j.neuroimage.2010.06.041 – ident: e_1_2_16_168_1 doi: 10.1371/journal.pone.0068910 – ident: e_1_2_16_17_1 doi: 10.1103/PhysRevE.89.032804 – ident: e_1_2_16_90_1 doi: 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c – ident: e_1_2_16_154_1 doi: 10.1109/10.623056 – ident: e_1_2_16_34_1 doi: 10.1523/JNEUROSCI.5335-08.2009 – ident: e_1_2_16_110_1 doi: 10.1371/journal.pone.0149849 – ident: e_1_2_16_162_1 doi: 10.3389/fnhum.2010.00191 – ident: e_1_2_16_79_1 doi: 10.1109/JPROC.2018.2798928 – ident: e_1_2_16_158_1 doi: 10.1073/pnas.1705120114 – ident: e_1_2_16_29_1 doi: 10.3389/fnins.2016.00466 – ident: e_1_2_16_55_1 doi: 10.3389/fnhum.2017.00423 – ident: e_1_2_16_108_1 doi: 10.1016/j.neuroimage.2019.05.052 – ident: e_1_2_16_94_1 doi: 10.1007/978-1-4757-1083-0_10 – ident: e_1_2_16_16_1 doi: 10.1073/pnas.1018985108 – ident: e_1_2_16_164_1 doi: 10.1016/j.neuroimage.2018.01.056 – ident: e_1_2_16_11_1 doi: 10.1038/nrn.2017.149 – ident: e_1_2_16_24_1 doi: 10.1126/science.1171022 – ident: e_1_2_16_9_1 doi: 10.1016/j.conb.2014.08.002 – ident: e_1_2_16_40_1 doi: 10.1073/pnas.1905534116 – ident: e_1_2_16_157_1 doi: 10.1016/j.jneumeth.2020.108651 – ident: e_1_2_16_53_1 doi: 10.3389/fnins.2019.00542 – ident: e_1_2_16_61_1 doi: 10.1073/pnas.1216402109 – ident: e_1_2_16_5_1 doi: 10.1007/s10548-017-0546-2 – ident: e_1_2_16_137_1 doi: 10.1038/srep34944 – start-page: 1027 volume-title: k‐means++: The advantages of careful seeding. Proceedings of the Eighteenth annual ACM‐SIAM Symposium on Discrete Algorithms year: 2007 ident: e_1_2_16_8_1 – ident: e_1_2_16_121_1 doi: 10.1109/10.391164 – volume-title: Neuropycon/graphpype: Test release Zenodo year: 2019 ident: e_1_2_16_109_1 – ident: e_1_2_16_126_1 doi: 10.21914/anziamj.v48i0.62 – ident: e_1_2_16_123_1 doi: 10.1016/j.jneumeth.2008.06.035 – ident: e_1_2_16_98_1 doi: 10.1109/TSP.2013.2259825 – ident: e_1_2_16_161_1 doi: 10.1007/s11222-007-9033-z – ident: e_1_2_16_156_1 doi: 10.1109/EMBC.2019.8856284 – ident: e_1_2_16_41_1 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_2_16_95_1 doi: 10.1016/0013-4694(87)90025-3 – ident: e_1_2_16_103_1 doi: 10.3389/conf.fninf.2016.20.00022 – ident: e_1_2_16_33_1 doi: 10.1016/j.jneumeth.2007.10.012 – ident: e_1_2_16_32_1 doi: 10.1089/brain.2016.0481 – ident: e_1_2_16_22_1 doi: 10.1038/nrn2575 – ident: e_1_2_16_151_1 doi: 10.1073/pnas.0810524105 – ident: e_1_2_16_91_1 doi: 10.1103/PhysRevLett.87.198701 – ident: e_1_2_16_75_1 doi: 10.1109/GlobalSIP.2013.6736904 – ident: e_1_2_16_20_1 doi: 10.1016/j.ijpsycho.2003.07.001 – ident: e_1_2_16_7_1 doi: 10.1016/j.ijpsycho.2016.02.002 – ident: e_1_2_16_117_1 doi: 10.1016/j.clinph.2004.04.029 – ident: e_1_2_16_80_1 doi: 10.1016/j.conb.2007.03.008 – ident: e_1_2_16_145_1 doi: 10.1016/j.neuroimage.2012.05.050 – ident: e_1_2_16_13_1 doi: 10.1073/pnas.0911531107 – volume: 92 year: 1997 ident: e_1_2_16_31_1 article-title: Spectral graph theory publication-title: American Mathematical Society – ident: e_1_2_16_111_1 doi: 10.1002/hipo.20117 – ident: e_1_2_16_155_1 doi: 10.1371/journal.pone.0013701 – ident: e_1_2_16_6_1 doi: 10.1093/cercor/bhs352 – ident: e_1_2_16_57_1 doi: 10.1007/s10439-014-1143-0 – ident: e_1_2_16_169_1 doi: 10.1016/j.neuroimage.2015.07.002 – ident: e_1_2_16_127_1 doi: 10.1038/ncomms9885 – ident: e_1_2_16_143_1 doi: 10.1038/nrn3801 – ident: e_1_2_16_174_1 doi: 10.3389/fncom.2015.00133 – ident: e_1_2_16_132_1 doi: 10.1523/JNEUROSCI.1358-12.2012 – ident: e_1_2_16_39_1 doi: 10.3389/fncom.2013.00189 – ident: e_1_2_16_85_1 doi: 10.1016/j.bbr.2016.06.043 – ident: e_1_2_16_38_1 doi: 10.1109/TPAMI.1979.4766909 – ident: e_1_2_16_27_1 doi: 10.1016/j.neuron.2014.10.015 – ident: e_1_2_16_19_1 doi: 10.1016/j.neuroimage.2012.03.048 – ident: e_1_2_16_18_1 doi: 10.1016/j.neuroimage.2010.02.082 – ident: e_1_2_16_170_1 doi: 10.1016/j.neuroimage.2014.11.054 – ident: e_1_2_16_45_1 doi: 10.1016/j.bandc.2012.04.001 – ident: e_1_2_16_86_1 doi: 10.1007/978-3-642-56927-2 – ident: e_1_2_16_100_1 doi: 10.1007/s40708-015-0020-4 – ident: e_1_2_16_83_1 doi: 10.1007/978-3-540-27801-6_6 – ident: e_1_2_16_125_1 doi: 10.21914/anziamj.v48i0.62 – ident: e_1_2_16_89_1 doi: 10.1371/journal.pcbi.1005893 – ident: e_1_2_16_63_1 doi: 10.1371/journal.pcbi.1005305 – ident: e_1_2_16_70_1 doi: 10.1073/pnas.1121049109 – ident: e_1_2_16_149_1 doi: 10.1016/j.neuroimage.2014.10.015 – ident: e_1_2_16_134_1 doi: 10.1038/ncomms13928 – ident: e_1_2_16_107_1 doi: 10.1016/j.jmva.2006.11.013 – ident: e_1_2_16_12_1 doi: 10.1016/j.neuron.2010.02.006 – volume: 5 start-page: 17 year: 1960 ident: e_1_2_16_62_1 article-title: On the evolution of random graphs publication-title: Publication of the Mathematical Institute of the Hungarian Academy of Sciences – ident: e_1_2_16_118_1 doi: 10.1155/2011/156869 – ident: e_1_2_16_50_1 doi: 10.1007/s10548-013-0276-z – ident: e_1_2_16_171_1 doi: 10.1093/brain/awx050 – ident: e_1_2_16_30_1 doi: 10.1016/j.neuroimage.2009.12.011 – ident: e_1_2_16_65_1 doi: 10.1016/s1053-8119(03)00202-7 – ident: e_1_2_16_96_1 doi: 10.1016/j.neuroimage.2009.07.054 – ident: e_1_2_16_87_1 doi: 10.1016/j.jneumeth.2015.02.021 – volume: 1 start-page: 397 year: 1991 ident: e_1_2_16_104_1 article-title: A ‘neural‐gas’ network learns topologies publication-title: Proceedings International Conference on Artificial Neural Networks – ident: e_1_2_16_140_1 doi: 10.1371/journal.pbio.3000685 – ident: e_1_2_16_72_1 doi: 10.1038/s41598-017-07846-w – ident: e_1_2_16_73_1 doi: 10.1016/j.laa.2005.09.008 – ident: e_1_2_16_68_1 doi: 10.1007/s10044-008-0141-y – ident: e_1_2_16_105_1 doi: 10.1109/72.238311 – ident: e_1_2_16_113_1 doi: 10.7554/eLife.44287.001 – ident: e_1_2_16_146_1 doi: 10.1162/153244303321897735 – ident: e_1_2_16_160_1 doi: 10.3389/fnsys.2020.00020 – ident: e_1_2_16_159_1 doi: 10.1016/j.neuroimage.2011.01.055 – ident: e_1_2_16_119_1 doi: 10.1162/netn_a_00079 – ident: e_1_2_16_26_1 doi: 10.1038/s41598-017-05425-7 – ident: e_1_2_16_97_1 doi: 10.1016/j.neuroimage.2013.07.019  | 
    
| SSID | ssj0011501 | 
    
| Score | 2.4008873 | 
    
| Snippet | Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 4909 | 
    
| SubjectTerms | Algorithms Alzheimer's disease Brain Brain - diagnostic imaging Brain - physiology Brain mapping Brain research chronnectomics Cognition complex networks Complex systems Complexity Connectome - methods Datasets dynamic connectivity EEG Electroencephalography Electroencephalography - methods Empirical analysis Evolution fMRI Functional anatomy functional connectivity Functional magnetic resonance imaging graph theory human connectome Humans Image processing Magnetic Resonance Imaging - methods Magnetoencephalography - methods Medical imaging MEG Modules Nerve Net - diagnostic imaging Nerve Net - physiology Nervous system Networks Neural networks Neuroimaging Neurosciences python Schizophrenia Spatio-Temporal Analysis statistical analysis Structure-function relationships Time Factors Time series  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BVwIuPHZ5BBZkHkJ7Sck6TmxzK5RVhdQVByotp-DYrnZFk0bQCJUTP4JfyC9h7LgRZQEhcWviSePEM_bnzMw3AE-YPDRsLrI4wW7GzCgZl7m2sSOzQ4VCFZEuG3l6nE9m7PVJdhLqnLpcmI4fov_g5izDz9fOwBsz7-b54N2nz07LaoiYWMiLsJNnCMYHsDM7fjN6532ceRbLsOVKHOcoYpUNt9DP126vSOdg5vloyctt3aj1Z7VYbCNavyQdXYP3m4fpIlE-DNtVOdRffuF5_I-nvQ5XA1wlo06_bsAFW-_C3qjGrXq1Jk-JDyD1X-Z34dI0-On3YDxe4z67rlTznIy7mvfEnXAugsoSPO_StL5__TYinlDzrPLFkkizdlQGpFqadmFvwuzo1duXkzjUa4g1Q1wTK1pmWiA-sFQLqZWVfJ6WMldUWZoILnKD8EsleIgwgXND51LxkvvsW57o9BYM6mVt7wBJdelC75jm2jAujTQ4eLjIcpFoaUQWwcFmzAodyMxdTY1F0dEw0wJfVuFfVgSPetGmY_D4ndD-ZuCLYMSfsIWnuZS444vgYd-M5ud8Kqq2y9bJZC4LlTIewe1OT_q7pDgfosazCPiWBvUCjtp7u6U-O_UU34KhER1itx73uva3zh941fmzRDF5MfU_7v7TH96DK9SF7rjAnWwfBquPrb2P2GtVPgj29QP8dS1x priority: 102 providerName: Unpaywall  | 
    
| Title | Dyconnmap: Dynamic connectome mapping—A neuroimaging python module | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25589 https://www.ncbi.nlm.nih.gov/pubmed/34250674 https://www.proquest.com/docview/2573699260 https://www.proquest.com/docview/2550628247 https://pubmed.ncbi.nlm.nih.gov/PMC8449119 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25589  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 42 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 7X7 dateStart: 20210801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED-NTQJeEGz8CYzK_BHaS7bUceIYnjq6qUJqVU1UKk-RY7vapCat2CrUNz4En5BPwp2TBlUDxEuU2lfFsu98P9t3PwO8FaprxSxLwgibGQqrVVikxoVEZocKhSqiKBt5OEoHE_Fpmkx34MMmF6bmh2g33Mgy_HxNBq6L65PfpKGXRXmMeDhTd2CviziG1JuLcXuEgF_zqy30saHCKXhDKxTxk_av287oFsK8HSh5b1Ut9fqbns-3waz3RucP4UEDI1mvHvdHsOOqfTjoVbiELtfsHfOBnX7HfB_uDpvz8wPo99e4_q1KvXzP-vVd9IwKaOu-dAzLKX3q5_cfPeaJLq9Kf4kRW66JYoCVC7uau8cwOT_7_HEQNvcohEYg3gg1LxKTod923GTKaKfkLC5Uqrl2PMpkllqERTrCn-i-pbR8prQspM-KlZGJn8ButajcM2CxKSgkThhprJDKKosAEJ2fzCKjbJYEcLTp0Nw0JON018U8r-mReY59n_u-D-B1K7qsmTX-JHS4GZW8Ma5rrJFxqhSuxAJ41VajWdBZh67cYkUyCWWHciEDeFoPYvuVGOcp1EQRgNwa3laAKLe3a6qrS0-9nQlU7i42602rCP9q_JFXkb9L5IPToX95_v-iL-A-p7gaiqpJDmH35uvKvURgdFN0vAHgU05lB_ZOz0bji47fZKDnBceyyWjc-_ILBWMO-Q | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VIlEuqLTQBgqYH6Fe0mYdJ7YRl4WlWqBbcWil3iLH9qqVNtkVdIX2xkPwhDxJZ5xs0KqAuCX2RLHsGc-PZz4DvBK658RYZXGCw4yFMzouc-tjArNDhkIW0VSNPDrJh2fi03l2vgZvl7UwDT5EF3AjyQj7NQk4BaQPf6OGXpTVARrESt-C2yLv5eR6cfGlO0PA3wV3C5VsrHEPXuIKJfyw-3RVG90wMW9mSm7M65lZfDeTyao1G9TR0Sbca-1I1m8W_j6s-XoLtvs1-tDVgr1mIbMzhMy34M6oPUDfhsFggQ5wXZnZGzZoLqNn1ECx-8ozbKf6qV8_fvZZQLq8rMItRmy2IIwBVk3dfOIfwNnRh9P3w7i9SCG2Ag2O2PAyswoVt-dWaWu8luO01LnhxvNESZU7tItMgq-ov6V0fKyNLGUoi5WJTR_Cej2t_S6w1JaUEyestE5I7bRDCxC1n1SJ1U5lEewvJ7SwLco4XXYxKRp8ZF7g3Bdh7iN40ZHOGmiNPxHtLVelaKXrG_bINNcaXbEInnfdKBd02GFqP50TTUbloVzICHaaRez-kuJGhawoIpAry9sREOb2ak99eRGwt5VA7u7hsF52jPCvwe8HFvk7RTF8NwoPj_6f9BlsDE9Hx8Xxx5PPj-EupyQbSrHJ9mD96uvcP0Er6ap8GoThGr2-DFY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhUuBVoegQLmIdRLtmnixDbishBWy2MrhKjUSxU5tletuslGsBFaTvwIfiG_hLHzQEsBIW6JPVH8mLE_2zOfAR5Tsa_plMd-gMX0qZbCzxNlfEtmhwqFKiJsNPLkIBkf0tdH8dEaPOtiYRp-iH7DzVqGG6-tgZtKT_d-soae5MUAATEXF-AijQW3Dn3p-548ykIdt9zCSdYXOAZ3vEJBuNd_ujobnYOY5z0lL9VlJZef5Wy2imbddDS6AsddRRovlLNBvcgH6ssvHI__W9OrsNniVDJsFOsarJlyC7aHJa7RiyV5QpznqNuS34KNSXtAvw1pusQFdlnI6ilJm8vuiU2wZwOFIZhu47O-f_02JI5J87RwtySRamk5DEgx1_XMXIfD0csPL8Z-e1GDrygCGl-Geaw4AgMTKi6UNIJNo1wkMpQmDDjjiUbcJQN8RXzAmA6nQrKcubBbFqjoBqyX89LcAhKp3PrcUcWUpkxooRFh4uzKeKCE5rEHu12HZaplMbeXacyyhn85zLCxMtdYHjzsRauGuuN3Qjtdr2et9X7CHBYlQuBSz4MHfTbanT1MkaWZ11YmtuGnIWUe3GyUpP9LhAMhqjr1gK2oTy9gOb1Xc8rTE8ftzSlazz4W61GvaH8r_K7Tmz9LZOPnE_dw-99F78PGu3SUvX118OYOXA6tD4_14Il3YH3xsTZ3EYQt8nvO1n4A3U4skg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BVwIuPHZ5BBZkHkJ7Sck6TmxzK5RVhdQVByotp-DYrnZFk0bQCJUTP4JfyC9h7LgRZQEhcWviSePEM_bnzMw3AE-YPDRsLrI4wW7GzCgZl7m2sSOzQ4VCFZEuG3l6nE9m7PVJdhLqnLpcmI4fov_g5izDz9fOwBsz7-b54N2nz07LaoiYWMiLsJNnCMYHsDM7fjN6532ceRbLsOVKHOcoYpUNt9DP126vSOdg5vloyctt3aj1Z7VYbCNavyQdXYP3m4fpIlE-DNtVOdRffuF5_I-nvQ5XA1wlo06_bsAFW-_C3qjGrXq1Jk-JDyD1X-Z34dI0-On3YDxe4z67rlTznIy7mvfEnXAugsoSPO_StL5__TYinlDzrPLFkkizdlQGpFqadmFvwuzo1duXkzjUa4g1Q1wTK1pmWiA-sFQLqZWVfJ6WMldUWZoILnKD8EsleIgwgXND51LxkvvsW57o9BYM6mVt7wBJdelC75jm2jAujTQ4eLjIcpFoaUQWwcFmzAodyMxdTY1F0dEw0wJfVuFfVgSPetGmY_D4ndD-ZuCLYMSfsIWnuZS444vgYd-M5ud8Kqq2y9bJZC4LlTIewe1OT_q7pDgfosazCPiWBvUCjtp7u6U-O_UU34KhER1itx73uva3zh941fmzRDF5MfU_7v7TH96DK9SF7rjAnWwfBquPrb2P2GtVPgj29QP8dS1x | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dyconnmap%3A+Dynamic+connectome+mapping-A+neuroimaging+python+module&rft.jtitle=Human+brain+mapping&rft.au=Marimpis%2C+Avraam+D&rft.au=Dimitriadis%2C+Stavros+I&rft.au=Goebel%2C+Rainer&rft.date=2021-10-15&rft.eissn=1097-0193&rft.volume=42&rft.issue=15&rft.spage=4909&rft_id=info:doi/10.1002%2Fhbm.25589&rft_id=info%3Apmid%2F34250674&rft.externalDocID=34250674 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |