Dyconnmap: Dynamic connectome mapping—A neuroimaging python module

Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For t...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 42; no. 15; pp. 4909 - 4939
Main Authors Marimpis, Avraam D., Dimitriadis, Stavros I., Goebel, Rainer
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.10.2021
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.25589

Cover

Abstract Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans. In this article, we presented a python module, called dyconnmap, for static and dynamic brain network construction in multiple ways, mining time‐resolved function brain networks, network comparison and brain network classification.
AbstractList Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time-averaged approaches and sophisticated algorithms that can capture the time-varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word 'chronnectome' (integration of the Greek word 'Chronos', which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well-known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi-faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.
Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans. In this article, we presented a python module, called dyconnmap, for static and dynamic brain network construction in multiple ways, mining time‐resolved function brain networks, network comparison and brain network classification.
Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans. In this article, we presented a python module, called dyconnmap, for static and dynamic brain network construction in multiple ways, mining time‐resolved function brain networks, network comparison and brain network classification.
Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module ( https://github.com/makism/dyconnmap ) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.
Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time-averaged approaches and sophisticated algorithms that can capture the time-varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word 'chronnectome' (integration of the Greek word 'Chronos', which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well-known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi-faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time-averaged approaches and sophisticated algorithms that can capture the time-varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word 'chronnectome' (integration of the Greek word 'Chronos', which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well-known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi-faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.
Author Dimitriadis, Stavros I.
Marimpis, Avraam D.
Goebel, Rainer
AuthorAffiliation 6 School of Psychology Cardiff University Cardiff United Kingdom
1 Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
2 Neuroinformatics Group, Cardiff University Brain Research Imaging Center (CUBRIC) School of Psychology, Cardiff University Cardiff United Kingdom
3 Brain Innovation B.V Maastricht The Netherlands
7 Neuroscience and Mental Health Research Institute Cardiff University Cardiff United Kingdom
4 Institute of Psychological Medicine and Clinical Neurosciences Cardiff University School of Medicine Cardiff United Kingdom
5 Cardiff University Brain Research Imaging Center (CUBRIC) School of Psychology, Cardiff University Cardiff United Kingdom
8 MRC Centre for Neuropsychiatric Genetics and Genomics School of Medicine, Cardiff University Cardiff United Kingdom
AuthorAffiliation_xml – name: 5 Cardiff University Brain Research Imaging Center (CUBRIC) School of Psychology, Cardiff University Cardiff United Kingdom
– name: 7 Neuroscience and Mental Health Research Institute Cardiff University Cardiff United Kingdom
– name: 1 Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
– name: 3 Brain Innovation B.V Maastricht The Netherlands
– name: 2 Neuroinformatics Group, Cardiff University Brain Research Imaging Center (CUBRIC) School of Psychology, Cardiff University Cardiff United Kingdom
– name: 6 School of Psychology Cardiff University Cardiff United Kingdom
– name: 4 Institute of Psychological Medicine and Clinical Neurosciences Cardiff University School of Medicine Cardiff United Kingdom
– name: 8 MRC Centre for Neuropsychiatric Genetics and Genomics School of Medicine, Cardiff University Cardiff United Kingdom
Author_xml – sequence: 1
  givenname: Avraam D.
  orcidid: 0000-0003-1551-9940
  surname: Marimpis
  fullname: Marimpis, Avraam D.
  email: avraam.marimpis@maastrichtuniversity.nl
  organization: Brain Innovation B.V
– sequence: 2
  givenname: Stavros I.
  orcidid: 0000-0002-0000-5392
  surname: Dimitriadis
  fullname: Dimitriadis, Stavros I.
  organization: School of Medicine, Cardiff University
– sequence: 3
  givenname: Rainer
  surname: Goebel
  fullname: Goebel, Rainer
  organization: Brain Innovation B.V
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34250674$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuEzEUhi3UilxgwQugkdjQStPaHo8vLJDapG2QgtjA2vI4TuJoxp7OhWh2PARPyJPg6aQFImBl-_g7__n9ewJOnHcGgFcIXiAI8eU2Ky5wmnLxDIwRFCyGSCQn_Z6msSAMjcCkrncQIpRC9ByMEoJTSBkZg_m80965QpXvonnnVGF11BeMbnxholAvrdv8-Pb9KnKmrbwt1CYUorJrtt5FhV-1uXkBTtcqr83LwzoFX25vPs8W8fLT3YfZ1TLWhCQiVjhLNacoMVhzoZURbJ1kgiqsDIaccbrClCgYjhxxxlZ4LRTLGCaQCgZ1MgXng27rStXtVZ7LsgqOqk4iKPsoZIhCPkQR4PcDXLZZYVbauKZSvxq8svLPG2e3cuO_Sk6IQKgXeHsQqPx9a-pGFrbWJs-VM76t-zGQYo4JC-ibI3Tn28qFLALFEioEpjBQr3939GTl8TcCcDkAuvJ1XZm11LZRjfW9QZv_9ZFnRx3_C-Sgvre56f4NysX1x6HjJ009uXI
CitedBy_id crossref_primary_10_3390_brainsci12101404
crossref_primary_10_1098_rstb_2022_0336
crossref_primary_10_1016_j_neuroscience_2023_05_033
crossref_primary_10_3390_diagnostics13182963
crossref_primary_10_1007_s00406_023_01550_9
Cites_doi 10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2017.02.005
10.3389/fninf.2014.00014
10.1016/S0167-2789(00)00043-9
10.1002/hbm.20346
10.1103/PhysRevE.74.026205
10.1016/j.neuroimage.2018.02.032
10.3389/fninf.2017.00028
10.1109/EMBC.2016.7591989
10.1016/j.jneumeth.2010.08.027
10.1073/pnas.0903641106
10.1016/j.neuroimage.2009.05.089
10.1016/s1053-8119(03)00112-5
10.1002/hbm.23699
10.1016/0167-2789(92)90102-S
10.1089/brain.2011.0008
10.1097/00001756-200005150-00029
10.1186/1471-2202-12-119
10.1016/j.neuroimage.2016.12.061
10.1016/j.nicl.2019.101841
10.1126/science.1065103
10.1126/science.1128115
10.1007/s12021-013-9186-1
10.1038/nn.3101
10.1007/s12021-013-9178-1
10.1371/journal.pcbi.0010042
10.1007/s11571-015-9330-8
10.1016/j.nicl.2020.102251
10.1016/j.neurobiolaging.2016.03.018
10.1137/S003614450342480
10.1002/jnr.24316
10.1016/j.neuroimage.2015.05.046
10.1016/j.pscychresns.2013.07.008
10.1002/hbm.460010207
10.1007/s10548-008-0071-4
10.1038/nn.4125
10.1038/nn.4502
10.1126/science.1184819
10.1007/978-3-540-74565-5_16
10.1073/pnas.1604898113
10.1146/annurev-clinpsy-040510-143934
10.1109/TBME.2014.2372011
10.3389/neuro.11.003.2009
10.1126/science.1099745
10.1016/j.patcog.2008.03.011
10.1016/j.jneumeth.2018.07.001
10.1109/TBME.2007.905419
10.1089/brain.2012.0073
10.3389/fnins.2018.00506
10.1007/978-3-0348-7895-1_23
10.1073/pnas.1312902110
10.1109/TIT.1982.1056489
10.1109/TPAMI.2004.75
10.1038/30918
10.1109/TBME.2012.2186568
10.3389/fnins.2015.00350
10.1214/18-AOAS1176
10.1109/msp.2012.2235192
10.3389/fnins.2018.00306
10.1038/s41598-017-06509-0
10.3389/fnins.2017.00694
10.1016/j.nicl.2014.07.003
10.1016/j.tics.2007.05.003
10.1038/44565
10.1089/brain.2017.0512
10.3389/fnins.2013.00267
10.1016/j.nicl.2015.09.011
10.1140/epjb/e2003-00095-5
10.1016/j.tics.2016.03.001
10.1016/j.neuroimage.2017.09.020
10.1016/j.neuroimage.2010.06.041
10.1371/journal.pone.0068910
10.1103/PhysRevE.89.032804
10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
10.1109/10.623056
10.1523/JNEUROSCI.5335-08.2009
10.1371/journal.pone.0149849
10.3389/fnhum.2010.00191
10.1109/JPROC.2018.2798928
10.1073/pnas.1705120114
10.3389/fnins.2016.00466
10.3389/fnhum.2017.00423
10.1016/j.neuroimage.2019.05.052
10.1007/978-1-4757-1083-0_10
10.1073/pnas.1018985108
10.1016/j.neuroimage.2018.01.056
10.1038/nrn.2017.149
10.1126/science.1171022
10.1016/j.conb.2014.08.002
10.1073/pnas.1905534116
10.1016/j.jneumeth.2020.108651
10.3389/fnins.2019.00542
10.1073/pnas.1216402109
10.1007/s10548-017-0546-2
10.1038/srep34944
10.1109/10.391164
10.21914/anziamj.v48i0.62
10.1016/j.jneumeth.2008.06.035
10.1109/TSP.2013.2259825
10.1007/s11222-007-9033-z
10.1109/EMBC.2019.8856284
10.1016/j.jneumeth.2003.10.009
10.1016/0013-4694(87)90025-3
10.3389/conf.fninf.2016.20.00022
10.1016/j.jneumeth.2007.10.012
10.1089/brain.2016.0481
10.1038/nrn2575
10.1073/pnas.0810524105
10.1103/PhysRevLett.87.198701
10.1109/GlobalSIP.2013.6736904
10.1016/j.ijpsycho.2003.07.001
10.1016/j.ijpsycho.2016.02.002
10.1016/j.clinph.2004.04.029
10.1016/j.conb.2007.03.008
10.1016/j.neuroimage.2012.05.050
10.1073/pnas.0911531107
10.1002/hipo.20117
10.1371/journal.pone.0013701
10.1093/cercor/bhs352
10.1007/s10439-014-1143-0
10.1016/j.neuroimage.2015.07.002
10.1038/ncomms9885
10.1038/nrn3801
10.3389/fncom.2015.00133
10.1523/JNEUROSCI.1358-12.2012
10.3389/fncom.2013.00189
10.1016/j.bbr.2016.06.043
10.1109/TPAMI.1979.4766909
10.1016/j.neuron.2014.10.015
10.1016/j.neuroimage.2012.03.048
10.1016/j.neuroimage.2010.02.082
10.1016/j.neuroimage.2014.11.054
10.1016/j.bandc.2012.04.001
10.1007/978-3-642-56927-2
10.1007/s40708-015-0020-4
10.1007/978-3-540-27801-6_6
10.1371/journal.pcbi.1005893
10.1371/journal.pcbi.1005305
10.1073/pnas.1121049109
10.1016/j.neuroimage.2014.10.015
10.1038/ncomms13928
10.1016/j.jmva.2006.11.013
10.1016/j.neuron.2010.02.006
10.1155/2011/156869
10.1007/s10548-013-0276-z
10.1093/brain/awx050
10.1016/j.neuroimage.2009.12.011
10.1016/s1053-8119(03)00202-7
10.1016/j.neuroimage.2009.07.054
10.1016/j.jneumeth.2015.02.021
10.1371/journal.pbio.3000685
10.1038/s41598-017-07846-w
10.1016/j.laa.2005.09.008
10.1007/s10044-008-0141-y
10.1109/72.238311
10.7554/eLife.44287.001
10.1162/153244303321897735
10.3389/fnsys.2020.00020
10.1016/j.neuroimage.2011.01.055
10.1162/netn_a_00079
10.1038/s41598-017-05425-7
10.1016/j.neuroimage.2013.07.019
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
– notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.25589
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Marimpis et al
EISSN 1097-0193
EndPage 4939
ExternalDocumentID 10.1002/hbm.25589
PMC8449119
34250674
10_1002_hbm_25589
HBM25589
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L010305/1
– fundername: Medical Research Council
  grantid: MR/K004360/1
– fundername: Medical Research Council
  grantid: MR/K005464/1
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
.Y3
31~
AANHP
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
ADTOC
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
BFHJK
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
RIWAO
RJQFR
SAMSI
UNPAY
WXSBR
ID FETCH-LOGICAL-c4439-a2b5c8613e2c89cae97f3b96a2ae208786d264a02ae81877d2f9a7b72406970c3
IEDL.DBID 24P
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 03:28:12 EDT 2025
Tue Sep 30 15:57:12 EDT 2025
Wed Oct 01 13:44:13 EDT 2025
Tue Oct 07 06:19:37 EDT 2025
Mon Jul 21 06:03:03 EDT 2025
Wed Oct 01 01:55:46 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Jan 22 16:28:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords fMRI
python
functional connectivity
graph theory
EEG
dynamic connectivity
chronnectomics
complex networks
statistical analysis
human connectome
MEG
Language English
License Attribution
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-a2b5c8613e2c89cae97f3b96a2ae208786d264a02ae81877d2f9a7b72406970c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0000-5392
0000-0003-1551-9940
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25589
PMID 34250674
PQID 2573699260
PQPubID 996345
PageCount 31
ParticipantIDs unpaywall_primary_10_1002_hbm_25589
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449119
proquest_miscellaneous_2550628247
proquest_journals_2573699260
pubmed_primary_34250674
crossref_citationtrail_10_1002_hbm_25589
crossref_primary_10_1002_hbm_25589
wiley_primary_10_1002_hbm_25589_HBM25589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 15, 2021
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: October 15, 2021
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 13
2010; 107
1997; 44
1960; 5
2019; 13
2004; 26
2013; 61
2011; 55
2014; 24
2020; 14
2008; 105
1992; 58
2017; 152
2012; 15
2013; 7
2013; 8
1998; 393
2020; 18
2009; 10
2018; 173
1990
2000; 11
2019; 23
2014; 15
2016; 42
2017; 160
2020; 337
1979; 2
2017; 163
2013; 110
2010; 193
2010; 5
2018; 31
2010; 4
2003; 45
2007; 17
2019; 8
2019; 3
2011; 1
2018; 106
2010; 328
2015; 245
2013; 83
2015; 120
2016; 10
2016; 322
2002; 3
2008; 55
2007; 98
2007; 11
2004; 304
2012; 32
2011; 7
2003; 32
2012; 109
1995; 7
2016; 11
1999
1995; 42
2018; 19
2016; 6
1987; 67
2010; 49
2004; 51
2006; 48
2016; 20
2020; 26
2018; 96
2005; 1
2017; 140
2008; 41
2015; 118
2018; 12
2005; 15
2010; 52
2010; 51
2010; 50
2009; 106
2017; 7
2009; 47
2017; 8
2010; 53
2013; 26
2006; 74
2015; 104
2015; 31
2016; 102
2011; 12
2003; 19
2012; 59
2015; 107
2014; 62
1999; 401
2006; 414
2011; 18
2017; 114
1993; 4
2001; 87
2004; 134
2007; 28
2010; 65
2014; 5
1982; 28
1997; 92
2001
2013; 11
2000
2017; 38
2015; 43
2016; 113
2019; 116
2014; 8
2014; 7
2019; 199
2012; 63
2009; 325
2012; 62
2015; 2
2009; 22
2017; 20
2012; 80
1991; 1
2015; 6
2015; 18
2002; 296
2012
2011
2007
2018; 308
2004
2003
2008; 168
1999; 8
2014; 84
2006; 313
2015; 9
2014; 89
2009; 29
2011; 2011
2012; 2
2011; 108
2004; 115
2017; 11
2017; 13
2013; 30
2019
2018
2016
2000; 142
2013
1994; 1
2009; 3
2014; 221
2008; 174
2007; 48
e_1_2_16_23_1
e_1_2_16_46_1
e_1_2_16_27_1
e_1_2_16_69_1
e_1_2_16_117_1
e_1_2_16_42_1
e_1_2_16_88_1
e_1_2_16_65_1
e_1_2_16_113_1
e_1_2_16_136_1
e_1_2_16_159_1
e_1_2_16_84_1
e_1_2_16_61_1
e_1_2_16_120_1
e_1_2_16_143_1
e_1_2_16_166_1
e_1_2_16_80_1
e_1_2_16_101_1
e_1_2_16_162_1
Erdos P. (e_1_2_16_62_1) 1960; 5
e_1_2_16_15_1
e_1_2_16_38_1
e_1_2_16_19_1
e_1_2_16_34_1
e_1_2_16_57_1
e_1_2_16_30_1
e_1_2_16_53_1
e_1_2_16_76_1
e_1_2_16_99_1
e_1_2_16_105_1
e_1_2_16_128_1
Strickert M. (e_1_2_16_147_1) 2003
e_1_2_16_11_1
e_1_2_16_95_1
e_1_2_16_72_1
e_1_2_16_91_1
Pedregosa F. (e_1_2_16_122_1) 2011; 12
e_1_2_16_131_1
e_1_2_16_177_1
Chung F. (e_1_2_16_31_1) 1997; 92
Meunier D. (e_1_2_16_109_1) 2019
e_1_2_16_9_1
e_1_2_16_112_1
e_1_2_16_154_1
e_1_2_16_173_1
e_1_2_16_5_1
e_1_2_16_150_1
e_1_2_16_26_1
e_1_2_16_49_1
e_1_2_16_45_1
e_1_2_16_68_1
e_1_2_16_41_1
e_1_2_16_64_1
e_1_2_16_87_1
e_1_2_16_118_1
e_1_2_16_22_1
e_1_2_16_60_1
Fritzke B. (e_1_2_16_67_1) 1995
e_1_2_16_83_1
e_1_2_16_114_1
e_1_2_16_137_1
e_1_2_16_121_1
e_1_2_16_167_1
e_1_2_16_144_1
e_1_2_16_163_1
e_1_2_16_140_1
e_1_2_16_14_1
e_1_2_16_18_1
e_1_2_16_56_1
e_1_2_16_37_1
e_1_2_16_79_1
e_1_2_16_98_1
e_1_2_16_52_1
e_1_2_16_33_1
e_1_2_16_75_1
e_1_2_16_102_1
e_1_2_16_71_1
e_1_2_16_94_1
e_1_2_16_10_1
e_1_2_16_125_1
e_1_2_16_106_1
e_1_2_16_148_1
e_1_2_16_90_1
e_1_2_16_132_1
e_1_2_16_155_1
e_1_2_16_4_1
e_1_2_16_151_1
e_1_2_16_174_1
e_1_2_16_170_1
e_1_2_16_25_1
e_1_2_16_29_1
e_1_2_16_48_1
e_1_2_16_63_1
e_1_2_16_119_1
e_1_2_16_44_1
e_1_2_16_86_1
e_1_2_16_21_1
e_1_2_16_115_1
e_1_2_16_138_1
e_1_2_16_157_1
e_1_2_16_40_1
e_1_2_16_82_1
e_1_2_16_145_1
e_1_2_16_164_1
e_1_2_16_141_1
e_1_2_16_160_1
e_1_2_16_13_1
Ray S. (e_1_2_16_129_1) 1999
e_1_2_16_17_1
e_1_2_16_36_1
e_1_2_16_59_1
e_1_2_16_78_1
e_1_2_16_32_1
e_1_2_16_55_1
e_1_2_16_74_1
e_1_2_16_103_1
e_1_2_16_97_1
e_1_2_16_70_1
e_1_2_16_51_1
e_1_2_16_107_1
e_1_2_16_126_1
e_1_2_16_149_1
e_1_2_16_168_1
e_1_2_16_93_1
e_1_2_16_7_1
e_1_2_16_110_1
e_1_2_16_156_1
e_1_2_16_133_1
e_1_2_16_175_1
e_1_2_16_3_1
e_1_2_16_152_1
e_1_2_16_171_1
Martinetz T. (e_1_2_16_104_1) 1991; 1
e_1_2_16_24_1
e_1_2_16_28_1
e_1_2_16_47_1
e_1_2_16_89_1
e_1_2_16_139_1
e_1_2_16_2_1
e_1_2_16_43_1
e_1_2_16_66_1
e_1_2_16_85_1
e_1_2_16_135_1
e_1_2_16_20_1
e_1_2_16_81_1
e_1_2_16_116_1
e_1_2_16_158_1
e_1_2_16_142_1
e_1_2_16_123_1
e_1_2_16_165_1
e_1_2_16_100_1
e_1_2_16_161_1
e_1_2_16_39_1
e_1_2_16_12_1
e_1_2_16_35_1
Penny W. D. (e_1_2_16_124_1) 2011
e_1_2_16_16_1
e_1_2_16_58_1
e_1_2_16_77_1
e_1_2_16_96_1
e_1_2_16_54_1
e_1_2_16_73_1
e_1_2_16_108_1
e_1_2_16_146_1
e_1_2_16_92_1
e_1_2_16_50_1
e_1_2_16_127_1
e_1_2_16_169_1
Arthur D. (e_1_2_16_8_1) 2007
e_1_2_16_111_1
e_1_2_16_134_1
e_1_2_16_153_1
e_1_2_16_176_1
e_1_2_16_6_1
e_1_2_16_130_1
e_1_2_16_172_1
References_xml – year: 2011
– volume: 14
  year: 2020
  article-title: Ghost attractors in spontaneous brain activity: Recurrent excursions into functionally‐relevant BOLD phase‐locking states
  publication-title: Frontiers in Systems Neuroscience
– volume: 142
  start-page: 346
  issue: 3–4
  year: 2000
  end-page: 382
  article-title: Surrogate time series
  publication-title: Physica D: Nonlinear Phenomena
– volume: 50
  start-page: 81
  issue: 1
  year: 2010
  end-page: 98
  article-title: Time–frequency dynamics of resting‐state brain connectivity measured with fMRI
  publication-title: NeuroImage
– volume: 55
  start-page: 1548
  issue: 4
  year: 2011
  end-page: 1565
  article-title: An improved index of phase‐synchronization for electrophysiological data in the presence of volume‐conduction, noise and sample‐size bias
  publication-title: NeuroImage
– volume: 107
  start-page: 3228
  year: 2010
  end-page: 3233
  article-title: Cross‐frequency coupling supports multi‐item working memory in the human hippocampus
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  article-title: Collective dynamics of small‐world networks
  publication-title: Nature
– volume: 1
  start-page: 397
  year: 1991
  end-page: 402
  article-title: A ‘neural‐gas’ network learns topologies
  publication-title: Proceedings International Conference on Artificial Neural Networks
– volume: 11
  start-page: 319
  issue: 3
  year: 2013
  end-page: 337
  article-title: PRoNTo: Pattern recognition for neuroimaging toolbox
  publication-title: Neuroinformatics
– volume: 3
  start-page: 583
  year: 2002
  end-page: 617
  article-title: Cluster ensemblesa knowledge reuse framework for combining multiple partitions
  publication-title: The Journal of Machine Learning Research
– volume: 3
  start-page: 539
  issue: 2
  year: 2019
  end-page: 550
  article-title: Psychological resilience correlates with EEG source‐space brain network flexibility
  publication-title: Network Neuroscience
– volume: 61
  start-page: 3357
  issue: 13
  year: 2013
  end-page: 3367
  article-title: Tight wavelet frames on multislice graphs
  publication-title: IEEE Transactions on Signal Processing
– year: 1990
– volume: 113
  start-page: 9888
  issue: 35
  year: 2016
  end-page: 9891
  article-title: Temporal metastates are associated with differential patterns of time‐resolved connectivity, network topology, and attention
  publication-title: Proceedings of the National Academy of Sciences
– volume: 337
  year: 2020
  article-title: Determining the number of states in dynamic functional connectivity using cluster validity indexes
  publication-title: Journal of Neuroscience Methods
– volume: 29
  start-page: 7591
  issue: 23
  year: 2009
  end-page: 7598
  article-title: Nuclei accumbens phase synchrony predicts decision‐making reversals following negative feedback
  publication-title: The Journal of Neuroscience
– volume: 49
  start-page: 1073
  issue: 1
  year: 2010
  end-page: 1079
  article-title: Core networks for visual‐concrete and abstract thought content: A brain electric microstate analysis
  publication-title: NeuroImage
– volume: 174
  start-page: 50
  issue: 1
  year: 2008
  end-page: 61
  article-title: Testing for nested oscillation
  publication-title: Journal of Neuroscience Methods
– volume: 26
  year: 2020
  article-title: Early childhood developmental functional connectivity of autistic brains with non‐negative matrix factorization
  publication-title: NeuroImage: Clinical
– volume: 83
  start-page: 937
  year: 2013
  end-page: 950
  article-title: Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest
  publication-title: NeuroImage
– volume: 18
  issue: 12
  year: 2011
  article-title: TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy
  publication-title: BMC Neuroscience
– volume: 48
  start-page: 450
  year: 2007
  end-page: 473
  article-title: Detecting changes in time series of network graphs using minimum mean squared error and cumulative summation
  publication-title: ANZIAM Journal
– volume: 26
  start-page: 1367
  issue: 10
  year: 2004
  end-page: 1372
  article-title: A (sub) graph isomorphism algorithm for matching large graphs
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 173
  start-page: 632
  year: 2018
  end-page: 643
  article-title: Ghost interactions in MEG/EEG source space: A note of caution on inter‐areal coupling measures
  publication-title: NeuroImage
– volume: 13
  year: 2019
  article-title: Modeling the switching behavior of functional connectivity microstates (FCμstates) as a novel biomarker for mild cognitive impairment
  publication-title: Frontiers in Neuroscience
– volume: 87
  issue: 19
  year: 2001
  article-title: Efficient behavior of small‐world networks
  publication-title: Physical Review Letters
– volume: 11
  start-page: 1509
  issue: 7
  year: 2000
  end-page: 1514
  article-title: Amplitude envelope correlation detects coupling among incoherent brain signals
  publication-title: NeuroReport
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage: Clinical
– start-page: 53
  year: 2003
  end-page: 57
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 13
  article-title: Loss of brain inter‐frequency hubs in Alzheimer's disease
  publication-title: Scientific Reports
– volume: 11
  start-page: 267
  year: 2007
  end-page: 269
  article-title: Cross‐frequency coupling between neuronal oscillations
  publication-title: Trends on Cognitive Science
– volume: 106
  start-page: 11747
  issue: 28
  year: 2009
  end-page: 11752
  article-title: Cognitive fitness of cost‐efficient brain functional networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 199
  start-page: 495
  year: 2019
  end-page: 511
  article-title: Optimization of graph construction can significantly increase the power of structural brain network studies
  publication-title: NeuroImage
– volume: 116
  start-page: 18088
  year: 2019
  end-page: 18097
  article-title: Awakening: Predicting external stimulation to force transitions between different brain states
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 96
  start-page: 1741
  year: 2018
  end-page: 1757
  article-title: Complexity of brain activity and connectivity in functional neuroimaging
  publication-title: Journal of Neuroscience Research
– volume: 8
  year: 2014
  article-title: Machine learning for neuroimagingwith scikit‐learn
  publication-title: Frontiers in Neuroinformatics
– volume: 296
  start-page: 910
  year: 2002
  end-page: 913
  article-title: Specificity and stability in topology of protein networks
  publication-title: Science
– year: 2019
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  end-page: 15
  article-title: Long‐term neural and physiological phenotyping of a single human
  publication-title: Nature Communications
– volume: 11
  start-page: 694
  year: 2017
  article-title: Improving the reliability of network metrics in structural brain networks by integrating different network weighting strategies into a single graph
  publication-title: Frontiers in Neuroscience
– volume: 114
  start-page: 12827
  issue: 48
  year: 2017
  end-page: 12832
  article-title: Brain network dynamics are hierarchically organized in time
  publication-title: In Proceedings of National Academy of Sciences of the U.S.A.
– volume: 26
  start-page: 397
  issue: 3
  year: 2013
  end-page: 409
  article-title: On the quantization of time‐varying phase synchrony patterns into distinct functional connectivity microstates (FCμstates) in a multi‐trial visual ERP paradigm
  publication-title: Brain Tpography
– volume: 44
  start-page: 867
  issue: 9
  year: 1997
  end-page: 880
  article-title: Localization of brain electric activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Transactions on Biomedical Engeeniring
– volume: 7
  start-page: 331
  issue: 6
  year: 2017
  end-page: 346
  article-title: Integrative structural brain network analysis in diffusion tensor imaging
  publication-title: Brain Connectivity
– volume: 80
  start-page: 45
  year: 2012
  end-page: 52
  article-title: Surface EEG shows that functional segregation via phase coupling contributes to the neural substrate of mental calculations
  publication-title: Brain and Cognition
– volume: 7
  start-page: 661
  year: 2017
  end-page: 670
  article-title: Data‐driven topological filtering based on orthogonal minimal spanning trees: Application to multi‐group MEG resting‐state connectivity
  publication-title: Brain Connectivity
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: The Journal of Machine Learning Research
– volume: 109
  start-page: 18627
  issue: 46
  year: 2012
  end-page: 18628
  article-title: Dynamic network structure of interhemispheric coordination
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  issue: 10
  year: 2010
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLoS One
– volume: 118
  start-page: 651
  year: 2015
  end-page: 661
  article-title: The (in) stability of functional brain network measures across thresholds
  publication-title: NeuroImage
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  article-title: Learning the parts of objects by non‐negative matrix factorization
  publication-title: Nature
– volume: 7
  start-page: 267
  year: 2013
  article-title: MEG and EEG data analysis with MNE‐Python
  publication-title: Frontiers in Neuroscience
– volume: 7
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest
  publication-title: Scientifc Reports
– volume: 22
  start-page: 119
  issue: 2
  year: 2009
  end-page: 133
  article-title: Characterizing dynamic functional connectivity across sleep stages from EEG
  publication-title: Brain Topography
– volume: 313
  start-page: 1626
  year: 2006
  end-page: 1628
  article-title: High gamma power is phase‐locked to theta oscillations in human neocortex
  publication-title: Science
– volume: 42
  start-page: 658
  issue: 7
  year: 1995
  end-page: 665
  article-title: Segmentation of brain electrical activity into microstates: Model estimation and validation
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 109
  start-page: 5487
  issue: 14
  year: 2012
  end-page: 5492
  article-title: Whole‐brain, time‐locked activation with simple tasks revealed using massive averaging and model‐free analysis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 84
  start-page: 262
  issue: 2
  year: 2014
  end-page: 274
  article-title: The chronnectome: Time‐varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– year: 2016
– volume: 245
  start-page: 107
  year: 2015
  end-page: 115
  article-title: GraphVar: A user‐friendly toolbox for comprehensive graph analyses of functional brain connectivity
  publication-title: Journal of Neuroscience Methods
– volume: 325
  start-page: 414
  year: 2009
  end-page: 416
  article-title: Revisiting the foundations of network analysis
  publication-title: Science
– volume: 8
  issue: 7
  year: 2013
  article-title: BrainNet viewer: A network visualization tool for human brain connectomics
  publication-title: PLoS One
– volume: 163
  start-page: 160
  year: 2017
  end-page: 176
  article-title: Replicability of time‐varying connectivity patterns in large resting state fMRI samples
  publication-title: NeuroImage
– volume: 1
  start-page: 13
  year: 2011
  end-page: 36
  article-title: Functional and effective connectivity: A review
  publication-title: Brain Connectivity
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  article-title: Dynamic causal modelling
  publication-title: NeuroImage
– volume: 11
  issue: 3
  year: 2016
  article-title: Higher dimensional meta‐state analysis reveals reduced resting fMRI connectivity dynamism in schizophrenia patients
  publication-title: PLOS ONE
– volume: 62
  start-page: 1415
  issue: 3
  year: 2012
  end-page: 1428
  article-title: Go with the flow: Use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large‐scale model of brain dynamics
  publication-title: NeuroImage
– volume: 89
  year: 2014
  article-title: Structural measures for multiplex networks
  publication-title: Physical Review E
– volume: 28
  start-page: 1178
  issue: 11
  year: 2007
  end-page: 1193
  article-title: Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources
  publication-title: Human Brain Mapping
– volume: 193
  start-page: 145
  year: 2010
  end-page: 155
  article-title: Tracking brain dynamics via timedependent network analysis
  publication-title: Journal of Neuroscience Methods
– volume: 65
  start-page: 541
  year: 2010
  end-page: 549
  article-title: Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens
  publication-title: Neuron
– volume: 322
  start-page: 339
  year: 2016
  end-page: 350
  article-title: Classification of patients with MCI and AD from healthy controls using directed graph measures of resting‐state fMRI
  publication-title: Behavioural Brain Research
– volume: 20
  start-page: 353
  issue: 3
  year: 2017
  article-title: Network neuroscience
  publication-title: Nature Neuroscience
– volume: 23
  year: 2019
  article-title: Decreased integration of EEG source‐space networks in disorders of consciousness
  publication-title: NeuroImage: Clinical
– start-page: 241
  year: 2004
  end-page: 249
– year: 2013
– volume: 10
  year: 2016
  article-title: NNMF connectivity microstates: A new approach to represent the dynamic brain coordination
  publication-title: Frontiers in Neuroinformatics
– volume: 12
  year: 2018
  article-title: How to build a functional connectomic biomarker for mild cognitive impairment from source reconstructed MEG resting‐state activity: The combination of ROI representation and connectivity estimator matters
  publication-title: Frontiers in Neuroscience
– volume: 3
  start-page: 3
  year: 2009
  article-title: PyMvpa: A unifying approach to the analysis of neuroscientific data
  publication-title: Frontiers in Neuroinformatics
– volume: 9
  start-page: 519
  year: 2015
  end-page: 531
  article-title: Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury
  publication-title: NeuroImage: Clinical
– volume: 10
  year: 2016
  article-title: Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures
  publication-title: Frontiers in Neuroscience
– volume: 98
  start-page: 873
  year: 2007
  end-page: 895
  article-title: Comparing clusterings. An information based distance
  publication-title: Journal of Multivariate Analysis
– volume: 308
  start-page: 21
  year: 2018
  end-page: 33
  article-title: Graphvar 2.0: A user‐friendly toolbox for machine learning on functional connectivity measures
  publication-title: Journal of Neuroscience Methods
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  end-page: 676
  article-title: Tracking whole‐brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– volume: 11
  start-page: 423
  year: 2017
  article-title: Mining time‐resolved functional brain graphs to an EEG‐based chronnectomic brain aged index (CBAI)
  publication-title: Frontiers in Human Neuroscience
– start-page: 1027
  year: 2007
  end-page: 1035
– volume: 8
  start-page: 194
  issue: 4
  year: 1999
  end-page: 208
  article-title: Measuring phase synchrony in brain signals
  publication-title: Human Brain Mapping
– volume: 152
  start-page: 437
  year: 2017
  end-page: 449
  article-title: Proportional thresholding in resting‐state fMRI functional connectivity networks and consequences for patient‐control connectome studies: Issues and recommendations
  publication-title: NeuroImage
– year: 2001
– volume: 18
  start-page: 1565
  issue: 11
  year: 2015
  end-page: 1567
  article-title: A positive‐negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nature Neuroscience
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 63
  start-page: 910
  year: 2012
  end-page: 920
  article-title: Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage
  publication-title: NeuroImage
– volume: 102
  start-page: 1
  year: 2016
  end-page: 11
  article-title: Altered crossfrequency coupling in resting‐state MEG after mild traumatic brain injury
  publication-title: International Journal of Psychophysiology
– volume: 168
  start-page: 494
  issue: 2
  year: 2008
  end-page: 499
  article-title: Assessing transient cross‐frequency coupling in EEG data
  publication-title: Journal of Neuroscience Methods
– volume: 11
  year: 2017
  article-title: Topological filtering of dynamic functional brain networks unfolds informative chronnectomics: A novel data‐driven thresholding scheme based on orthogonal minimal spanning trees (OMSTs)
  publication-title: Frontiers in Neuroinformatics
– year: 2018
– volume: 48
  start-page: 450
  year: 2006
  end-page: 473
  article-title: Detecting changes in time series of network graphs using minimum mean squared error and cumulative summation
  publication-title: The ANZIAM Journal
– volume: 32
  start-page: 249
  issue: 2
  year: 2003
  end-page: 263
  article-title: Economic small‐world behavior in weighted networks
  publication-title: The European Physical Journal B‐Condensed Matter and Complex Systems
– volume: 2
  start-page: 125
  issue: 3
  year: 2012
  end-page: 141
  article-title: Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks
  publication-title: Brain Connectivity
– volume: 41
  start-page: 2833
  issue: 9
  year: 2008
  end-page: 2841
  article-title: A study of graph spectra for comparing graphs and trees
  publication-title: Pattern Recognition
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  article-title: EEGLAB: An open‐source toolbox for analysis of single‐trial EEG dynamics
  publication-title: Journal of Neuroscience Methods
– volume: 42
  start-page: 150
  year: 2016
  end-page: 162
  article-title: Different functional connectivity and network topology in behavioral variant of frontotemporal dementia and Alzheimer's disease: An EEG study
  publication-title: Neurobiology of Aging
– volume: 17
  start-page: 161
  issue: 2
  year: 2007
  end-page: 170
  article-title: Dynamic functional connectivity
  publication-title: Current Opinion in Neurobiology
– volume: 19
  start-page: 17
  issue: 1
  year: 2018
  article-title: Communication dynamics in complex brain networks
  publication-title: Nature Reviews Neuroscience
– volume: 38
  start-page: 4744
  issue: 9
  year: 2017
  end-page: 4759
  article-title: Cohesive network reconfiguration accompanies extended training
  publication-title: Human Brain Mapping
– volume: 108
  start-page: 7641
  issue: 18
  year: 2011
  end-page: 7646
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 67
  start-page: 271
  issue: 3
  year: 1987
  end-page: 288
  article-title: EEG alpha map series: Brain micro‐states by space‐oriented adaptive segmentation
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 120
  start-page: 133
  year: 2015
  end-page: 142
  article-title: Dynamic coherence analysis of resting fMRI data to jointly capture state‐based phase, frequency, and time‐domain information
  publication-title: NeuroImage
– volume: 15
  start-page: 890
  year: 2005
  end-page: 900
  article-title: Phase/amplitude reset and theta‐gamma interaction in the human medial temporal lobe during a continuous word recognition memory task
  publication-title: Hippocampus
– volume: 53
  start-page: 1197
  issue: 4
  year: 2010
  end-page: 1207
  article-title: Network‐based statistic: Identifying differences in brain networks
  publication-title: NeuroImage
– volume: 74
  start-page: 1
  issue: 026205
  year: 2006
  end-page: 8
  article-title: Testing for nonlinearity in irreguar fluctuations with long‐term trends
  publication-title: Physical Review E
– volume: 11
  start-page: 405
  issue: 4
  year: 2013
  end-page: 434
  article-title: HERMES: Towards an integrated toolbox to characterize functional and effective brain connectivity
  publication-title: Neuroinformatics
– volume: 8
  year: 2019
  article-title: A statistical framework to assess cross‐frequency coupling while accounting for confounding analysis effects
  publication-title: eLife
– volume: 8
  year: 2017
  article-title: Quantification of network structural dissimilarities
  publication-title: Nature Communications
– volume: 173
  start-page: 610
  year: 2018
  end-page: 622
  article-title: Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses
  publication-title: NeuroImage
– year: 2004
– volume: 1
  issue: 4
  year: 2005
  article-title: The human connectome: A structural description of the human brain
  publication-title: PLoS Computational Biology
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  end-page: 416
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
– volume: 110
  start-page: 18692
  issue: 46
  year: 2013
  end-page: 18697
  article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 17
  year: 1960
  end-page: 60
  article-title: On the evolution of random graphs
  publication-title: Publication of the Mathematical Institute of the Hungarian Academy of Sciences
– volume: 4
  year: 2010
  article-title: Shifts in gamma phase–amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks
  publication-title: Frontiers in Human Neuroscience
– volume: 51
  start-page: 97
  issue: 2
  year: 2004
  end-page: 116
  article-title: Task‐related coupling from high‐ to low‐frequency signals among visual cortical areas in human subdural recordings
  publication-title: International Journal of Psychophysiology
– volume: 221
  start-page: 69
  issue: 1
  year: 2014
  end-page: 77
  article-title: Multimodal voxel‐based meta‐analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia
  publication-title: Psychiatry Research: Neuroimaging
– volume: 7
  start-page: 189
  year: 2014
  article-title: The Laplacian spectrum of neural networks
  publication-title: Frontiers in Computational Neuroscience
– start-page: 190
  year: 2007
  end-page: 204
– volume: 2
  start-page: 181
  issue: 3
  year: 2015
  end-page: 195
  article-title: Multimodal neuroimaging computing: The workflows, methods, and platforms
  publication-title: Brain Informatics
– volume: 47
  start-page: 1590
  issue: 4
  year: 2009
  end-page: 1607
  article-title: MATLAB toolbox for functional connectivity
  publication-title: NeuroImage
– volume: 2011
  start-page: 41
  year: 2011
  end-page: 49
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Computational Intelligence and Neuroscience
– volume: 105
  start-page: 20517
  year: 2008
  end-page: 20522
  article-title: Dynamic cross‐frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T‐maze task
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 113
  issue: 1
  year: 2010
  end-page: 129
  article-title: A survey of graph edit distance
  publication-title: Pattern Analysis and Applications
– volume: 92
  year: 1997
  article-title: Spectral graph theory
  publication-title: American Mathematical Society
– volume: 59
  start-page: 1302
  year: 2012
  end-page: 1309
  article-title: Analyzing functional brain connectivity by means of commute times: A new approach and its application to track event‐related dynamics
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  end-page: 1069
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
– volume: 4
  start-page: 558
  issue: 4
  year: 1993
  end-page: 569
  article-title: Neural‐gas' network for vector quantization and its application to time‐series prediction
  publication-title: IEEE Transactions on Neural Networks
– volume: 45
  start-page: 167
  year: 2003
  end-page: 256
  article-title: The structure and function of complex networks
  publication-title: SIAM Review
– volume: 9
  start-page: 371
  issue: 4
  year: 2015
  end-page: 387
  article-title: Transition dynamics of EEG network microstates unmask developmental and task differences during mental arithmetic and resting wakefulness
  publication-title: Cognitive Neurodynamics
– year: 2000
– volume: 12
  year: 2018
  article-title: Reliability of static and dynamic network metrics in the resting‐state: A MEG‐beamformed connectivity analysis
  publication-title: Frontiers in Neuroscience
– volume: 43
  start-page: 977
  year: 2015
  end-page: 989
  article-title: Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross‐frequency phase interactions
  publication-title: Annals of Biomedical Engineering
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  end-page: 98
  article-title: The emerging field of signal processing on graphs: Extending high‐dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Processing Magazine
– volume: 1
  start-page: 153
  issue: 2
  year: 1994
  end-page: 171
  article-title: Analysis of functional MRI time‐series
  publication-title: Human Brain Mapping
– volume: 160
  start-page: 41
  year: 2017
  end-page: 54
  article-title: The dynamic functional connectome: State‐of‐the‐art and perspectives
  publication-title: NeuroImage
– volume: 7
  start-page: 113
  year: 2011
  end-page: 140
  article-title: Brain graphs: Graphical models of the human brain connectome
  publication-title: The Annual Review of Clinical Psychology
– volume: 115
  start-page: 2292
  issue: 10
  year: 2004
  end-page: 2307
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clinical Neurophysiology
– volume: 13
  issue: 12
  year: 2017
  article-title: Non‐linear auto‐regressive models for cross‐frequency coupling in neural time series
  publication-title: PLoS Computational Biology
– volume: 15
  start-page: 884
  year: 2012
  end-page: 890
  article-title: Large‐scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nature Neuroscience
– volume: 31
  start-page: 51
  year: 2015
  end-page: 61
  article-title: Untangling cross‐frequency coupling in neuroscience
  publication-title: Current Opinion in Neurobiology
– year: 2012
– volume: 58
  start-page: 77
  issue: 1–4
  year: 1992
  end-page: 94
  article-title: Testing for nonlinearity in time series: The method of surrogate data
  publication-title: Physica D: Nonlinear Phenomena
– volume: 107
  start-page: 85
  year: 2015
  end-page: 94
  article-title: Mutually temporally independent connectivity patterns: A new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender
  publication-title: NeuroImage
– volume: 15
  start-page: 683
  issue: 10
  year: 2014
  end-page: 695
  article-title: Modern network science of neurological disorders
  publication-title: Nature Reviews Neuroscience
– volume: 7
  start-page: 625
  year: 1995
  end-page: 632
– volume: 18
  issue: 5
  year: 2020
  article-title: Genuine cross‐frequency coupling networks in human resting‐state electrophysiological recordings
  publication-title: PLoS Biology
– volume: 6
  issue: 1
  year: 2016
  article-title: Graph distance for complex networks
  publication-title: Scientific Reports
– volume: 13
  issue: 1
  year: 2017
  article-title: A topological criterion for filtering information in complex brain networks
  publication-title: PLoS Computational Biology
– volume: 62
  start-page: 1132
  issue: 4
  year: 2014
  end-page: 1140
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 51
  start-page: 1126
  issue: 3
  year: 2010
  end-page: 1139
  article-title: Multi‐level bootstrap analysis of stable clusters in resting‐state fMRI
  publication-title: NeuroImage
– volume: 9
  year: 2015
  article-title: A novel biomarker of amnestic MCI based on dynamic cross‐frequency coupling patterns during cognitive brain responses
  publication-title: Frontiers in Neuroscience
– volume: 414
  start-page: 29
  issue: 1
  year: 2006
  end-page: 37
  article-title: Laplacian energy of a graph
  publication-title: Linear Algebra and its Applications
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  end-page: 137
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
– volume: 32
  start-page: 14305
  issue: 41
  year: 2012
  end-page: 14310
  article-title: Alpha‐band phase synchrony is related to activity in the fronto‐parietal adaptive control network
  publication-title: Journal of Neuroscience
– volume: 55
  start-page: 902
  year: 2008
  end-page: 913
  article-title: Tracking the time‐varying cortical connectivity patterns by adaptive multivariate estimators
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 20
  start-page: 345
  issue: 5
  year: 2016
  end-page: 361
  article-title: Comparative connectomics
  publication-title: Trends in Cognitive Sciences
– volume: 104
  start-page: 177
  year: 2015
  end-page: 188
  article-title: The minimum spanning tree: An unbiased method for brain network analysis
  publication-title: NeuroImage
– volume: 2
  start-page: 224
  year: 1979
  end-page: 227
  article-title: A cluster separation measure
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 9
  year: 2015
  article-title: Complex network analysis of resting‐state EEG in amnestic mild cognitive impairment patients with type 2 diabetes
  publication-title: Frontiers in Computational Neuroscience
– volume: 31
  start-page: 101
  issue: 1
  year: 2018
  end-page: 116
  article-title: EEG signatures of dynamic functional network connectivity states
  publication-title: Brain Topography
– volume: 106
  start-page: 5
  year: 2018
  article-title: A graph signal processing perspective on functional brain imaging
  publication-title: Proceedings of the IEEE
– volume: 328
  start-page: 876
  issue: 5980
  year: 2010
  end-page: 878
  article-title: Community structure in time‐dependent, multiscale, and multiplex networks
  publication-title: Science
– volume: 140
  start-page: 1466
  issue: 5
  year: 2017
  end-page: 1485
  article-title: Selective impairment of hippocampus and posterior hub areas in Alzheimer's disease: an MEG‐based multiplex network study
  publication-title: Brain
– volume: 7
  issue: 1
  year: 2017
  article-title: Hybrid high‐order functional connectivity networks using resting‐state functional MRI for mild cognitive impairment diagnosis
  publication-title: Scientific Reports
– volume: 19
  start-page: 466
  year: 2003
  end-page: 470
  article-title: The elusive concept of brain connectivity
  publication-title: NeuroImage
– year: 1999
– ident: e_1_2_16_131_1
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: e_1_2_16_153_1
  doi: 10.1016/j.neuroimage.2017.02.005
– ident: e_1_2_16_2_1
  doi: 10.3389/fninf.2014.00014
– ident: e_1_2_16_135_1
  doi: 10.1016/S0167-2789(00)00043-9
– ident: e_1_2_16_144_1
  doi: 10.1002/hbm.20346
– ident: e_1_2_16_114_1
  doi: 10.1103/PhysRevE.74.026205
– ident: e_1_2_16_120_1
  doi: 10.1016/j.neuroimage.2018.02.032
– ident: e_1_2_16_56_1
  doi: 10.3389/fninf.2017.00028
– ident: e_1_2_16_82_1
– ident: e_1_2_16_3_1
  doi: 10.1109/EMBC.2016.7591989
– ident: e_1_2_16_49_1
  doi: 10.1016/j.jneumeth.2010.08.027
– ident: e_1_2_16_14_1
  doi: 10.1073/pnas.0903641106
– ident: e_1_2_16_176_1
  doi: 10.1016/j.neuroimage.2009.05.089
– ident: e_1_2_16_78_1
  doi: 10.1016/s1053-8119(03)00112-5
– ident: e_1_2_16_148_1
  doi: 10.1002/hbm.23699
– ident: e_1_2_16_150_1
  doi: 10.1016/0167-2789(92)90102-S
– ident: e_1_2_16_64_1
  doi: 10.1089/brain.2011.0008
– ident: e_1_2_16_21_1
  doi: 10.1097/00001756-200005150-00029
– ident: e_1_2_16_99_1
  doi: 10.1186/1471-2202-12-119
– ident: e_1_2_16_128_1
  doi: 10.1016/j.neuroimage.2016.12.061
– ident: e_1_2_16_130_1
  doi: 10.1016/j.nicl.2019.101841
– ident: e_1_2_16_106_1
  doi: 10.1126/science.1065103
– ident: e_1_2_16_28_1
  doi: 10.1126/science.1128115
– ident: e_1_2_16_116_1
  doi: 10.1007/s12021-013-9186-1
– ident: e_1_2_16_77_1
  doi: 10.1038/nn.3101
– ident: e_1_2_16_136_1
  doi: 10.1007/s12021-013-9178-1
– ident: e_1_2_16_142_1
  doi: 10.1371/journal.pcbi.0010042
– ident: e_1_2_16_48_1
  doi: 10.1007/s11571-015-9330-8
– ident: e_1_2_16_177_1
  doi: 10.1016/j.nicl.2020.102251
– ident: e_1_2_16_172_1
  doi: 10.1016/j.neurobiolaging.2016.03.018
– ident: e_1_2_16_115_1
  doi: 10.1137/S003614450342480
– ident: e_1_2_16_42_1
  doi: 10.1002/jnr.24316
– ident: e_1_2_16_69_1
  doi: 10.1016/j.neuroimage.2015.05.046
– ident: e_1_2_16_35_1
  doi: 10.1016/j.pscychresns.2013.07.008
– ident: e_1_2_16_66_1
  doi: 10.1002/hbm.460010207
– ident: e_1_2_16_47_1
  doi: 10.1007/s10548-008-0071-4
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_16_122_1
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_16_141_1
  doi: 10.1038/nn.4125
– volume-title: In Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Technique, 137–143
  year: 1999
  ident: e_1_2_16_129_1
– ident: e_1_2_16_15_1
  doi: 10.1038/nn.4502
– ident: e_1_2_16_112_1
  doi: 10.1126/science.1184819
– ident: e_1_2_16_74_1
  doi: 10.1007/978-3-540-74565-5_16
– ident: e_1_2_16_138_1
  doi: 10.1073/pnas.1604898113
– ident: e_1_2_16_23_1
  doi: 10.1146/annurev-clinpsy-040510-143934
– ident: e_1_2_16_101_1
  doi: 10.1109/TBME.2014.2372011
– ident: e_1_2_16_76_1
  doi: 10.3389/neuro.11.003.2009
– ident: e_1_2_16_25_1
  doi: 10.1126/science.1099745
– ident: e_1_2_16_167_1
  doi: 10.1016/j.patcog.2008.03.011
– ident: e_1_2_16_163_1
  doi: 10.1016/j.jneumeth.2018.07.001
– ident: e_1_2_16_10_1
  doi: 10.1109/TBME.2007.905419
– start-page: 625
  volume-title: Advances in neural information processing systems
  year: 1995
  ident: e_1_2_16_67_1
– ident: e_1_2_16_166_1
  doi: 10.1089/brain.2012.0073
– ident: e_1_2_16_54_1
  doi: 10.3389/fnins.2018.00506
– ident: e_1_2_16_81_1
  doi: 10.1007/978-3-0348-7895-1_23
– ident: e_1_2_16_88_1
  doi: 10.1073/pnas.1312902110
– ident: e_1_2_16_102_1
  doi: 10.1109/TIT.1982.1056489
– ident: e_1_2_16_36_1
  doi: 10.1109/TPAMI.2004.75
– ident: e_1_2_16_165_1
  doi: 10.1038/30918
– ident: e_1_2_16_51_1
  doi: 10.1109/TBME.2012.2186568
– ident: e_1_2_16_46_1
  doi: 10.3389/fnins.2015.00350
– ident: e_1_2_16_60_1
  doi: 10.1214/18-AOAS1176
– ident: e_1_2_16_139_1
  doi: 10.1109/msp.2012.2235192
– ident: e_1_2_16_52_1
  doi: 10.3389/fnins.2018.00306
– ident: e_1_2_16_175_1
  doi: 10.1038/s41598-017-06509-0
– ident: e_1_2_16_133_1
– ident: e_1_2_16_44_1
  doi: 10.3389/fnins.2017.00694
– ident: e_1_2_16_59_1
– ident: e_1_2_16_37_1
  doi: 10.1016/j.nicl.2014.07.003
– start-page: 53
  volume-title: In proceedings of the workshop on self‐organizing maps (WSOM'03)
  year: 2003
  ident: e_1_2_16_147_1
– ident: e_1_2_16_84_1
  doi: 10.1016/j.tics.2007.05.003
– ident: e_1_2_16_93_1
  doi: 10.1038/44565
– ident: e_1_2_16_43_1
  doi: 10.1089/brain.2017.0512
– ident: e_1_2_16_71_1
  doi: 10.3389/fnins.2013.00267
– volume-title: Statistical parametric mapping: The analysis of functional brain images
  year: 2011
  ident: e_1_2_16_124_1
– ident: e_1_2_16_58_1
  doi: 10.1016/j.nicl.2015.09.011
– ident: e_1_2_16_92_1
  doi: 10.1140/epjb/e2003-00095-5
– ident: e_1_2_16_152_1
  doi: 10.1016/j.tics.2016.03.001
– ident: e_1_2_16_4_1
  doi: 10.1016/j.neuroimage.2017.09.020
– ident: e_1_2_16_173_1
  doi: 10.1016/j.neuroimage.2010.06.041
– ident: e_1_2_16_168_1
  doi: 10.1371/journal.pone.0068910
– ident: e_1_2_16_17_1
  doi: 10.1103/PhysRevE.89.032804
– ident: e_1_2_16_90_1
  doi: 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
– ident: e_1_2_16_154_1
  doi: 10.1109/10.623056
– ident: e_1_2_16_34_1
  doi: 10.1523/JNEUROSCI.5335-08.2009
– ident: e_1_2_16_110_1
  doi: 10.1371/journal.pone.0149849
– ident: e_1_2_16_162_1
  doi: 10.3389/fnhum.2010.00191
– ident: e_1_2_16_79_1
  doi: 10.1109/JPROC.2018.2798928
– ident: e_1_2_16_158_1
  doi: 10.1073/pnas.1705120114
– ident: e_1_2_16_29_1
  doi: 10.3389/fnins.2016.00466
– ident: e_1_2_16_55_1
  doi: 10.3389/fnhum.2017.00423
– ident: e_1_2_16_108_1
  doi: 10.1016/j.neuroimage.2019.05.052
– ident: e_1_2_16_94_1
  doi: 10.1007/978-1-4757-1083-0_10
– ident: e_1_2_16_16_1
  doi: 10.1073/pnas.1018985108
– ident: e_1_2_16_164_1
  doi: 10.1016/j.neuroimage.2018.01.056
– ident: e_1_2_16_11_1
  doi: 10.1038/nrn.2017.149
– ident: e_1_2_16_24_1
  doi: 10.1126/science.1171022
– ident: e_1_2_16_9_1
  doi: 10.1016/j.conb.2014.08.002
– ident: e_1_2_16_40_1
  doi: 10.1073/pnas.1905534116
– ident: e_1_2_16_157_1
  doi: 10.1016/j.jneumeth.2020.108651
– ident: e_1_2_16_53_1
  doi: 10.3389/fnins.2019.00542
– ident: e_1_2_16_61_1
  doi: 10.1073/pnas.1216402109
– ident: e_1_2_16_5_1
  doi: 10.1007/s10548-017-0546-2
– ident: e_1_2_16_137_1
  doi: 10.1038/srep34944
– start-page: 1027
  volume-title: k‐means++: The advantages of careful seeding. Proceedings of the Eighteenth annual ACM‐SIAM Symposium on Discrete Algorithms
  year: 2007
  ident: e_1_2_16_8_1
– ident: e_1_2_16_121_1
  doi: 10.1109/10.391164
– volume-title: Neuropycon/graphpype: Test release Zenodo
  year: 2019
  ident: e_1_2_16_109_1
– ident: e_1_2_16_126_1
  doi: 10.21914/anziamj.v48i0.62
– ident: e_1_2_16_123_1
  doi: 10.1016/j.jneumeth.2008.06.035
– ident: e_1_2_16_98_1
  doi: 10.1109/TSP.2013.2259825
– ident: e_1_2_16_161_1
  doi: 10.1007/s11222-007-9033-z
– ident: e_1_2_16_156_1
  doi: 10.1109/EMBC.2019.8856284
– ident: e_1_2_16_41_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_16_95_1
  doi: 10.1016/0013-4694(87)90025-3
– ident: e_1_2_16_103_1
  doi: 10.3389/conf.fninf.2016.20.00022
– ident: e_1_2_16_33_1
  doi: 10.1016/j.jneumeth.2007.10.012
– ident: e_1_2_16_32_1
  doi: 10.1089/brain.2016.0481
– ident: e_1_2_16_22_1
  doi: 10.1038/nrn2575
– ident: e_1_2_16_151_1
  doi: 10.1073/pnas.0810524105
– ident: e_1_2_16_91_1
  doi: 10.1103/PhysRevLett.87.198701
– ident: e_1_2_16_75_1
  doi: 10.1109/GlobalSIP.2013.6736904
– ident: e_1_2_16_20_1
  doi: 10.1016/j.ijpsycho.2003.07.001
– ident: e_1_2_16_7_1
  doi: 10.1016/j.ijpsycho.2016.02.002
– ident: e_1_2_16_117_1
  doi: 10.1016/j.clinph.2004.04.029
– ident: e_1_2_16_80_1
  doi: 10.1016/j.conb.2007.03.008
– ident: e_1_2_16_145_1
  doi: 10.1016/j.neuroimage.2012.05.050
– ident: e_1_2_16_13_1
  doi: 10.1073/pnas.0911531107
– volume: 92
  year: 1997
  ident: e_1_2_16_31_1
  article-title: Spectral graph theory
  publication-title: American Mathematical Society
– ident: e_1_2_16_111_1
  doi: 10.1002/hipo.20117
– ident: e_1_2_16_155_1
  doi: 10.1371/journal.pone.0013701
– ident: e_1_2_16_6_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_16_57_1
  doi: 10.1007/s10439-014-1143-0
– ident: e_1_2_16_169_1
  doi: 10.1016/j.neuroimage.2015.07.002
– ident: e_1_2_16_127_1
  doi: 10.1038/ncomms9885
– ident: e_1_2_16_143_1
  doi: 10.1038/nrn3801
– ident: e_1_2_16_174_1
  doi: 10.3389/fncom.2015.00133
– ident: e_1_2_16_132_1
  doi: 10.1523/JNEUROSCI.1358-12.2012
– ident: e_1_2_16_39_1
  doi: 10.3389/fncom.2013.00189
– ident: e_1_2_16_85_1
  doi: 10.1016/j.bbr.2016.06.043
– ident: e_1_2_16_38_1
  doi: 10.1109/TPAMI.1979.4766909
– ident: e_1_2_16_27_1
  doi: 10.1016/j.neuron.2014.10.015
– ident: e_1_2_16_19_1
  doi: 10.1016/j.neuroimage.2012.03.048
– ident: e_1_2_16_18_1
  doi: 10.1016/j.neuroimage.2010.02.082
– ident: e_1_2_16_170_1
  doi: 10.1016/j.neuroimage.2014.11.054
– ident: e_1_2_16_45_1
  doi: 10.1016/j.bandc.2012.04.001
– ident: e_1_2_16_86_1
  doi: 10.1007/978-3-642-56927-2
– ident: e_1_2_16_100_1
  doi: 10.1007/s40708-015-0020-4
– ident: e_1_2_16_83_1
  doi: 10.1007/978-3-540-27801-6_6
– ident: e_1_2_16_125_1
  doi: 10.21914/anziamj.v48i0.62
– ident: e_1_2_16_89_1
  doi: 10.1371/journal.pcbi.1005893
– ident: e_1_2_16_63_1
  doi: 10.1371/journal.pcbi.1005305
– ident: e_1_2_16_70_1
  doi: 10.1073/pnas.1121049109
– ident: e_1_2_16_149_1
  doi: 10.1016/j.neuroimage.2014.10.015
– ident: e_1_2_16_134_1
  doi: 10.1038/ncomms13928
– ident: e_1_2_16_107_1
  doi: 10.1016/j.jmva.2006.11.013
– ident: e_1_2_16_12_1
  doi: 10.1016/j.neuron.2010.02.006
– volume: 5
  start-page: 17
  year: 1960
  ident: e_1_2_16_62_1
  article-title: On the evolution of random graphs
  publication-title: Publication of the Mathematical Institute of the Hungarian Academy of Sciences
– ident: e_1_2_16_118_1
  doi: 10.1155/2011/156869
– ident: e_1_2_16_50_1
  doi: 10.1007/s10548-013-0276-z
– ident: e_1_2_16_171_1
  doi: 10.1093/brain/awx050
– ident: e_1_2_16_30_1
  doi: 10.1016/j.neuroimage.2009.12.011
– ident: e_1_2_16_65_1
  doi: 10.1016/s1053-8119(03)00202-7
– ident: e_1_2_16_96_1
  doi: 10.1016/j.neuroimage.2009.07.054
– ident: e_1_2_16_87_1
  doi: 10.1016/j.jneumeth.2015.02.021
– volume: 1
  start-page: 397
  year: 1991
  ident: e_1_2_16_104_1
  article-title: A ‘neural‐gas’ network learns topologies
  publication-title: Proceedings International Conference on Artificial Neural Networks
– ident: e_1_2_16_140_1
  doi: 10.1371/journal.pbio.3000685
– ident: e_1_2_16_72_1
  doi: 10.1038/s41598-017-07846-w
– ident: e_1_2_16_73_1
  doi: 10.1016/j.laa.2005.09.008
– ident: e_1_2_16_68_1
  doi: 10.1007/s10044-008-0141-y
– ident: e_1_2_16_105_1
  doi: 10.1109/72.238311
– ident: e_1_2_16_113_1
  doi: 10.7554/eLife.44287.001
– ident: e_1_2_16_146_1
  doi: 10.1162/153244303321897735
– ident: e_1_2_16_160_1
  doi: 10.3389/fnsys.2020.00020
– ident: e_1_2_16_159_1
  doi: 10.1016/j.neuroimage.2011.01.055
– ident: e_1_2_16_119_1
  doi: 10.1162/netn_a_00079
– ident: e_1_2_16_26_1
  doi: 10.1038/s41598-017-05425-7
– ident: e_1_2_16_97_1
  doi: 10.1016/j.neuroimage.2013.07.019
SSID ssj0011501
Score 2.4008873
Snippet Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4909
SubjectTerms Algorithms
Alzheimer's disease
Brain
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Brain research
chronnectomics
Cognition
complex networks
Complex systems
Complexity
Connectome - methods
Datasets
dynamic connectivity
EEG
Electroencephalography
Electroencephalography - methods
Empirical analysis
Evolution
fMRI
Functional anatomy
functional connectivity
Functional magnetic resonance imaging
graph theory
human connectome
Humans
Image processing
Magnetic Resonance Imaging - methods
Magnetoencephalography - methods
Medical imaging
MEG
Modules
Nerve Net - diagnostic imaging
Nerve Net - physiology
Nervous system
Networks
Neural networks
Neuroimaging
Neurosciences
python
Schizophrenia
Spatio-Temporal Analysis
statistical analysis
Structure-function relationships
Time Factors
Time series
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BVwIuPHZ5BBZkHkJ7Sck6TmxzK5RVhdQVByotp-DYrnZFk0bQCJUTP4JfyC9h7LgRZQEhcWviSePEM_bnzMw3AE-YPDRsLrI4wW7GzCgZl7m2sSOzQ4VCFZEuG3l6nE9m7PVJdhLqnLpcmI4fov_g5izDz9fOwBsz7-b54N2nz07LaoiYWMiLsJNnCMYHsDM7fjN6532ceRbLsOVKHOcoYpUNt9DP126vSOdg5vloyctt3aj1Z7VYbCNavyQdXYP3m4fpIlE-DNtVOdRffuF5_I-nvQ5XA1wlo06_bsAFW-_C3qjGrXq1Jk-JDyD1X-Z34dI0-On3YDxe4z67rlTznIy7mvfEnXAugsoSPO_StL5__TYinlDzrPLFkkizdlQGpFqadmFvwuzo1duXkzjUa4g1Q1wTK1pmWiA-sFQLqZWVfJ6WMldUWZoILnKD8EsleIgwgXND51LxkvvsW57o9BYM6mVt7wBJdelC75jm2jAujTQ4eLjIcpFoaUQWwcFmzAodyMxdTY1F0dEw0wJfVuFfVgSPetGmY_D4ndD-ZuCLYMSfsIWnuZS444vgYd-M5ud8Kqq2y9bJZC4LlTIewe1OT_q7pDgfosazCPiWBvUCjtp7u6U-O_UU34KhER1itx73uva3zh941fmzRDF5MfU_7v7TH96DK9SF7rjAnWwfBquPrb2P2GtVPgj29QP8dS1x
  priority: 102
  providerName: Unpaywall
Title Dyconnmap: Dynamic connectome mapping—A neuroimaging python module
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25589
https://www.ncbi.nlm.nih.gov/pubmed/34250674
https://www.proquest.com/docview/2573699260
https://www.proquest.com/docview/2550628247
https://pubmed.ncbi.nlm.nih.gov/PMC8449119
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25589
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED-NTQJeEGz8CYzK_BHaS7bUceIYnjq6qUJqVU1UKk-RY7vapCat2CrUNz4En5BPwp2TBlUDxEuU2lfFsu98P9t3PwO8FaprxSxLwgibGQqrVVikxoVEZocKhSqiKBt5OEoHE_Fpmkx34MMmF6bmh2g33Mgy_HxNBq6L65PfpKGXRXmMeDhTd2CviziG1JuLcXuEgF_zqy30saHCKXhDKxTxk_av287oFsK8HSh5b1Ut9fqbns-3waz3RucP4UEDI1mvHvdHsOOqfTjoVbiELtfsHfOBnX7HfB_uDpvz8wPo99e4_q1KvXzP-vVd9IwKaOu-dAzLKX3q5_cfPeaJLq9Kf4kRW66JYoCVC7uau8cwOT_7_HEQNvcohEYg3gg1LxKTod923GTKaKfkLC5Uqrl2PMpkllqERTrCn-i-pbR8prQspM-KlZGJn8ButajcM2CxKSgkThhprJDKKosAEJ2fzCKjbJYEcLTp0Nw0JON018U8r-mReY59n_u-D-B1K7qsmTX-JHS4GZW8Ma5rrJFxqhSuxAJ41VajWdBZh67cYkUyCWWHciEDeFoPYvuVGOcp1EQRgNwa3laAKLe3a6qrS0-9nQlU7i42602rCP9q_JFXkb9L5IPToX95_v-iL-A-p7gaiqpJDmH35uvKvURgdFN0vAHgU05lB_ZOz0bji47fZKDnBceyyWjc-_ILBWMO-Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VIlEuqLTQBgqYH6Fe0mYdJ7YRl4WlWqBbcWil3iLH9qqVNtkVdIX2xkPwhDxJZ5xs0KqAuCX2RLHsGc-PZz4DvBK658RYZXGCw4yFMzouc-tjArNDhkIW0VSNPDrJh2fi03l2vgZvl7UwDT5EF3AjyQj7NQk4BaQPf6OGXpTVARrESt-C2yLv5eR6cfGlO0PA3wV3C5VsrHEPXuIKJfyw-3RVG90wMW9mSm7M65lZfDeTyao1G9TR0Sbca-1I1m8W_j6s-XoLtvs1-tDVgr1mIbMzhMy34M6oPUDfhsFggQ5wXZnZGzZoLqNn1ECx-8ozbKf6qV8_fvZZQLq8rMItRmy2IIwBVk3dfOIfwNnRh9P3w7i9SCG2Ag2O2PAyswoVt-dWaWu8luO01LnhxvNESZU7tItMgq-ov6V0fKyNLGUoi5WJTR_Cej2t_S6w1JaUEyestE5I7bRDCxC1n1SJ1U5lEewvJ7SwLco4XXYxKRp8ZF7g3Bdh7iN40ZHOGmiNPxHtLVelaKXrG_bINNcaXbEInnfdKBd02GFqP50TTUbloVzICHaaRez-kuJGhawoIpAry9sREOb2ak99eRGwt5VA7u7hsF52jPCvwe8HFvk7RTF8NwoPj_6f9BlsDE9Hx8Xxx5PPj-EupyQbSrHJ9mD96uvcP0Er6ap8GoThGr2-DFY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhUuBVoegQLmIdRLtmnixDbishBWy2MrhKjUSxU5tletuslGsBFaTvwIfiG_hLHzQEsBIW6JPVH8mLE_2zOfAR5Tsa_plMd-gMX0qZbCzxNlfEtmhwqFKiJsNPLkIBkf0tdH8dEaPOtiYRp-iH7DzVqGG6-tgZtKT_d-soae5MUAATEXF-AijQW3Dn3p-548ykIdt9zCSdYXOAZ3vEJBuNd_ujobnYOY5z0lL9VlJZef5Wy2imbddDS6AsddRRovlLNBvcgH6ssvHI__W9OrsNniVDJsFOsarJlyC7aHJa7RiyV5QpznqNuS34KNSXtAvw1pusQFdlnI6ilJm8vuiU2wZwOFIZhu47O-f_02JI5J87RwtySRamk5DEgx1_XMXIfD0csPL8Z-e1GDrygCGl-Geaw4AgMTKi6UNIJNo1wkMpQmDDjjiUbcJQN8RXzAmA6nQrKcubBbFqjoBqyX89LcAhKp3PrcUcWUpkxooRFh4uzKeKCE5rEHu12HZaplMbeXacyyhn85zLCxMtdYHjzsRauGuuN3Qjtdr2et9X7CHBYlQuBSz4MHfTbanT1MkaWZ11YmtuGnIWUe3GyUpP9LhAMhqjr1gK2oTy9gOb1Xc8rTE8ftzSlazz4W61GvaH8r_K7Tmz9LZOPnE_dw-99F78PGu3SUvX118OYOXA6tD4_14Il3YH3xsTZ3EYQt8nvO1n4A3U4skg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BVwIuPHZ5BBZkHkJ7Sck6TmxzK5RVhdQVByotp-DYrnZFk0bQCJUTP4JfyC9h7LgRZQEhcWviSePEM_bnzMw3AE-YPDRsLrI4wW7GzCgZl7m2sSOzQ4VCFZEuG3l6nE9m7PVJdhLqnLpcmI4fov_g5izDz9fOwBsz7-b54N2nz07LaoiYWMiLsJNnCMYHsDM7fjN6532ceRbLsOVKHOcoYpUNt9DP126vSOdg5vloyctt3aj1Z7VYbCNavyQdXYP3m4fpIlE-DNtVOdRffuF5_I-nvQ5XA1wlo06_bsAFW-_C3qjGrXq1Jk-JDyD1X-Z34dI0-On3YDxe4z67rlTznIy7mvfEnXAugsoSPO_StL5__TYinlDzrPLFkkizdlQGpFqadmFvwuzo1duXkzjUa4g1Q1wTK1pmWiA-sFQLqZWVfJ6WMldUWZoILnKD8EsleIgwgXND51LxkvvsW57o9BYM6mVt7wBJdelC75jm2jAujTQ4eLjIcpFoaUQWwcFmzAodyMxdTY1F0dEw0wJfVuFfVgSPetGmY_D4ndD-ZuCLYMSfsIWnuZS444vgYd-M5ud8Kqq2y9bJZC4LlTIewe1OT_q7pDgfosazCPiWBvUCjtp7u6U-O_UU34KhER1itx73uva3zh941fmzRDF5MfU_7v7TH96DK9SF7rjAnWwfBquPrb2P2GtVPgj29QP8dS1x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dyconnmap%3A+Dynamic+connectome+mapping-A+neuroimaging+python+module&rft.jtitle=Human+brain+mapping&rft.au=Marimpis%2C+Avraam+D&rft.au=Dimitriadis%2C+Stavros+I&rft.au=Goebel%2C+Rainer&rft.date=2021-10-15&rft.eissn=1097-0193&rft.volume=42&rft.issue=15&rft.spage=4909&rft_id=info:doi/10.1002%2Fhbm.25589&rft_id=info%3Apmid%2F34250674&rft.externalDocID=34250674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon