Statelets: Capturing recurrent transient variations in dynamic functional network connectivity

Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 43; no. 8; pp. 2503 - 2518
Main Authors Rahaman, Md Abdur, Damaraju, Eswar, Saha, Debbrata K., Plis, Sergey M., Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2022
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.25799

Cover

Abstract Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short‐lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state‐space time series summarization framework called “statelets” to address these shortcomings. It models functional connectivity dynamics at fine‐grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time‐course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross‐modal and multimodal applications to study healthy and disordered brains. We proposed a novel method for analyzing dynamic functional connectivity via extracting high‐frequency texture from the connectivity space. The analysis of those motifs enables measuring the characteristics of brain circuitry and network organization. The experiments don't he summary motifs facilitate the observation of distinguishing connectivity signatures and the interplay among the hubs to process information
AbstractList Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short‐lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state‐space time series summarization framework called “statelets” to address these shortcomings. It models functional connectivity dynamics at fine‐grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time‐course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross‐modal and multimodal applications to study healthy and disordered brains. We proposed a novel method for analyzing dynamic functional connectivity via extracting high‐frequency texture from the connectivity space. The analysis of those motifs enables measuring the characteristics of brain circuitry and network organization. The experiments don't he summary motifs facilitate the observation of distinguishing connectivity signatures and the interplay among the hubs to process information
Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short‐lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state‐space time series summarization framework called “statelets” to address these shortcomings. It models functional connectivity dynamics at fine‐grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time‐course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross‐modal and multimodal applications to study healthy and disordered brains.
Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short‐lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state‐space time series summarization framework called “statelets” to address these shortcomings. It models functional connectivity dynamics at fine‐grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time‐course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross‐modal and multimodal applications to study healthy and disordered brains. We proposed a novel method for analyzing dynamic functional connectivity via extracting high‐frequency texture from the connectivity space. The analysis of those motifs enables measuring the characteristics of brain circuitry and network organization. The experiments don't he summary motifs facilitate the observation of distinguishing connectivity signatures and the interplay among the hubs to process information
Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short-lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state-space time series summarization framework called "statelets" to address these shortcomings. It models functional connectivity dynamics at fine-grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time-course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross-modal and multimodal applications to study healthy and disordered brains.Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short-lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state-space time series summarization framework called "statelets" to address these shortcomings. It models functional connectivity dynamics at fine-grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time-course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross-modal and multimodal applications to study healthy and disordered brains.
Author Rahaman, Md Abdur
Saha, Debbrata K.
Plis, Sergey M.
Damaraju, Eswar
Calhoun, Vince D.
AuthorAffiliation 1 Georgia Institute of Technology Atlanta Georgia USA
2 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University Atlanta Georgia USA
AuthorAffiliation_xml – name: 2 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University Atlanta Georgia USA
– name: 1 Georgia Institute of Technology Atlanta Georgia USA
Author_xml – sequence: 1
  givenname: Md Abdur
  orcidid: 0000-0002-4241-2439
  surname: Rahaman
  fullname: Rahaman, Md Abdur
  email: mrahaman8@gatech.edu
  organization: Georgia State University, Georgia Institute of Technology, Emory University
– sequence: 2
  givenname: Eswar
  surname: Damaraju
  fullname: Damaraju, Eswar
  organization: Georgia State University, Georgia Institute of Technology, Emory University
– sequence: 3
  givenname: Debbrata K.
  orcidid: 0000-0003-0754-7570
  surname: Saha
  fullname: Saha, Debbrata K.
  organization: Georgia State University, Georgia Institute of Technology, Emory University
– sequence: 4
  givenname: Sergey M.
  orcidid: 0000-0003-0040-0365
  surname: Plis
  fullname: Plis, Sergey M.
  organization: Georgia State University, Georgia Institute of Technology, Emory University
– sequence: 5
  givenname: Vince D.
  orcidid: 0000-0001-9058-0747
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Georgia State University, Georgia Institute of Technology, Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35274791$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URD_gwB9AkbgAUlo7ie2EAxKsgCIVcQCuWBNn0rok9mI7u8q_x-kuXxVwmtHMM69m3jkmB9ZZJOQho6eM0uLsqh1PCy6b5g45YrSROWVNebDkgudNJdkhOQ7hmlLGOGX3yGHJC1nJhh2RLx8jRBwwhufZCtZx8sZeZh715D3amEUPNpgl24A3EI2zITM262YLo9FZP1m9FGHILMat818z7azFVNyYON8nd3sYAj7YxxPy-c3rT6vz_OLD23erlxe5rqqyySuNbV8hE4UEwboOelnqiqYAbQ2ik3UhgEMpe95ykAJ5jR2VBVaiY0UN5Ql5ttOd7BrmLQyDWnszgp8Vo2oxSSWT1I1JCX6xg9dTO2Kn03Uefg04MOrPjjVX6tJtVEO5TFpJ4MlewLtvE4aoRhM0DgNYdFNQhShryURds4Q-voVeu8knuxaKS9FQSctEPfp9o5-r_PhTAs52gPYuBI-90ibefCMtaIa_Hvn01sT_DNmrb82A879Bdf7q_W7iOy52xJw
CitedBy_id crossref_primary_10_1002_hbm_26483
crossref_primary_10_1177_09592989241313110
Cites_doi 10.1080/10485250701379848
10.1016/j.neuroimage.2010.08.063
10.1089/brain.2020.0896
10.1038/mp.2008.28
10.1192/bjp.156.1.17
10.1002/hbm.1048
10.1089/brain.2020.0768
10.1002/hbm.24807
10.1006/nimg.2001.0869
10.1212/WNL.0000000000001476
10.1016/j.neuroimage.2013.12.063
10.1007/978-3-642-04898-2_324
10.1109/ISBI.2019.8759146
10.1371/journal.pone.0030468
10.1371/journal.pone.0072351
10.1111/j.2517-6161.1991.tb01857.x
10.1016/j.neuron.2015.09.027
10.3389/fnsys.2011.00002
10.1016/j.neuroimage.2017.02.066
10.1016/j.nicl.2014.07.003
10.1016/j.neuroimage.2007.11.001
10.1097/01.wnr.0000198434.06518.b8
10.1016/j.neuroimage.2016.11.006
10.1016/j.neuroimage.2020.116989
10.1073/pnas.1815321116
10.3389/fnhum.2014.00897
10.1016/j.schres.2007.11.039
10.1016/j.neuroimage.2015.09.003
10.3115/1067737.1067775
10.1093/cercor/bhs352
10.1016/j.neuroimage.2008.10.057
10.1002/hbm.24504
10.2307/2332226
10.1016/S0893-6080(00)00026-5
10.1007/s10334-010-0197-8
10.1523/JNEUROSCI.0333-10.2010
10.1007/978-3-540-28651-6_77
10.1002/hbm.23430
10.1162/netn_a_00182
10.1023/A:1026543900054
10.1137/07069938X
10.1007/BF00532240
10.1016/j.neuron.2011.09.006
10.3389/fpsyt.2018.00339
10.1097/00001199-200603000-00004
10.1016/j.nicl.2018.03.017
10.2174/156802612805289890
10.1002/widm.1119
10.1007/978-3-642-21551-3_19
10.1177/0963721410377601
10.1016/j.biopsych.2005.10.005
10.1016/j.fss.2008.01.025
10.1001/archpsyc.1979.01780120039005
10.1007/978-1-4899-3324-9
10.1038/nn.3423
10.1038/nrn2575
10.24963/ijcai.2017/372
10.1371/journal.pone.0149849
10.1002/widm.1199
10.1002/hbm.21170
10.1109/TBME.2019.2908815
10.1038/nn.4502
10.1001/jamapsychiatry.2019.0257
10.1038/s41593-020-00719-y
10.1016/j.neuroimage.2017.03.026
10.1016/j.neuroimage.2016.04.051
10.1007/s12021-017-9338-9
10.1016/0169-7439(87)80084-9
10.1137/1118101
10.1073/pnas.2005531117
10.1093/biostatistics/kxm045
10.1016/j.neucom.2013.11.045
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.25799
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Rahaman et al
EISSN 1097-0193
EndPage 2518
ExternalDocumentID 10.1002/hbm.25799
PMC9057100
35274791
10_1002_hbm_25799
HBM25799
Genre article
Journal Article
GrantInformation_xml – fundername: National Institute of Health, USA (NIH)
  funderid: R01EB020407; R01MH094524; R01MH118695
– fundername: National Institute of Health, USA (NIH)
  grantid: R01MH094524
– fundername: National Institute of Health, USA (NIH)
  grantid: R01MH118695
– fundername: National Institute of Health, USA (NIH)
  grantid: R01EB020407
– fundername: ;
  grantid: R01EB020407; R01MH094524; R01MH118695
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAFWJ
AAMMB
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
PHGZM
PHGZT
PUEGO
RIWAO
RJQFR
SAMSI
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4439-4cebf4e1627a61ddaf73c40af7ab8a6d7826a5a37f5b5a76e58ed072e46d128a3
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 03:25:41 EDT 2025
Tue Sep 30 16:42:38 EDT 2025
Fri Sep 05 09:27:10 EDT 2025
Tue Oct 07 06:03:04 EDT 2025
Wed Feb 19 02:25:38 EST 2025
Thu Apr 24 23:07:25 EDT 2025
Wed Oct 01 01:55:49 EDT 2025
Wed Jan 22 16:25:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords time series motifs summarization
earthmover distance
resting-state MRI
kernel density estimator
schizophrenia
dynamic functional network connectivity
Language English
License Attribution-NonCommercial
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-4cebf4e1627a61ddaf73c40af7ab8a6d7826a5a37f5b5a76e58ed072e46d128a3
Notes Funding information
National Institute of Health, USA (NIH), Grant/Award Numbers: R01EB020407, R01MH094524, R01MH118695
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information National Institute of Health, USA (NIH), Grant/Award Numbers: R01EB020407, R01MH094524, R01MH118695
ORCID 0000-0001-9058-0747
0000-0003-0754-7570
0000-0002-4241-2439
0000-0003-0040-0365
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25799
PMID 35274791
PQID 2657690703
PQPubID 996345
PageCount 16
ParticipantIDs unpaywall_primary_10_1002_hbm_25799
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9057100
proquest_miscellaneous_2638716881
proquest_journals_2657690703
pubmed_primary_35274791
crossref_citationtrail_10_1002_hbm_25799
crossref_primary_10_1002_hbm_25799
wiley_primary_10_1002_hbm_25799_HBM25799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 45
2017; 7
1987; 2
1979; 36
2010; 19
2015; 147
1991; 53
2008; 39
2008; 9
2014; 24
2011; 54
2017; 152
2020; 12
2020; 10
2013; 8
2008; 100
2012; 12
1974; 18
2010; 23
2009; 14
2018; 9
2020; 5
2014; 5
2014; 4
2009; 10
2013; 16
2001
2015; 84
2006; 21
2000; 13
2017; 38
2019; 67
2015; 88
2011; 72
2019; 116
2017; 160
2008; 159
2014; 8
2001; 14
2010; 30
2020; 218
2007; 19
2017; 20
2014; 90
2012
2020; 41
2011
2019; 76
2006; 17
2006; 59
2016; 124
2008
2011; 32
2004
1993
2003
2002
2011; 5
1995; 3
2016; 11
2018; 19
2019; 40
2017; 15
2019b
2019a
1986; 26
2019
2016; 134
2000; 40
1985; 70
2020; 117
2017
2020; 23
2013
1990; 156
2008; 40
2012; 7
1938; 30
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
Saha D. K. (e_1_2_12_62_1) 2019
Andoni A. (e_1_2_12_10_1) 2008
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_81_1
Varoquaux G. (e_1_2_12_78_1) 2010; 23
Sheather S. J. (e_1_2_12_66_1) 1991; 53
Turlach B. A. (e_1_2_12_76_1) 1993
e_1_2_12_28_1
Friston K. J. (e_1_2_12_29_1) 1995; 3
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_77_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_75_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_71_1
e_1_2_12_3_1
Maaten L.v.d. (e_1_2_12_47_1) 2008; 9
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_27_1
Levina E. (e_1_2_12_39_1) 2001
Du Y. (e_1_2_12_22_1) 2019
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_9_1
References_xml – volume: 100
  start-page: 120
  issue: 1–3
  year: 2008
  end-page: 132
  article-title: Altered resting‐state functional connectivity and anatomical connectivity of hippocampus in schizophrenia
  publication-title: Schizophrenia Research
– volume: 30
  start-page: 81
  issue: 1/2
  year: 1938
  end-page: 93
  article-title: A new measure of rank correlation
  publication-title: Biometrika
– volume: 14
  start-page: 1017
  issue: 11
  year: 2009
  end-page: 1023
  article-title: Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia
  publication-title: Molecular Psychiatry
– volume: 116
  start-page: 660
  issue: 2
  year: 2019
  end-page: 669
  article-title: Modular reconfiguration of an auditory control brain network supports adaptive listening behavior
  publication-title: Proceedings of the National Academy of Sciences
– volume: 15
  start-page: 343
  issue: 4
  year: 2017
  end-page: 364
  article-title: Multi‐modal neuroimaging in schizophrenia: Description and dissemination
  publication-title: Neuroinformatics
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  end-page: 676
  article-title: Tracking whole‐brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– year: 2001
– volume: 40
  start-page: 99
  issue: 2
  year: 2000
  end-page: 121
  article-title: The earth mover's distance as a metric for image retrieval
  publication-title: International Journal of Computer Vision
– volume: 19
  start-page: 165
  issue: 4–5
  year: 2007
  end-page: 187
  article-title: A general and fast convergent bandwidth selection method of kernel estimator
  publication-title: Journal of Nonparametric Statistics
– year: 2019b
  article-title: dSNE: A visualization approach for use with decentralized data
  publication-title: BioRxiv
– volume: 3
  start-page: 89
  issue: 2
  year: 1995
  end-page: 97
  article-title: Schizophrenia: A disconnection syndrome
  publication-title: Clinical Neuroscience
– volume: 9
  start-page: 339
  year: 2018
  article-title: Aberrant dynamic functional network connectivity and graph properties in major depressive disorder
  publication-title: Frontiers in Psychiatry
– year: 2019a
– volume: 18
  start-page: 784
  issue: 4
  year: 1974
  end-page: 786
  article-title: Calculation of the Wasserstein distance between probability distributions on the line
  publication-title: Theory of Probability and its Applications
– start-page: 713
  year: 2011
  end-page: 715
– start-page: 549
  year: 2012
  end-page: 569
– volume: 156
  start-page: 17
  issue: 1
  year: 1990
  end-page: 26
  article-title: Heterogeneity of schizophrenia: Conceptual models and analytic strategies
  publication-title: British Journal of Psychiatry
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  end-page: 2605
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– volume: 8
  issue: 8
  year: 2013
  article-title: Intra‐ and inter‐frequency brain network structure in health and schizophrenia
  publication-title: PLoS One
– volume: 32
  start-page: 2075
  issue: 12
  year: 2011
  end-page: 2095
  article-title: Comparison of multi‐subject ICA methods for analysis of fMRI data
  publication-title: Human Brain Mapping
– volume: 23
  start-page: 1644
  issue: 12
  year: 2020
  end-page: 1654
  article-title: Edge‐centric functional network representations of human cerebral cortex reveal overlapping system‐level architecture
  publication-title: Nature Neuroscience
– volume: 19
  start-page: 226
  issue: 4
  year: 2010
  end-page: 231
  article-title: Structural and functional brain abnormalities in schizophrenia
  publication-title: Current Directions in Psychological Science
– volume: 76
  start-page: 739
  issue: 7
  year: 2019
  end-page: 748
  article-title: Brain heterogeneity in schizophrenia and its association with polygenic risk
  publication-title: JAMA Psychiatry
– start-page: pp. 2672
  year: 2017
  end-page: 2678
– volume: 40
  start-page: 1955
  issue: 6
  year: 2019
  end-page: 1968
  article-title: Dynamic functional network connectivity in Huntington's disease and its associations with motor and cognitive measures
  publication-title: Human Brain Mapping
– volume: 14
  start-page: 709
  issue: 3
  year: 2001
  end-page: 722
  article-title: Motion correction algorithms may create spurious brain activations in the absence of subject motion
  publication-title: NeuroImage
– volume: 67
  start-page: 110
  issue: 1
  year: 2019
  end-page: 121
  article-title: N‐BiC: A method for multi‐component and symptom biclustering of structural MRI data: Application to schizophrenia
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 26
  year: 1986
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage: Clinical
– volume: 160
  start-page: 73
  year: 2017
  end-page: 83
  article-title: Multi‐scale brain networks
  publication-title: NeuroImage
– volume: 88
  start-page: 207
  issue: 1
  year: 2015
  end-page: 219
  article-title: Brain networks and cognitive architectures
  publication-title: Neuron
– year: 2008
– year: 2004
– volume: 11
  issue: 3
  year: 2016
  article-title: Higher dimensional meta‐state analysis reveals reduced resting fMRI connectivity dynamism in schizophrenia patients
  publication-title: PLoS One
– volume: 4
  start-page: 152
  issue: 2
  year: 2014
  end-page: 159
  article-title: Time series motif discovery: Dimensions and applications
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 45
  start-page: S163
  issue: 1
  year: 2009
  end-page: S172
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: NeuroImage
– volume: 72
  start-page: 665
  issue: 4
  year: 2011
  end-page: 678
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 8
  start-page: 897
  year: 2014
  article-title: Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Frontiers in Human Neuroscience
– year: 1993
– volume: 23
  start-page: 2334
  year: 2010
  end-page: 2342
  article-title: Brain covariance selection: Better individual functional connectivity models using population prior
  publication-title: Advances in Neural Information Processing Systems
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  end-page: 151
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Human Brain Mapping
– volume: 21
  start-page: 107
  issue: 2
  year: 2006
  end-page: 118
  article-title: Functional reintegration of prefrontal neural networks for enhancing recovery after brain injury
  publication-title: The Journal of Head Trauma Rehabilitation
– volume: 12
  start-page: 61
  issue: 1
  year: 2020
  end-page: 73
  article-title: A novel method for tri‐clustering dynamic functional network connectivity (dFNC) identifies significant schizophrenia effects across multiple states in distinct subgroups of individuals
  publication-title: Brain Connectivity
– volume: 7
  issue: 1
  year: 2012
  article-title: Functional brain network modularity captures inter‐and intra‐individual variation in working memory capacity
  publication-title: PLoS One
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  end-page: 52
  article-title: Principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 16
  start-page: 832
  issue: 7
  year: 2013
  end-page: 837
  article-title: Opportunities and limitations of intrinsic functional connectivity MRI
  publication-title: Nature Neuroscience
– volume: 5
  start-page: 2
  year: 2011
  article-title: A baseline for the multivariate comparison of resting‐state networks
  publication-title: Frontiers in Systems Neuroscience
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  end-page: 198
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
– volume: 70
  start-page: 117
  issue: 1
  year: 1985
  end-page: 129
  article-title: The Wasserstein distance and approximation theorems
  publication-title: Probability Theory and Related Fields
– volume: 152
  start-page: 497
  year: 2017
  end-page: 508
  article-title: Dynamic reorganization of intrinsic functional networks in the mouse brain
  publication-title: NeuroImage
– volume: 5
  start-page: 405
  year: 2020
  end-page: 433
  article-title: Dynamic expression of brain functional systems disclosed by fine‐scale analysis of edge time series
  publication-title: Network Neuroscience
– volume: 36
  start-page: 1309
  issue: 12
  year: 1979
  end-page: 1311
  article-title: Schizophrenia: Evidence of a subgroup with reversed cerebral asymmetry
  publication-title: Archives of General Psychiatry
– volume: 134
  start-page: 645
  year: 2016
  end-page: 657
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting‐state fMRI brain connectivity
  publication-title: NeuroImage
– year: 2003
– volume: 40
  start-page: 1
  issue: 1
  year: 2008
  end-page: 20
  article-title: The ∞‐Wasserstein distance: Local solutions and existence of optimal transport maps
  publication-title: SIAM Journal on Mathematical Analysis
– volume: 218
  year: 2020
  article-title: Nonlinear ICA of fMRI reveals primitive temporal structures linked to rest, task, and behavioral traits
  publication-title: NeuroImage
– volume: 17
  start-page: 209
  issue: 2
  year: 2006
  end-page: 213
  article-title: Widespread functional disconnectivity in schizophrenia with resting‐state functional magnetic resonance imaging
  publication-title: Neuroreport
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  end-page: 430
  article-title: Independent component analysis: Algorithms and applications
  publication-title: Neural Networks
– volume: 10
  start-page: 504
  issue: 9
  year: 2020
  end-page: 519
  article-title: Dynamic resting‐state connectivity differences in eyes open versus eyes closed conditions
  publication-title: Brain Connectivity
– volume: 38
  start-page: 957
  issue: 2
  year: 2017
  end-page: 973
  article-title: Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic–clonic seizure
  publication-title: Human Brain Mapping
– volume: 41
  start-page: 362
  issue: 2
  year: 2020
  end-page: 372
  article-title: Temporal stability of functional brain modules associated with human intelligence
  publication-title: Human Brain Mapping
– volume: 124
  start-page: 1074
  year: 2016
  end-page: 1079
  article-title: The function biomedical informatics research network data repository
  publication-title: NeuroImage
– volume: 159
  start-page: 1485
  issue: 12
  year: 2008
  end-page: 1499
  article-title: Linguistic summarization of time series using a fuzzy quantifier driven aggregation
  publication-title: Fuzzy Sets and Systems
– year: 2019
  article-title: NeuroMark: An adaptive independent component analysis framework for estimating reproducible and comparable fMRI biomarkers among brain disorders
  publication-title: MedRxiv
– volume: 19
  start-page: 30
  year: 2018
  end-page: 37
  article-title: Dynamic functional network connectivity discriminates mild traumatic brain injury through machine learning
  publication-title: NeuroImage: Clinical
– volume: 152
  start-page: 94
  year: 2017
  end-page: 107
  article-title: Individual differences and time‐varying features of modular brain architecture
  publication-title: NeuroImage
– volume: 84
  start-page: 1568
  issue: 15
  year: 2015
  end-page: 1574
  article-title: Functional brain network modularity predicts response to cognitive training after brain injury
  publication-title: Neurology
– volume: 117
  start-page: 28393
  issue: 45
  year: 2020
  end-page: 28401
  article-title: High‐amplitude cofluctuations in cortical activity drive functional connectivity
  publication-title: Proceedings of the National Academy of Sciences
– year: 2002
– volume: 20
  start-page: 353
  issue: 3
  year: 2017
  end-page: 364
  article-title: Network neuroscience
  publication-title: Nature Neuroscience
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  end-page: 891
  article-title: Network modelling methods for FMRI
  publication-title: NeuroImage
– volume: 9
  start-page: 432
  issue: 3
  year: 2008
  end-page: 441
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
– volume: 90
  start-page: 196
  year: 2014
  end-page: 206
  article-title: Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis
  publication-title: NeuroImage
– volume: 7
  issue: 2
  year: 2017
  article-title: Survey on time series motif discovery
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 147
  start-page: 71
  year: 2015
  end-page: 82
  article-title: Parametric nonlinear dimensionality reduction using kernel t‐SNE
  publication-title: Neurocomputing
– volume: 53
  start-page: 683
  issue: 3
  year: 1991
  end-page: 690
  article-title: A reliable data‐based bandwidth selection method for kernel density estimation
  publication-title: Journal of the Royal Statistical Society: Series B: Methodological
– volume: 39
  start-page: 1666
  issue: 4
  year: 2008
  end-page: 1681
  article-title: A method for functional network connectivity among spatially independent resting‐state components in schizophrenia
  publication-title: NeuroImage
– volume: 12
  start-page: 2415
  issue: 21
  year: 2012
  end-page: 2425
  article-title: Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging
  publication-title: Current Topics in Medicinal Chemistry
– volume: 59
  start-page: 929
  issue: 10
  year: 2006
  end-page: 939
  article-title: Synaptic plasticity and dysconnection in schizophrenia
  publication-title: Biological Psychiatry
– volume: 30
  start-page: 9477
  issue: 28
  year: 2010
  end-page: 9487
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: Journal of Neuroscience
– year: 2013
– volume: 23
  start-page: 351
  issue: 5
  year: 2010
  end-page: 366
  article-title: A method for evaluating dynamic functional network connectivity and task‐modulation: Application to schizophrenia
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
– ident: e_1_2_12_3_1
  doi: 10.1080/10485250701379848
– ident: e_1_2_12_69_1
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: e_1_2_12_55_1
  doi: 10.1089/brain.2020.0896
– ident: e_1_2_12_64_1
  doi: 10.1038/mp.2008.28
– ident: e_1_2_12_75_1
  doi: 10.1192/bjp.156.1.17
– volume-title: CORE and Institut de Statistique
  year: 1993
  ident: e_1_2_12_76_1
– ident: e_1_2_12_17_1
  doi: 10.1002/hbm.1048
– ident: e_1_2_12_2_1
  doi: 10.1089/brain.2020.0768
– ident: e_1_2_12_32_1
  doi: 10.1002/hbm.24807
– ident: e_1_2_12_27_1
  doi: 10.1006/nimg.2001.0869
– ident: e_1_2_12_11_1
  doi: 10.1212/WNL.0000000000001476
– start-page: 19008631
  year: 2019
  ident: e_1_2_12_22_1
  article-title: NeuroMark: An adaptive independent component analysis framework for estimating reproducible and comparable fMRI biomarkers among brain disorders
  publication-title: MedRxiv
– ident: e_1_2_12_46_1
  doi: 10.1016/j.neuroimage.2013.12.063
– ident: e_1_2_12_53_1
  doi: 10.1007/978-3-642-04898-2_324
– ident: e_1_2_12_61_1
  doi: 10.1109/ISBI.2019.8759146
– ident: e_1_2_12_18_1
– ident: e_1_2_12_73_1
  doi: 10.1371/journal.pone.0030468
– volume: 23
  start-page: 2334
  year: 2010
  ident: e_1_2_12_78_1
  article-title: Brain covariance selection: Better individual functional connectivity models using population prior
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_12_67_1
  doi: 10.1371/journal.pone.0072351
– volume: 53
  start-page: 683
  issue: 3
  year: 1991
  ident: e_1_2_12_66_1
  article-title: A reliable data‐based bandwidth selection method for kernel density estimation
  publication-title: Journal of the Royal Statistical Society: Series B: Methodological
  doi: 10.1111/j.2517-6161.1991.tb01857.x
– ident: e_1_2_12_51_1
  doi: 10.1016/j.neuron.2015.09.027
– ident: e_1_2_12_7_1
  doi: 10.3389/fnsys.2011.00002
– ident: e_1_2_12_41_1
  doi: 10.1016/j.neuroimage.2017.02.066
– ident: e_1_2_12_21_1
  doi: 10.1016/j.nicl.2014.07.003
– ident: e_1_2_12_34_1
  doi: 10.1016/j.neuroimage.2007.11.001
– ident: e_1_2_12_40_1
  doi: 10.1097/01.wnr.0000198434.06518.b8
– ident: e_1_2_12_13_1
  doi: 10.1016/j.neuroimage.2016.11.006
– ident: e_1_2_12_49_1
  doi: 10.1016/j.neuroimage.2020.116989
– ident: e_1_2_12_6_1
  doi: 10.1073/pnas.1815321116
– ident: e_1_2_12_56_1
  doi: 10.3389/fnhum.2014.00897
– ident: e_1_2_12_83_1
  doi: 10.1016/j.schres.2007.11.039
– ident: e_1_2_12_42_1
– ident: e_1_2_12_37_1
  doi: 10.1016/j.neuroimage.2015.09.003
– ident: e_1_2_12_71_1
  doi: 10.3115/1067737.1067775
– ident: e_1_2_12_8_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_12_16_1
  doi: 10.1016/j.neuroimage.2008.10.057
– ident: e_1_2_12_25_1
  doi: 10.1002/hbm.24504
– start-page: 826974
  year: 2019
  ident: e_1_2_12_62_1
  article-title: dSNE: A visualization approach for use with decentralized data
  publication-title: BioRxiv
– ident: e_1_2_12_38_1
  doi: 10.2307/2332226
– ident: e_1_2_12_33_1
  doi: 10.1016/S0893-6080(00)00026-5
– ident: e_1_2_12_63_1
  doi: 10.1007/s10334-010-0197-8
– ident: e_1_2_12_45_1
  doi: 10.1523/JNEUROSCI.0333-10.2010
– ident: e_1_2_12_4_1
  doi: 10.1007/978-3-540-28651-6_77
– ident: e_1_2_12_43_1
  doi: 10.1002/hbm.23430
– ident: e_1_2_12_70_1
  doi: 10.1162/netn_a_00182
– ident: e_1_2_12_58_1
  doi: 10.1023/A:1026543900054
– ident: e_1_2_12_19_1
  doi: 10.1137/07069938X
– ident: e_1_2_12_59_1
  doi: 10.1007/BF00532240
– volume-title: The earth mover's distance is the mallows distance: Some insights from statistics
  year: 2001
  ident: e_1_2_12_39_1
– ident: e_1_2_12_52_1
  doi: 10.1016/j.neuron.2011.09.006
– volume: 3
  start-page: 89
  issue: 2
  year: 1995
  ident: e_1_2_12_29_1
  article-title: Schizophrenia: A disconnection syndrome
  publication-title: Clinical Neuroscience
– ident: e_1_2_12_82_1
  doi: 10.3389/fpsyt.2018.00339
– ident: e_1_2_12_20_1
  doi: 10.1097/00001199-200603000-00004
– ident: e_1_2_12_79_1
  doi: 10.1016/j.nicl.2018.03.017
– ident: e_1_2_12_81_1
  doi: 10.2174/156802612805289890
– ident: e_1_2_12_50_1
  doi: 10.1002/widm.1119
– ident: e_1_2_12_65_1
  doi: 10.1007/978-3-642-21551-3_19
– ident: e_1_2_12_36_1
  doi: 10.1177/0963721410377601
– ident: e_1_2_12_72_1
  doi: 10.1016/j.biopsych.2005.10.005
– ident: e_1_2_12_35_1
  doi: 10.1016/j.fss.2008.01.025
– ident: e_1_2_12_44_1
  doi: 10.1001/archpsyc.1979.01780120039005
– ident: e_1_2_12_68_1
  doi: 10.1007/978-1-4899-3324-9
– ident: e_1_2_12_14_1
  doi: 10.1038/nn.3423
– ident: e_1_2_12_15_1
  doi: 10.1038/nrn2575
– ident: e_1_2_12_60_1
  doi: 10.24963/ijcai.2017/372
– ident: e_1_2_12_48_1
  doi: 10.1371/journal.pone.0149849
– ident: e_1_2_12_74_1
  doi: 10.1002/widm.1199
– volume-title: Earth mover distance over high‐dimensional spaces
  year: 2008
  ident: e_1_2_12_10_1
– ident: e_1_2_12_23_1
  doi: 10.1002/hbm.21170
– ident: e_1_2_12_54_1
  doi: 10.1109/TBME.2019.2908815
– ident: e_1_2_12_12_1
  doi: 10.1038/nn.4502
– ident: e_1_2_12_9_1
  doi: 10.1001/jamapsychiatry.2019.0257
– ident: e_1_2_12_26_1
  doi: 10.1038/s41593-020-00719-y
– ident: e_1_2_12_31_1
  doi: 10.1016/j.neuroimage.2017.03.026
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: e_1_2_12_47_1
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_12_57_1
  doi: 10.1016/j.neuroimage.2016.04.051
– ident: e_1_2_12_5_1
  doi: 10.1007/s12021-017-9338-9
– ident: e_1_2_12_80_1
  doi: 10.1016/0169-7439(87)80084-9
– ident: e_1_2_12_77_1
  doi: 10.1137/1118101
– ident: e_1_2_12_24_1
  doi: 10.1073/pnas.2005531117
– ident: e_1_2_12_28_1
  doi: 10.1093/biostatistics/kxm045
– ident: e_1_2_12_30_1
  doi: 10.1016/j.neucom.2013.11.045
SSID ssj0011501
Score 2.4197721
Snippet Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2503
SubjectTerms Brain
Brain - diagnostic imaging
Brain architecture
Brain Mapping - methods
Cluster Analysis
Clustering
Consistency
Density
dynamic functional network connectivity
Dynamical systems
earthmover distance
Heterogeneity
Humans
Investigations
kernel density estimator
Magnetic Resonance Imaging - methods
Mental disorders
Modularity
Neural networks
Phenotypes
resting‐state MRI
Schizophrenia
Schizophrenia - diagnostic imaging
Sensorimotor system
Time series
time series motifs summarization
Trends
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swED-6FLZ9KVu7h7tuaA9Gv7iNJVm2BmO0pSUMEsZYoZ9mJEumhdTJ2mSj__3u5McWuvVTAjqI4zvpfrrH7wDe2VQq7oWKK52UsbTEAelLHydCSoPuRZhQRDOeqNGp_HyWnq3BpOuFobLK7kwMB7WblRQj3-cKkbEmA_00_xHT1CjKrnYjNEw7WsF9DBRj92CdEzPWANYPjydfvvZ5BYQ_4QqGjjfWeC53XENDvn9uL_fQfgMJ7F8e6hbsvF09-WBZz83NLzOdriLc4KJOHsFGiy3ZQWMMj2HN15uwdVDjvfryhr1nodozhNE34f64TapvwfcAOFF_1x_YkZkvQuMiu6JAPFE3sQW5M2qbZD_xYt1E-NhFzVwzzJ6Ra2wiiqxuispZSeUzZTOY4gmcnhx_OxrF7diFuJSS8sKlt5X0ieKZUYlzpspEKYf4YWxulENMoUxqRFalNjWZ8mnu3TDjXiqH3s6IpzCoZ7V_Doy6doXllRhyLa3hprJKuyx1eaaN0zqC3e5VF2XLSU6jMaZFw6bMC9RKEbQSwZtedN4QcfxLaKfTV9Huxevij-VE8Lpfxl1EqRFT-9mSZATdHPM8ieBZo97-VxCi4p1L40q2ovhegBi6V1fqi_PA1K0RDeMTRvC2N5G7Hn43GM__JYrR4Th82b77f76Ah5y6NEKwaAcGi6ulf4nYaWFftRviN6RSGrc
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXBC2PlILMQ6iXtBvbcWI4lYpqhbSIA5V6IrJjR620dVfdXar-e2bsbNCqgDglkidKlPF4vhnPfAZ4Z0upuBcq73TR5tISB6RvfV4IKQ26F2FiEc3kqxqfyC-n5ekGfFz1wiR-iCHhRpYR12sycGPnB79JQ8_sxT7ON63vwN0CcQxNby6_DVsIiHRitIU-Nte4BK9ohUb8YHh03RndQpi3CyXvL8PM3Fyb6XQdzEZvdPwIHvYwkh0mvT-GDR-2YPswYAh9ccPes1jYGTPmW3Bv0u-fb8OPiC1RVfMP7MjMFrFHkV1Rzp1YmtiCPBd1SLKfGEOnZB47D8ylc-sZecGUPGQh1Y-zlipl2nQGxRM4Of78_Wic9ycs5K2UtAXcettJXyheGVU4Z7pKtHKEF2NroxzCB2VKI6qutKWplC9r70YV91I5dGxGPIXNcBn8c2DUoCss78SIa2kNN51V2lWlqyttnNYZ7K1-ddP29ON0Csa0ScTJvEGtNFErGbwZRGeJc-NPQrsrfTW92c0brjB80rSKZfB6GEaDoV0QE_zlkmQEBYl1XWTwLKl3eAuiUQyvNI5Ua4ofBIiMe30knJ9FUm6NwBe_MIO3wxT518fvxcnzd4lm_GkSb3b-X_QFPODUnBFzRLuwubha-pcImRb2VTSNXzoNFEk
  priority: 102
  providerName: Wiley-Blackwell
Title Statelets: Capturing recurrent transient variations in dynamic functional network connectivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25799
https://www.ncbi.nlm.nih.gov/pubmed/35274791
https://www.proquest.com/docview/2657690703
https://www.proquest.com/docview/2638716881
https://pubmed.ncbi.nlm.nih.gov/PMC9057100
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25799
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5irQS8DNgYC4zKXIT2ktI4jhPz1k2bKqRW1USl8kKwE0eraLNqS0Hl1-NjpxFlgJB4SSv5pM3l2Oc7t88Ar1XEONUh9wsRZD5TyAGpM-0HIWPSmJdQ2iKa4YgPJuz9NJrW-5xiL4zjh2gCbjgz7HqNE3yZF26dr7P79O2lWnSNzgmxA20eGTDegvZkNO5_tDlOHvmidrl6yDlqsMqGW-jnc7ct0i2Yebta8t6qXMr1NzmfbyNaa5LOH8Dnzc24SpQv3VWlutn3X3ge_-NuH8JuDVdJ3-nXI7ijyz3Y75fGVV-syRtiC0htZH4P7g7rPP0-fLIY1qjEzTtyKpeV7YUk1xjbRzYoUqGFxE5M8tX46i5oSGYlydelXMwygtbWBSlJ6erUSYYVOZnb6-IxTM7PPpwO_HonBz9jDFPNmVYF0wGnseRBnssiDjPWMx9SJZLnBqZwGckwLiIVyZjrKNF5L6aa8dwYUBkeQKu8KvUhEGwEDhUtwh4VTEkqC8VFHkd5EguZC-HB8eZtpllNc467bcxTR9BMU_MYU_sYPXjZiC4dt8fvhI42KpHW0_smpdy4aQJXSw9eNMNmYmK2RZb6aoUyITqjSRJ48MRpUPMvBvUaN06YkXhLtxoBJP3eHilnl5b8WxiAba7Qg1eNFv7t4o-tUv1ZIh2cDO2Xp__0g8_gPsX-DxuGOoJWdb3Szw0qq1QHdigbm2M8jTvQPjkbjS86NsKBxwvaqWfmD6D-PgY
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ8gJOKLUfDjFHX9DC8nvd29va4JMYCQIrQxBhKePPdu90KTdltpK-k_59_m7N6HNihvPLXJTtprZ2bn-zcAb7KYC2qYCAsZ5SHPHAakyU0YMc4VmhemfBNNtyc6p_zzWXy2BL_qWRjXVlnfif6i1qPc5ci3qEDPWDoB_Tj-EbqtUa66Wq_QUNVqBb3tIcaqwY4jM7_EEG6yffgJ-f2W0oP9k71OWG0ZCHPOXRk0N1nBTSRookSktSoSlvMWvqisrYRGEypUrFhSxFmsEmHittGthBouNF7uiuHn3oIVzrjE4G9ld7_35WtTx0B3y4d8aOhDiXagxjZq0a3zbPge9cWDzv5lEa-4uVe7NVdndqzml2owWPSovUk8uAd3K1-W7JTCdx-WjF2D9R2LcfxwTt4R313q0_ZrcLtbFfHX4Zt3cFFeJh_InhpP_aAkuXCJfwcVRabOfLoxTfITA_kyo0j6lui5VcN-TpwpLjOYxJZN7CR37Tp5uQjjAZzeCAMewrIdWfMYiJsSZhktWItKnimqikxIncS6nUilpQxgs_6r07zCQHerOAZpid5MU-RK6rkSwKuGdFwCf_yLaKPmV1rp_iT9I6kBvGyOUWtdKUZZM5o5GuYi1XY7CuBRyd7mW9AlxhhP4kmywPiGwCGCL57Y_rlHBpfofeMTBvC6EZHrHn7TC8__KdLObte_eXL973wBq52T7nF6fNg7egp3qJsQ8YmqDVieXszMM_TbptnzSjkIfL9pffwNk-5Yew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIpVeELRADQWWp3oxSXbXay8SQqUlSimpOFApJ8zaXquREic0CVX-Gr-OmfUDokJvPcXSjhzbM7Pzzew8AF4mgVTcCuXnupP6MqEekDa1fkdIadC8COOSaPonqncqPw2CwRr8qmthKK2y3hPdRp1NUoqRt7hCZKxJQFt5lRbx5bD7fvrDpwlSdNJaj9MoReTYLi_QfZu9OzpEXr_ivPvx60HPryYM-KmUdASa2iSXtqN4aFQny0weilS28cckkVEZmk9lAiPCPEgCEyobRDZrh9xKleHGbgTe9wbcDIXQlE4YDhpnj4CWc_bQxPsaLUDd1ajNW2fJ-A1qims3-5ctvARwL-dp3loUU7O8MKPRKpZ2xrB7B25XKJbtl2J3F9ZssQXb-wV68OMle81cXqkL2G_BRr86vt-Gbw7aoqTM3rIDM527Ekl2TiF_ahLF5mQ4qUCT_UQXvowlsmHBsmVhxsOUkREuY5esKNPXWUqJOmk5AuMenF7L578P68WksDvAqD5YJDwXba5lYrjJE6WzMMiiUJtMaw_26k8dp1X3cxrCMYrLvs08Rq7EjisePG9Ip2XLj38R7db8iiutn8V_ZNSDZ80y6isdwpjCThZEI8hHjaKOBw9K9jb_gmAYvTuNK-EK4xsC6gW-ulIMz1xPcI24G5_QgxeNiFz18HtOeP5PEfc-9N3Fw6vf8ylsoBbGn49Ojh_BJqfSEBeh2oX1-fnCPkbANk-eOM1g8P26VfE3NIFWFQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKgEXHi0PQ0HLQ6gXh2S9Xnu5hYoqQkrFgUjlgtmX1YhkG7UOKPx6dnYdi1BASJwSaSeJ7czsfPP6FuCFyhmnNuNpLYY6ZQo5IK226TBjTHr3ksnQRDM55uMpe3eSn7TnnOIsTOSH6BJuaBlhv0YDX5o67vNtdZ--OlWLvtc5Ia7CDs89GO_BzvT4_ehjqHHyPBVtyDVAzlGPVTbcQj9_dtsjXYKZl7slr6_cUq6_yfl8G9EGl3R0Cz5vbiZ2onzprxrV199_4Xn8j7u9DTdbuEpGUb_uwBXrdmFv5HyovliTlyQ0kIbM_C5cm7R1-j34FDCsV4mL1-RQLpswC0nOMbePbFCkQQ-Jk5jkq4_VY9KQzBwxaycXM03Q28YkJXGxT51o7MjR8ayLuzA9evvhcJy2JzmkmjEsNWuramaHnBaSD42RdZFpNvAvUpWSGw9TuMxlVtS5ymXBbV5aMyioZdx4Byqze9BzZ84-AIKDwJmidTaggilJZa24MEVuykJII0QCB5t_s9ItzTmetjGvIkEzrfxjrMJjTOBZJ7qM3B6_E9rfqETVmvdFRbkP0wTulgk87Za9YWK1RTp7tkKZDIPRshwmcD9qUPcrHvX6ME74lWJLtzoBJP3eXnGz00D-LTzA9leYwPNOC_928QdBqf4sUY3fTMKbh__0hY_gBsX5j5CG2odec76yjz0qa9ST1vJ-AEOeONA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statelets%3A+Capturing+recurrent+transient+variations+in+dynamic+functional+network+connectivity&rft.jtitle=Human+brain+mapping&rft.au=Rahaman%2C+Md+Abdur&rft.au=Damaraju%2C+Eswar&rft.au=Saha%2C+Debbrata+K&rft.au=Plis%2C+Sergey+M&rft.date=2022-06-01&rft.eissn=1097-0193&rft.volume=43&rft.issue=8&rft.spage=2503&rft_id=info:doi/10.1002%2Fhbm.25799&rft_id=info%3Apmid%2F35274791&rft.externalDocID=35274791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon