Statelets: Capturing recurrent transient variations in dynamic functional network connectivity
Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of...
Saved in:
| Published in | Human brain mapping Vol. 43; no. 8; pp. 2503 - 2518 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1065-9471 1097-0193 1097-0193 |
| DOI | 10.1002/hbm.25799 |
Cover
| Abstract | Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short‐lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state‐space time series summarization framework called “statelets” to address these shortcomings. It models functional connectivity dynamics at fine‐grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time‐course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross‐modal and multimodal applications to study healthy and disordered brains.
We proposed a novel method for analyzing dynamic functional connectivity via extracting high‐frequency texture from the connectivity space. The analysis of those motifs enables measuring the characteristics of brain circuitry and network organization. The experiments don't he summary motifs facilitate the observation of distinguishing connectivity signatures and the interplay among the hubs to process information |
|---|---|
| AbstractList | Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short‐lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state‐space time series summarization framework called “statelets” to address these shortcomings. It models functional connectivity dynamics at fine‐grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time‐course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross‐modal and multimodal applications to study healthy and disordered brains.
We proposed a novel method for analyzing dynamic functional connectivity via extracting high‐frequency texture from the connectivity space. The analysis of those motifs enables measuring the characteristics of brain circuitry and network organization. The experiments don't he summary motifs facilitate the observation of distinguishing connectivity signatures and the interplay among the hubs to process information Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short‐lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state‐space time series summarization framework called “statelets” to address these shortcomings. It models functional connectivity dynamics at fine‐grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time‐course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross‐modal and multimodal applications to study healthy and disordered brains. Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short‐lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state‐space time series summarization framework called “statelets” to address these shortcomings. It models functional connectivity dynamics at fine‐grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time‐course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross‐modal and multimodal applications to study healthy and disordered brains. We proposed a novel method for analyzing dynamic functional connectivity via extracting high‐frequency texture from the connectivity space. The analysis of those motifs enables measuring the characteristics of brain circuitry and network organization. The experiments don't he summary motifs facilitate the observation of distinguishing connectivity signatures and the interplay among the hubs to process information Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short-lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state-space time series summarization framework called "statelets" to address these shortcomings. It models functional connectivity dynamics at fine-grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time-course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross-modal and multimodal applications to study healthy and disordered brains.Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short-lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state-space time series summarization framework called "statelets" to address these shortcomings. It models functional connectivity dynamics at fine-grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time-course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross-modal and multimodal applications to study healthy and disordered brains. |
| Author | Rahaman, Md Abdur Saha, Debbrata K. Plis, Sergey M. Damaraju, Eswar Calhoun, Vince D. |
| AuthorAffiliation | 1 Georgia Institute of Technology Atlanta Georgia USA 2 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University Atlanta Georgia USA |
| AuthorAffiliation_xml | – name: 2 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University Atlanta Georgia USA – name: 1 Georgia Institute of Technology Atlanta Georgia USA |
| Author_xml | – sequence: 1 givenname: Md Abdur orcidid: 0000-0002-4241-2439 surname: Rahaman fullname: Rahaman, Md Abdur email: mrahaman8@gatech.edu organization: Georgia State University, Georgia Institute of Technology, Emory University – sequence: 2 givenname: Eswar surname: Damaraju fullname: Damaraju, Eswar organization: Georgia State University, Georgia Institute of Technology, Emory University – sequence: 3 givenname: Debbrata K. orcidid: 0000-0003-0754-7570 surname: Saha fullname: Saha, Debbrata K. organization: Georgia State University, Georgia Institute of Technology, Emory University – sequence: 4 givenname: Sergey M. orcidid: 0000-0003-0040-0365 surname: Plis fullname: Plis, Sergey M. organization: Georgia State University, Georgia Institute of Technology, Emory University – sequence: 5 givenname: Vince D. orcidid: 0000-0001-9058-0747 surname: Calhoun fullname: Calhoun, Vince D. organization: Georgia State University, Georgia Institute of Technology, Emory University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35274791$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1v1DAQhi1URD_gwB9AkbgAUlo7ie2EAxKsgCIVcQCuWBNn0rok9mI7u8q_x-kuXxVwmtHMM69m3jkmB9ZZJOQho6eM0uLsqh1PCy6b5g45YrSROWVNebDkgudNJdkhOQ7hmlLGOGX3yGHJC1nJhh2RLx8jRBwwhufZCtZx8sZeZh715D3amEUPNpgl24A3EI2zITM262YLo9FZP1m9FGHILMat818z7azFVNyYON8nd3sYAj7YxxPy-c3rT6vz_OLD23erlxe5rqqyySuNbV8hE4UEwboOelnqiqYAbQ2ik3UhgEMpe95ykAJ5jR2VBVaiY0UN5Ql5ttOd7BrmLQyDWnszgp8Vo2oxSSWT1I1JCX6xg9dTO2Kn03Uefg04MOrPjjVX6tJtVEO5TFpJ4MlewLtvE4aoRhM0DgNYdFNQhShryURds4Q-voVeu8knuxaKS9FQSctEPfp9o5-r_PhTAs52gPYuBI-90ibefCMtaIa_Hvn01sT_DNmrb82A879Bdf7q_W7iOy52xJw |
| CitedBy_id | crossref_primary_10_1002_hbm_26483 crossref_primary_10_1177_09592989241313110 |
| Cites_doi | 10.1080/10485250701379848 10.1016/j.neuroimage.2010.08.063 10.1089/brain.2020.0896 10.1038/mp.2008.28 10.1192/bjp.156.1.17 10.1002/hbm.1048 10.1089/brain.2020.0768 10.1002/hbm.24807 10.1006/nimg.2001.0869 10.1212/WNL.0000000000001476 10.1016/j.neuroimage.2013.12.063 10.1007/978-3-642-04898-2_324 10.1109/ISBI.2019.8759146 10.1371/journal.pone.0030468 10.1371/journal.pone.0072351 10.1111/j.2517-6161.1991.tb01857.x 10.1016/j.neuron.2015.09.027 10.3389/fnsys.2011.00002 10.1016/j.neuroimage.2017.02.066 10.1016/j.nicl.2014.07.003 10.1016/j.neuroimage.2007.11.001 10.1097/01.wnr.0000198434.06518.b8 10.1016/j.neuroimage.2016.11.006 10.1016/j.neuroimage.2020.116989 10.1073/pnas.1815321116 10.3389/fnhum.2014.00897 10.1016/j.schres.2007.11.039 10.1016/j.neuroimage.2015.09.003 10.3115/1067737.1067775 10.1093/cercor/bhs352 10.1016/j.neuroimage.2008.10.057 10.1002/hbm.24504 10.2307/2332226 10.1016/S0893-6080(00)00026-5 10.1007/s10334-010-0197-8 10.1523/JNEUROSCI.0333-10.2010 10.1007/978-3-540-28651-6_77 10.1002/hbm.23430 10.1162/netn_a_00182 10.1023/A:1026543900054 10.1137/07069938X 10.1007/BF00532240 10.1016/j.neuron.2011.09.006 10.3389/fpsyt.2018.00339 10.1097/00001199-200603000-00004 10.1016/j.nicl.2018.03.017 10.2174/156802612805289890 10.1002/widm.1119 10.1007/978-3-642-21551-3_19 10.1177/0963721410377601 10.1016/j.biopsych.2005.10.005 10.1016/j.fss.2008.01.025 10.1001/archpsyc.1979.01780120039005 10.1007/978-1-4899-3324-9 10.1038/nn.3423 10.1038/nrn2575 10.24963/ijcai.2017/372 10.1371/journal.pone.0149849 10.1002/widm.1199 10.1002/hbm.21170 10.1109/TBME.2019.2908815 10.1038/nn.4502 10.1001/jamapsychiatry.2019.0257 10.1038/s41593-020-00719-y 10.1016/j.neuroimage.2017.03.026 10.1016/j.neuroimage.2016.04.051 10.1007/s12021-017-9338-9 10.1016/0169-7439(87)80084-9 10.1137/1118101 10.1073/pnas.2005531117 10.1093/biostatistics/kxm045 10.1016/j.neucom.2013.11.045 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/hbm.25799 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Chemoreception Abstracts ProQuest Central (New) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Rahaman et al |
| EISSN | 1097-0193 |
| EndPage | 2518 |
| ExternalDocumentID | 10.1002/hbm.25799 PMC9057100 35274791 10_1002_hbm_25799 HBM25799 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Institute of Health, USA (NIH) funderid: R01EB020407; R01MH094524; R01MH118695 – fundername: National Institute of Health, USA (NIH) grantid: R01MH094524 – fundername: National Institute of Health, USA (NIH) grantid: R01MH118695 – fundername: National Institute of Health, USA (NIH) grantid: R01EB020407 – fundername: ; grantid: R01EB020407; R01MH094524; R01MH118695 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ AAFWJ AAMMB AANHP AAYXX ABEML ABJNI ACBWZ ACRPL ACSCC ACYXJ ADNMO AEFGJ AFPKN AGQPQ AGXDD AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN BFHJK CITATION EJD FEDTE GAKWD HF~ HVGLF LW6 M6M PHGZM PHGZT PUEGO RIWAO RJQFR SAMSI WXSBR CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4439-4cebf4e1627a61ddaf73c40af7ab8a6d7826a5a37f5b5a76e58ed072e46d128a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Sun Oct 26 03:25:41 EDT 2025 Tue Sep 30 16:42:38 EDT 2025 Fri Sep 05 09:27:10 EDT 2025 Tue Oct 07 06:03:04 EDT 2025 Wed Feb 19 02:25:38 EST 2025 Thu Apr 24 23:07:25 EDT 2025 Wed Oct 01 01:55:49 EDT 2025 Wed Jan 22 16:25:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | time series motifs summarization earthmover distance resting-state MRI kernel density estimator schizophrenia dynamic functional network connectivity |
| Language | English |
| License | Attribution-NonCommercial 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4439-4cebf4e1627a61ddaf73c40af7ab8a6d7826a5a37f5b5a76e58ed072e46d128a3 |
| Notes | Funding information National Institute of Health, USA (NIH), Grant/Award Numbers: R01EB020407, R01MH094524, R01MH118695 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information National Institute of Health, USA (NIH), Grant/Award Numbers: R01EB020407, R01MH094524, R01MH118695 |
| ORCID | 0000-0001-9058-0747 0000-0003-0754-7570 0000-0002-4241-2439 0000-0003-0040-0365 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25799 |
| PMID | 35274791 |
| PQID | 2657690703 |
| PQPubID | 996345 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1002_hbm_25799 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9057100 proquest_miscellaneous_2638716881 proquest_journals_2657690703 pubmed_primary_35274791 crossref_citationtrail_10_1002_hbm_25799 crossref_primary_10_1002_hbm_25799 wiley_primary_10_1002_hbm_25799_HBM25799 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 1, 2022 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 1, 2022 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2009; 45 2017; 7 1987; 2 1979; 36 2010; 19 2015; 147 1991; 53 2008; 39 2008; 9 2014; 24 2011; 54 2017; 152 2020; 12 2020; 10 2013; 8 2008; 100 2012; 12 1974; 18 2010; 23 2009; 14 2018; 9 2020; 5 2014; 5 2014; 4 2009; 10 2013; 16 2001 2015; 84 2006; 21 2000; 13 2017; 38 2019; 67 2015; 88 2011; 72 2019; 116 2017; 160 2008; 159 2014; 8 2001; 14 2010; 30 2020; 218 2007; 19 2017; 20 2014; 90 2012 2020; 41 2011 2019; 76 2006; 17 2006; 59 2016; 124 2008 2011; 32 2004 1993 2003 2002 2011; 5 1995; 3 2016; 11 2018; 19 2019; 40 2017; 15 2019b 2019a 1986; 26 2019 2016; 134 2000; 40 1985; 70 2020; 117 2017 2020; 23 2013 1990; 156 2008; 40 2012; 7 1938; 30 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 Saha D. K. (e_1_2_12_62_1) 2019 Andoni A. (e_1_2_12_10_1) 2008 e_1_2_12_43_1 e_1_2_12_64_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_81_1 Varoquaux G. (e_1_2_12_78_1) 2010; 23 Sheather S. J. (e_1_2_12_66_1) 1991; 53 Turlach B. A. (e_1_2_12_76_1) 1993 e_1_2_12_28_1 Friston K. J. (e_1_2_12_29_1) 1995; 3 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_77_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_75_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_71_1 e_1_2_12_3_1 Maaten L.v.d. (e_1_2_12_47_1) 2008; 9 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_27_1 Levina E. (e_1_2_12_39_1) 2001 Du Y. (e_1_2_12_22_1) 2019 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_9_1 |
| References_xml | – volume: 100 start-page: 120 issue: 1–3 year: 2008 end-page: 132 article-title: Altered resting‐state functional connectivity and anatomical connectivity of hippocampus in schizophrenia publication-title: Schizophrenia Research – volume: 30 start-page: 81 issue: 1/2 year: 1938 end-page: 93 article-title: A new measure of rank correlation publication-title: Biometrika – volume: 14 start-page: 1017 issue: 11 year: 2009 end-page: 1023 article-title: Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia publication-title: Molecular Psychiatry – volume: 116 start-page: 660 issue: 2 year: 2019 end-page: 669 article-title: Modular reconfiguration of an auditory control brain network supports adaptive listening behavior publication-title: Proceedings of the National Academy of Sciences – volume: 15 start-page: 343 issue: 4 year: 2017 end-page: 364 article-title: Multi‐modal neuroimaging in schizophrenia: Description and dissemination publication-title: Neuroinformatics – volume: 24 start-page: 663 issue: 3 year: 2014 end-page: 676 article-title: Tracking whole‐brain connectivity dynamics in the resting state publication-title: Cerebral Cortex – year: 2001 – volume: 40 start-page: 99 issue: 2 year: 2000 end-page: 121 article-title: The earth mover's distance as a metric for image retrieval publication-title: International Journal of Computer Vision – volume: 19 start-page: 165 issue: 4–5 year: 2007 end-page: 187 article-title: A general and fast convergent bandwidth selection method of kernel estimator publication-title: Journal of Nonparametric Statistics – year: 2019b article-title: dSNE: A visualization approach for use with decentralized data publication-title: BioRxiv – volume: 3 start-page: 89 issue: 2 year: 1995 end-page: 97 article-title: Schizophrenia: A disconnection syndrome publication-title: Clinical Neuroscience – volume: 9 start-page: 339 year: 2018 article-title: Aberrant dynamic functional network connectivity and graph properties in major depressive disorder publication-title: Frontiers in Psychiatry – year: 2019a – volume: 18 start-page: 784 issue: 4 year: 1974 end-page: 786 article-title: Calculation of the Wasserstein distance between probability distributions on the line publication-title: Theory of Probability and its Applications – start-page: 713 year: 2011 end-page: 715 – start-page: 549 year: 2012 end-page: 569 – volume: 156 start-page: 17 issue: 1 year: 1990 end-page: 26 article-title: Heterogeneity of schizophrenia: Conceptual models and analytic strategies publication-title: British Journal of Psychiatry – volume: 9 start-page: 2579 issue: 11 year: 2008 end-page: 2605 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – volume: 8 issue: 8 year: 2013 article-title: Intra‐ and inter‐frequency brain network structure in health and schizophrenia publication-title: PLoS One – volume: 32 start-page: 2075 issue: 12 year: 2011 end-page: 2095 article-title: Comparison of multi‐subject ICA methods for analysis of fMRI data publication-title: Human Brain Mapping – volume: 23 start-page: 1644 issue: 12 year: 2020 end-page: 1654 article-title: Edge‐centric functional network representations of human cerebral cortex reveal overlapping system‐level architecture publication-title: Nature Neuroscience – volume: 19 start-page: 226 issue: 4 year: 2010 end-page: 231 article-title: Structural and functional brain abnormalities in schizophrenia publication-title: Current Directions in Psychological Science – volume: 76 start-page: 739 issue: 7 year: 2019 end-page: 748 article-title: Brain heterogeneity in schizophrenia and its association with polygenic risk publication-title: JAMA Psychiatry – start-page: pp. 2672 year: 2017 end-page: 2678 – volume: 40 start-page: 1955 issue: 6 year: 2019 end-page: 1968 article-title: Dynamic functional network connectivity in Huntington's disease and its associations with motor and cognitive measures publication-title: Human Brain Mapping – volume: 14 start-page: 709 issue: 3 year: 2001 end-page: 722 article-title: Motion correction algorithms may create spurious brain activations in the absence of subject motion publication-title: NeuroImage – volume: 67 start-page: 110 issue: 1 year: 2019 end-page: 121 article-title: N‐BiC: A method for multi‐component and symptom biclustering of structural MRI data: Application to schizophrenia publication-title: IEEE Transactions on Biomedical Engineering – volume: 26 year: 1986 – volume: 5 start-page: 298 year: 2014 end-page: 308 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage: Clinical – volume: 160 start-page: 73 year: 2017 end-page: 83 article-title: Multi‐scale brain networks publication-title: NeuroImage – volume: 88 start-page: 207 issue: 1 year: 2015 end-page: 219 article-title: Brain networks and cognitive architectures publication-title: Neuron – year: 2008 – year: 2004 – volume: 11 issue: 3 year: 2016 article-title: Higher dimensional meta‐state analysis reveals reduced resting fMRI connectivity dynamism in schizophrenia patients publication-title: PLoS One – volume: 4 start-page: 152 issue: 2 year: 2014 end-page: 159 article-title: Time series motif discovery: Dimensions and applications publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 45 start-page: S163 issue: 1 year: 2009 end-page: S172 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage – volume: 72 start-page: 665 issue: 4 year: 2011 end-page: 678 article-title: Functional network organization of the human brain publication-title: Neuron – volume: 8 start-page: 897 year: 2014 article-title: Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects publication-title: Frontiers in Human Neuroscience – year: 1993 – volume: 23 start-page: 2334 year: 2010 end-page: 2342 article-title: Brain covariance selection: Better individual functional connectivity models using population prior publication-title: Advances in Neural Information Processing Systems – volume: 14 start-page: 140 issue: 3 year: 2001 end-page: 151 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Human Brain Mapping – volume: 21 start-page: 107 issue: 2 year: 2006 end-page: 118 article-title: Functional reintegration of prefrontal neural networks for enhancing recovery after brain injury publication-title: The Journal of Head Trauma Rehabilitation – volume: 12 start-page: 61 issue: 1 year: 2020 end-page: 73 article-title: A novel method for tri‐clustering dynamic functional network connectivity (dFNC) identifies significant schizophrenia effects across multiple states in distinct subgroups of individuals publication-title: Brain Connectivity – volume: 7 issue: 1 year: 2012 article-title: Functional brain network modularity captures inter‐and intra‐individual variation in working memory capacity publication-title: PLoS One – volume: 2 start-page: 37 issue: 1–3 year: 1987 end-page: 52 article-title: Principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 16 start-page: 832 issue: 7 year: 2013 end-page: 837 article-title: Opportunities and limitations of intrinsic functional connectivity MRI publication-title: Nature Neuroscience – volume: 5 start-page: 2 year: 2011 article-title: A baseline for the multivariate comparison of resting‐state networks publication-title: Frontiers in Systems Neuroscience – volume: 10 start-page: 186 issue: 3 year: 2009 end-page: 198 article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience – volume: 70 start-page: 117 issue: 1 year: 1985 end-page: 129 article-title: The Wasserstein distance and approximation theorems publication-title: Probability Theory and Related Fields – volume: 152 start-page: 497 year: 2017 end-page: 508 article-title: Dynamic reorganization of intrinsic functional networks in the mouse brain publication-title: NeuroImage – volume: 5 start-page: 405 year: 2020 end-page: 433 article-title: Dynamic expression of brain functional systems disclosed by fine‐scale analysis of edge time series publication-title: Network Neuroscience – volume: 36 start-page: 1309 issue: 12 year: 1979 end-page: 1311 article-title: Schizophrenia: Evidence of a subgroup with reversed cerebral asymmetry publication-title: Archives of General Psychiatry – volume: 134 start-page: 645 year: 2016 end-page: 657 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting‐state fMRI brain connectivity publication-title: NeuroImage – year: 2003 – volume: 40 start-page: 1 issue: 1 year: 2008 end-page: 20 article-title: The ∞‐Wasserstein distance: Local solutions and existence of optimal transport maps publication-title: SIAM Journal on Mathematical Analysis – volume: 218 year: 2020 article-title: Nonlinear ICA of fMRI reveals primitive temporal structures linked to rest, task, and behavioral traits publication-title: NeuroImage – volume: 17 start-page: 209 issue: 2 year: 2006 end-page: 213 article-title: Widespread functional disconnectivity in schizophrenia with resting‐state functional magnetic resonance imaging publication-title: Neuroreport – volume: 13 start-page: 411 issue: 4–5 year: 2000 end-page: 430 article-title: Independent component analysis: Algorithms and applications publication-title: Neural Networks – volume: 10 start-page: 504 issue: 9 year: 2020 end-page: 519 article-title: Dynamic resting‐state connectivity differences in eyes open versus eyes closed conditions publication-title: Brain Connectivity – volume: 38 start-page: 957 issue: 2 year: 2017 end-page: 973 article-title: Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic–clonic seizure publication-title: Human Brain Mapping – volume: 41 start-page: 362 issue: 2 year: 2020 end-page: 372 article-title: Temporal stability of functional brain modules associated with human intelligence publication-title: Human Brain Mapping – volume: 124 start-page: 1074 year: 2016 end-page: 1079 article-title: The function biomedical informatics research network data repository publication-title: NeuroImage – volume: 159 start-page: 1485 issue: 12 year: 2008 end-page: 1499 article-title: Linguistic summarization of time series using a fuzzy quantifier driven aggregation publication-title: Fuzzy Sets and Systems – year: 2019 article-title: NeuroMark: An adaptive independent component analysis framework for estimating reproducible and comparable fMRI biomarkers among brain disorders publication-title: MedRxiv – volume: 19 start-page: 30 year: 2018 end-page: 37 article-title: Dynamic functional network connectivity discriminates mild traumatic brain injury through machine learning publication-title: NeuroImage: Clinical – volume: 152 start-page: 94 year: 2017 end-page: 107 article-title: Individual differences and time‐varying features of modular brain architecture publication-title: NeuroImage – volume: 84 start-page: 1568 issue: 15 year: 2015 end-page: 1574 article-title: Functional brain network modularity predicts response to cognitive training after brain injury publication-title: Neurology – volume: 117 start-page: 28393 issue: 45 year: 2020 end-page: 28401 article-title: High‐amplitude cofluctuations in cortical activity drive functional connectivity publication-title: Proceedings of the National Academy of Sciences – year: 2002 – volume: 20 start-page: 353 issue: 3 year: 2017 end-page: 364 article-title: Network neuroscience publication-title: Nature Neuroscience – volume: 54 start-page: 875 issue: 2 year: 2011 end-page: 891 article-title: Network modelling methods for FMRI publication-title: NeuroImage – volume: 9 start-page: 432 issue: 3 year: 2008 end-page: 441 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics – volume: 90 start-page: 196 year: 2014 end-page: 206 article-title: Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis publication-title: NeuroImage – volume: 7 issue: 2 year: 2017 article-title: Survey on time series motif discovery publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 147 start-page: 71 year: 2015 end-page: 82 article-title: Parametric nonlinear dimensionality reduction using kernel t‐SNE publication-title: Neurocomputing – volume: 53 start-page: 683 issue: 3 year: 1991 end-page: 690 article-title: A reliable data‐based bandwidth selection method for kernel density estimation publication-title: Journal of the Royal Statistical Society: Series B: Methodological – volume: 39 start-page: 1666 issue: 4 year: 2008 end-page: 1681 article-title: A method for functional network connectivity among spatially independent resting‐state components in schizophrenia publication-title: NeuroImage – volume: 12 start-page: 2415 issue: 21 year: 2012 end-page: 2425 article-title: Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging publication-title: Current Topics in Medicinal Chemistry – volume: 59 start-page: 929 issue: 10 year: 2006 end-page: 939 article-title: Synaptic plasticity and dysconnection in schizophrenia publication-title: Biological Psychiatry – volume: 30 start-page: 9477 issue: 28 year: 2010 end-page: 9487 article-title: Functional connectivity and brain networks in schizophrenia publication-title: Journal of Neuroscience – year: 2013 – volume: 23 start-page: 351 issue: 5 year: 2010 end-page: 366 article-title: A method for evaluating dynamic functional network connectivity and task‐modulation: Application to schizophrenia publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine – ident: e_1_2_12_3_1 doi: 10.1080/10485250701379848 – ident: e_1_2_12_69_1 doi: 10.1016/j.neuroimage.2010.08.063 – ident: e_1_2_12_55_1 doi: 10.1089/brain.2020.0896 – ident: e_1_2_12_64_1 doi: 10.1038/mp.2008.28 – ident: e_1_2_12_75_1 doi: 10.1192/bjp.156.1.17 – volume-title: CORE and Institut de Statistique year: 1993 ident: e_1_2_12_76_1 – ident: e_1_2_12_17_1 doi: 10.1002/hbm.1048 – ident: e_1_2_12_2_1 doi: 10.1089/brain.2020.0768 – ident: e_1_2_12_32_1 doi: 10.1002/hbm.24807 – ident: e_1_2_12_27_1 doi: 10.1006/nimg.2001.0869 – ident: e_1_2_12_11_1 doi: 10.1212/WNL.0000000000001476 – start-page: 19008631 year: 2019 ident: e_1_2_12_22_1 article-title: NeuroMark: An adaptive independent component analysis framework for estimating reproducible and comparable fMRI biomarkers among brain disorders publication-title: MedRxiv – ident: e_1_2_12_46_1 doi: 10.1016/j.neuroimage.2013.12.063 – ident: e_1_2_12_53_1 doi: 10.1007/978-3-642-04898-2_324 – ident: e_1_2_12_61_1 doi: 10.1109/ISBI.2019.8759146 – ident: e_1_2_12_18_1 – ident: e_1_2_12_73_1 doi: 10.1371/journal.pone.0030468 – volume: 23 start-page: 2334 year: 2010 ident: e_1_2_12_78_1 article-title: Brain covariance selection: Better individual functional connectivity models using population prior publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_12_67_1 doi: 10.1371/journal.pone.0072351 – volume: 53 start-page: 683 issue: 3 year: 1991 ident: e_1_2_12_66_1 article-title: A reliable data‐based bandwidth selection method for kernel density estimation publication-title: Journal of the Royal Statistical Society: Series B: Methodological doi: 10.1111/j.2517-6161.1991.tb01857.x – ident: e_1_2_12_51_1 doi: 10.1016/j.neuron.2015.09.027 – ident: e_1_2_12_7_1 doi: 10.3389/fnsys.2011.00002 – ident: e_1_2_12_41_1 doi: 10.1016/j.neuroimage.2017.02.066 – ident: e_1_2_12_21_1 doi: 10.1016/j.nicl.2014.07.003 – ident: e_1_2_12_34_1 doi: 10.1016/j.neuroimage.2007.11.001 – ident: e_1_2_12_40_1 doi: 10.1097/01.wnr.0000198434.06518.b8 – ident: e_1_2_12_13_1 doi: 10.1016/j.neuroimage.2016.11.006 – ident: e_1_2_12_49_1 doi: 10.1016/j.neuroimage.2020.116989 – ident: e_1_2_12_6_1 doi: 10.1073/pnas.1815321116 – ident: e_1_2_12_56_1 doi: 10.3389/fnhum.2014.00897 – ident: e_1_2_12_83_1 doi: 10.1016/j.schres.2007.11.039 – ident: e_1_2_12_42_1 – ident: e_1_2_12_37_1 doi: 10.1016/j.neuroimage.2015.09.003 – ident: e_1_2_12_71_1 doi: 10.3115/1067737.1067775 – ident: e_1_2_12_8_1 doi: 10.1093/cercor/bhs352 – ident: e_1_2_12_16_1 doi: 10.1016/j.neuroimage.2008.10.057 – ident: e_1_2_12_25_1 doi: 10.1002/hbm.24504 – start-page: 826974 year: 2019 ident: e_1_2_12_62_1 article-title: dSNE: A visualization approach for use with decentralized data publication-title: BioRxiv – ident: e_1_2_12_38_1 doi: 10.2307/2332226 – ident: e_1_2_12_33_1 doi: 10.1016/S0893-6080(00)00026-5 – ident: e_1_2_12_63_1 doi: 10.1007/s10334-010-0197-8 – ident: e_1_2_12_45_1 doi: 10.1523/JNEUROSCI.0333-10.2010 – ident: e_1_2_12_4_1 doi: 10.1007/978-3-540-28651-6_77 – ident: e_1_2_12_43_1 doi: 10.1002/hbm.23430 – ident: e_1_2_12_70_1 doi: 10.1162/netn_a_00182 – ident: e_1_2_12_58_1 doi: 10.1023/A:1026543900054 – ident: e_1_2_12_19_1 doi: 10.1137/07069938X – ident: e_1_2_12_59_1 doi: 10.1007/BF00532240 – volume-title: The earth mover's distance is the mallows distance: Some insights from statistics year: 2001 ident: e_1_2_12_39_1 – ident: e_1_2_12_52_1 doi: 10.1016/j.neuron.2011.09.006 – volume: 3 start-page: 89 issue: 2 year: 1995 ident: e_1_2_12_29_1 article-title: Schizophrenia: A disconnection syndrome publication-title: Clinical Neuroscience – ident: e_1_2_12_82_1 doi: 10.3389/fpsyt.2018.00339 – ident: e_1_2_12_20_1 doi: 10.1097/00001199-200603000-00004 – ident: e_1_2_12_79_1 doi: 10.1016/j.nicl.2018.03.017 – ident: e_1_2_12_81_1 doi: 10.2174/156802612805289890 – ident: e_1_2_12_50_1 doi: 10.1002/widm.1119 – ident: e_1_2_12_65_1 doi: 10.1007/978-3-642-21551-3_19 – ident: e_1_2_12_36_1 doi: 10.1177/0963721410377601 – ident: e_1_2_12_72_1 doi: 10.1016/j.biopsych.2005.10.005 – ident: e_1_2_12_35_1 doi: 10.1016/j.fss.2008.01.025 – ident: e_1_2_12_44_1 doi: 10.1001/archpsyc.1979.01780120039005 – ident: e_1_2_12_68_1 doi: 10.1007/978-1-4899-3324-9 – ident: e_1_2_12_14_1 doi: 10.1038/nn.3423 – ident: e_1_2_12_15_1 doi: 10.1038/nrn2575 – ident: e_1_2_12_60_1 doi: 10.24963/ijcai.2017/372 – ident: e_1_2_12_48_1 doi: 10.1371/journal.pone.0149849 – ident: e_1_2_12_74_1 doi: 10.1002/widm.1199 – volume-title: Earth mover distance over high‐dimensional spaces year: 2008 ident: e_1_2_12_10_1 – ident: e_1_2_12_23_1 doi: 10.1002/hbm.21170 – ident: e_1_2_12_54_1 doi: 10.1109/TBME.2019.2908815 – ident: e_1_2_12_12_1 doi: 10.1038/nn.4502 – ident: e_1_2_12_9_1 doi: 10.1001/jamapsychiatry.2019.0257 – ident: e_1_2_12_26_1 doi: 10.1038/s41593-020-00719-y – ident: e_1_2_12_31_1 doi: 10.1016/j.neuroimage.2017.03.026 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: e_1_2_12_47_1 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – ident: e_1_2_12_57_1 doi: 10.1016/j.neuroimage.2016.04.051 – ident: e_1_2_12_5_1 doi: 10.1007/s12021-017-9338-9 – ident: e_1_2_12_80_1 doi: 10.1016/0169-7439(87)80084-9 – ident: e_1_2_12_77_1 doi: 10.1137/1118101 – ident: e_1_2_12_24_1 doi: 10.1073/pnas.2005531117 – ident: e_1_2_12_28_1 doi: 10.1093/biostatistics/kxm045 – ident: e_1_2_12_30_1 doi: 10.1016/j.neucom.2013.11.045 |
| SSID | ssj0011501 |
| Score | 2.4197721 |
| Snippet | Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2503 |
| SubjectTerms | Brain Brain - diagnostic imaging Brain architecture Brain Mapping - methods Cluster Analysis Clustering Consistency Density dynamic functional network connectivity Dynamical systems earthmover distance Heterogeneity Humans Investigations kernel density estimator Magnetic Resonance Imaging - methods Mental disorders Modularity Neural networks Phenotypes resting‐state MRI Schizophrenia Schizophrenia - diagnostic imaging Sensorimotor system Time series time series motifs summarization Trends |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swED-6FLZ9KVu7h7tuaA9Gv7iNJVm2BmO0pSUMEsZYoZ9mJEumhdTJ2mSj__3u5McWuvVTAjqI4zvpfrrH7wDe2VQq7oWKK52UsbTEAelLHydCSoPuRZhQRDOeqNGp_HyWnq3BpOuFobLK7kwMB7WblRQj3-cKkbEmA_00_xHT1CjKrnYjNEw7WsF9DBRj92CdEzPWANYPjydfvvZ5BYQ_4QqGjjfWeC53XENDvn9uL_fQfgMJ7F8e6hbsvF09-WBZz83NLzOdriLc4KJOHsFGiy3ZQWMMj2HN15uwdVDjvfryhr1nodozhNE34f64TapvwfcAOFF_1x_YkZkvQuMiu6JAPFE3sQW5M2qbZD_xYt1E-NhFzVwzzJ6Ra2wiiqxuispZSeUzZTOY4gmcnhx_OxrF7diFuJSS8sKlt5X0ieKZUYlzpspEKYf4YWxulENMoUxqRFalNjWZ8mnu3TDjXiqH3s6IpzCoZ7V_Doy6doXllRhyLa3hprJKuyx1eaaN0zqC3e5VF2XLSU6jMaZFw6bMC9RKEbQSwZtedN4QcfxLaKfTV9Huxevij-VE8Lpfxl1EqRFT-9mSZATdHPM8ieBZo97-VxCi4p1L40q2ovhegBi6V1fqi_PA1K0RDeMTRvC2N5G7Hn43GM__JYrR4Th82b77f76Ah5y6NEKwaAcGi6ulf4nYaWFftRviN6RSGrc priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXBC2PlILMQ6iXtBvbcWI4lYpqhbSIA5V6IrJjR620dVfdXar-e2bsbNCqgDglkidKlPF4vhnPfAZ4Z0upuBcq73TR5tISB6RvfV4IKQ26F2FiEc3kqxqfyC-n5ekGfFz1wiR-iCHhRpYR12sycGPnB79JQ8_sxT7ON63vwN0CcQxNby6_DVsIiHRitIU-Nte4BK9ohUb8YHh03RndQpi3CyXvL8PM3Fyb6XQdzEZvdPwIHvYwkh0mvT-GDR-2YPswYAh9ccPes1jYGTPmW3Bv0u-fb8OPiC1RVfMP7MjMFrFHkV1Rzp1YmtiCPBd1SLKfGEOnZB47D8ylc-sZecGUPGQh1Y-zlipl2nQGxRM4Of78_Wic9ycs5K2UtAXcettJXyheGVU4Z7pKtHKEF2NroxzCB2VKI6qutKWplC9r70YV91I5dGxGPIXNcBn8c2DUoCss78SIa2kNN51V2lWlqyttnNYZ7K1-ddP29ON0Csa0ScTJvEGtNFErGbwZRGeJc-NPQrsrfTW92c0brjB80rSKZfB6GEaDoV0QE_zlkmQEBYl1XWTwLKl3eAuiUQyvNI5Ua4ofBIiMe30knJ9FUm6NwBe_MIO3wxT518fvxcnzd4lm_GkSb3b-X_QFPODUnBFzRLuwubha-pcImRb2VTSNXzoNFEk priority: 102 providerName: Wiley-Blackwell |
| Title | Statelets: Capturing recurrent transient variations in dynamic functional network connectivity |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25799 https://www.ncbi.nlm.nih.gov/pubmed/35274791 https://www.proquest.com/docview/2657690703 https://www.proquest.com/docview/2638716881 https://pubmed.ncbi.nlm.nih.gov/PMC9057100 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25799 |
| UnpaywallVersion | publishedVersion |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 7X7 dateStart: 20210801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5irQS8DNgYC4zKXIT2ktI4jhPz1k2bKqRW1USl8kKwE0eraLNqS0Hl1-NjpxFlgJB4SSv5pM3l2Oc7t88Ar1XEONUh9wsRZD5TyAGpM-0HIWPSmJdQ2iKa4YgPJuz9NJrW-5xiL4zjh2gCbjgz7HqNE3yZF26dr7P79O2lWnSNzgmxA20eGTDegvZkNO5_tDlOHvmidrl6yDlqsMqGW-jnc7ct0i2Yebta8t6qXMr1NzmfbyNaa5LOH8Dnzc24SpQv3VWlutn3X3ge_-NuH8JuDVdJ3-nXI7ijyz3Y75fGVV-syRtiC0htZH4P7g7rPP0-fLIY1qjEzTtyKpeV7YUk1xjbRzYoUqGFxE5M8tX46i5oSGYlydelXMwygtbWBSlJ6erUSYYVOZnb6-IxTM7PPpwO_HonBz9jDFPNmVYF0wGnseRBnssiDjPWMx9SJZLnBqZwGckwLiIVyZjrKNF5L6aa8dwYUBkeQKu8KvUhEGwEDhUtwh4VTEkqC8VFHkd5EguZC-HB8eZtpllNc467bcxTR9BMU_MYU_sYPXjZiC4dt8fvhI42KpHW0_smpdy4aQJXSw9eNMNmYmK2RZb6aoUyITqjSRJ48MRpUPMvBvUaN06YkXhLtxoBJP3eHilnl5b8WxiAba7Qg1eNFv7t4o-tUv1ZIh2cDO2Xp__0g8_gPsX-DxuGOoJWdb3Szw0qq1QHdigbm2M8jTvQPjkbjS86NsKBxwvaqWfmD6D-PgY |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ8gJOKLUfDjFHX9DC8nvd29va4JMYCQIrQxBhKePPdu90KTdltpK-k_59_m7N6HNihvPLXJTtprZ2bn-zcAb7KYC2qYCAsZ5SHPHAakyU0YMc4VmhemfBNNtyc6p_zzWXy2BL_qWRjXVlnfif6i1qPc5ci3qEDPWDoB_Tj-EbqtUa66Wq_QUNVqBb3tIcaqwY4jM7_EEG6yffgJ-f2W0oP9k71OWG0ZCHPOXRk0N1nBTSRookSktSoSlvMWvqisrYRGEypUrFhSxFmsEmHittGthBouNF7uiuHn3oIVzrjE4G9ld7_35WtTx0B3y4d8aOhDiXagxjZq0a3zbPge9cWDzv5lEa-4uVe7NVdndqzml2owWPSovUk8uAd3K1-W7JTCdx-WjF2D9R2LcfxwTt4R313q0_ZrcLtbFfHX4Zt3cFFeJh_InhpP_aAkuXCJfwcVRabOfLoxTfITA_kyo0j6lui5VcN-TpwpLjOYxJZN7CR37Tp5uQjjAZzeCAMewrIdWfMYiJsSZhktWItKnimqikxIncS6nUilpQxgs_6r07zCQHerOAZpid5MU-RK6rkSwKuGdFwCf_yLaKPmV1rp_iT9I6kBvGyOUWtdKUZZM5o5GuYi1XY7CuBRyd7mW9AlxhhP4kmywPiGwCGCL57Y_rlHBpfofeMTBvC6EZHrHn7TC8__KdLObte_eXL973wBq52T7nF6fNg7egp3qJsQ8YmqDVieXszMM_TbptnzSjkIfL9pffwNk-5Yew |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIpVeELRADQWWp3oxSXbXay8SQqUlSimpOFApJ8zaXquREic0CVX-Gr-OmfUDokJvPcXSjhzbM7Pzzew8AF4mgVTcCuXnupP6MqEekDa1fkdIadC8COOSaPonqncqPw2CwRr8qmthKK2y3hPdRp1NUoqRt7hCZKxJQFt5lRbx5bD7fvrDpwlSdNJaj9MoReTYLi_QfZu9OzpEXr_ivPvx60HPryYM-KmUdASa2iSXtqN4aFQny0weilS28cckkVEZmk9lAiPCPEgCEyobRDZrh9xKleHGbgTe9wbcDIXQlE4YDhpnj4CWc_bQxPsaLUDd1ajNW2fJ-A1qims3-5ctvARwL-dp3loUU7O8MKPRKpZ2xrB7B25XKJbtl2J3F9ZssQXb-wV68OMle81cXqkL2G_BRr86vt-Gbw7aoqTM3rIDM527Ekl2TiF_ahLF5mQ4qUCT_UQXvowlsmHBsmVhxsOUkREuY5esKNPXWUqJOmk5AuMenF7L578P68WksDvAqD5YJDwXba5lYrjJE6WzMMiiUJtMaw_26k8dp1X3cxrCMYrLvs08Rq7EjisePG9Ip2XLj38R7db8iiutn8V_ZNSDZ80y6isdwpjCThZEI8hHjaKOBw9K9jb_gmAYvTuNK-EK4xsC6gW-ulIMz1xPcI24G5_QgxeNiFz18HtOeP5PEfc-9N3Fw6vf8ylsoBbGn49Ojh_BJqfSEBeh2oX1-fnCPkbANk-eOM1g8P26VfE3NIFWFQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKgEXHi0PQ0HLQ6gXh2S9Xnu5hYoqQkrFgUjlgtmX1YhkG7UOKPx6dnYdi1BASJwSaSeJ7czsfPP6FuCFyhmnNuNpLYY6ZQo5IK226TBjTHr3ksnQRDM55uMpe3eSn7TnnOIsTOSH6BJuaBlhv0YDX5o67vNtdZ--OlWLvtc5Ia7CDs89GO_BzvT4_ehjqHHyPBVtyDVAzlGPVTbcQj9_dtsjXYKZl7slr6_cUq6_yfl8G9EGl3R0Cz5vbiZ2onzprxrV199_4Xn8j7u9DTdbuEpGUb_uwBXrdmFv5HyovliTlyQ0kIbM_C5cm7R1-j34FDCsV4mL1-RQLpswC0nOMbePbFCkQQ-Jk5jkq4_VY9KQzBwxaycXM03Q28YkJXGxT51o7MjR8ayLuzA9evvhcJy2JzmkmjEsNWuramaHnBaSD42RdZFpNvAvUpWSGw9TuMxlVtS5ymXBbV5aMyioZdx4Byqze9BzZ84-AIKDwJmidTaggilJZa24MEVuykJII0QCB5t_s9ItzTmetjGvIkEzrfxjrMJjTOBZJ7qM3B6_E9rfqETVmvdFRbkP0wTulgk87Za9YWK1RTp7tkKZDIPRshwmcD9qUPcrHvX6ME74lWJLtzoBJP3eXnGz00D-LTzA9leYwPNOC_928QdBqf4sUY3fTMKbh__0hY_gBsX5j5CG2odec76yjz0qa9ST1vJ-AEOeONA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statelets%3A+Capturing+recurrent+transient+variations+in+dynamic+functional+network+connectivity&rft.jtitle=Human+brain+mapping&rft.au=Rahaman%2C+Md+Abdur&rft.au=Damaraju%2C+Eswar&rft.au=Saha%2C+Debbrata+K&rft.au=Plis%2C+Sergey+M&rft.date=2022-06-01&rft.eissn=1097-0193&rft.volume=43&rft.issue=8&rft.spage=2503&rft_id=info:doi/10.1002%2Fhbm.25799&rft_id=info%3Apmid%2F35274791&rft.externalDocID=35274791 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |