Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad‐spectrum resistance against insects, pathogens and abiotic stresses

Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both p...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 12; no. 4; pp. 503 - 515
Main Authors Chen, Peng‐Jen, Senthilkumar, Rajendran, Jane, Wann‐Neng, He, Yong, Tian, Zhihong, Yeh, Kai‐Wun
Format Journal Article
LanguageEnglish
Published England Blackwell Pub 01.05.2014
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1467-7644
1467-7652
1467-7652
DOI10.1111/pbi.12157

Cover

Abstract Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid‐expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.
AbstractList Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.
Summary Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid‐expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.
Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.
Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin , taro cystatin and chitinase from Paecilomyces javanicus . Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin , cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid‐expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.
Author Senthilkumar, Rajendran
Yeh, Kai‐Wun
He, Yong
Chen, Peng‐Jen
Jane, Wann‐Neng
Tian, Zhihong
Author_xml – sequence: 1
  fullname: Chen, Peng‐Jen
– sequence: 2
  fullname: Senthilkumar, Rajendran
– sequence: 3
  fullname: Jane, Wann‐Neng
– sequence: 4
  fullname: He, Yong
– sequence: 5
  fullname: Tian, Zhihong
– sequence: 6
  fullname: Yeh, Kai‐Wun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24479648$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1TAQhiNURC-w4AXAEhuQOK3tOE6yhIpLpQqQaNfRxJmc4yqxg8cRdMcj8GA8BU-C09N2UQlUbzzSfPPPdT_bcd5hlj0V_FCkdzS19lBIUZQPsj2hdLkqdSF3bm2ldrN9ogvOpdCFfpTtSqXKWqtqL_t9FsDRNABFP1rDPlnjowUHrEUXNzBe2cnvIjH8MQUksm7NxnmIdhqQddijM8jW6DARzvhu8U_BRwRCZt3Gtjb6QAxcx8zGRusWR2eXtJesDR66Pz9_0YQmhnlkKYWlCIsorME6ikmEkpNeswnixqdUWzFobSrWMIpLWUiPs4c9DIRPrv-D7Pz9u7Pjj6vTzx9Ojt-croxSeZoIxwpy6ETb1QIMVCWm4fWyBeh0YbTsKizy3nSiLkQLbcmN0oBCydZIbjA_yF5udVOX32ak2IyWDA5pSuhnakSR10rVuazvgaZd5LqoinugotJS6npBX9xBL_wcXOq5ybkudVlqvVDPrqm5HbFrpmBHCJfNzfYT8GoLmOCJAva3iODNcllNuqzm6rISe3SHNTZCtN7FAHb4X8R3O-Dlv6WbL29PbiKebyN68A2sg6Xm_KvkQnHOtS4rmf8FR-_vHw
CitedBy_id crossref_primary_10_1007_s11033_022_08161_y
crossref_primary_10_1016_j_biochi_2019_06_006
crossref_primary_10_1007_s13562_024_00938_5
crossref_primary_10_1016_j_sajb_2015_09_017
crossref_primary_10_1016_j_jplph_2019_153055
crossref_primary_10_3390_ijms221910264
crossref_primary_10_1016_j_scienta_2023_112083
crossref_primary_10_3389_fpls_2018_01861
crossref_primary_10_1007_s11816_017_0467_2
crossref_primary_10_7717_peerj_10617
crossref_primary_10_1007_s13593_015_0310_5
crossref_primary_10_1016_j_tplants_2015_07_004
crossref_primary_10_3389_fpls_2018_00920
crossref_primary_10_1007_s00425_016_2551_1
crossref_primary_10_1016_j_indcrop_2023_117776
crossref_primary_10_3389_fphys_2016_00388
crossref_primary_10_3389_fpls_2015_00586
crossref_primary_10_1111_tpj_13171
crossref_primary_10_1016_j_aquaculture_2015_10_016
crossref_primary_10_1002_arch_21427
crossref_primary_10_1007_s00299_024_03233_8
crossref_primary_10_1016_j_ejbt_2021_03_005
crossref_primary_10_1515_hsz_2022_0320
crossref_primary_10_1093_femsre_fuab002
crossref_primary_10_1007_s00438_015_1111_x
crossref_primary_10_1007_s00299_021_02800_7
crossref_primary_10_1111_jen_12677
crossref_primary_10_1111_pbi_12505
crossref_primary_10_1007_s00299_020_02646_5
crossref_primary_10_1016_j_phytochem_2018_02_009
crossref_primary_10_1111_1744_7917_12641
crossref_primary_10_1093_bfgp_elz038
crossref_primary_10_1186_s13059_016_1004_2
crossref_primary_10_1016_j_plaphy_2016_12_019
crossref_primary_10_1002_ps_6659
crossref_primary_10_1007_s12010_022_03930_8
crossref_primary_10_1093_jxb_erw360
crossref_primary_10_1111_febs_16288
crossref_primary_10_1186_s13007_017_0179_1
crossref_primary_10_3390_ijms17101747
crossref_primary_10_1111_pbi_13400
crossref_primary_10_3389_fpls_2019_01178
crossref_primary_10_3389_fpls_2022_987443
crossref_primary_10_1186_s42397_023_00140_3
crossref_primary_10_1111_pce_12428
crossref_primary_10_3390_genes11010001
crossref_primary_10_3389_fpls_2023_1129454
crossref_primary_10_1016_j_ecoenv_2020_110435
crossref_primary_10_1016_j_plantsci_2023_111893
crossref_primary_10_3389_fpls_2018_00986
crossref_primary_10_7717_peerj_11762
crossref_primary_10_1016_j_scienta_2024_113848
crossref_primary_10_3390_ijms21144854
crossref_primary_10_1186_s12896_019_0507_9
crossref_primary_10_3389_fgeed_2023_1242510
crossref_primary_10_1016_j_pestbp_2019_08_002
crossref_primary_10_1016_j_jplph_2015_08_004
crossref_primary_10_1007_s00299_020_02636_7
crossref_primary_10_1007_s12298_017_0456_5
crossref_primary_10_3389_fpls_2023_1223504
crossref_primary_10_1270_jsbbs_16126
crossref_primary_10_1007_s00299_016_2071_2
crossref_primary_10_1371_journal_pgen_1006397
crossref_primary_10_1016_j_exppara_2015_01_011
crossref_primary_10_1038_s41598_020_78237_x
crossref_primary_10_1016_j_plantsci_2016_02_016
crossref_primary_10_3389_fpls_2022_1060926
crossref_primary_10_1111_pbi_13781
crossref_primary_10_1111_pbi_14596
crossref_primary_10_2174_1389202924666221201140603
crossref_primary_10_2144_btn_2019_0171
crossref_primary_10_1016_j_gene_2017_09_028
Cites_doi 10.1073/pnas.1216898110
10.1007/s00425-004-1462-8
10.1104/pp.106.081497
10.1111/j.1467-7652.2010.00538.x
10.1007/s11248-006-0018-z
10.1104/pp.010233
10.1104/pp.104.045187
10.1016/j.tibtech.2010.01.006
10.1111/j.1467-7652.2009.00479.x
10.1111/j.1467-7652.2010.00582.x
10.1073/pnas.87.21.8526
10.1007/s11103-011-9766-0
10.1186/1477-5956-8-64
10.1111/j.1467-7652.2004.00089.x
10.1038/nbt0901-870
10.1016/j.plantsci.2006.04.003
10.1021/jf8013266
10.1038/nprot.2007.522
10.1016/j.ymben.2011.11.005
10.1093/pcp/pcs040
10.1104/pp.110.170969
10.1023/A:1023089017906
10.1007/s00299-007-0374-z
10.1016/j.tplants.2006.04.001
10.1007/BF02670468
10.1007/s00299-008-0549-2
10.1111/j.1742-4658.2008.06631.x
10.1016/j.copbio.2006.12.001
10.1007/s00122-012-1930-7
10.1111/j.1365-313X.2006.02960.x
10.1016/j.addr.2012.10.005
10.1007/s00425-005-0188-6
10.1007/s11248-005-3997-2
10.1371/journal.pone.0054708
10.1007/s00284-006-0405-y
10.1104/pp.109.140533
10.1007/s00299-009-0815-y
10.1104/pp.105.063040
10.1104/pp.109.152017
10.1111/j.1467-7652.2011.00663.x
10.1186/1471-2229-12-198
10.1101/pdb.prot5177
10.1104/pp.106.086140
10.1093/jxb/eri172
10.1111/j.1365-313X.2012.05065.x
10.1007/s002990050304
10.1007/s11248-008-9164-9
10.4161/gmcr.2.2.16125
10.1093/jxb/erj123
10.1007/s11248-010-9402-9
10.1016/j.plaphy.2012.06.015
10.1007/s12374-009-9023-0
10.1046/j.1365-313X.1999.00508.x
10.1023/A:1005764702510
10.1007/s11103-008-9357-x
10.1093/jxb/erp214
10.1111/j.1365-3059.2010.02314.x
10.1007/s11103-004-0192-4
10.1111/j.1399-3054.1962.tb08052.x
10.1139/X09-015
10.1093/jxb/ers325
10.1111/pbi.12008
10.1111/j.1467-7652.2009.00466.x
10.1104/pp.107.106690
ContentType Journal Article
Copyright 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd
2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd
– notice: 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
RC3
7S9
L.6
DOI 10.1111/pbi.12157
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Engineering Research Database

MEDLINE - Academic
AGRICOLA
Genetics Abstracts
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1467-7652
EndPage 515
ExternalDocumentID 24479648
10_1111_pbi_12157
PBI12157
US201400066782
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Council of Agriculture
  funderid: 100AS‐1.1.1‐AD‐Z15
– fundername: National Science Council
  funderid: NSC‐101‐2324‐B‐002‐023‐CC2
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O9-
OIG
OK1
P2P
P2X
P4D
PHGZT
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WQJ
XG1
~IA
~KM
~WT
AAMMB
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
ESTFP
PHGZM
PQGLB
PUEGO
WIN
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
RC3
7S9
L.6
ID FETCH-LOGICAL-c4437-70e8a3ad1bd91aca87e215f2baad65c62d8e53fcd1951bab70c46ae142bc20ce3
IEDL.DBID DR2
ISSN 1467-7644
1467-7652
IngestDate Fri Sep 05 17:28:09 EDT 2025
Sat Sep 27 16:58:38 EDT 2025
Mon Sep 08 10:07:42 EDT 2025
Sun Sep 07 03:51:19 EDT 2025
Mon Jul 21 05:45:31 EDT 2025
Wed Oct 01 03:22:11 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Sun Sep 21 06:16:11 EDT 2025
Thu Apr 03 09:45:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords plastid transformation
chitinase
stress tolerance
gene stacking
CeCPI
sporamin
Language English
License 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4437-70e8a3ad1bd91aca87e215f2baad65c62d8e53fcd1951bab70c46ae142bc20ce3
Notes http://dx.doi.org/10.1111/pbi.12157
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24479648
PQID 3067677665
PQPubID 1096352
PageCount 13
ParticipantIDs proquest_miscellaneous_1539449329
proquest_miscellaneous_1524436585
proquest_miscellaneous_1518622695
proquest_journals_3067677665
pubmed_primary_24479648
crossref_primary_10_1111_pbi_12157
crossref_citationtrail_10_1111_pbi_12157
wiley_primary_10_1111_pbi_12157_PBI12157
fao_agris_US201400066782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2014
Publisher Blackwell Pub
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Pub
– name: John Wiley & Sons, Inc
References 2007; 145
2013a; 11
1997a; 33
2013; 64
2005; 138
2009; 151
2008; 147
2004; 2
2008; 3
2006; 171
2012; 58
2012; 125
2012; 14
2013; 8
2003; 51
2012; 12
2012; 10
2012; 53
2011; 155
2012; 72
2009; 2009
1990; 87
2009; 52
2004; 136
2005; 221
1999; 19
2010; 28
2001; 19
2011; 20
2010; 152
2013; 110
2008; 275
2007; 26
2010; 8
2007; 18
2011; 2
2006; 57
2006; 11
2009; 60
2006; 15
2010a; 59
2008; 17
2008; 56
2011; 76
1962; 15
2007; 55
1997b; 16
2011; 9
2001; 127
2010b; 29
2004; 55
2008a; 27
2013b; 65
1993; 11
2006; 142
2008b; 68
2005; 56
2006; 224
2009; 39
2007; 49
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 27
  start-page: 1113
  year: 2008a
  end-page: 1124
  article-title: Plastid‐expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco
  publication-title: Plant Cell Rep.
– volume: 53
  start-page: 930
  year: 2012
  end-page: 942
  article-title: Characterization of a novel Y K‐type dehydrin VrDhn1 from
  publication-title: Plant Cell Physiol.
– volume: 55
  start-page: 8
  year: 2007
  end-page: 13
  article-title: Molecular cloning, characterization, and expression of a chitinase from the entomopathogenic fungus
  publication-title: Curr. Microbiol.
– volume: 11
  start-page: 113
  year: 1993
  end-page: 116
  article-title: A simple and efficient method for isolating RNA from pine trees
  publication-title: Plant Mol. Biol. Rep.
– volume: 29
  start-page: 231
  year: 2010b
  end-page: 238
  article-title: Heterologous expression of taro cystatin protects transgenic tomato against infection by means of interfering sex determination and suppressing gall formation
  publication-title: Plant Cell Rep.
– volume: 221
  start-page: 493
  year: 2005
  end-page: 501
  article-title: Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro ( cv. Kaosiung no. 1)
  publication-title: Planta
– volume: 15
  start-page: 205
  year: 2006
  end-page: 217
  article-title: Efficient and stable transformation of L. cv. Cisco (lettuce) plastids
  publication-title: Transgenic Res.
– volume: 19
  start-page: 209
  year: 1999
  end-page: 216
  article-title: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker
  publication-title: Plant J.
– volume: 64
  start-page: 731
  year: 2013
  end-page: 742
  article-title: Chloroplast transformation for engineering of photosynthesis
  publication-title: J. Exp. Bot.
– volume: 51
  start-page: 839
  year: 2003
  end-page: 849
  article-title: Sporamin‐mediated resistance to beet cyst nematodes ( Schm.) is dependent on trypsin inhibitory activity in sugar beet ( L.) hairy roots
  publication-title: Plant Mol. Biol.
– volume: 151
  start-page: 59
  year: 2009
  end-page: 66
  article-title: Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene‐to‐provitamin A conversion
  publication-title: Plant Physiol.
– volume: 76
  start-page: 323
  year: 2011
  end-page: 333
  article-title: Expression of dengue‐3 premembrane and envelope polyprotein in lettuce chloroplasts
  publication-title: Plant Mol. Biol.
– volume: 142
  start-page: 722
  year: 2006
  end-page: 730
  article-title: Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents
  publication-title: Plant Physiol.
– volume: 16
  start-page: 696
  year: 1997b
  end-page: 699
  article-title: Sweet potato ( ) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against
  publication-title: Plant Cell Rep.
– volume: 9
  start-page: 100
  year: 2011
  end-page: 115
  article-title: Expression and characterization of antimicrobial peptides Retrocyclin‐101 and Protegrin‐1 in chloroplasts to control viral and bacterial infections
  publication-title: Plant Biotechnol. J.
– volume: 87
  start-page: 8526
  year: 1990
  end-page: 8530
  article-title: Stable transformation of plastids in higher plants
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 26
  start-page: 1733
  year: 2007
  end-page: 1744
  article-title: Stable chloroplast transformation in cabbage ( L. var. L.) by particle bombardment
  publication-title: Plant Cell Rep.
– volume: 60
  start-page: 3781
  year: 2009
  end-page: 3796
  article-title: Overexpression of the soybean gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco
  publication-title: J. Exp. Bot.
– volume: 65
  start-page: 782
  year: 2013b
  end-page: 799
  article-title: Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells
  publication-title: Adv. Drug Deliv. Rev.
– volume: 2009
  start-page: pdb.prot5177
  year: 2009
  article-title: Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation
  publication-title: Cold Spring Harb. Protoc.
– volume: 11
  start-page: 302
  year: 2006
  end-page: 308
  article-title: Recent developments and future prospects in insect pest control in transgenic crops
  publication-title: Trends Plant Sci.
– volume: 18
  start-page: 100
  year: 2007
  end-page: 106
  article-title: Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming
  publication-title: Curr. Opin. Biotechnol.
– volume: 8
  start-page: 65
  year: 2010
  end-page: 75
  article-title: Genetically pyramiding protease‐inhibitor genes for dual broad‐spectrum resistance against insect and phytopathogens in transgenic tobacco
  publication-title: Plant Biotechnol. J.
– volume: 11
  start-page: 77
  year: 2013a
  end-page: 86
  article-title: Oral delivery of bioencapsulated exendin‐4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta‐TC6 cells
  publication-title: Plant Biotechnol. J.
– volume: 55
  start-page: 479
  year: 2004
  end-page: 489
  article-title: Generation of fertile transplastomic soybean
  publication-title: Plant Mol. Biol.
– volume: 110
  start-page: E623
  year: 2013
  end-page: E632
  article-title: Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 275
  start-page: 4980
  year: 2008
  end-page: 4989
  article-title: Characterization of inhibitory mechanism and antifungal activity between group‐1 and group‐2 phytocystatins from taro ( )
  publication-title: FEBS J.
– volume: 8
  start-page: e54708
  year: 2013
  article-title: Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio‐encapsulation, stability and functional evaluation
  publication-title: PLoS ONE
– volume: 58
  start-page: 106
  year: 2012
  end-page: 115
  article-title: Molecular characterization of stress resistance‐related chitinase genes of
  publication-title: Plant Physiol. Biochem.
– volume: 3
  start-page: 739
  year: 2008
  end-page: 758
  article-title: A protocol for expression of foreign genes in chloroplasts
  publication-title: Nat. Protoc.
– volume: 125
  start-page: 1517
  year: 2012
  end-page: 1523
  article-title: Spectinomycin resistance mutations in the gene are new plastid markers in
  publication-title: Theor. Appl. Genet.
– volume: 224
  start-page: 740
  year: 2006
  end-page: 749
  article-title: Overexpression of a cacao class I chitinase gene in L. enhances resistance against the pathogen,
  publication-title: Planta
– volume: 56
  start-page: 9404
  year: 2008
  end-page: 9409
  article-title: Trypsin inhibitors in passion fruit ( f. ) leaves: accumulation in response to methyl jasmonate, mechanical wounding, and herbivory
  publication-title: J. Agric. Food Chem.
– volume: 17
  start-page: 769
  year: 2008
  end-page: 782
  article-title: Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance
  publication-title: Transgenic Res.
– volume: 10
  start-page: 313
  year: 2012
  end-page: 327
  article-title: agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, insects, bacterial and viral pathogens
  publication-title: Plant Biotechnol. J.
– volume: 19
  start-page: 870
  year: 2001
  end-page: 875
  article-title: Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit
  publication-title: Nat. Biotechnol.
– volume: 52
  start-page: 244
  year: 2009
  end-page: 250
  article-title: Stable plastid transformation in
  publication-title: J. Plant Biol.
– volume: 155
  start-page: 1501
  year: 2011
  end-page: 1510
  article-title: Plastid biotechnology: food, fuel, and medicine for the 21st century
  publication-title: Plant Physiol.
– volume: 8
  start-page: 223
  year: 2010
  end-page: 242
  article-title: Chloroplast‐derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery
  publication-title: Plant Biotechnol. J.
– volume: 171
  start-page: 367
  year: 2006
  end-page: 374
  article-title: New gene construction strategy in T‐DNA vector to enhance expression level of sweet potato and insect resistance in transgenic
  publication-title: Plant Sci.
– volume: 68
  start-page: 131
  year: 2008b
  end-page: 143
  article-title: Two cysteine proteinase inhibitors from , and , increasing the salt, drought, oxidation and cold tolerance
  publication-title: Plant Mol. Biol.
– volume: 15
  start-page: 473
  year: 1962
  end-page: 497
  article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures
  publication-title: Physiol. Plant.
– volume: 138
  start-page: 1746
  year: 2005
  end-page: 1762
  article-title: Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation
  publication-title: Plant Physiol.
– volume: 28
  start-page: 246
  year: 2010
  end-page: 252
  article-title: Solar‐powered factories for new vaccines and antibiotics
  publication-title: Trends Biotechnol.
– volume: 15
  start-page: 481
  year: 2006
  end-page: 488
  article-title: Expression of the . gene in tobacco chloroplasts confers resistance to potato tuber moth
  publication-title: Transgenic Res.
– volume: 20
  start-page: 137
  year: 2011
  end-page: 151
  article-title: High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5’ and 3’ regulatory sequences
  publication-title: Transgenic Res.
– volume: 136
  start-page: 2843
  year: 2004
  end-page: 2854
  article-title: Plastid‐expressed gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance
  publication-title: Plant Physiol.
– volume: 12
  start-page: 198
  year: 2012
  article-title: Beneficial ‘unintended effects’ of a cereal cystatin in transgenic lines of potato,
  publication-title: BMC Plant Biol.
– volume: 147
  start-page: 391
  year: 2008
  end-page: 401
  article-title: Characterization of cold‐responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity
  publication-title: Plant Physiol.
– volume: 33
  start-page: 565
  year: 1997a
  end-page: 570
  article-title: Functional activity of sporamin from sweet potato ( Lam.): a tuber storage protein with trypsin inhibitory activity
  publication-title: Plant Mol. Biol.
– volume: 9
  start-page: 585
  year: 2011
  end-page: 598
  article-title: Low‐cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C‐peptide
  publication-title: Plant Biotechnol. J.
– volume: 8
  start-page: 64
  year: 2010
  article-title: Proteomic profiling of proteins associated with the rejuvenation of (D. Don) Endl
  publication-title: Proteome sci.
– volume: 2
  start-page: 104
  year: 2011
  end-page: 109
  article-title: Enhancing transgenic pea ( L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase)
  publication-title: GM crops
– volume: 56
  start-page: 1821
  year: 2005
  end-page: 1829
  article-title: The strawberry gene encodes a phytocystatin with antifungal properties
  publication-title: J. Exp. Bot.
– volume: 72
  start-page: 115
  year: 2012
  end-page: 128
  article-title: Identification of ‐elements conferring high levels of gene expression in non‐green plastids
  publication-title: Plant J.
– volume: 127
  start-page: 852
  year: 2001
  end-page: 862
  article-title: Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi
  publication-title: Plant Physiol.
– volume: 39
  start-page: 849
  year: 2009
  end-page: 861
  article-title: Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species
  publication-title: Can. J. For. Res.
– volume: 59
  start-page: 922
  year: 2010a
  end-page: 930
  article-title: Adverse effect of the chitinolytic enzyme PjCHI‐1 in transgenic tomato on egg mass production and embryonic development of
  publication-title: Plant. Pathol.
– volume: 49
  start-page: 276
  year: 2007
  end-page: 288
  article-title: Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome
  publication-title: Plant J.
– volume: 14
  start-page: 19
  year: 2012
  end-page: 28
  article-title: Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts
  publication-title: Metab. Eng.
– volume: 2
  start-page: 449
  year: 2004
  end-page: 458
  article-title: Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips ( ) in greenhouse trials
  publication-title: Plant Biotechnol. J.
– volume: 145
  start-page: 1129
  year: 2007
  end-page: 1143
  article-title: Chloroplast vector systems for biotechnology applications
  publication-title: Plant Physiol.
– volume: 152
  start-page: 2088
  year: 2010
  end-page: 2104
  article-title: The role of heterologous chloroplast sequence elements in transgene integration and expression
  publication-title: Plant Physiol.
– volume: 57
  start-page: 1431
  year: 2006
  end-page: 1443
  article-title: Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco ( L.) leaves
  publication-title: J. Exp. Bot.
– ident: e_1_2_6_39_1
  doi: 10.1073/pnas.1216898110
– ident: e_1_2_6_59_1
  doi: 10.1007/s00425-004-1462-8
– ident: e_1_2_6_46_1
  doi: 10.1104/pp.106.081497
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1467-7652.2010.00538.x
– ident: e_1_2_6_11_1
  doi: 10.1007/s11248-006-0018-z
– ident: e_1_2_6_24_1
  doi: 10.1104/pp.010233
– ident: e_1_2_6_31_1
  doi: 10.1104/pp.104.045187
– ident: e_1_2_6_7_1
  doi: 10.1016/j.tibtech.2010.01.006
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1467-7652.2009.00479.x
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1467-7652.2010.00582.x
– ident: e_1_2_6_53_1
  doi: 10.1073/pnas.87.21.8526
– ident: e_1_2_6_29_1
  doi: 10.1007/s11103-011-9766-0
– ident: e_1_2_6_15_1
  doi: 10.1186/1477-5956-8-64
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1467-7652.2004.00089.x
– ident: e_1_2_6_49_1
  doi: 10.1038/nbt0901-870
– ident: e_1_2_6_16_1
  doi: 10.1016/j.plantsci.2006.04.003
– ident: e_1_2_6_8_1
  doi: 10.1021/jf8013266
– ident: e_1_2_6_56_1
  doi: 10.1038/nprot.2007.522
– ident: e_1_2_6_32_1
  doi: 10.1016/j.ymben.2011.11.005
– ident: e_1_2_6_37_1
  doi: 10.1093/pcp/pcs040
– ident: e_1_2_6_40_1
  doi: 10.1104/pp.110.170969
– ident: e_1_2_6_10_1
  doi: 10.1023/A:1023089017906
– ident: e_1_2_6_38_1
  doi: 10.1007/s00299-007-0374-z
– ident: e_1_2_6_18_1
  doi: 10.1016/j.tplants.2006.04.001
– ident: e_1_2_6_14_1
  doi: 10.1007/BF02670468
– ident: e_1_2_6_62_1
  doi: 10.1007/s00299-008-0549-2
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1742-4658.2008.06631.x
– ident: e_1_2_6_6_1
  doi: 10.1016/j.copbio.2006.12.001
– ident: e_1_2_6_25_1
  doi: 10.1007/s00122-012-1930-7
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365-313X.2006.02960.x
– ident: e_1_2_6_34_1
  doi: 10.1016/j.addr.2012.10.005
– ident: e_1_2_6_42_1
  doi: 10.1007/s00425-005-0188-6
– ident: e_1_2_6_30_1
  doi: 10.1007/s11248-005-3997-2
– ident: e_1_2_6_35_1
  doi: 10.1371/journal.pone.0054708
– ident: e_1_2_6_17_1
  doi: 10.1007/s00284-006-0405-y
– ident: e_1_2_6_4_1
  doi: 10.1104/pp.109.140533
– ident: e_1_2_6_13_1
  doi: 10.1007/s00299-009-0815-y
– ident: e_1_2_6_48_1
  doi: 10.1104/pp.105.063040
– ident: e_1_2_6_50_1
  doi: 10.1104/pp.109.152017
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1467-7652.2011.00663.x
– ident: e_1_2_6_44_1
  doi: 10.1186/1471-2229-12-198
– ident: e_1_2_6_19_1
  doi: 10.1101/pdb.prot5177
– ident: e_1_2_6_21_1
  doi: 10.1104/pp.106.086140
– ident: e_1_2_6_41_1
  doi: 10.1093/jxb/eri172
– ident: e_1_2_6_65_1
  doi: 10.1111/j.1365-313X.2012.05065.x
– ident: e_1_2_6_61_1
  doi: 10.1007/s002990050304
– ident: e_1_2_6_20_1
  doi: 10.1007/s11248-008-9164-9
– ident: e_1_2_6_3_1
  doi: 10.4161/gmcr.2.2.16125
– ident: e_1_2_6_5_1
  doi: 10.1093/jxb/erj123
– ident: e_1_2_6_54_1
  doi: 10.1007/s11248-010-9402-9
– ident: e_1_2_6_2_1
  doi: 10.1016/j.plaphy.2012.06.015
– ident: e_1_2_6_22_1
  doi: 10.1007/s12374-009-9023-0
– ident: e_1_2_6_52_1
  doi: 10.1046/j.1365-313X.1999.00508.x
– ident: e_1_2_6_60_1
  doi: 10.1023/A:1005764702510
– ident: e_1_2_6_63_1
  doi: 10.1007/s11103-008-9357-x
– ident: e_1_2_6_64_1
  doi: 10.1093/jxb/erp214
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1365-3059.2010.02314.x
– ident: e_1_2_6_26_1
  doi: 10.1007/s11103-004-0192-4
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– ident: e_1_2_6_43_1
  doi: 10.1139/X09-015
– ident: e_1_2_6_27_1
  doi: 10.1093/jxb/ers325
– ident: e_1_2_6_33_1
  doi: 10.1111/pbi.12008
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1467-7652.2009.00466.x
– ident: e_1_2_6_55_1
  doi: 10.1104/pp.107.106690
SSID ssj0021656
Score 2.382693
Snippet Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the...
Summary Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking...
SourceID proquest
pubmed
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 503
SubjectTerms Alternaria
Alternaria - drug effects
Alternaria - physiology
Alternaria alternata
Animals
Antigens
Bioassays
Biological Assay
CeCPI
Chitinase
Chitinases
Chitinases - genetics
Chloroplasts
Crosses, Genetic
Cystatins
Disease Resistance
Disease Resistance - drug effects
Disease Resistance - genetics
Disease Resistance - immunology
drug effects
Fatty acids
Gene Expression Regulation, Plant
Gene Expression Regulation, Plant - drug effects
gene stacking
Genes
Genes, Plant
Genetic Vectors
Genetic Vectors - metabolism
genetics
Growth rate
growth retardation
Herbivory
Herbivory - drug effects
immunology
Insecta
Insecta - physiology
Insects
Leafspot
Leaves
Lettuce
Localization
Membrane Lipids
Membrane Lipids - metabolism
Metabolism
microbiology
Nicotiana - genetics
Nicotiana - immunology
Nicotiana - microbiology
Nicotiana - parasitology
Nicotiana benthamiana
Osmotic stress
Oxidative Stress
Oxidative Stress - drug effects
Paecilomyces
Paraquat
Paraquat - pharmacology
parasitology
Pathogens
Pectobacterium
Pectobacterium carotovorum
Pectobacterium carotovorum - drug effects
Pectobacterium carotovorum - physiology
Pectobacterium carotovorum subsp. carotovorum
Peptides
pharmacology
physiology
Plant Diseases
Plant Diseases - genetics
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Leaves
Plant Leaves - drug effects
Plant Leaves - metabolism
Plant Leaves - ultrastructure
Plants
Plants, Genetically Modified
plastid transformation
Plastids
Plastids - drug effects
Plastids - genetics
Plastids - ultrastructure
Potatoes
Protease Inhibitors
Protease Inhibitors - metabolism
Proteinase inhibitors
Proteins
Sodium Chloride
Sodium Chloride - pharmacology
Soft rot
Solanum tuberosum
Spodoptera exigua
Spodoptera litura
sporamin
stress tolerance
Stress, Physiological
Stress, Physiological - drug effects
Stress, Physiological - genetics
Stresses
sweet potatoes
taro
Tobacco
Transformation, Genetic
Transformation, Genetic - drug effects
Transgenes
Trends
Tropical diseases
ultrastructure
Vaccines
Western blotting
Title Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad‐spectrum resistance against insects, pathogens and abiotic stresses
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12157
https://www.ncbi.nlm.nih.gov/pubmed/24479648
https://www.proquest.com/docview/3067677665
https://www.proquest.com/docview/1518622695
https://www.proquest.com/docview/1524436585
https://www.proquest.com/docview/1539449329
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: AVUZU
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1467-7644
  databaseCode: DR2
  dateStart: 20030101
  customDbUrl:
  isFulltext: true
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021656
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access - NZ
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: 24P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbanuDAP3RpqQziwIFUG8dxEnEqiKoggSpgpR6QovFPthE0qTa7UuHEI_BgPAVPwoydRBSVCnGLZMeO7RnPN_HMZ8YeG0ThCkwRgVU2ks6KSAOoKM0L9J8rkRnPzv_mrTqYyddH6dEaezbkwgR-iPGHG2mG369JwUF3vyn5qa49NQJlksdJ6o9o343UUYJYZUJmURZlaPR7ViGK4hnfPGeL1itoL4KZ51GrNzv719nH4YNDtMmn3dVS75qvf3A5_ueIbrBrPRzle0F-brI119xiV_fmi56Sw91mPwL_OaLsJWUwc5Id2haAazRYx3Din7G8WXbcnYXA2mbOh1BFbl1F2wef07bKiTiT7CX3DBFoQ3ndHNe6plt_ODSW08FG3VCBranbL1wvWrA_v333WaGL1QnHLgj2UqMwhxoRLjbSUVzKU05XLLfYVWgMdI0fa3hIiXHdHTbbf_nhxUHU3wERGSkTXLqpyyEBG2tbxGAgzxzOUCVQoKxKjRI2d2lSGRsjVNSgs6mRClwshTZialxyl200beM2GUdgI1NspTLGyNQUYJNMo6kCaYmISkzYk0EaStMTpNM9HZ_LwVHCBSr9Ak3Yo7HqaWAFuajSJopUCbhkXTl7L8iX9THFOXa1PchZ2e8ZXUnOm8oypdIJezgWo7bTEQ40rl11JeIzdEGFKi6tg5AtQWR5aR1KiEbsXkzYvSDn40DwbcpPznE-vLT-fYTl4fNX_uH-v1fdYldoJkLM6DbbQLFxDxDXLfUOWxfycMer8S8g81AX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbacgAOFf_dUsAgDhyItOs4TiJxKYhqC21Via7UmzX-yTYSTarNVoIbj8CD8RQ8CTN2NqJSqbhFsmMnnpnMN87MZ8ZeW0ThCmyZgFMukd6JxACoJCtKjJ8rkdvAzn94pKYz-ek0O11j71a1MJEfYthwI8sI32sycNqQ_svKL0wduBHydXZLKjEmnRbyeAi3iFcm1hblSY5uv-cVojye4dYr3mi9gvY6oHkVtwbHs3ePbfaIke9GEd9na755wO7uzhc9a4Z_yH5FinIEwksqMuYkXrJc4AZ9yhmch2tsb5Yd999i7msz56tsQu58RRbO5_Tl48RtSS6NBxIHdHO8bs5qU9PBPBwax-nfQ91Qg6tp2u_cLFpwv3_8DIWbi8tzjlMQMqVBYQ41glAcpKPUkbecTkFucao4GJgaH9byWLXiu0dstvfx5MM06Y9pSKyUKa7t2BeQgpsYV07AQpF7XNpKoMydyqwSrvBZWlk3QTRnwORjKxX4iRTGirH16WO20bSN32IcsYfMcJTKWiszW4JLc4PeBKQjrigxYm9W4tK25zCnozS-6lUsg5LVQbIj9mroehGJO67rtIUy14Ai6_Tsi6BwM6T9FjjVzkoRdG_Wnab4SuW5UtmIvRya0SDpLws0vr3sNEIojBKFKm_sg6gqRfB3Yx-qWUZ4XY7Yk6iIw4vg3VRCXOB6BM389xvq4_f74WL7_7u-YLenJ4cH-mD_6PNTdodWJaZ47rANVCH_DGHY0jwP1vYHHPgyrA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIiE4lDddKGAQBw6k2s3DScSpPFYtj6oCVuqhkjV-ZBvRJqvNrgSc-An8MH4Fv4QZO4koKhXiFsmv2J7xfJPMfGbssUYULkDnARhhgtiaMFAAIkiyHP3nIky1Y-d_tyd2JvHrg-RghT3rcmE8P0T_wY00w53XpOAzU_ym5DNVOmqEdJVdiAV6V4SI3vfcUSHRyvjUojRI0eq3tEIUxtM3PWWMVguoz8KZp2GrszvjK-ywe2MfbvJpa7lQW_rrH2SO_zmlq2y9xaN82wvQNbZiq-vs8vZ03nJy2BvshydAR5i9oBRmTsJD5wJwhRbrCE7cM5ZXi4bbzz6ytpryLlaRG1vQ-cGndK5yYs4kg8kdRQQaUV5WR6Uq6dofDpXh9GejrKjAlDTsF67mNZif3767tND58oTjEIR7qVOYQokQFztpKDDlKac7lmscyncGqsSX1dznxNjmJpuMX318sRO0l0AEOo4j3LqhzSACM1ImH4GGLLW4QkWIEmVEokVoMptEhTYjxIoKVDrUsQA7ikOlw6G20S22VtWV3WAckU2cYC-F1jpOdA4mShXaKogNMVGFA_akkwapW4Z0uqjjWHaeEm6QdBs0YI_6qjNPC3JWpQ0UKQm4ZY2cfAjJmXVBxRkOtdnJmWwPjUaS9ybSVIhkwB72xaju9A8HKlsvG4kADX3QUOTn1kHMFiG0PLcOZUQjeM8H7LaX834i2JoSlDNcDyetf5-h3H--6x7u_HvVB-zi_suxfLu79-Yuu0SL4uNHN9kaSpC9hxhvoe47Xf4FzWRSCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transplastomic+Nicotiana+benthamiana+plants+expressing+multiple+defence+genes+encoding+protease+inhibitors+and+chitinase+display+broad%E2%80%90spectrum+resistance+against+insects%2C+pathogens+and+abiotic+stresses&rft.jtitle=Plant+biotechnology+journal&rft.au=Chen%2C+Peng%E2%80%90Jen&rft.au=Senthilkumar%2C+Rajendran&rft.au=Jane%2C+Wann%E2%80%90Neng&rft.au=He%2C+Yong&rft.date=2014-05-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=12&rft.issue=4&rft.spage=503&rft.epage=515&rft_id=info:doi/10.1111%2Fpbi.12157&rft.externalDBID=10.1111%252Fpbi.12157&rft.externalDocID=PBI12157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon