Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad‐spectrum resistance against insects, pathogens and abiotic stresses
Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both p...
Saved in:
Published in | Plant biotechnology journal Vol. 12; no. 4; pp. 503 - 515 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Pub
01.05.2014
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1467-7644 1467-7652 1467-7652 |
DOI | 10.1111/pbi.12157 |
Cover
Abstract | Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid‐expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses. |
---|---|
AbstractList | Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses. Summary Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid‐expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses. Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses. Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin , taro cystatin and chitinase from Paecilomyces javanicus . Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin , cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid‐expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses. |
Author | Senthilkumar, Rajendran Yeh, Kai‐Wun He, Yong Chen, Peng‐Jen Jane, Wann‐Neng Tian, Zhihong |
Author_xml | – sequence: 1 fullname: Chen, Peng‐Jen – sequence: 2 fullname: Senthilkumar, Rajendran – sequence: 3 fullname: Jane, Wann‐Neng – sequence: 4 fullname: He, Yong – sequence: 5 fullname: Tian, Zhihong – sequence: 6 fullname: Yeh, Kai‐Wun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24479648$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1TAQhiNURC-w4AXAEhuQOK3tOE6yhIpLpQqQaNfRxJmc4yqxg8cRdMcj8GA8BU-C09N2UQlUbzzSfPPPdT_bcd5hlj0V_FCkdzS19lBIUZQPsj2hdLkqdSF3bm2ldrN9ogvOpdCFfpTtSqXKWqtqL_t9FsDRNABFP1rDPlnjowUHrEUXNzBe2cnvIjH8MQUksm7NxnmIdhqQddijM8jW6DARzvhu8U_BRwRCZt3Gtjb6QAxcx8zGRusWR2eXtJesDR66Pz9_0YQmhnlkKYWlCIsorME6ikmEkpNeswnixqdUWzFobSrWMIpLWUiPs4c9DIRPrv-D7Pz9u7Pjj6vTzx9Ojt-croxSeZoIxwpy6ETb1QIMVCWm4fWyBeh0YbTsKizy3nSiLkQLbcmN0oBCydZIbjA_yF5udVOX32ak2IyWDA5pSuhnakSR10rVuazvgaZd5LqoinugotJS6npBX9xBL_wcXOq5ybkudVlqvVDPrqm5HbFrpmBHCJfNzfYT8GoLmOCJAva3iODNcllNuqzm6rISe3SHNTZCtN7FAHb4X8R3O-Dlv6WbL29PbiKebyN68A2sg6Xm_KvkQnHOtS4rmf8FR-_vHw |
CitedBy_id | crossref_primary_10_1007_s11033_022_08161_y crossref_primary_10_1016_j_biochi_2019_06_006 crossref_primary_10_1007_s13562_024_00938_5 crossref_primary_10_1016_j_sajb_2015_09_017 crossref_primary_10_1016_j_jplph_2019_153055 crossref_primary_10_3390_ijms221910264 crossref_primary_10_1016_j_scienta_2023_112083 crossref_primary_10_3389_fpls_2018_01861 crossref_primary_10_1007_s11816_017_0467_2 crossref_primary_10_7717_peerj_10617 crossref_primary_10_1007_s13593_015_0310_5 crossref_primary_10_1016_j_tplants_2015_07_004 crossref_primary_10_3389_fpls_2018_00920 crossref_primary_10_1007_s00425_016_2551_1 crossref_primary_10_1016_j_indcrop_2023_117776 crossref_primary_10_3389_fphys_2016_00388 crossref_primary_10_3389_fpls_2015_00586 crossref_primary_10_1111_tpj_13171 crossref_primary_10_1016_j_aquaculture_2015_10_016 crossref_primary_10_1002_arch_21427 crossref_primary_10_1007_s00299_024_03233_8 crossref_primary_10_1016_j_ejbt_2021_03_005 crossref_primary_10_1515_hsz_2022_0320 crossref_primary_10_1093_femsre_fuab002 crossref_primary_10_1007_s00438_015_1111_x crossref_primary_10_1007_s00299_021_02800_7 crossref_primary_10_1111_jen_12677 crossref_primary_10_1111_pbi_12505 crossref_primary_10_1007_s00299_020_02646_5 crossref_primary_10_1016_j_phytochem_2018_02_009 crossref_primary_10_1111_1744_7917_12641 crossref_primary_10_1093_bfgp_elz038 crossref_primary_10_1186_s13059_016_1004_2 crossref_primary_10_1016_j_plaphy_2016_12_019 crossref_primary_10_1002_ps_6659 crossref_primary_10_1007_s12010_022_03930_8 crossref_primary_10_1093_jxb_erw360 crossref_primary_10_1111_febs_16288 crossref_primary_10_1186_s13007_017_0179_1 crossref_primary_10_3390_ijms17101747 crossref_primary_10_1111_pbi_13400 crossref_primary_10_3389_fpls_2019_01178 crossref_primary_10_3389_fpls_2022_987443 crossref_primary_10_1186_s42397_023_00140_3 crossref_primary_10_1111_pce_12428 crossref_primary_10_3390_genes11010001 crossref_primary_10_3389_fpls_2023_1129454 crossref_primary_10_1016_j_ecoenv_2020_110435 crossref_primary_10_1016_j_plantsci_2023_111893 crossref_primary_10_3389_fpls_2018_00986 crossref_primary_10_7717_peerj_11762 crossref_primary_10_1016_j_scienta_2024_113848 crossref_primary_10_3390_ijms21144854 crossref_primary_10_1186_s12896_019_0507_9 crossref_primary_10_3389_fgeed_2023_1242510 crossref_primary_10_1016_j_pestbp_2019_08_002 crossref_primary_10_1016_j_jplph_2015_08_004 crossref_primary_10_1007_s00299_020_02636_7 crossref_primary_10_1007_s12298_017_0456_5 crossref_primary_10_3389_fpls_2023_1223504 crossref_primary_10_1270_jsbbs_16126 crossref_primary_10_1007_s00299_016_2071_2 crossref_primary_10_1371_journal_pgen_1006397 crossref_primary_10_1016_j_exppara_2015_01_011 crossref_primary_10_1038_s41598_020_78237_x crossref_primary_10_1016_j_plantsci_2016_02_016 crossref_primary_10_3389_fpls_2022_1060926 crossref_primary_10_1111_pbi_13781 crossref_primary_10_1111_pbi_14596 crossref_primary_10_2174_1389202924666221201140603 crossref_primary_10_2144_btn_2019_0171 crossref_primary_10_1016_j_gene_2017_09_028 |
Cites_doi | 10.1073/pnas.1216898110 10.1007/s00425-004-1462-8 10.1104/pp.106.081497 10.1111/j.1467-7652.2010.00538.x 10.1007/s11248-006-0018-z 10.1104/pp.010233 10.1104/pp.104.045187 10.1016/j.tibtech.2010.01.006 10.1111/j.1467-7652.2009.00479.x 10.1111/j.1467-7652.2010.00582.x 10.1073/pnas.87.21.8526 10.1007/s11103-011-9766-0 10.1186/1477-5956-8-64 10.1111/j.1467-7652.2004.00089.x 10.1038/nbt0901-870 10.1016/j.plantsci.2006.04.003 10.1021/jf8013266 10.1038/nprot.2007.522 10.1016/j.ymben.2011.11.005 10.1093/pcp/pcs040 10.1104/pp.110.170969 10.1023/A:1023089017906 10.1007/s00299-007-0374-z 10.1016/j.tplants.2006.04.001 10.1007/BF02670468 10.1007/s00299-008-0549-2 10.1111/j.1742-4658.2008.06631.x 10.1016/j.copbio.2006.12.001 10.1007/s00122-012-1930-7 10.1111/j.1365-313X.2006.02960.x 10.1016/j.addr.2012.10.005 10.1007/s00425-005-0188-6 10.1007/s11248-005-3997-2 10.1371/journal.pone.0054708 10.1007/s00284-006-0405-y 10.1104/pp.109.140533 10.1007/s00299-009-0815-y 10.1104/pp.105.063040 10.1104/pp.109.152017 10.1111/j.1467-7652.2011.00663.x 10.1186/1471-2229-12-198 10.1101/pdb.prot5177 10.1104/pp.106.086140 10.1093/jxb/eri172 10.1111/j.1365-313X.2012.05065.x 10.1007/s002990050304 10.1007/s11248-008-9164-9 10.4161/gmcr.2.2.16125 10.1093/jxb/erj123 10.1007/s11248-010-9402-9 10.1016/j.plaphy.2012.06.015 10.1007/s12374-009-9023-0 10.1046/j.1365-313X.1999.00508.x 10.1023/A:1005764702510 10.1007/s11103-008-9357-x 10.1093/jxb/erp214 10.1111/j.1365-3059.2010.02314.x 10.1007/s11103-004-0192-4 10.1111/j.1399-3054.1962.tb08052.x 10.1139/X09-015 10.1093/jxb/ers325 10.1111/pbi.12008 10.1111/j.1467-7652.2009.00466.x 10.1104/pp.107.106690 |
ContentType | Journal Article |
Copyright | 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd. 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd – notice: 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 RC3 7S9 L.6 |
DOI | 10.1111/pbi.12157 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic AGRICOLA Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1467-7652 |
EndPage | 515 |
ExternalDocumentID | 24479648 10_1111_pbi_12157 PBI12157 US201400066782 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Council of Agriculture funderid: 100AS‐1.1.1‐AD‐Z15 – fundername: National Science Council funderid: NSC‐101‐2324‐B‐002‐023‐CC2 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O9- OIG OK1 P2P P2X P4D PHGZT PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WQJ XG1 ~IA ~KM ~WT AAMMB AEFGJ AGQPQ AGXDD AIDQK AIDYY ESTFP PHGZM PQGLB PUEGO WIN AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c4437-70e8a3ad1bd91aca87e215f2baad65c62d8e53fcd1951bab70c46ae142bc20ce3 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 1467-7652 |
IngestDate | Fri Sep 05 17:28:09 EDT 2025 Sat Sep 27 16:58:38 EDT 2025 Mon Sep 08 10:07:42 EDT 2025 Sun Sep 07 03:51:19 EDT 2025 Mon Jul 21 05:45:31 EDT 2025 Wed Oct 01 03:22:11 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Sun Sep 21 06:16:11 EDT 2025 Thu Apr 03 09:45:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | plastid transformation chitinase stress tolerance gene stacking CeCPI sporamin |
Language | English |
License | 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4437-70e8a3ad1bd91aca87e215f2baad65c62d8e53fcd1951bab70c46ae142bc20ce3 |
Notes | http://dx.doi.org/10.1111/pbi.12157 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24479648 |
PQID | 3067677665 |
PQPubID | 1096352 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1539449329 proquest_miscellaneous_1524436585 proquest_miscellaneous_1518622695 proquest_journals_3067677665 pubmed_primary_24479648 crossref_primary_10_1111_pbi_12157 crossref_citationtrail_10_1111_pbi_12157 wiley_primary_10_1111_pbi_12157_PBI12157 fao_agris_US201400066782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2014 |
Publisher | Blackwell Pub John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Pub – name: John Wiley & Sons, Inc |
References | 2007; 145 2013a; 11 1997a; 33 2013; 64 2005; 138 2009; 151 2008; 147 2004; 2 2008; 3 2006; 171 2012; 58 2012; 125 2012; 14 2013; 8 2003; 51 2012; 12 2012; 10 2012; 53 2011; 155 2012; 72 2009; 2009 1990; 87 2009; 52 2004; 136 2005; 221 1999; 19 2010; 28 2001; 19 2011; 20 2010; 152 2013; 110 2008; 275 2007; 26 2010; 8 2007; 18 2011; 2 2006; 57 2006; 11 2009; 60 2006; 15 2010a; 59 2008; 17 2008; 56 2011; 76 1962; 15 2007; 55 1997b; 16 2011; 9 2001; 127 2010b; 29 2004; 55 2008a; 27 2013b; 65 1993; 11 2006; 142 2008b; 68 2005; 56 2006; 224 2009; 39 2007; 49 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 27 start-page: 1113 year: 2008a end-page: 1124 article-title: Plastid‐expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco publication-title: Plant Cell Rep. – volume: 53 start-page: 930 year: 2012 end-page: 942 article-title: Characterization of a novel Y K‐type dehydrin VrDhn1 from publication-title: Plant Cell Physiol. – volume: 55 start-page: 8 year: 2007 end-page: 13 article-title: Molecular cloning, characterization, and expression of a chitinase from the entomopathogenic fungus publication-title: Curr. Microbiol. – volume: 11 start-page: 113 year: 1993 end-page: 116 article-title: A simple and efficient method for isolating RNA from pine trees publication-title: Plant Mol. Biol. Rep. – volume: 29 start-page: 231 year: 2010b end-page: 238 article-title: Heterologous expression of taro cystatin protects transgenic tomato against infection by means of interfering sex determination and suppressing gall formation publication-title: Plant Cell Rep. – volume: 221 start-page: 493 year: 2005 end-page: 501 article-title: Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro ( cv. Kaosiung no. 1) publication-title: Planta – volume: 15 start-page: 205 year: 2006 end-page: 217 article-title: Efficient and stable transformation of L. cv. Cisco (lettuce) plastids publication-title: Transgenic Res. – volume: 19 start-page: 209 year: 1999 end-page: 216 article-title: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker publication-title: Plant J. – volume: 64 start-page: 731 year: 2013 end-page: 742 article-title: Chloroplast transformation for engineering of photosynthesis publication-title: J. Exp. Bot. – volume: 51 start-page: 839 year: 2003 end-page: 849 article-title: Sporamin‐mediated resistance to beet cyst nematodes ( Schm.) is dependent on trypsin inhibitory activity in sugar beet ( L.) hairy roots publication-title: Plant Mol. Biol. – volume: 151 start-page: 59 year: 2009 end-page: 66 article-title: Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene‐to‐provitamin A conversion publication-title: Plant Physiol. – volume: 76 start-page: 323 year: 2011 end-page: 333 article-title: Expression of dengue‐3 premembrane and envelope polyprotein in lettuce chloroplasts publication-title: Plant Mol. Biol. – volume: 142 start-page: 722 year: 2006 end-page: 730 article-title: Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents publication-title: Plant Physiol. – volume: 16 start-page: 696 year: 1997b end-page: 699 article-title: Sweet potato ( ) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against publication-title: Plant Cell Rep. – volume: 9 start-page: 100 year: 2011 end-page: 115 article-title: Expression and characterization of antimicrobial peptides Retrocyclin‐101 and Protegrin‐1 in chloroplasts to control viral and bacterial infections publication-title: Plant Biotechnol. J. – volume: 87 start-page: 8526 year: 1990 end-page: 8530 article-title: Stable transformation of plastids in higher plants publication-title: Proc. Natl Acad. Sci. USA – volume: 26 start-page: 1733 year: 2007 end-page: 1744 article-title: Stable chloroplast transformation in cabbage ( L. var. L.) by particle bombardment publication-title: Plant Cell Rep. – volume: 60 start-page: 3781 year: 2009 end-page: 3796 article-title: Overexpression of the soybean gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco publication-title: J. Exp. Bot. – volume: 65 start-page: 782 year: 2013b end-page: 799 article-title: Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells publication-title: Adv. Drug Deliv. Rev. – volume: 2009 start-page: pdb.prot5177 year: 2009 article-title: Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation publication-title: Cold Spring Harb. Protoc. – volume: 11 start-page: 302 year: 2006 end-page: 308 article-title: Recent developments and future prospects in insect pest control in transgenic crops publication-title: Trends Plant Sci. – volume: 18 start-page: 100 year: 2007 end-page: 106 article-title: Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming publication-title: Curr. Opin. Biotechnol. – volume: 8 start-page: 65 year: 2010 end-page: 75 article-title: Genetically pyramiding protease‐inhibitor genes for dual broad‐spectrum resistance against insect and phytopathogens in transgenic tobacco publication-title: Plant Biotechnol. J. – volume: 11 start-page: 77 year: 2013a end-page: 86 article-title: Oral delivery of bioencapsulated exendin‐4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta‐TC6 cells publication-title: Plant Biotechnol. J. – volume: 55 start-page: 479 year: 2004 end-page: 489 article-title: Generation of fertile transplastomic soybean publication-title: Plant Mol. Biol. – volume: 110 start-page: E623 year: 2013 end-page: E632 article-title: Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons publication-title: Proc. Natl Acad. Sci. USA – volume: 275 start-page: 4980 year: 2008 end-page: 4989 article-title: Characterization of inhibitory mechanism and antifungal activity between group‐1 and group‐2 phytocystatins from taro ( ) publication-title: FEBS J. – volume: 8 start-page: e54708 year: 2013 article-title: Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio‐encapsulation, stability and functional evaluation publication-title: PLoS ONE – volume: 58 start-page: 106 year: 2012 end-page: 115 article-title: Molecular characterization of stress resistance‐related chitinase genes of publication-title: Plant Physiol. Biochem. – volume: 3 start-page: 739 year: 2008 end-page: 758 article-title: A protocol for expression of foreign genes in chloroplasts publication-title: Nat. Protoc. – volume: 125 start-page: 1517 year: 2012 end-page: 1523 article-title: Spectinomycin resistance mutations in the gene are new plastid markers in publication-title: Theor. Appl. Genet. – volume: 224 start-page: 740 year: 2006 end-page: 749 article-title: Overexpression of a cacao class I chitinase gene in L. enhances resistance against the pathogen, publication-title: Planta – volume: 56 start-page: 9404 year: 2008 end-page: 9409 article-title: Trypsin inhibitors in passion fruit ( f. ) leaves: accumulation in response to methyl jasmonate, mechanical wounding, and herbivory publication-title: J. Agric. Food Chem. – volume: 17 start-page: 769 year: 2008 end-page: 782 article-title: Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance publication-title: Transgenic Res. – volume: 10 start-page: 313 year: 2012 end-page: 327 article-title: agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, insects, bacterial and viral pathogens publication-title: Plant Biotechnol. J. – volume: 19 start-page: 870 year: 2001 end-page: 875 article-title: Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit publication-title: Nat. Biotechnol. – volume: 52 start-page: 244 year: 2009 end-page: 250 article-title: Stable plastid transformation in publication-title: J. Plant Biol. – volume: 155 start-page: 1501 year: 2011 end-page: 1510 article-title: Plastid biotechnology: food, fuel, and medicine for the 21st century publication-title: Plant Physiol. – volume: 8 start-page: 223 year: 2010 end-page: 242 article-title: Chloroplast‐derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery publication-title: Plant Biotechnol. J. – volume: 171 start-page: 367 year: 2006 end-page: 374 article-title: New gene construction strategy in T‐DNA vector to enhance expression level of sweet potato and insect resistance in transgenic publication-title: Plant Sci. – volume: 68 start-page: 131 year: 2008b end-page: 143 article-title: Two cysteine proteinase inhibitors from , and , increasing the salt, drought, oxidation and cold tolerance publication-title: Plant Mol. Biol. – volume: 15 start-page: 473 year: 1962 end-page: 497 article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures publication-title: Physiol. Plant. – volume: 138 start-page: 1746 year: 2005 end-page: 1762 article-title: Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation publication-title: Plant Physiol. – volume: 28 start-page: 246 year: 2010 end-page: 252 article-title: Solar‐powered factories for new vaccines and antibiotics publication-title: Trends Biotechnol. – volume: 15 start-page: 481 year: 2006 end-page: 488 article-title: Expression of the . gene in tobacco chloroplasts confers resistance to potato tuber moth publication-title: Transgenic Res. – volume: 20 start-page: 137 year: 2011 end-page: 151 article-title: High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5’ and 3’ regulatory sequences publication-title: Transgenic Res. – volume: 136 start-page: 2843 year: 2004 end-page: 2854 article-title: Plastid‐expressed gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance publication-title: Plant Physiol. – volume: 12 start-page: 198 year: 2012 article-title: Beneficial ‘unintended effects’ of a cereal cystatin in transgenic lines of potato, publication-title: BMC Plant Biol. – volume: 147 start-page: 391 year: 2008 end-page: 401 article-title: Characterization of cold‐responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity publication-title: Plant Physiol. – volume: 33 start-page: 565 year: 1997a end-page: 570 article-title: Functional activity of sporamin from sweet potato ( Lam.): a tuber storage protein with trypsin inhibitory activity publication-title: Plant Mol. Biol. – volume: 9 start-page: 585 year: 2011 end-page: 598 article-title: Low‐cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C‐peptide publication-title: Plant Biotechnol. J. – volume: 8 start-page: 64 year: 2010 article-title: Proteomic profiling of proteins associated with the rejuvenation of (D. Don) Endl publication-title: Proteome sci. – volume: 2 start-page: 104 year: 2011 end-page: 109 article-title: Enhancing transgenic pea ( L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase) publication-title: GM crops – volume: 56 start-page: 1821 year: 2005 end-page: 1829 article-title: The strawberry gene encodes a phytocystatin with antifungal properties publication-title: J. Exp. Bot. – volume: 72 start-page: 115 year: 2012 end-page: 128 article-title: Identification of ‐elements conferring high levels of gene expression in non‐green plastids publication-title: Plant J. – volume: 127 start-page: 852 year: 2001 end-page: 862 article-title: Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi publication-title: Plant Physiol. – volume: 39 start-page: 849 year: 2009 end-page: 861 article-title: Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species publication-title: Can. J. For. Res. – volume: 59 start-page: 922 year: 2010a end-page: 930 article-title: Adverse effect of the chitinolytic enzyme PjCHI‐1 in transgenic tomato on egg mass production and embryonic development of publication-title: Plant. Pathol. – volume: 49 start-page: 276 year: 2007 end-page: 288 article-title: Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome publication-title: Plant J. – volume: 14 start-page: 19 year: 2012 end-page: 28 article-title: Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts publication-title: Metab. Eng. – volume: 2 start-page: 449 year: 2004 end-page: 458 article-title: Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips ( ) in greenhouse trials publication-title: Plant Biotechnol. J. – volume: 145 start-page: 1129 year: 2007 end-page: 1143 article-title: Chloroplast vector systems for biotechnology applications publication-title: Plant Physiol. – volume: 152 start-page: 2088 year: 2010 end-page: 2104 article-title: The role of heterologous chloroplast sequence elements in transgene integration and expression publication-title: Plant Physiol. – volume: 57 start-page: 1431 year: 2006 end-page: 1443 article-title: Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco ( L.) leaves publication-title: J. Exp. Bot. – ident: e_1_2_6_39_1 doi: 10.1073/pnas.1216898110 – ident: e_1_2_6_59_1 doi: 10.1007/s00425-004-1462-8 – ident: e_1_2_6_46_1 doi: 10.1104/pp.106.081497 – ident: e_1_2_6_36_1 doi: 10.1111/j.1467-7652.2010.00538.x – ident: e_1_2_6_11_1 doi: 10.1007/s11248-006-0018-z – ident: e_1_2_6_24_1 doi: 10.1104/pp.010233 – ident: e_1_2_6_31_1 doi: 10.1104/pp.104.045187 – ident: e_1_2_6_7_1 doi: 10.1016/j.tibtech.2010.01.006 – ident: e_1_2_6_23_1 doi: 10.1111/j.1467-7652.2009.00479.x – ident: e_1_2_6_9_1 doi: 10.1111/j.1467-7652.2010.00582.x – ident: e_1_2_6_53_1 doi: 10.1073/pnas.87.21.8526 – ident: e_1_2_6_29_1 doi: 10.1007/s11103-011-9766-0 – ident: e_1_2_6_15_1 doi: 10.1186/1477-5956-8-64 – ident: e_1_2_6_47_1 doi: 10.1111/j.1467-7652.2004.00089.x – ident: e_1_2_6_49_1 doi: 10.1038/nbt0901-870 – ident: e_1_2_6_16_1 doi: 10.1016/j.plantsci.2006.04.003 – ident: e_1_2_6_8_1 doi: 10.1021/jf8013266 – ident: e_1_2_6_56_1 doi: 10.1038/nprot.2007.522 – ident: e_1_2_6_32_1 doi: 10.1016/j.ymben.2011.11.005 – ident: e_1_2_6_37_1 doi: 10.1093/pcp/pcs040 – ident: e_1_2_6_40_1 doi: 10.1104/pp.110.170969 – ident: e_1_2_6_10_1 doi: 10.1023/A:1023089017906 – ident: e_1_2_6_38_1 doi: 10.1007/s00299-007-0374-z – ident: e_1_2_6_18_1 doi: 10.1016/j.tplants.2006.04.001 – ident: e_1_2_6_14_1 doi: 10.1007/BF02670468 – ident: e_1_2_6_62_1 doi: 10.1007/s00299-008-0549-2 – ident: e_1_2_6_57_1 doi: 10.1111/j.1742-4658.2008.06631.x – ident: e_1_2_6_6_1 doi: 10.1016/j.copbio.2006.12.001 – ident: e_1_2_6_25_1 doi: 10.1007/s00122-012-1930-7 – ident: e_1_2_6_58_1 doi: 10.1111/j.1365-313X.2006.02960.x – ident: e_1_2_6_34_1 doi: 10.1016/j.addr.2012.10.005 – ident: e_1_2_6_42_1 doi: 10.1007/s00425-005-0188-6 – ident: e_1_2_6_30_1 doi: 10.1007/s11248-005-3997-2 – ident: e_1_2_6_35_1 doi: 10.1371/journal.pone.0054708 – ident: e_1_2_6_17_1 doi: 10.1007/s00284-006-0405-y – ident: e_1_2_6_4_1 doi: 10.1104/pp.109.140533 – ident: e_1_2_6_13_1 doi: 10.1007/s00299-009-0815-y – ident: e_1_2_6_48_1 doi: 10.1104/pp.105.063040 – ident: e_1_2_6_50_1 doi: 10.1104/pp.109.152017 – ident: e_1_2_6_28_1 doi: 10.1111/j.1467-7652.2011.00663.x – ident: e_1_2_6_44_1 doi: 10.1186/1471-2229-12-198 – ident: e_1_2_6_19_1 doi: 10.1101/pdb.prot5177 – ident: e_1_2_6_21_1 doi: 10.1104/pp.106.086140 – ident: e_1_2_6_41_1 doi: 10.1093/jxb/eri172 – ident: e_1_2_6_65_1 doi: 10.1111/j.1365-313X.2012.05065.x – ident: e_1_2_6_61_1 doi: 10.1007/s002990050304 – ident: e_1_2_6_20_1 doi: 10.1007/s11248-008-9164-9 – ident: e_1_2_6_3_1 doi: 10.4161/gmcr.2.2.16125 – ident: e_1_2_6_5_1 doi: 10.1093/jxb/erj123 – ident: e_1_2_6_54_1 doi: 10.1007/s11248-010-9402-9 – ident: e_1_2_6_2_1 doi: 10.1016/j.plaphy.2012.06.015 – ident: e_1_2_6_22_1 doi: 10.1007/s12374-009-9023-0 – ident: e_1_2_6_52_1 doi: 10.1046/j.1365-313X.1999.00508.x – ident: e_1_2_6_60_1 doi: 10.1023/A:1005764702510 – ident: e_1_2_6_63_1 doi: 10.1007/s11103-008-9357-x – ident: e_1_2_6_64_1 doi: 10.1093/jxb/erp214 – ident: e_1_2_6_12_1 doi: 10.1111/j.1365-3059.2010.02314.x – ident: e_1_2_6_26_1 doi: 10.1007/s11103-004-0192-4 – ident: e_1_2_6_45_1 doi: 10.1111/j.1399-3054.1962.tb08052.x – ident: e_1_2_6_43_1 doi: 10.1139/X09-015 – ident: e_1_2_6_27_1 doi: 10.1093/jxb/ers325 – ident: e_1_2_6_33_1 doi: 10.1111/pbi.12008 – ident: e_1_2_6_51_1 doi: 10.1111/j.1467-7652.2009.00466.x – ident: e_1_2_6_55_1 doi: 10.1104/pp.107.106690 |
SSID | ssj0021656 |
Score | 2.382693 |
Snippet | Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the... Summary Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking... |
SourceID | proquest pubmed crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 503 |
SubjectTerms | Alternaria Alternaria - drug effects Alternaria - physiology Alternaria alternata Animals Antigens Bioassays Biological Assay CeCPI Chitinase Chitinases Chitinases - genetics Chloroplasts Crosses, Genetic Cystatins Disease Resistance Disease Resistance - drug effects Disease Resistance - genetics Disease Resistance - immunology drug effects Fatty acids Gene Expression Regulation, Plant Gene Expression Regulation, Plant - drug effects gene stacking Genes Genes, Plant Genetic Vectors Genetic Vectors - metabolism genetics Growth rate growth retardation Herbivory Herbivory - drug effects immunology Insecta Insecta - physiology Insects Leafspot Leaves Lettuce Localization Membrane Lipids Membrane Lipids - metabolism Metabolism microbiology Nicotiana - genetics Nicotiana - immunology Nicotiana - microbiology Nicotiana - parasitology Nicotiana benthamiana Osmotic stress Oxidative Stress Oxidative Stress - drug effects Paecilomyces Paraquat Paraquat - pharmacology parasitology Pathogens Pectobacterium Pectobacterium carotovorum Pectobacterium carotovorum - drug effects Pectobacterium carotovorum - physiology Pectobacterium carotovorum subsp. carotovorum Peptides pharmacology physiology Plant Diseases Plant Diseases - genetics Plant Diseases - immunology Plant Diseases - microbiology Plant Leaves Plant Leaves - drug effects Plant Leaves - metabolism Plant Leaves - ultrastructure Plants Plants, Genetically Modified plastid transformation Plastids Plastids - drug effects Plastids - genetics Plastids - ultrastructure Potatoes Protease Inhibitors Protease Inhibitors - metabolism Proteinase inhibitors Proteins Sodium Chloride Sodium Chloride - pharmacology Soft rot Solanum tuberosum Spodoptera exigua Spodoptera litura sporamin stress tolerance Stress, Physiological Stress, Physiological - drug effects Stress, Physiological - genetics Stresses sweet potatoes taro Tobacco Transformation, Genetic Transformation, Genetic - drug effects Transgenes Trends Tropical diseases ultrastructure Vaccines Western blotting |
Title | Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad‐spectrum resistance against insects, pathogens and abiotic stresses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12157 https://www.ncbi.nlm.nih.gov/pubmed/24479648 https://www.proquest.com/docview/3067677665 https://www.proquest.com/docview/1518622695 https://www.proquest.com/docview/1524436585 https://www.proquest.com/docview/1539449329 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1467-7652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021656 issn: 1467-7644 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-7652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021656 issn: 1467-7644 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1467-7652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021656 issn: 1467-7644 databaseCode: AVUZU dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1467-7644 databaseCode: DR2 dateStart: 20030101 customDbUrl: isFulltext: true eissn: 1467-7652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021656 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access - NZ customDbUrl: eissn: 1467-7652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021656 issn: 1467-7644 databaseCode: 24P dateStart: 20030101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbanuDAP3RpqQziwIFUG8dxEnEqiKoggSpgpR6QovFPthE0qTa7UuHEI_BgPAVPwoydRBSVCnGLZMeO7RnPN_HMZ8YeG0ThCkwRgVU2ks6KSAOoKM0L9J8rkRnPzv_mrTqYyddH6dEaezbkwgR-iPGHG2mG369JwUF3vyn5qa49NQJlksdJ6o9o343UUYJYZUJmURZlaPR7ViGK4hnfPGeL1itoL4KZ51GrNzv719nH4YNDtMmn3dVS75qvf3A5_ueIbrBrPRzle0F-brI119xiV_fmi56Sw91mPwL_OaLsJWUwc5Id2haAazRYx3Din7G8WXbcnYXA2mbOh1BFbl1F2wef07bKiTiT7CX3DBFoQ3ndHNe6plt_ODSW08FG3VCBranbL1wvWrA_v333WaGL1QnHLgj2UqMwhxoRLjbSUVzKU05XLLfYVWgMdI0fa3hIiXHdHTbbf_nhxUHU3wERGSkTXLqpyyEBG2tbxGAgzxzOUCVQoKxKjRI2d2lSGRsjVNSgs6mRClwshTZialxyl200beM2GUdgI1NspTLGyNQUYJNMo6kCaYmISkzYk0EaStMTpNM9HZ_LwVHCBSr9Ak3Yo7HqaWAFuajSJopUCbhkXTl7L8iX9THFOXa1PchZ2e8ZXUnOm8oypdIJezgWo7bTEQ40rl11JeIzdEGFKi6tg5AtQWR5aR1KiEbsXkzYvSDn40DwbcpPznE-vLT-fYTl4fNX_uH-v1fdYldoJkLM6DbbQLFxDxDXLfUOWxfycMer8S8g81AX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbacgAOFf_dUsAgDhyItOs4TiJxKYhqC21Via7UmzX-yTYSTarNVoIbj8CD8RQ8CTN2NqJSqbhFsmMnnpnMN87MZ8ZeW0ThCmyZgFMukd6JxACoJCtKjJ8rkdvAzn94pKYz-ek0O11j71a1MJEfYthwI8sI32sycNqQ_svKL0wduBHydXZLKjEmnRbyeAi3iFcm1hblSY5uv-cVojye4dYr3mi9gvY6oHkVtwbHs3ePbfaIke9GEd9na755wO7uzhc9a4Z_yH5FinIEwksqMuYkXrJc4AZ9yhmch2tsb5Yd999i7msz56tsQu58RRbO5_Tl48RtSS6NBxIHdHO8bs5qU9PBPBwax-nfQ91Qg6tp2u_cLFpwv3_8DIWbi8tzjlMQMqVBYQ41glAcpKPUkbecTkFucao4GJgaH9byWLXiu0dstvfx5MM06Y9pSKyUKa7t2BeQgpsYV07AQpF7XNpKoMydyqwSrvBZWlk3QTRnwORjKxX4iRTGirH16WO20bSN32IcsYfMcJTKWiszW4JLc4PeBKQjrigxYm9W4tK25zCnozS-6lUsg5LVQbIj9mroehGJO67rtIUy14Ai6_Tsi6BwM6T9FjjVzkoRdG_Wnab4SuW5UtmIvRya0SDpLws0vr3sNEIojBKFKm_sg6gqRfB3Yx-qWUZ4XY7Yk6iIw4vg3VRCXOB6BM389xvq4_f74WL7_7u-YLenJ4cH-mD_6PNTdodWJaZ47rANVCH_DGHY0jwP1vYHHPgyrA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIiE4lDddKGAQBw6k2s3DScSpPFYtj6oCVuqhkjV-ZBvRJqvNrgSc-An8MH4Fv4QZO4koKhXiFsmv2J7xfJPMfGbssUYULkDnARhhgtiaMFAAIkiyHP3nIky1Y-d_tyd2JvHrg-RghT3rcmE8P0T_wY00w53XpOAzU_ym5DNVOmqEdJVdiAV6V4SI3vfcUSHRyvjUojRI0eq3tEIUxtM3PWWMVguoz8KZp2GrszvjK-ywe2MfbvJpa7lQW_rrH2SO_zmlq2y9xaN82wvQNbZiq-vs8vZ03nJy2BvshydAR5i9oBRmTsJD5wJwhRbrCE7cM5ZXi4bbzz6ytpryLlaRG1vQ-cGndK5yYs4kg8kdRQQaUV5WR6Uq6dofDpXh9GejrKjAlDTsF67mNZif3767tND58oTjEIR7qVOYQokQFztpKDDlKac7lmscyncGqsSX1dznxNjmJpuMX318sRO0l0AEOo4j3LqhzSACM1ImH4GGLLW4QkWIEmVEokVoMptEhTYjxIoKVDrUsQA7ikOlw6G20S22VtWV3WAckU2cYC-F1jpOdA4mShXaKogNMVGFA_akkwapW4Z0uqjjWHaeEm6QdBs0YI_6qjNPC3JWpQ0UKQm4ZY2cfAjJmXVBxRkOtdnJmWwPjUaS9ybSVIhkwB72xaju9A8HKlsvG4kADX3QUOTn1kHMFiG0PLcOZUQjeM8H7LaX834i2JoSlDNcDyetf5-h3H--6x7u_HvVB-zi_suxfLu79-Yuu0SL4uNHN9kaSpC9hxhvoe47Xf4FzWRSCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transplastomic+Nicotiana+benthamiana+plants+expressing+multiple+defence+genes+encoding+protease+inhibitors+and+chitinase+display+broad%E2%80%90spectrum+resistance+against+insects%2C+pathogens+and+abiotic+stresses&rft.jtitle=Plant+biotechnology+journal&rft.au=Chen%2C+Peng%E2%80%90Jen&rft.au=Senthilkumar%2C+Rajendran&rft.au=Jane%2C+Wann%E2%80%90Neng&rft.au=He%2C+Yong&rft.date=2014-05-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=12&rft.issue=4&rft.spage=503&rft.epage=515&rft_id=info:doi/10.1111%2Fpbi.12157&rft.externalDBID=10.1111%252Fpbi.12157&rft.externalDocID=PBI12157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |