MASiVar: Multisite, multiscanner, and multisubject acquisitions for studying variability in diffusion weighted MRI
Purpose Diffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but variability due to session and scanner biases is a challenge. Methods To investigate DWI variability, we present MASiVar, a multisite data set con...
Saved in:
Published in | Magnetic resonance in medicine Vol. 86; no. 6; pp. 3304 - 3320 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.28926 |
Cover
Abstract | Purpose
Diffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but variability due to session and scanner biases is a challenge.
Methods
To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de‐identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi‐compartment neurite orientation dispersion and density model, (3) white‐matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region‐wise fractional anisotropy, mean diffusivity, and principal eigenvector; region‐wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle‐wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length.
Results
We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability.
Conclusions
This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects. |
---|---|
AbstractList | PurposeDiffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but variability due to session and scanner biases is a challenge.MethodsTo investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de‐identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi‐compartment neurite orientation dispersion and density model, (3) white‐matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region‐wise fractional anisotropy, mean diffusivity, and principal eigenvector; region‐wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle‐wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length.ResultsWe plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability.ConclusionsThis study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects. Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge. To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects. Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge.PURPOSEDiffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge.To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length.METHODSTo investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length.We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability.RESULTSWe plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability.This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.CONCLUSIONSThis study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects. Purpose Diffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but variability due to session and scanner biases is a challenge. Methods To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de‐identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi‐compartment neurite orientation dispersion and density model, (3) white‐matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region‐wise fractional anisotropy, mean diffusivity, and principal eigenvector; region‐wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle‐wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. Results We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. Conclusions This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects. |
Author | Hansen, Colin B. Edmonson, Heidi A. Kanakaraj, Praitayini Ramadass, Karthik Descoteaux, Maxime Yeh, Fang‐Cheng Kang, Hakmook Nath, Vishwesh Landman, Bennett A. Luci, Jeffrey Price, Gavin R. Kerley, Cailey I. Rheault, Francois Garyfallidis, Eleftherios Cai, Leon Y. Schilling, Kurt G. Yang, Qi Newton, Allen T. Conrad, Benjamin N. |
AuthorAffiliation | 3 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA 10 Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA 11 Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA 4 Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA 5 Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA 7 Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA 12 Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA 8 Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA 9 Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, Tennessee, USA 2 Department of Electrical Engineering and Computer Science, |
AuthorAffiliation_xml | – name: 11 Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA – name: 8 Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA – name: 12 Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA – name: 9 Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, Tennessee, USA – name: 6 Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA – name: 7 Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA – name: 5 Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA – name: 10 Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA – name: 13 Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada – name: 2 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA – name: 4 Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA – name: 1 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA – name: 3 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA |
Author_xml | – sequence: 1 givenname: Leon Y. orcidid: 0000-0002-5812-5397 surname: Cai fullname: Cai, Leon Y. email: leon.y.cai@vanderbilt.edu organization: Vanderbilt University – sequence: 2 givenname: Qi surname: Yang fullname: Yang, Qi organization: Vanderbilt University – sequence: 3 givenname: Praitayini surname: Kanakaraj fullname: Kanakaraj, Praitayini organization: Vanderbilt University – sequence: 4 givenname: Vishwesh surname: Nath fullname: Nath, Vishwesh organization: Vanderbilt University – sequence: 5 givenname: Allen T. surname: Newton fullname: Newton, Allen T. organization: Vanderbilt University – sequence: 6 givenname: Heidi A. surname: Edmonson fullname: Edmonson, Heidi A. organization: Mayo Clinic – sequence: 7 givenname: Jeffrey surname: Luci fullname: Luci, Jeffrey organization: Robert Wood Johnson Medical School, Rutgers University – sequence: 8 givenname: Benjamin N. orcidid: 0000-0003-3755-6988 surname: Conrad fullname: Conrad, Benjamin N. organization: Vanderbilt University – sequence: 9 givenname: Gavin R. surname: Price fullname: Price, Gavin R. organization: Vanderbilt University – sequence: 10 givenname: Colin B. surname: Hansen fullname: Hansen, Colin B. organization: Vanderbilt University – sequence: 11 givenname: Cailey I. surname: Kerley fullname: Kerley, Cailey I. organization: Vanderbilt University – sequence: 12 givenname: Karthik surname: Ramadass fullname: Ramadass, Karthik organization: Vanderbilt University – sequence: 13 givenname: Fang‐Cheng surname: Yeh fullname: Yeh, Fang‐Cheng organization: University of Pittsburgh School of Medicine – sequence: 14 givenname: Hakmook surname: Kang fullname: Kang, Hakmook organization: Vanderbilt University Medical Center – sequence: 15 givenname: Eleftherios surname: Garyfallidis fullname: Garyfallidis, Eleftherios organization: Indiana University – sequence: 16 givenname: Maxime surname: Descoteaux fullname: Descoteaux, Maxime organization: Université de Sherbrooke – sequence: 17 givenname: Francois surname: Rheault fullname: Rheault, Francois organization: Université de Sherbrooke – sequence: 18 givenname: Kurt G. surname: Schilling fullname: Schilling, Kurt G. organization: Vanderbilt University – sequence: 19 givenname: Bennett A. orcidid: 0000-0001-5733-2127 surname: Landman fullname: Landman, Bennett A. organization: Vanderbilt University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34270123$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtr3DAQhUVJaTZpH_oHiqAvbYgTXddWHgohpG0gppBeXoUsyxsttrzRJYv_fbXZ7S3QPGnQfOcwc-YA7LnRGQBeY3SCESKngx9OSCXI_BmYYU5IQbhge2CGSoYKigXbBwchLBFCQpTsBdinjJQIEzoDvj7_an8ofwbr1EcbbDTHcHgotXLO-GOoXLv7Sc3S6AiVvksb0o4uwG70MMTUTtYt4L3yVjW2t3GC1sHWdl0KGYNrYxe30bSwvrl6CZ53qg_m1e49BN8_Xn67-Fxcf_l0dXF-XWjG6LxoOGsQaxpMFNdt22iOkO5yzQkllakqTQTF3bxETVlVShltOoaYJm3JK6YFPQRHW9_kVmpaq76XK28H5SeJkdwEJ3Nw8iG4DH_YwqvUDKbVxkWv_ghGZeW_HWdv5WK8lwJVZYV5Nni3M_DjXTIhyiFHaPpeOTOmIAnnRAhKCcno20fockze5SwyJbCgJWEbwzd_T_R7lF-3y8D7LaD9GII33ZPrnT5itY1qc8G8jO2fUqxtb6b_W8v6pt4qfgJ9T8r4 |
CitedBy_id | crossref_primary_10_1002_ima_23094 crossref_primary_10_1016_j_neuroimage_2023_120125 crossref_primary_10_1109_TNNLS_2022_3213581 crossref_primary_10_1002_hbm_26784 crossref_primary_10_1016_j_nicl_2023_103529 crossref_primary_10_1162_netn_a_00368 crossref_primary_10_3389_fradi_2022_930666 crossref_primary_10_1097_j_pain_0000000000003345 crossref_primary_10_1016_j_mri_2023_03_014 crossref_primary_10_1117_1_JMI_11_1_014005 crossref_primary_10_1002_hbm_26646 crossref_primary_10_1016_j_mri_2023_01_004 crossref_primary_10_1109_TMI_2024_3364240 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1162_imag_a_00197 |
Cites_doi | 10.1016/j.neuroimage.2007.02.049 10.1016/j.neuroimage.2012.11.049 10.1007/s00234-019-02350-6 10.1007/s00429-020-02129-z 10.1038/sdata.2016.44 10.1016/j.neuroimage.2015.10.019 10.1016/j.neuroscience.2018.03.048 10.1016/j.neuroimage.2016.08.016 10.1002/mrm.20426 10.1016/j.neuroimage.2007.07.053 10.1016/j.neuroimage.2010.03.046 10.1002/aur.1243 10.3174/ajnr.A5025 10.1007/s00429-017-1508-x 10.1371/journal.pone.0236418 10.1371/journal.pone.0034125 10.1016/B978-044451741-8/50003-2 10.1016/j.neuroimage.2020.117329 10.1002/nbm.3269 10.1002/jmri.26197 10.1002/jmri.26794 10.1016/j.neuroimage.2018.12.015 10.1002/mrm.26059 10.1371/journal.pone.0080713 10.1016/j.neuroimage.2014.05.044 10.1002/mrm.28678 10.3389/fnins.2018.01055 10.1016/j.neuroimage.2020.116923 10.1016/S1053-8119(03)00336-7 10.1016/j.neuroimage.2013.05.028 10.1038/s41597-020-0493-8 10.1002/nbm.3752 10.1101/2020.06.12.148999 10.1016/S0006-3495(94)80775-1 10.1093/cercor/bhp280 10.1016/j.dcn.2018.03.001 10.1176/appi.ajp.162.7.1256 10.1002/mrm.1910370115 10.1016/j.neuroimage.2010.11.029 10.1002/hbm.24917 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2016.06.058 10.1016/j.neuroimage.2019.116137 10.1016/j.neuroimage.2020.117406 10.1371/journal.pbio.0060159 10.3389/fninf.2014.00008 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2019.06.039 10.1111/jon.12298 10.1002/mrm.26259 10.2307/1932409 10.1016/j.biopsych.2006.06.027 10.1016/j.nicl.2017.07.020 10.2337/db08-0724 10.1038/s41380-019-0509-y 10.1016/j.neuroimage.2017.07.015 10.1016/j.neuroimage.2007.02.016 10.1016/j.schres.2005.11.020 10.1016/j.media.2018.10.009 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2018.08.050 10.1007/s12031-007-0029-0 10.3389/fninf.2011.00023 10.3389/fnhum.2017.00306 10.1038/s41380-019-0504-3 10.1016/j.neuroimage.2013.05.041 10.1089/brain.2012.0112 10.1016/j.nec.2010.12.004 10.1371/journal.pcbi.0010042 10.1016/j.neuroimage.2006.01.021 10.1038/sdata.2017.10 10.1016/j.neuroimage.2011.09.081 |
ContentType | Journal Article |
Copyright | 2021 International Society for Magnetic Resonance in Medicine 2021 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2021 International Society for Magnetic Resonance in Medicine – notice: 2021 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
DOI | 10.1002/mrm.28926 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 3320 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:9087815 PMC9087815 34270123 10_1002_mrm_28926 MRM28926 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health (NIH) funderid: 1UL1RR024975; 5R01EB017230; 5T32EB001628; 5T32GM007347 – fundername: National Science Foundation (NSF) funderid: 1452485; 1660816; 1750213 – fundername: National Institutes of Health (NIH) grantid: 1UL1RR024975 – fundername: NIBIB NIH HHS grantid: R01 EB017230 – fundername: NCRR NIH HHS grantid: UL1 RR024975 – fundername: NIBIB NIH HHS grantid: T32 EB001628 – fundername: NICHD NIH HHS grantid: P50 HD103537 – fundername: NIGMS NIH HHS grantid: T32 GM007347 – fundername: National Institutes of Health (NIH) grantid: 5T32GM007347 – fundername: National Institutes of Health (NIH) grantid: 5T32EB001628 – fundername: NIGMS NIH HHS grantid: T32 GM152284 – fundername: National Institutes of Health (NIH) grantid: 5R01EB017230 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c4436-b54b04bb12a5cddbc500cfa5c52328e88c2931f670b788aaecef404c2d7584c93 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Wed Aug 20 00:19:51 EDT 2025 Thu Aug 21 13:52:50 EDT 2025 Fri Jul 11 10:56:07 EDT 2025 Fri Jul 25 12:06:56 EDT 2025 Wed Feb 19 02:07:52 EST 2025 Thu Apr 24 22:50:57 EDT 2025 Wed Oct 01 05:05:36 EDT 2025 Wed Jan 22 16:28:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | DTI NODDI connectome bundle segmentation variability reproducibility |
Language | English |
License | 2021 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4436-b54b04bb12a5cddbc500cfa5c52328e88c2931f670b788aaecef404c2d7584c93 |
Notes | Funding information National Institutes of Health (5R01EB017230, 5T32EB001628, 5T32GM007347, and 1UL1RR024975) and the National Science Foundation (1452485, 1660816, and 1750213) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5812-5397 0000-0001-5733-2127 0000-0003-3755-6988 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9087815 |
PMID | 34270123 |
PQID | 2591937245 |
PQPubID | 1016391 |
PageCount | 17 |
ParticipantIDs | unpaywall_primary_10_1002_mrm_28926 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9087815 proquest_miscellaneous_2552993322 proquest_journals_2591937245 pubmed_primary_34270123 crossref_primary_10_1002_mrm_28926 crossref_citationtrail_10_1002_mrm_28926 wiley_primary_10_1002_mrm_28926_MRM28926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 61 2021; 26 2006; 31 2017; 4 2019; 52 2020; 62 2013; 67 2008; 39 2016; 76 1994; 66 2008; 34 2020; 15 2011; 54 2019; 202 2008; 6 2019; 403 2012; 59 2013; 8 2016; 142 2007; 35 2019; 200 2016; 141 2007; 36 2020; 7 2010; 20 2018; 170 2010; 26 2020; 51 2017; 38 2017; 77 2011; 22 2020; 217 2007; 61 2014; 8 2018; 32 2014; 99 2021; 86 2018; 183 2020; 41 2019; 32 2018; 223 2020; 225 1997 2008; 12 2008; 57 2006 2005 2016; 125 2020; 223 2011; 5 2019; 188 2012; 2 2015; 28 2005; 162 2006; 83 2016; 3 2020 2017; 16 1997; 37 1945; 26 2017; 11 2013; 80 2019; 49 2005; 53 2020; 25 2013; 81 2005; 1 2015 2013 2018; 12 2012; 7 2012; 5 2016; 26 2003; 20 2010; 52 2010; 51 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 Hollander M (e_1_2_7_33_1) 2013 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Farrell JAD (e_1_2_7_34_1) 2010; 26 |
References_xml | – volume: 61 start-page: 1000 year: 2012 end-page: 1016 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage – volume: 4 start-page: 170010 year: 2017 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Sci Data – volume: 32 start-page: 43 year: 2018 end-page: 54 article-title: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites publication-title: Dev Cogn Neurosci – volume: 200 start-page: 391 year: 2019 end-page: 404 article-title: Complex diffusion‐weighted image estimation via matrix recovery under general noise models publication-title: Neuroimage – volume: 52 start-page: 1059 year: 2010 end-page: 1069 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – volume: 183 start-page: 456 year: 2018 end-page: 468 article-title: The lifespan human connectome project in development: a large‐scale study of brain connectivity development in 5–21 year olds publication-title: Neuroimage – volume: 2 start-page: 345 year: 2012 end-page: 355 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain Connect – volume: 162 start-page: 1256 year: 2005 end-page: 1265 article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder publication-title: Am J Psychiatry – volume: 53 start-page: 1088 year: 2005 end-page: 1095 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn Reson Med – year: 2005 – volume: 8 start-page: 1 year: 2014 end-page: 17 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform – volume: 11 start-page: 1 year: 2017 end-page: 12 article-title: Probabilistic white matter atlases of human auditory, basal ganglia, language, precuneus, sensorimotor, visual and visuospatial networks publication-title: Front Hum Neurosci – volume: 25 start-page: 3208 year: 2020 end-page: 3219 article-title: White matter abnormalities across the lifespan of schizophrenia: a harmonized multi‐site diffusion MRI study publication-title: Mol Psychiatry – volume: 223 start-page: 635 year: 2018 end-page: 651 article-title: A probabilistic atlas of fiber crossings for variability reduction of anisotropy measures publication-title: Brain Struct Funct – volume: 80 start-page: 62 year: 2013 end-page: 79 article-title: The WU‐Minn human connectome project: an overview publication-title: Neuroimage – volume: 38 start-page: 537 year: 2017 end-page: 545 article-title: Towards precision and reproducibility of DTI publication-title: AJNR Am J Neuroradiol – volume: 26 start-page: 297 year: 1945 end-page: 302 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 62 start-page: 483 year: 2020 end-page: 494 article-title: Scan–rescan and inter‐vendor reproducibility of neurite orientation dispersion and density imaging metrics publication-title: Neuroradiology – volume: 86 start-page: 456 year: 2021 end-page: 470 article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images publication-title: Magn Reson Med – volume: 83 start-page: 155 year: 2006 end-page: 171 article-title: Decreased volume of left and total anterior insular lobule in schizophrenia publication-title: Schizophr Res – volume: 66 start-page: 259 year: 1994 end-page: 267 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys J – volume: 28 start-page: 468 year: 2015 end-page: 485 article-title: Multi‐centre reproducibility of diffusion MRI parameters for clinical sequences in the brain publication-title: NMR Biomed – volume: 15 year: 2020 article-title: Distortion correction of diffusion weighted MRI without reverse phase‐encoding scans or field‐maps publication-title: PLoS One – volume: 5 start-page: 1 year: 2011 end-page: 12 article-title: Automated probabilistic reconstruction of white‐matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front Neuroinform – volume: 26 start-page: 46 year: 2016 end-page: 57 article-title: Reproducibility of the structural connectome reconstruction across diffusion methods publication-title: J Neuroimaging – volume: 41 start-page: 1859 year: 2020 end-page: 1874 article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility publication-title: Hum Brain Mapp – volume: 39 start-page: 336 year: 2008 end-page: 347 article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract‐specific quantification publication-title: Neuroimage – volume: 6 start-page: 1479 year: 2008 end-page: 1493 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol – volume: 8 start-page: 1 year: 2013 end-page: 16 article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy publication-title: PLoS One – volume: 20 start-page: 2055 year: 2010 end-page: 2068 article-title: Life‐span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry publication-title: Cereb Cortex – volume: 403 start-page: 17 year: 2019 end-page: 26 article-title: Characterizing microstructural tissue properties in multiple sclerosis with diffusion MRI at 7 T and 3 T: the impact of the experimental design publication-title: Neuroscience – volume: 49 start-page: 456 year: 2019 end-page: 465 article-title: The Canadian dementia imaging protocol: harmonizing national cohorts publication-title: J Magn Reson Imaging – volume: 99 start-page: 166 year: 2014 end-page: 179 article-title: Large‐scale evaluation of ANTs and FreeSurfer cortical thickness measurements publication-title: Neuroimage – volume: 12 start-page: 1055 year: 2018 article-title: Test‐retest reliability of diffusion measures extracted along white matter language fiber bundles using Hardi‐based tractography publication-title: Front Neurosci – volume: 54 start-page: 2557 year: 2011 end-page: 2562 article-title: Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum publication-title: Neuroimage – year: 1997 – volume: 52 start-page: 56 year: 2019 end-page: 67 article-title: Reproducibility and intercorrelation of graph theoretical measures in structural brain connectivity networks publication-title: Med Image Anal – volume: 81 start-page: 335 year: 2013 end-page: 346 article-title: Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls publication-title: Neuroimage – volume: 5 start-page: 289 year: 2012 end-page: 313 article-title: Diffusion tensor imaging in autism spectrum disorder: a review publication-title: Autism Res – volume: 76 start-page: 1582 year: 2016 end-page: 1593 article-title: Diffusion MRI noise mapping using random matrix theory publication-title: Magn Reson Med – volume: 202 start-page: 116137 year: 2019 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage – volume: 35 start-page: 1459 year: 2007 end-page: 1472 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non‐negativity constrained super‐resolved spherical deconvolution publication-title: Neuroimage – volume: 77 start-page: 1797 year: 2017 end-page: 1809 article-title: “MASSIVE” brain dataset: multiple acquisitions for standardization of structural imaging validation and evaluation publication-title: Magn Reson Med – year: 2015 – volume: 61 start-page: 935 year: 2007 end-page: 945 article-title: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability publication-title: Biol Psychiatry – volume: 225 start-page: 117406 year: 2020 article-title: MICRA: microstructural image compilation with repeated acquisitions publication-title: Neuroimage – volume: 142 start-page: 394 year: 2016 end-page: 406 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage – volume: 7 year: 2012 article-title: Tract specific reproducibility of tractography based morphology and diffusion metrics publication-title: PLoS One – volume: 225 start-page: 2387 year: 2020 end-page: 2402 article-title: Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go publication-title: Brain Struct Funct – volume: 32 start-page: 1 year: 2019 end-page: 23 article-title: Building connectomes using diffusion MRI: why, how and but publication-title: NMR Biomed – volume: 125 start-page: 1063 year: 2016 end-page: 1078 article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 51 start-page: 1384 year: 2010 end-page: 1394 article-title: Identical, but not the same: intra‐site and inter‐site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: Neuroimage – volume: 22 start-page: 185 year: 2011 end-page: 196 article-title: An introduction to diffusion tensor image analysis publication-title: Neurosurg Clin N Am – volume: 51 start-page: 234 year: 2020 end-page: 249 article-title: Tractography reproducibility challenge with empirical data (TraCED): the 2017 ISMRM diffusion study group challenge publication-title: J Magn Reson Imaging – volume: 7 start-page: 157 year: 2020 article-title: Multicenter dataset of multi‐shell diffusion MRI in healthy traveling adults with identical settings publication-title: Sci Data – volume: 57 start-page: 3083 year: 2008 end-page: 3089 article-title: Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function publication-title: Diabetes – volume: 170 start-page: 283 year: 2018 end-page: 295 article-title: Recognition of white matter bundles using local and global streamline‐based registration and clustering publication-title: Neuroimage – volume: 59 start-page: 2241 year: 2012 end-page: 2254 article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison publication-title: Neuroimage – volume: 3 start-page: 160044 year: 2016 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci Data – volume: 26 start-page: 1399 year: 2021 end-page: 1408 article-title: Variation of HbA1c affects cognition and white matter microstructure in healthy, young adults publication-title: Mol Psychiatry – volume: 1 start-page: 245 year: 2005 end-page: 251 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput Biol – volume: 16 start-page: 222 year: 2017 end-page: 233 article-title: A test‐retest study on Parkinson’s PPMI dataset yields statistically significant white matter fascicles publication-title: NeuroImage Clin – year: 2006 – year: 2020 – volume: 36 start-page: 630 year: 2007 end-page: 644 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – volume: 20 start-page: 870 year: 2003 end-page: 888 article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 26 start-page: 756 year: 2010 end-page: 767 article-title: Effects of SNR on the accuracy and reproducibility of DTI‐derived fractional anisotropy, mean diffusivity, and principal Eigenvector measurements at 1.5T publication-title: J Magn Reson – volume: 217 start-page: 1 year: 2020 end-page: 15 article-title: XTRACT—standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage – volume: 31 start-page: 968 year: 2006 end-page: 980 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 34 start-page: 51 year: 2008 end-page: 61 article-title: Diffusion tensor imaging (DTI)‐based white matter mapping in brain research: a review publication-title: J Mol Neurosci – volume: 37 start-page: 103 year: 1997 end-page: 111 article-title: An analytical model of restricted diffusion in bovine optic nerve publication-title: Magn Reson Med – volume: 141 start-page: 556 year: 2016 end-page: 572 article-title: Incorporating outlier detection and replacement into a non‐parametric framework for movement and distortion correction of diffusion MR images publication-title: Neuroimage – volume: 67 start-page: 298 year: 2013 end-page: 312 article-title: Spherical‐deconvolution informed filtering of tractograms publication-title: Neuroimage – volume: 223 start-page: 117329 year: 2020 article-title: Shape analysis of the human association pathways publication-title: Neuroimage – volume: 188 start-page: 598 year: 2019 end-page: 615 article-title: Using GPUs to accelerate computational diffusion MRI: from microstructure estimation to tractography and connectomes publication-title: Neuroimage – year: 2013 – volume: 12 start-page: 26 year: 2008 end-page: 41 article-title: Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med Image Anal – ident: e_1_2_7_79_1 – ident: e_1_2_7_41_1 doi: 10.1016/j.neuroimage.2007.02.049 – ident: e_1_2_7_46_1 doi: 10.1016/j.neuroimage.2012.11.049 – ident: e_1_2_7_54_1 doi: 10.1007/s00234-019-02350-6 – ident: e_1_2_7_8_1 doi: 10.1007/s00429-020-02129-z – ident: e_1_2_7_75_1 doi: 10.1038/sdata.2016.44 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuroimage.2015.10.019 – ident: e_1_2_7_14_1 doi: 10.1016/j.neuroscience.2018.03.048 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuroimage.2016.08.016 – ident: e_1_2_7_61_1 doi: 10.1002/mrm.20426 – ident: e_1_2_7_42_1 doi: 10.1016/j.neuroimage.2007.07.053 – ident: e_1_2_7_52_1 doi: 10.1016/j.neuroimage.2010.03.046 – ident: e_1_2_7_11_1 doi: 10.1002/aur.1243 – ident: e_1_2_7_53_1 doi: 10.3174/ajnr.A5025 – ident: e_1_2_7_64_1 doi: 10.1007/s00429-017-1508-x – ident: e_1_2_7_23_1 doi: 10.1371/journal.pone.0236418 – ident: e_1_2_7_56_1 doi: 10.1371/journal.pone.0034125 – ident: e_1_2_7_40_1 doi: 10.1016/B978-044451741-8/50003-2 – ident: e_1_2_7_67_1 doi: 10.1016/j.neuroimage.2020.117329 – ident: e_1_2_7_76_1 doi: 10.1002/nbm.3269 – ident: e_1_2_7_21_1 doi: 10.1002/jmri.26197 – ident: e_1_2_7_57_1 doi: 10.1002/jmri.26794 – ident: e_1_2_7_60_1 doi: 10.1016/j.neuroimage.2018.12.015 – ident: e_1_2_7_26_1 doi: 10.1002/mrm.26059 – ident: e_1_2_7_68_1 doi: 10.1371/journal.pone.0080713 – ident: e_1_2_7_38_1 doi: 10.1016/j.neuroimage.2014.05.044 – ident: e_1_2_7_24_1 doi: 10.1002/mrm.28678 – ident: e_1_2_7_78_1 doi: 10.3389/fnins.2018.01055 – ident: e_1_2_7_66_1 doi: 10.1016/j.neuroimage.2020.116923 – ident: e_1_2_7_28_1 doi: 10.1016/S1053-8119(03)00336-7 – ident: e_1_2_7_36_1 doi: 10.1016/j.neuroimage.2013.05.028 – ident: e_1_2_7_22_1 doi: 10.1038/s41597-020-0493-8 – ident: e_1_2_7_9_1 doi: 10.1002/nbm.3752 – ident: e_1_2_7_63_1 doi: 10.1101/2020.06.12.148999 – ident: e_1_2_7_4_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_7_37_1 – ident: e_1_2_7_16_1 doi: 10.1093/cercor/bhp280 – ident: e_1_2_7_73_1 doi: 10.1016/j.dcn.2018.03.001 – ident: e_1_2_7_48_1 doi: 10.1176/appi.ajp.162.7.1256 – ident: e_1_2_7_62_1 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.1910370115 – ident: e_1_2_7_17_1 doi: 10.1016/j.neuroimage.2010.11.029 – ident: e_1_2_7_70_1 doi: 10.1002/hbm.24917 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2016.06.058 – ident: e_1_2_7_45_1 doi: 10.1016/j.neuroimage.2019.116137 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2020.117406 – ident: e_1_2_7_71_1 doi: 10.1371/journal.pbio.0060159 – ident: e_1_2_7_43_1 doi: 10.3389/fninf.2014.00008 – ident: e_1_2_7_32_1 doi: 10.1016/j.neuroimage.2009.10.003 – ident: e_1_2_7_27_1 doi: 10.1016/j.neuroimage.2019.06.039 – ident: e_1_2_7_58_1 doi: 10.1111/jon.12298 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.26259 – volume: 26 start-page: 756 year: 2010 ident: e_1_2_7_34_1 article-title: Effects of SNR on the accuracy and reproducibility of DTI‐derived fractional anisotropy, mean diffusivity, and principal Eigenvector measurements at 1.5T publication-title: J Magn Reson – ident: e_1_2_7_35_1 doi: 10.2307/1932409 – ident: e_1_2_7_50_1 doi: 10.1016/j.biopsych.2006.06.027 – ident: e_1_2_7_55_1 – ident: e_1_2_7_77_1 doi: 10.1016/j.nicl.2017.07.020 – ident: e_1_2_7_13_1 doi: 10.2337/db08-0724 – ident: e_1_2_7_15_1 doi: 10.1038/s41380-019-0509-y – ident: e_1_2_7_31_1 doi: 10.1016/j.neuroimage.2017.07.015 – volume-title: Nonparametric Statistical Methods year: 2013 ident: e_1_2_7_33_1 – ident: e_1_2_7_44_1 doi: 10.1016/j.neuroimage.2007.02.016 – ident: e_1_2_7_47_1 doi: 10.1016/j.schres.2005.11.020 – ident: e_1_2_7_59_1 doi: 10.1016/j.media.2018.10.009 – ident: e_1_2_7_80_1 – ident: e_1_2_7_39_1 doi: 10.1016/j.media.2007.06.004 – ident: e_1_2_7_74_1 doi: 10.1016/j.neuroimage.2018.08.050 – ident: e_1_2_7_3_1 doi: 10.1007/s12031-007-0029-0 – ident: e_1_2_7_69_1 doi: 10.3389/fninf.2011.00023 – ident: e_1_2_7_65_1 doi: 10.3389/fnhum.2017.00306 – ident: e_1_2_7_12_1 doi: 10.1038/s41380-019-0504-3 – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_2_7_51_1 doi: 10.1089/brain.2012.0112 – ident: e_1_2_7_2_1 doi: 10.1016/j.nec.2010.12.004 – ident: e_1_2_7_72_1 doi: 10.1371/journal.pcbi.0010042 – ident: e_1_2_7_49_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_2_7_10_1 doi: 10.1038/sdata.2017.10 – ident: e_1_2_7_7_1 doi: 10.1016/j.neuroimage.2011.09.081 |
SSID | ssj0009974 |
Score | 2.5236623 |
Snippet | Purpose
Diffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but... Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability... PurposeDiffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3304 |
SubjectTerms | Adult Anisotropy Brain - diagnostic imaging bundle segmentation Child connectome Datasets Diffusion Diffusion Magnetic Resonance Imaging Diffusion Tensor Imaging Dispersion DTI Eigenvectors Humans Image segmentation Magnetic resonance imaging Modularity Neurites NODDI Reproducibility Scanners Signal processing Substantia alba Tensors Variability White Matter |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tuuJx4bG8Agsyj8MeNmnq2EnKrUKsFqSsUKFoOUXxxBERbbakDavl1zN2koqygOCWxqMk1Yw939ifPwO8GOMIMcikO84L4YpYRa5SKF1fFjLi9FP6ZqNwchIez8TbU3m6A6N-L4wl7aMqvWq-8Krys-VWLhc47Hliw7EfR7HZVr4bSiqYB7A7O3k3-dTKbZoxxR5-SGmJuwTtRa8m5PPhol54VF8YHYWfc9AlYHmZH3mtqZbZxXk2n29jWJuEjm7CtP_8lnvyxWvWysPvvyg7_tf_uwU3OkjKJm3TbdjR1R5cTbpF9z24YlmiuLoDdTJ5X37M6pfM7ts1C8-HzFISV-ShSteHLKvy7k6jzBQPy_BrU3bEMEYImVlBW0qY7BuV6a1K-AUrK2aOamnM3B07t9O1OmfJ9M1dmB29_vDq2O0ObXBRiCB0lRTKF0qNeCYxz8nvvo8FXVPFy2Mdx0gAY1SEka-o-s4yjboQvkCeU-UicBzcg0F1VukHwGKMw6iQSgdm-bXAOKcRCJEryQtNb3PgoHdjip2iuTlYY562Wsw8JY-n1uMOPNuYLlsZj98Z7fexkHY9eZVSDBHGjbiQDjzdNFMfNAsrWaXPGmMjKasHNDY6cL8Nnc1bAsEjg1sdiLaCamNg9L23WygsrM53FwkOPN-E398-_sAG5p8t0mSa2IuH__TAR3CdG_6Ope7sw2BdN_oxAbC1etJ1uR-MGDJB priority: 102 providerName: Unpaywall |
Title | MASiVar: Multisite, multiscanner, and multisubject acquisitions for studying variability in diffusion weighted MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28926 https://www.ncbi.nlm.nih.gov/pubmed/34270123 https://www.proquest.com/docview/2591937245 https://www.proquest.com/docview/2552993322 https://pubmed.ncbi.nlm.nih.gov/PMC9087815 https://www.ncbi.nlm.nih.gov/pmc/articles/9087815 |
UnpaywallVersion | submittedVersion |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VRRwvHOUKlMocD31otlnH3iTwtEJUBSkVWlhUpEqRPXHEim1ashuq8usZO0e1FBDizYkncmzP2HP5M8CLBIeIoZJ-khfCF7GOfK1R-oEsZMTpUQb2oHB6MNqfineH8nANXnVnYRp8iN7hZiXDrddWwJVe7F6Ahh5XxwOyFriF2x6G0oVoJxfQUUnSIDBHwq4ziehQhQK-23-5uhddUjAv50ler8tTdX6m5vNVXdZtRnu34KjrRpOD8nVQL_UAf_yC8Pif_bwNN1sllY0brroDa6bcgGtpG4bfgKsubxQXd6FKxx9mn1T1krmTvDYUvcNckuKC5qw01Q5TZd6-qbV1-jCF3-pZmyrGSGdmDuKWtlD2nQz3Bjf8nM1KZi9vqa03j505B67JWTp5ew-me28-vt7322scfBQiHPlaCh0IrYdcScxz4oQgwILKZAPz2MQxksoxLEZRoMkeV8qgKUQgkOdkywhMwvuwXp6U5iGwGONRVEhtQhuQLTDOaU1C5FrywlBrHmx3E5phi3Fur9qYZw06M89oNDM3mh4860lPG2CP3xFtdlyRtbK9yMhgJK034kJ68LSvJqm0oRZVmpPa0kja50NaLT140DBR30ooeGQ1WQ-iFfbqCSzi92pNOfvikL-TII7iIbX7vGfEv_38tuOrP1Nk6SR1hUf_TvoYbnCb1uMyejZhfVnV5gnpZUu95QRwC65MD96PP_8EOVk45g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigXHuXRQAHzOPTQbLNee5MgLhWi2kLTw9KiXlBkTxyx6jYt2Q1V-fWMnUe1FBDi5iQTObFnPE9_BngdYx9xoKQfZ7nwRaRDX2uUfiBzGXK6lIHdKJzsD0eH4sORPFqCt-1emBofogu4Wclw67UVcBuQ3rpEDT0pT3rkLvDhNbguSLG6JO34EjwqjmsM5lDYlSYWLa5QwLe6Vxe10RUT82ql5EpVnKmLczWdLlqzTh3t3IEv7Y_UVSjHvWque_jjF4zH__3Tu3C7sVPZds1Y92DJFKtwM2ky8atww5WO4uw-lMn2p8lnVb5hbjOvzUZvMlenOKNpK0y5yVSRNXcqbeM-TOG3atJUizEym5lDuSUtyr6T715Dh1-wScHs-S2VDeixcxfDNRlLxrsP4HDn_cG7kd-c5OCjoInxtRQ6EFr3uZKYZcQMQYA5tckN5pGJIiSro58Pw0CTS66UQZOLQCDPyJ0RGA8ewnJxWpg1YBFGwzCX2gxsTjbHKKNlCZFryXNDvXmw0c5oig3MuT1tY5rWAM08pdFM3Wh68LIjPauxPX5HtN6yRdqI9ywln5EM35AL6cGL7jEJps22qMKcVpZGkqof0ILpwaOai7peBoKH1pj1IFzgr47Agn4vPikmXx34dxxEYdSnfl91nPi3j99wjPVnijQZJ67x-N9Jn8PK6CDZS_d29z8-gVvcVvm4Ap91WJ6XlXlKZtpcP3PS-BPIaDtV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlouPAqUlBbM49BDs806dh70VFFWLZAKLS3qASmyHUes2Kbb7Iaq_HrGzqNaCghxc-KJHNsz4xl7_A3Aq1j1lfIFd-MsZy6LZOhKqbjr8ZyHFB-5Zy4KJ4fB_jF7d8JPFmCnvQtT40N0G25GMqy-NgI-yfLtK9DQ0_K0h94CDW7ATYZuhUlfsDe8wo6K4xqCOWRG0cSshRXy6Hb36fxidM3CvB4ouVwVE3F5IcbjeWPWrkaDu_Cl7UcdhPKtV81kT_34BeLxPzt6D-40VirZrdnqPizoYgWWkuYcfgVu2cBRNX0AZbL7afRZlK-JvcprzqK3iI1SnOKkFbrcIqLImjeVNLs-RKjzatTEihE0monFuMU1lHxHz70GDr8ko4KY7C2V2c4jF3YHV2ckGR48hOPB26M3-26Tx8FVjPmBKzmTHpOyTwVXWYas4HkqxzI6wTTSUaTQ5ujnQehJdMiF0ErnzGOKZujMMBX7j2CxOCv0YyCRioIw51L75kQ2V1GGSkkpKjnNNbbmwGY7oalqQM5Nro1xWsMz0xRHM7Wj6cCLjnRSI3v8jmi95Yq0Ee5pih4jmr0hZdyB5101iqU5axGFPqsMDceF3kd16cBqzURdKz6joTFlHQjn2KsjMJDf8zXF6KuF_o69KIz62O7LjhH_9vOblq_-TJEmw8QW1v6d9BksfdwbpB8ODt8_gdvUhPjY6J51WJyVld5AG20mn1pZ_AnWPzn7 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tuuJx4bG8Agsyj8MeNmnq2EnKrUKsFqSsUKFoOUXxxBERbbakDavl1zN2koqygOCWxqMk1Yw939ifPwO8GOMIMcikO84L4YpYRa5SKF1fFjLi9FP6ZqNwchIez8TbU3m6A6N-L4wl7aMqvWq-8Krys-VWLhc47Hliw7EfR7HZVr4bSiqYB7A7O3k3-dTKbZoxxR5-SGmJuwTtRa8m5PPhol54VF8YHYWfc9AlYHmZH3mtqZbZxXk2n29jWJuEjm7CtP_8lnvyxWvWysPvvyg7_tf_uwU3OkjKJm3TbdjR1R5cTbpF9z24YlmiuLoDdTJ5X37M6pfM7ts1C8-HzFISV-ShSteHLKvy7k6jzBQPy_BrU3bEMEYImVlBW0qY7BuV6a1K-AUrK2aOamnM3B07t9O1OmfJ9M1dmB29_vDq2O0ObXBRiCB0lRTKF0qNeCYxz8nvvo8FXVPFy2Mdx0gAY1SEka-o-s4yjboQvkCeU-UicBzcg0F1VukHwGKMw6iQSgdm-bXAOKcRCJEryQtNb3PgoHdjip2iuTlYY562Wsw8JY-n1uMOPNuYLlsZj98Z7fexkHY9eZVSDBHGjbiQDjzdNFMfNAsrWaXPGmMjKasHNDY6cL8Nnc1bAsEjg1sdiLaCamNg9L23WygsrM53FwkOPN-E398-_sAG5p8t0mSa2IuH__TAR3CdG_6Ope7sw2BdN_oxAbC1etJ1uR-MGDJB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MASiVar%3A+Multisite%2C+multiscanner%2C+and+multisubject+acquisitions+for+studying+variability+in+diffusion+weighted+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cai%2C+Leon+Y&rft.au=Yang%2C+Qi&rft.au=Kanakaraj%2C+Praitayini&rft.au=Nath%2C+Vishwesh&rft.date=2021-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=86&rft.issue=6&rft.spage=3304&rft_id=info:doi/10.1002%2Fmrm.28926&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |