MASiVar: Multisite, multiscanner, and multisubject acquisitions for studying variability in diffusion weighted MRI

Purpose Diffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but variability due to session and scanner biases is a challenge. Methods To investigate DWI variability, we present MASiVar, a multisite data set con...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 86; no. 6; pp. 3304 - 3320
Main Authors Cai, Leon Y., Yang, Qi, Kanakaraj, Praitayini, Nath, Vishwesh, Newton, Allen T., Edmonson, Heidi A., Luci, Jeffrey, Conrad, Benjamin N., Price, Gavin R., Hansen, Colin B., Kerley, Cailey I., Ramadass, Karthik, Yeh, Fang‐Cheng, Kang, Hakmook, Garyfallidis, Eleftherios, Descoteaux, Maxime, Rheault, Francois, Schilling, Kurt G., Landman, Bennett A.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.28926

Cover

Abstract Purpose Diffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but variability due to session and scanner biases is a challenge. Methods To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de‐identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi‐compartment neurite orientation dispersion and density model, (3) white‐matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region‐wise fractional anisotropy, mean diffusivity, and principal eigenvector; region‐wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle‐wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. Results We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. Conclusions This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.
AbstractList PurposeDiffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but variability due to session and scanner biases is a challenge.MethodsTo investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de‐identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi‐compartment neurite orientation dispersion and density model, (3) white‐matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region‐wise fractional anisotropy, mean diffusivity, and principal eigenvector; region‐wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle‐wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length.ResultsWe plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability.ConclusionsThis study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.
Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge. To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.
Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge.PURPOSEDiffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge.To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length.METHODSTo investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length.We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability.RESULTSWe plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability.This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.CONCLUSIONSThis study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.
Purpose Diffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but variability due to session and scanner biases is a challenge. Methods To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de‐identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi‐compartment neurite orientation dispersion and density model, (3) white‐matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region‐wise fractional anisotropy, mean diffusivity, and principal eigenvector; region‐wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle‐wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. Results We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. Conclusions This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.
Author Hansen, Colin B.
Edmonson, Heidi A.
Kanakaraj, Praitayini
Ramadass, Karthik
Descoteaux, Maxime
Yeh, Fang‐Cheng
Kang, Hakmook
Nath, Vishwesh
Landman, Bennett A.
Luci, Jeffrey
Price, Gavin R.
Kerley, Cailey I.
Rheault, Francois
Garyfallidis, Eleftherios
Cai, Leon Y.
Schilling, Kurt G.
Yang, Qi
Newton, Allen T.
Conrad, Benjamin N.
AuthorAffiliation 3 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
10 Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
11 Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
4 Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
5 Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
7 Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
12 Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
8 Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
9 Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, Tennessee, USA
2 Department of Electrical Engineering and Computer Science,
AuthorAffiliation_xml – name: 11 Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
– name: 8 Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
– name: 12 Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
– name: 9 Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, Tennessee, USA
– name: 6 Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
– name: 7 Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
– name: 5 Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
– name: 10 Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
– name: 13 Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
– name: 2 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
– name: 4 Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
– name: 1 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
– name: 3 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Author_xml – sequence: 1
  givenname: Leon Y.
  orcidid: 0000-0002-5812-5397
  surname: Cai
  fullname: Cai, Leon Y.
  email: leon.y.cai@vanderbilt.edu
  organization: Vanderbilt University
– sequence: 2
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  organization: Vanderbilt University
– sequence: 3
  givenname: Praitayini
  surname: Kanakaraj
  fullname: Kanakaraj, Praitayini
  organization: Vanderbilt University
– sequence: 4
  givenname: Vishwesh
  surname: Nath
  fullname: Nath, Vishwesh
  organization: Vanderbilt University
– sequence: 5
  givenname: Allen T.
  surname: Newton
  fullname: Newton, Allen T.
  organization: Vanderbilt University
– sequence: 6
  givenname: Heidi A.
  surname: Edmonson
  fullname: Edmonson, Heidi A.
  organization: Mayo Clinic
– sequence: 7
  givenname: Jeffrey
  surname: Luci
  fullname: Luci, Jeffrey
  organization: Robert Wood Johnson Medical School, Rutgers University
– sequence: 8
  givenname: Benjamin N.
  orcidid: 0000-0003-3755-6988
  surname: Conrad
  fullname: Conrad, Benjamin N.
  organization: Vanderbilt University
– sequence: 9
  givenname: Gavin R.
  surname: Price
  fullname: Price, Gavin R.
  organization: Vanderbilt University
– sequence: 10
  givenname: Colin B.
  surname: Hansen
  fullname: Hansen, Colin B.
  organization: Vanderbilt University
– sequence: 11
  givenname: Cailey I.
  surname: Kerley
  fullname: Kerley, Cailey I.
  organization: Vanderbilt University
– sequence: 12
  givenname: Karthik
  surname: Ramadass
  fullname: Ramadass, Karthik
  organization: Vanderbilt University
– sequence: 13
  givenname: Fang‐Cheng
  surname: Yeh
  fullname: Yeh, Fang‐Cheng
  organization: University of Pittsburgh School of Medicine
– sequence: 14
  givenname: Hakmook
  surname: Kang
  fullname: Kang, Hakmook
  organization: Vanderbilt University Medical Center
– sequence: 15
  givenname: Eleftherios
  surname: Garyfallidis
  fullname: Garyfallidis, Eleftherios
  organization: Indiana University
– sequence: 16
  givenname: Maxime
  surname: Descoteaux
  fullname: Descoteaux, Maxime
  organization: Université de Sherbrooke
– sequence: 17
  givenname: Francois
  surname: Rheault
  fullname: Rheault, Francois
  organization: Université de Sherbrooke
– sequence: 18
  givenname: Kurt G.
  surname: Schilling
  fullname: Schilling, Kurt G.
  organization: Vanderbilt University
– sequence: 19
  givenname: Bennett A.
  orcidid: 0000-0001-5733-2127
  surname: Landman
  fullname: Landman, Bennett A.
  organization: Vanderbilt University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34270123$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtr3DAQhUVJaTZpH_oHiqAvbYgTXddWHgohpG0gppBeXoUsyxsttrzRJYv_fbXZ7S3QPGnQfOcwc-YA7LnRGQBeY3SCESKngx9OSCXI_BmYYU5IQbhge2CGSoYKigXbBwchLBFCQpTsBdinjJQIEzoDvj7_an8ofwbr1EcbbDTHcHgotXLO-GOoXLv7Sc3S6AiVvksb0o4uwG70MMTUTtYt4L3yVjW2t3GC1sHWdl0KGYNrYxe30bSwvrl6CZ53qg_m1e49BN8_Xn67-Fxcf_l0dXF-XWjG6LxoOGsQaxpMFNdt22iOkO5yzQkllakqTQTF3bxETVlVShltOoaYJm3JK6YFPQRHW9_kVmpaq76XK28H5SeJkdwEJ3Nw8iG4DH_YwqvUDKbVxkWv_ghGZeW_HWdv5WK8lwJVZYV5Nni3M_DjXTIhyiFHaPpeOTOmIAnnRAhKCcno20fockze5SwyJbCgJWEbwzd_T_R7lF-3y8D7LaD9GII33ZPrnT5itY1qc8G8jO2fUqxtb6b_W8v6pt4qfgJ9T8r4
CitedBy_id crossref_primary_10_1002_ima_23094
crossref_primary_10_1016_j_neuroimage_2023_120125
crossref_primary_10_1109_TNNLS_2022_3213581
crossref_primary_10_1002_hbm_26784
crossref_primary_10_1016_j_nicl_2023_103529
crossref_primary_10_1162_netn_a_00368
crossref_primary_10_3389_fradi_2022_930666
crossref_primary_10_1097_j_pain_0000000000003345
crossref_primary_10_1016_j_mri_2023_03_014
crossref_primary_10_1117_1_JMI_11_1_014005
crossref_primary_10_1002_hbm_26646
crossref_primary_10_1016_j_mri_2023_01_004
crossref_primary_10_1109_TMI_2024_3364240
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1162_imag_a_00197
Cites_doi 10.1016/j.neuroimage.2007.02.049
10.1016/j.neuroimage.2012.11.049
10.1007/s00234-019-02350-6
10.1007/s00429-020-02129-z
10.1038/sdata.2016.44
10.1016/j.neuroimage.2015.10.019
10.1016/j.neuroscience.2018.03.048
10.1016/j.neuroimage.2016.08.016
10.1002/mrm.20426
10.1016/j.neuroimage.2007.07.053
10.1016/j.neuroimage.2010.03.046
10.1002/aur.1243
10.3174/ajnr.A5025
10.1007/s00429-017-1508-x
10.1371/journal.pone.0236418
10.1371/journal.pone.0034125
10.1016/B978-044451741-8/50003-2
10.1016/j.neuroimage.2020.117329
10.1002/nbm.3269
10.1002/jmri.26197
10.1002/jmri.26794
10.1016/j.neuroimage.2018.12.015
10.1002/mrm.26059
10.1371/journal.pone.0080713
10.1016/j.neuroimage.2014.05.044
10.1002/mrm.28678
10.3389/fnins.2018.01055
10.1016/j.neuroimage.2020.116923
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2013.05.028
10.1038/s41597-020-0493-8
10.1002/nbm.3752
10.1101/2020.06.12.148999
10.1016/S0006-3495(94)80775-1
10.1093/cercor/bhp280
10.1016/j.dcn.2018.03.001
10.1176/appi.ajp.162.7.1256
10.1002/mrm.1910370115
10.1016/j.neuroimage.2010.11.029
10.1002/hbm.24917
10.1016/j.neuroimage.2012.03.072
10.1016/j.neuroimage.2016.06.058
10.1016/j.neuroimage.2019.116137
10.1016/j.neuroimage.2020.117406
10.1371/journal.pbio.0060159
10.3389/fninf.2014.00008
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2019.06.039
10.1111/jon.12298
10.1002/mrm.26259
10.2307/1932409
10.1016/j.biopsych.2006.06.027
10.1016/j.nicl.2017.07.020
10.2337/db08-0724
10.1038/s41380-019-0509-y
10.1016/j.neuroimage.2017.07.015
10.1016/j.neuroimage.2007.02.016
10.1016/j.schres.2005.11.020
10.1016/j.media.2018.10.009
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2018.08.050
10.1007/s12031-007-0029-0
10.3389/fninf.2011.00023
10.3389/fnhum.2017.00306
10.1038/s41380-019-0504-3
10.1016/j.neuroimage.2013.05.041
10.1089/brain.2012.0112
10.1016/j.nec.2010.12.004
10.1371/journal.pcbi.0010042
10.1016/j.neuroimage.2006.01.021
10.1038/sdata.2017.10
10.1016/j.neuroimage.2011.09.081
ContentType Journal Article
Copyright 2021 International Society for Magnetic Resonance in Medicine
2021 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2021 International Society for Magnetic Resonance in Medicine
– notice: 2021 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.28926
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 3320
ExternalDocumentID oai:pubmedcentral.nih.gov:9087815
PMC9087815
34270123
10_1002_mrm_28926
MRM28926
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health (NIH)
  funderid: 1UL1RR024975; 5R01EB017230; 5T32EB001628; 5T32GM007347
– fundername: National Science Foundation (NSF)
  funderid: 1452485; 1660816; 1750213
– fundername: National Institutes of Health (NIH)
  grantid: 1UL1RR024975
– fundername: NIBIB NIH HHS
  grantid: R01 EB017230
– fundername: NCRR NIH HHS
  grantid: UL1 RR024975
– fundername: NIBIB NIH HHS
  grantid: T32 EB001628
– fundername: NICHD NIH HHS
  grantid: P50 HD103537
– fundername: NIGMS NIH HHS
  grantid: T32 GM007347
– fundername: National Institutes of Health (NIH)
  grantid: 5T32GM007347
– fundername: National Institutes of Health (NIH)
  grantid: 5T32EB001628
– fundername: NIGMS NIH HHS
  grantid: T32 GM152284
– fundername: National Institutes of Health (NIH)
  grantid: 5R01EB017230
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4436-b54b04bb12a5cddbc500cfa5c52328e88c2931f670b788aaecef404c2d7584c93
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Wed Aug 20 00:19:51 EDT 2025
Thu Aug 21 13:52:50 EDT 2025
Fri Jul 11 10:56:07 EDT 2025
Fri Jul 25 12:06:56 EDT 2025
Wed Feb 19 02:07:52 EST 2025
Thu Apr 24 22:50:57 EDT 2025
Wed Oct 01 05:05:36 EDT 2025
Wed Jan 22 16:28:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords DTI
NODDI
connectome
bundle segmentation
variability
reproducibility
Language English
License 2021 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-b54b04bb12a5cddbc500cfa5c52328e88c2931f670b788aaecef404c2d7584c93
Notes Funding information
National Institutes of Health (5R01EB017230, 5T32EB001628, 5T32GM007347, and 1UL1RR024975) and the National Science Foundation (1452485, 1660816, and 1750213)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5812-5397
0000-0001-5733-2127
0000-0003-3755-6988
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9087815
PMID 34270123
PQID 2591937245
PQPubID 1016391
PageCount 17
ParticipantIDs unpaywall_primary_10_1002_mrm_28926
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9087815
proquest_miscellaneous_2552993322
proquest_journals_2591937245
pubmed_primary_34270123
crossref_primary_10_1002_mrm_28926
crossref_citationtrail_10_1002_mrm_28926
wiley_primary_10_1002_mrm_28926_MRM28926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 61
2021; 26
2006; 31
2017; 4
2019; 52
2020; 62
2013; 67
2008; 39
2016; 76
1994; 66
2008; 34
2020; 15
2011; 54
2019; 202
2008; 6
2019; 403
2012; 59
2013; 8
2016; 142
2007; 35
2019; 200
2016; 141
2007; 36
2020; 7
2010; 20
2018; 170
2010; 26
2020; 51
2017; 38
2017; 77
2011; 22
2020; 217
2007; 61
2014; 8
2018; 32
2014; 99
2021; 86
2018; 183
2020; 41
2019; 32
2018; 223
2020; 225
1997
2008; 12
2008; 57
2006
2005
2016; 125
2020; 223
2011; 5
2019; 188
2012; 2
2015; 28
2005; 162
2006; 83
2016; 3
2020
2017; 16
1997; 37
1945; 26
2017; 11
2013; 80
2019; 49
2005; 53
2020; 25
2013; 81
2005; 1
2015
2013
2018; 12
2012; 7
2012; 5
2016; 26
2003; 20
2010; 52
2010; 51
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
Hollander M (e_1_2_7_33_1) 2013
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Farrell JAD (e_1_2_7_34_1) 2010; 26
References_xml – volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
– volume: 4
  start-page: 170010
  year: 2017
  article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Sci Data
– volume: 32
  start-page: 43
  year: 2018
  end-page: 54
  article-title: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites
  publication-title: Dev Cogn Neurosci
– volume: 200
  start-page: 391
  year: 2019
  end-page: 404
  article-title: Complex diffusion‐weighted image estimation via matrix recovery under general noise models
  publication-title: Neuroimage
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 183
  start-page: 456
  year: 2018
  end-page: 468
  article-title: The lifespan human connectome project in development: a large‐scale study of brain connectivity development in 5–21 year olds
  publication-title: Neuroimage
– volume: 2
  start-page: 345
  year: 2012
  end-page: 355
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain Connect
– volume: 162
  start-page: 1256
  year: 2005
  end-page: 1265
  article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder
  publication-title: Am J Psychiatry
– volume: 53
  start-page: 1088
  year: 2005
  end-page: 1095
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn Reson Med
– year: 2005
– volume: 8
  start-page: 1
  year: 2014
  end-page: 17
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
– volume: 11
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Probabilistic white matter atlases of human auditory, basal ganglia, language, precuneus, sensorimotor, visual and visuospatial networks
  publication-title: Front Hum Neurosci
– volume: 25
  start-page: 3208
  year: 2020
  end-page: 3219
  article-title: White matter abnormalities across the lifespan of schizophrenia: a harmonized multi‐site diffusion MRI study
  publication-title: Mol Psychiatry
– volume: 223
  start-page: 635
  year: 2018
  end-page: 651
  article-title: A probabilistic atlas of fiber crossings for variability reduction of anisotropy measures
  publication-title: Brain Struct Funct
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 38
  start-page: 537
  year: 2017
  end-page: 545
  article-title: Towards precision and reproducibility of DTI
  publication-title: AJNR Am J Neuroradiol
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 62
  start-page: 483
  year: 2020
  end-page: 494
  article-title: Scan–rescan and inter‐vendor reproducibility of neurite orientation dispersion and density imaging metrics
  publication-title: Neuroradiology
– volume: 86
  start-page: 456
  year: 2021
  end-page: 470
  article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images
  publication-title: Magn Reson Med
– volume: 83
  start-page: 155
  year: 2006
  end-page: 171
  article-title: Decreased volume of left and total anterior insular lobule in schizophrenia
  publication-title: Schizophr Res
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys J
– volume: 28
  start-page: 468
  year: 2015
  end-page: 485
  article-title: Multi‐centre reproducibility of diffusion MRI parameters for clinical sequences in the brain
  publication-title: NMR Biomed
– volume: 15
  year: 2020
  article-title: Distortion correction of diffusion weighted MRI without reverse phase‐encoding scans or field‐maps
  publication-title: PLoS One
– volume: 5
  start-page: 1
  year: 2011
  end-page: 12
  article-title: Automated probabilistic reconstruction of white‐matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front Neuroinform
– volume: 26
  start-page: 46
  year: 2016
  end-page: 57
  article-title: Reproducibility of the structural connectome reconstruction across diffusion methods
  publication-title: J Neuroimaging
– volume: 41
  start-page: 1859
  year: 2020
  end-page: 1874
  article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility
  publication-title: Hum Brain Mapp
– volume: 39
  start-page: 336
  year: 2008
  end-page: 347
  article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract‐specific quantification
  publication-title: Neuroimage
– volume: 6
  start-page: 1479
  year: 2008
  end-page: 1493
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol
– volume: 8
  start-page: 1
  year: 2013
  end-page: 16
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS One
– volume: 20
  start-page: 2055
  year: 2010
  end-page: 2068
  article-title: Life‐span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry
  publication-title: Cereb Cortex
– volume: 403
  start-page: 17
  year: 2019
  end-page: 26
  article-title: Characterizing microstructural tissue properties in multiple sclerosis with diffusion MRI at 7 T and 3 T: the impact of the experimental design
  publication-title: Neuroscience
– volume: 49
  start-page: 456
  year: 2019
  end-page: 465
  article-title: The Canadian dementia imaging protocol: harmonizing national cohorts
  publication-title: J Magn Reson Imaging
– volume: 99
  start-page: 166
  year: 2014
  end-page: 179
  article-title: Large‐scale evaluation of ANTs and FreeSurfer cortical thickness measurements
  publication-title: Neuroimage
– volume: 12
  start-page: 1055
  year: 2018
  article-title: Test‐retest reliability of diffusion measures extracted along white matter language fiber bundles using Hardi‐based tractography
  publication-title: Front Neurosci
– volume: 54
  start-page: 2557
  year: 2011
  end-page: 2562
  article-title: Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum
  publication-title: Neuroimage
– year: 1997
– volume: 52
  start-page: 56
  year: 2019
  end-page: 67
  article-title: Reproducibility and intercorrelation of graph theoretical measures in structural brain connectivity networks
  publication-title: Med Image Anal
– volume: 81
  start-page: 335
  year: 2013
  end-page: 346
  article-title: Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls
  publication-title: Neuroimage
– volume: 5
  start-page: 289
  year: 2012
  end-page: 313
  article-title: Diffusion tensor imaging in autism spectrum disorder: a review
  publication-title: Autism Res
– volume: 76
  start-page: 1582
  year: 2016
  end-page: 1593
  article-title: Diffusion MRI noise mapping using random matrix theory
  publication-title: Magn Reson Med
– volume: 202
  start-page: 116137
  year: 2019
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non‐negativity constrained super‐resolved spherical deconvolution
  publication-title: Neuroimage
– volume: 77
  start-page: 1797
  year: 2017
  end-page: 1809
  article-title: “MASSIVE” brain dataset: multiple acquisitions for standardization of structural imaging validation and evaluation
  publication-title: Magn Reson Med
– year: 2015
– volume: 61
  start-page: 935
  year: 2007
  end-page: 945
  article-title: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability
  publication-title: Biol Psychiatry
– volume: 225
  start-page: 117406
  year: 2020
  article-title: MICRA: microstructural image compilation with repeated acquisitions
  publication-title: Neuroimage
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
– volume: 7
  year: 2012
  article-title: Tract specific reproducibility of tractography based morphology and diffusion metrics
  publication-title: PLoS One
– volume: 225
  start-page: 2387
  year: 2020
  end-page: 2402
  article-title: Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go
  publication-title: Brain Struct Funct
– volume: 32
  start-page: 1
  year: 2019
  end-page: 23
  article-title: Building connectomes using diffusion MRI: why, how and but
  publication-title: NMR Biomed
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 51
  start-page: 1384
  year: 2010
  end-page: 1394
  article-title: Identical, but not the same: intra‐site and inter‐site reproducibility of fractional anisotropy measures on two 3.0T scanners
  publication-title: Neuroimage
– volume: 22
  start-page: 185
  year: 2011
  end-page: 196
  article-title: An introduction to diffusion tensor image analysis
  publication-title: Neurosurg Clin N Am
– volume: 51
  start-page: 234
  year: 2020
  end-page: 249
  article-title: Tractography reproducibility challenge with empirical data (TraCED): the 2017 ISMRM diffusion study group challenge
  publication-title: J Magn Reson Imaging
– volume: 7
  start-page: 157
  year: 2020
  article-title: Multicenter dataset of multi‐shell diffusion MRI in healthy traveling adults with identical settings
  publication-title: Sci Data
– volume: 57
  start-page: 3083
  year: 2008
  end-page: 3089
  article-title: Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function
  publication-title: Diabetes
– volume: 170
  start-page: 283
  year: 2018
  end-page: 295
  article-title: Recognition of white matter bundles using local and global streamline‐based registration and clustering
  publication-title: Neuroimage
– volume: 59
  start-page: 2241
  year: 2012
  end-page: 2254
  article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison
  publication-title: Neuroimage
– volume: 3
  start-page: 160044
  year: 2016
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci Data
– volume: 26
  start-page: 1399
  year: 2021
  end-page: 1408
  article-title: Variation of HbA1c affects cognition and white matter microstructure in healthy, young adults
  publication-title: Mol Psychiatry
– volume: 1
  start-page: 245
  year: 2005
  end-page: 251
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput Biol
– volume: 16
  start-page: 222
  year: 2017
  end-page: 233
  article-title: A test‐retest study on Parkinson’s PPMI dataset yields statistically significant white matter fascicles
  publication-title: NeuroImage Clin
– year: 2006
– year: 2020
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 26
  start-page: 756
  year: 2010
  end-page: 767
  article-title: Effects of SNR on the accuracy and reproducibility of DTI‐derived fractional anisotropy, mean diffusivity, and principal Eigenvector measurements at 1.5T
  publication-title: J Magn Reson
– volume: 217
  start-page: 1
  year: 2020
  end-page: 15
  article-title: XTRACT—standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 34
  start-page: 51
  year: 2008
  end-page: 61
  article-title: Diffusion tensor imaging (DTI)‐based white matter mapping in brain research: a review
  publication-title: J Mol Neurosci
– volume: 37
  start-page: 103
  year: 1997
  end-page: 111
  article-title: An analytical model of restricted diffusion in bovine optic nerve
  publication-title: Magn Reson Med
– volume: 141
  start-page: 556
  year: 2016
  end-page: 572
  article-title: Incorporating outlier detection and replacement into a non‐parametric framework for movement and distortion correction of diffusion MR images
  publication-title: Neuroimage
– volume: 67
  start-page: 298
  year: 2013
  end-page: 312
  article-title: Spherical‐deconvolution informed filtering of tractograms
  publication-title: Neuroimage
– volume: 223
  start-page: 117329
  year: 2020
  article-title: Shape analysis of the human association pathways
  publication-title: Neuroimage
– volume: 188
  start-page: 598
  year: 2019
  end-page: 615
  article-title: Using GPUs to accelerate computational diffusion MRI: from microstructure estimation to tractography and connectomes
  publication-title: Neuroimage
– year: 2013
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  article-title: Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med Image Anal
– ident: e_1_2_7_79_1
– ident: e_1_2_7_41_1
  doi: 10.1016/j.neuroimage.2007.02.049
– ident: e_1_2_7_46_1
  doi: 10.1016/j.neuroimage.2012.11.049
– ident: e_1_2_7_54_1
  doi: 10.1007/s00234-019-02350-6
– ident: e_1_2_7_8_1
  doi: 10.1007/s00429-020-02129-z
– ident: e_1_2_7_75_1
  doi: 10.1038/sdata.2016.44
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuroimage.2015.10.019
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroscience.2018.03.048
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuroimage.2016.08.016
– ident: e_1_2_7_61_1
  doi: 10.1002/mrm.20426
– ident: e_1_2_7_42_1
  doi: 10.1016/j.neuroimage.2007.07.053
– ident: e_1_2_7_52_1
  doi: 10.1016/j.neuroimage.2010.03.046
– ident: e_1_2_7_11_1
  doi: 10.1002/aur.1243
– ident: e_1_2_7_53_1
  doi: 10.3174/ajnr.A5025
– ident: e_1_2_7_64_1
  doi: 10.1007/s00429-017-1508-x
– ident: e_1_2_7_23_1
  doi: 10.1371/journal.pone.0236418
– ident: e_1_2_7_56_1
  doi: 10.1371/journal.pone.0034125
– ident: e_1_2_7_40_1
  doi: 10.1016/B978-044451741-8/50003-2
– ident: e_1_2_7_67_1
  doi: 10.1016/j.neuroimage.2020.117329
– ident: e_1_2_7_76_1
  doi: 10.1002/nbm.3269
– ident: e_1_2_7_21_1
  doi: 10.1002/jmri.26197
– ident: e_1_2_7_57_1
  doi: 10.1002/jmri.26794
– ident: e_1_2_7_60_1
  doi: 10.1016/j.neuroimage.2018.12.015
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.26059
– ident: e_1_2_7_68_1
  doi: 10.1371/journal.pone.0080713
– ident: e_1_2_7_38_1
  doi: 10.1016/j.neuroimage.2014.05.044
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.28678
– ident: e_1_2_7_78_1
  doi: 10.3389/fnins.2018.01055
– ident: e_1_2_7_66_1
  doi: 10.1016/j.neuroimage.2020.116923
– ident: e_1_2_7_28_1
  doi: 10.1016/S1053-8119(03)00336-7
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neuroimage.2013.05.028
– ident: e_1_2_7_22_1
  doi: 10.1038/s41597-020-0493-8
– ident: e_1_2_7_9_1
  doi: 10.1002/nbm.3752
– ident: e_1_2_7_63_1
  doi: 10.1101/2020.06.12.148999
– ident: e_1_2_7_4_1
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_7_37_1
– ident: e_1_2_7_16_1
  doi: 10.1093/cercor/bhp280
– ident: e_1_2_7_73_1
  doi: 10.1016/j.dcn.2018.03.001
– ident: e_1_2_7_48_1
  doi: 10.1176/appi.ajp.162.7.1256
– ident: e_1_2_7_62_1
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.1910370115
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neuroimage.2010.11.029
– ident: e_1_2_7_70_1
  doi: 10.1002/hbm.24917
– ident: e_1_2_7_5_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2016.06.058
– ident: e_1_2_7_45_1
  doi: 10.1016/j.neuroimage.2019.116137
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2020.117406
– ident: e_1_2_7_71_1
  doi: 10.1371/journal.pbio.0060159
– ident: e_1_2_7_43_1
  doi: 10.3389/fninf.2014.00008
– ident: e_1_2_7_32_1
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neuroimage.2019.06.039
– ident: e_1_2_7_58_1
  doi: 10.1111/jon.12298
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.26259
– volume: 26
  start-page: 756
  year: 2010
  ident: e_1_2_7_34_1
  article-title: Effects of SNR on the accuracy and reproducibility of DTI‐derived fractional anisotropy, mean diffusivity, and principal Eigenvector measurements at 1.5T
  publication-title: J Magn Reson
– ident: e_1_2_7_35_1
  doi: 10.2307/1932409
– ident: e_1_2_7_50_1
  doi: 10.1016/j.biopsych.2006.06.027
– ident: e_1_2_7_55_1
– ident: e_1_2_7_77_1
  doi: 10.1016/j.nicl.2017.07.020
– ident: e_1_2_7_13_1
  doi: 10.2337/db08-0724
– ident: e_1_2_7_15_1
  doi: 10.1038/s41380-019-0509-y
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neuroimage.2017.07.015
– volume-title: Nonparametric Statistical Methods
  year: 2013
  ident: e_1_2_7_33_1
– ident: e_1_2_7_44_1
  doi: 10.1016/j.neuroimage.2007.02.016
– ident: e_1_2_7_47_1
  doi: 10.1016/j.schres.2005.11.020
– ident: e_1_2_7_59_1
  doi: 10.1016/j.media.2018.10.009
– ident: e_1_2_7_80_1
– ident: e_1_2_7_39_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_7_74_1
  doi: 10.1016/j.neuroimage.2018.08.050
– ident: e_1_2_7_3_1
  doi: 10.1007/s12031-007-0029-0
– ident: e_1_2_7_69_1
  doi: 10.3389/fninf.2011.00023
– ident: e_1_2_7_65_1
  doi: 10.3389/fnhum.2017.00306
– ident: e_1_2_7_12_1
  doi: 10.1038/s41380-019-0504-3
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_7_51_1
  doi: 10.1089/brain.2012.0112
– ident: e_1_2_7_2_1
  doi: 10.1016/j.nec.2010.12.004
– ident: e_1_2_7_72_1
  doi: 10.1371/journal.pcbi.0010042
– ident: e_1_2_7_49_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_7_10_1
  doi: 10.1038/sdata.2017.10
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neuroimage.2011.09.081
SSID ssj0009974
Score 2.5236623
Snippet Purpose Diffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but...
Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability...
PurposeDiffusion‐weighted imaging allows investigators to identify structural, microstructural, and connectivity‐based differences between subjects, but...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3304
SubjectTerms Adult
Anisotropy
Brain - diagnostic imaging
bundle segmentation
Child
connectome
Datasets
Diffusion
Diffusion Magnetic Resonance Imaging
Diffusion Tensor Imaging
Dispersion
DTI
Eigenvectors
Humans
Image segmentation
Magnetic resonance imaging
Modularity
Neurites
NODDI
Reproducibility
Scanners
Signal processing
Substantia alba
Tensors
Variability
White Matter
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tuuJx4bG8Agsyj8MeNmnq2EnKrUKsFqSsUKFoOUXxxBERbbakDavl1zN2koqygOCWxqMk1Yw939ifPwO8GOMIMcikO84L4YpYRa5SKF1fFjLi9FP6ZqNwchIez8TbU3m6A6N-L4wl7aMqvWq-8Krys-VWLhc47Hliw7EfR7HZVr4bSiqYB7A7O3k3-dTKbZoxxR5-SGmJuwTtRa8m5PPhol54VF8YHYWfc9AlYHmZH3mtqZbZxXk2n29jWJuEjm7CtP_8lnvyxWvWysPvvyg7_tf_uwU3OkjKJm3TbdjR1R5cTbpF9z24YlmiuLoDdTJ5X37M6pfM7ts1C8-HzFISV-ShSteHLKvy7k6jzBQPy_BrU3bEMEYImVlBW0qY7BuV6a1K-AUrK2aOamnM3B07t9O1OmfJ9M1dmB29_vDq2O0ObXBRiCB0lRTKF0qNeCYxz8nvvo8FXVPFy2Mdx0gAY1SEka-o-s4yjboQvkCeU-UicBzcg0F1VukHwGKMw6iQSgdm-bXAOKcRCJEryQtNb3PgoHdjip2iuTlYY562Wsw8JY-n1uMOPNuYLlsZj98Z7fexkHY9eZVSDBHGjbiQDjzdNFMfNAsrWaXPGmMjKasHNDY6cL8Nnc1bAsEjg1sdiLaCamNg9L23WygsrM53FwkOPN-E398-_sAG5p8t0mSa2IuH__TAR3CdG_6Ope7sw2BdN_oxAbC1etJ1uR-MGDJB
  priority: 102
  providerName: Unpaywall
Title MASiVar: Multisite, multiscanner, and multisubject acquisitions for studying variability in diffusion weighted MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28926
https://www.ncbi.nlm.nih.gov/pubmed/34270123
https://www.proquest.com/docview/2591937245
https://www.proquest.com/docview/2552993322
https://pubmed.ncbi.nlm.nih.gov/PMC9087815
https://www.ncbi.nlm.nih.gov/pmc/articles/9087815
UnpaywallVersion submittedVersion
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VRRwvHOUKlMocD31otlnH3iTwtEJUBSkVWlhUpEqRPXHEim1ashuq8usZO0e1FBDizYkncmzP2HP5M8CLBIeIoZJ-khfCF7GOfK1R-oEsZMTpUQb2oHB6MNqfineH8nANXnVnYRp8iN7hZiXDrddWwJVe7F6Ahh5XxwOyFriF2x6G0oVoJxfQUUnSIDBHwq4ziehQhQK-23-5uhddUjAv50ler8tTdX6m5vNVXdZtRnu34KjrRpOD8nVQL_UAf_yC8Pif_bwNN1sllY0brroDa6bcgGtpG4bfgKsubxQXd6FKxx9mn1T1krmTvDYUvcNckuKC5qw01Q5TZd6-qbV1-jCF3-pZmyrGSGdmDuKWtlD2nQz3Bjf8nM1KZi9vqa03j505B67JWTp5ew-me28-vt7322scfBQiHPlaCh0IrYdcScxz4oQgwILKZAPz2MQxksoxLEZRoMkeV8qgKUQgkOdkywhMwvuwXp6U5iGwGONRVEhtQhuQLTDOaU1C5FrywlBrHmx3E5phi3Fur9qYZw06M89oNDM3mh4860lPG2CP3xFtdlyRtbK9yMhgJK034kJ68LSvJqm0oRZVmpPa0kja50NaLT140DBR30ooeGQ1WQ-iFfbqCSzi92pNOfvikL-TII7iIbX7vGfEv_38tuOrP1Nk6SR1hUf_TvoYbnCb1uMyejZhfVnV5gnpZUu95QRwC65MD96PP_8EOVk45g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigXHuXRQAHzOPTQbLNee5MgLhWi2kLTw9KiXlBkTxyx6jYt2Q1V-fWMnUe1FBDi5iQTObFnPE9_BngdYx9xoKQfZ7nwRaRDX2uUfiBzGXK6lIHdKJzsD0eH4sORPFqCt-1emBofogu4Wclw67UVcBuQ3rpEDT0pT3rkLvDhNbguSLG6JO34EjwqjmsM5lDYlSYWLa5QwLe6Vxe10RUT82ql5EpVnKmLczWdLlqzTh3t3IEv7Y_UVSjHvWque_jjF4zH__3Tu3C7sVPZds1Y92DJFKtwM2ky8atww5WO4uw-lMn2p8lnVb5hbjOvzUZvMlenOKNpK0y5yVSRNXcqbeM-TOG3atJUizEym5lDuSUtyr6T715Dh1-wScHs-S2VDeixcxfDNRlLxrsP4HDn_cG7kd-c5OCjoInxtRQ6EFr3uZKYZcQMQYA5tckN5pGJIiSro58Pw0CTS66UQZOLQCDPyJ0RGA8ewnJxWpg1YBFGwzCX2gxsTjbHKKNlCZFryXNDvXmw0c5oig3MuT1tY5rWAM08pdFM3Wh68LIjPauxPX5HtN6yRdqI9ywln5EM35AL6cGL7jEJps22qMKcVpZGkqof0ILpwaOai7peBoKH1pj1IFzgr47Agn4vPikmXx34dxxEYdSnfl91nPi3j99wjPVnijQZJ67x-N9Jn8PK6CDZS_d29z8-gVvcVvm4Ap91WJ6XlXlKZtpcP3PS-BPIaDtV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlouPAqUlBbM49BDs806dh70VFFWLZAKLS3qASmyHUes2Kbb7Iaq_HrGzqNaCghxc-KJHNsz4xl7_A3Aq1j1lfIFd-MsZy6LZOhKqbjr8ZyHFB-5Zy4KJ4fB_jF7d8JPFmCnvQtT40N0G25GMqy-NgI-yfLtK9DQ0_K0h94CDW7ATYZuhUlfsDe8wo6K4xqCOWRG0cSshRXy6Hb36fxidM3CvB4ouVwVE3F5IcbjeWPWrkaDu_Cl7UcdhPKtV81kT_34BeLxPzt6D-40VirZrdnqPizoYgWWkuYcfgVu2cBRNX0AZbL7afRZlK-JvcprzqK3iI1SnOKkFbrcIqLImjeVNLs-RKjzatTEihE0monFuMU1lHxHz70GDr8ko4KY7C2V2c4jF3YHV2ckGR48hOPB26M3-26Tx8FVjPmBKzmTHpOyTwVXWYas4HkqxzI6wTTSUaTQ5ujnQehJdMiF0ErnzGOKZujMMBX7j2CxOCv0YyCRioIw51L75kQ2V1GGSkkpKjnNNbbmwGY7oalqQM5Nro1xWsMz0xRHM7Wj6cCLjnRSI3v8jmi95Yq0Ee5pih4jmr0hZdyB5101iqU5axGFPqsMDceF3kd16cBqzURdKz6joTFlHQjn2KsjMJDf8zXF6KuF_o69KIz62O7LjhH_9vOblq_-TJEmw8QW1v6d9BksfdwbpB8ODt8_gdvUhPjY6J51WJyVld5AG20mn1pZ_AnWPzn7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tuuJx4bG8Agsyj8MeNmnq2EnKrUKsFqSsUKFoOUXxxBERbbakDavl1zN2koqygOCWxqMk1Yw939ifPwO8GOMIMcikO84L4YpYRa5SKF1fFjLi9FP6ZqNwchIez8TbU3m6A6N-L4wl7aMqvWq-8Krys-VWLhc47Hliw7EfR7HZVr4bSiqYB7A7O3k3-dTKbZoxxR5-SGmJuwTtRa8m5PPhol54VF8YHYWfc9AlYHmZH3mtqZbZxXk2n29jWJuEjm7CtP_8lnvyxWvWysPvvyg7_tf_uwU3OkjKJm3TbdjR1R5cTbpF9z24YlmiuLoDdTJ5X37M6pfM7ts1C8-HzFISV-ShSteHLKvy7k6jzBQPy_BrU3bEMEYImVlBW0qY7BuV6a1K-AUrK2aOamnM3B07t9O1OmfJ9M1dmB29_vDq2O0ObXBRiCB0lRTKF0qNeCYxz8nvvo8FXVPFy2Mdx0gAY1SEka-o-s4yjboQvkCeU-UicBzcg0F1VukHwGKMw6iQSgdm-bXAOKcRCJEryQtNb3PgoHdjip2iuTlYY562Wsw8JY-n1uMOPNuYLlsZj98Z7fexkHY9eZVSDBHGjbiQDjzdNFMfNAsrWaXPGmMjKasHNDY6cL8Nnc1bAsEjg1sdiLaCamNg9L23WygsrM53FwkOPN-E398-_sAG5p8t0mSa2IuH__TAR3CdG_6Ope7sw2BdN_oxAbC1etJ1uR-MGDJB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MASiVar%3A+Multisite%2C+multiscanner%2C+and+multisubject+acquisitions+for+studying+variability+in+diffusion+weighted+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cai%2C+Leon+Y&rft.au=Yang%2C+Qi&rft.au=Kanakaraj%2C+Praitayini&rft.au=Nath%2C+Vishwesh&rft.date=2021-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=86&rft.issue=6&rft.spage=3304&rft_id=info:doi/10.1002%2Fmrm.28926&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon