Clinical and molecular features of treatment‐related neuroendocrine prostate cancer
Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer treatment. Treatment‐related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen recept...
Saved in:
Published in | International journal of urology Vol. 25; no. 4; pp. 345 - 351 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Australia
Wiley Subscription Services, Inc
01.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0919-8172 1442-2042 1442-2042 |
DOI | 10.1111/iju.13526 |
Cover
Abstract | Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer treatment. Treatment‐related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment‐related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment‐related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate‐specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum‐based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment‐related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment‐related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment‐related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment‐related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration‐resistant prostate cancer transdifferentiates to treatment‐related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant. |
---|---|
AbstractList | Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer treatment. Treatment‐related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment‐related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment‐related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate‐specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum‐based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment‐related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel
in vivo
models, have identified some of the key molecular characteristics of treatment‐related neuroendocrine prostate cancer. The gain of
MYCN
and
AURKA
oncogenes, along with the loss of tumor suppressor genes
TP53
and
RB1
are key genomic alterations associated with treatment‐related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as
BRN2
and
PEG10
, are also necessary for treatment‐related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as
SOX2
and
EZH2
, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration‐resistant prostate cancer transdifferentiates to treatment‐related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant. Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer treatment. Treatment‐related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment‐related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment‐related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate‐specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum‐based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment‐related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment‐related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment‐related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment‐related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration‐resistant prostate cancer transdifferentiates to treatment‐related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant. Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant. Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant. |
Author | Ogawa, Osamu Akamatsu, Shusuke Inoue, Takahiro Gleave, Martin E |
Author_xml | – sequence: 1 givenname: Shusuke surname: Akamatsu fullname: Akamatsu, Shusuke organization: Kyoto University Graduate School of Medicine – sequence: 2 givenname: Takahiro surname: Inoue fullname: Inoue, Takahiro organization: Kyoto University Graduate School of Medicine – sequence: 3 givenname: Osamu surname: Ogawa fullname: Ogawa, Osamu email: ogawao@kuhp.kyoto-u.ac.jp organization: Kyoto University Graduate School of Medicine – sequence: 4 givenname: Martin E surname: Gleave fullname: Gleave, Martin E organization: University of British Columbia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29396873$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1u2zAQhYkiQf3TLnqBQkA26UIJ_2RJy8BoUgcBsonXxIgaAjQo0iUlFNnlCD1jT1I6djZByw1BzPfe8M0syJkPHgn5wugVy-fa7qYrJiq--kDmTEpecir5GZnTlrVlw2o-I4uUdpQywVnzkcx4K9pVU4s52a6d9VaDK8D3xRAc6slBLAzCOEVMRTDFGPNjQD_-efkd0cGIfeFxigF9H3S0Hot9DGnMhUKD1xg_kXMDLuHn070k29vvT-sf5cPj3WZ981BqKcWqBM0aY0DXvVzVNXSVwR5kY4RsKuhFR2XFkWkA6LDWRlQaeGd0LhmKnenEklwefXP_nxOmUQ02aXQOPIYpKdbmoG3d5OBLcvEO3YUp-vw7xSmXeWCiOVBfT9TUDdirfbQDxGf1NrAMXB8BnROniEZpm4Pb4McI1ilG1WElKq9Eva4kK769U7yZ_os9uf-yDp__D6rN_fao-AtdFZ3j |
CitedBy_id | crossref_primary_10_1016_j_ejmech_2018_09_023 crossref_primary_10_1038_s42003_023_05727_9 crossref_primary_10_1016_j_prp_2021_153731 crossref_primary_10_1016_j_canlet_2022_215794 crossref_primary_10_1016_j_critrevonc_2023_104157 crossref_primary_10_1016_j_clgc_2019_05_029 crossref_primary_10_1016_j_ajur_2018_11_002 crossref_primary_10_3390_ijms24043719 crossref_primary_10_1093_jjco_hyac102 crossref_primary_10_1155_2021_6649579 crossref_primary_10_1002_iju5_12172 crossref_primary_10_1111_iju_15550 crossref_primary_10_1111_bju_15621 crossref_primary_10_3390_cancers11040434 crossref_primary_10_1016_j_molimm_2019_11_012 crossref_primary_10_1158_1535_7163_MCT_20_0227 crossref_primary_10_1177_03936155231156458 crossref_primary_10_1007_s10719_024_10173_8 crossref_primary_10_3390_ijms22042100 crossref_primary_10_1002_cam4_70047 crossref_primary_10_1186_s13062_024_00500_2 crossref_primary_10_1093_gigascience_giy050 crossref_primary_10_1007_s00345_022_04237_3 crossref_primary_10_1016_j_trecan_2019_05_008 crossref_primary_10_1002_pros_24127 crossref_primary_10_1159_000531134 crossref_primary_10_1002_pros_24404 crossref_primary_10_1002_iju5_12442 crossref_primary_10_1111_cas_14935 crossref_primary_10_3390_cancers13195020 crossref_primary_10_3390_medicines6030082 crossref_primary_10_1002_iju5_12679 crossref_primary_10_1080_14737140_2020_1838280 crossref_primary_10_1158_1541_7786_MCR_18_0605 crossref_primary_10_1158_1078_0432_CCR_18_0653 crossref_primary_10_1093_jjco_hyad011 crossref_primary_10_1101_mcs_a005801 crossref_primary_10_1515_labmed_2018_0190 crossref_primary_10_7888_juoeh_46_23 crossref_primary_10_1146_annurev_cancerbio_070120_092840 crossref_primary_10_1186_s12957_022_02841_6 crossref_primary_10_1093_jscr_rjaa117 crossref_primary_10_1016_j_canlet_2021_11_004 crossref_primary_10_1016_j_pbiomolbio_2021_08_003 crossref_primary_10_1007_s00345_021_03649_x crossref_primary_10_1158_0008_5472_CAN_20_3351 crossref_primary_10_1016_j_celrep_2022_111097 crossref_primary_10_5858_arpa_2019_0124_RA crossref_primary_10_1038_s41388_024_03261_4 crossref_primary_10_2139_ssrn_4060092 crossref_primary_10_1002_iju5_12543 crossref_primary_10_2174_1381612827666210612052317 crossref_primary_10_1111_cas_13869 crossref_primary_10_1080_13685538_2021_1944085 crossref_primary_10_1038_s41585_019_0272_5 crossref_primary_10_3390_cells13161396 crossref_primary_10_3390_cancers14215425 crossref_primary_10_3390_cancers16040805 crossref_primary_10_1007_s00330_023_09619_8 crossref_primary_10_1016_j_clgc_2019_12_017 crossref_primary_10_1016_j_pharmthera_2022_108255 crossref_primary_10_1038_s41598_019_53384_y crossref_primary_10_1530_JME_18_0226 crossref_primary_10_3390_cancers12123792 crossref_primary_10_1016_j_clgc_2019_09_006 crossref_primary_10_1007_s00345_019_02664_3 crossref_primary_10_1007_s00092_020_4240_4 crossref_primary_10_1016_j_jfma_2020_06_021 crossref_primary_10_1038_s41585_021_00490_0 crossref_primary_10_1038_s41467_019_14219_6 crossref_primary_10_3390_cancers15153998 crossref_primary_10_2217_fon_2018_0546 crossref_primary_10_1016_j_critrevonc_2021_103370 crossref_primary_10_1038_s41416_023_02449_x crossref_primary_10_1016_j_ctarc_2020_100221 crossref_primary_10_3390_cancers11101405 crossref_primary_10_1158_1078_0432_CCR_19_0317 crossref_primary_10_7759_cureus_60790 crossref_primary_10_1002_pros_24022 crossref_primary_10_1016_j_modpat_2024_100541 crossref_primary_10_1038_s41419_024_06916_y crossref_primary_10_1080_14737140_2021_1843430 crossref_primary_10_1002_iju5_12242 crossref_primary_10_1016_j_bbcan_2018_06_006 crossref_primary_10_3390_ijms20122883 crossref_primary_10_7759_cureus_18160 crossref_primary_10_1096_fba_2021_00066 crossref_primary_10_1002_iju5_12518 crossref_primary_10_1002_pros_24055 crossref_primary_10_1002_pros_24453 crossref_primary_10_1111_iju_13832 crossref_primary_10_1080_07853890_2024_2320301 crossref_primary_10_1016_j_bbrc_2020_01_026 crossref_primary_10_1093_nar_gkad700 crossref_primary_10_2967_jnumed_124_268020 crossref_primary_10_62347_YFRP8901 crossref_primary_10_1158_0008_5472_CAN_21_0163 crossref_primary_10_1111_pin_13137 crossref_primary_10_3390_ijms24108955 crossref_primary_10_1016_j_clgc_2022_04_004 crossref_primary_10_3389_fcell_2021_639615 crossref_primary_10_1101_mcs_a003657 crossref_primary_10_1016_j_ctrv_2019_03_001 crossref_primary_10_3390_cells9051073 crossref_primary_10_17650_1726_9776_2023_19_1_85_101 crossref_primary_10_1016_j_jbc_2021_101556 crossref_primary_10_1186_s13046_023_02776_0 crossref_primary_10_3390_ijms24021418 |
Cites_doi | 10.1016/j.ccell.2016.03.001 10.1158/1078-0432.CCR-15-0744 10.1002/ijc.29210 10.1158/1078-0432.CCR-15-1259 10.3389/fonc.2014.00060 10.1097/PAS.0000000000000208 10.1016/j.ccell.2016.09.005 10.3322/caac.21387 10.1002/humu.10081 10.1038/pcan.2014.17 10.1016/j.ccr.2010.05.024 10.1593/neo.07103 10.1200/JCO.2011.41.5166 10.1128/MCB.21.24.8471-8482.2001 10.1158/1078-0432.CCR-08-2927 10.1056/NEJMoa1405095 10.1074/jbc.M205784200 10.1158/2159-8290.CD-15-1263 10.1371/journal.pone.0008686 10.1158/2159-8290.CD-11-0259 10.1016/j.cell.2015.10.025 10.1002/path.4047 10.1158/0008-5472.CAN-06-2616 10.1038/sj.onc.1206764 10.1038/ng1699 10.1530/ERC-15-0137 10.1056/NEJMoa041318 10.1016/j.celrep.2015.07.012 10.1093/annonc/mdv257 10.1056/NEJMoa1209096 10.1038/modpathol.2011.7 10.1126/science.aah4307 10.1074/jbc.M705676200 10.1016/j.eururo.2003.11.032 10.1158/0008-5472.CAN-13-2921-T 10.1158/2159-8290.CD-11-0130 10.1074/jbc.275.18.13812 10.1016/j.juro.2007.05.044 10.1126/science.aah4199 10.1200/JCO.2002.12.065 10.1056/NEJMoa1207506 10.1158/1078-0432.CCR-12-3791 10.1593/neo.121550 10.1038/sj.onc.1205834 10.1158/2159-8290.CD-16-1174 10.1093/annonc/mdr004 10.1038/nm.4045 10.1158/1078-0432.CCR-15-0137 10.1038/nrc4016 10.1073/pnas.95.7.3644 10.1006/bbrc.1999.0515 10.1007/s00428-012-1259-2 10.1016/S1078-1439(97)00039-2 10.1073/pnas.91.12.5330 10.1158/1078-0432.CCR-11-1867 10.1016/j.eururo.2016.04.028 10.1007/s11912-017-0593-6 10.1158/1078-0432.CCR-13-1982 10.3390/ijms140815615 10.1158/1078-0432.CCR-13-3309 10.1056/NEJMoa1014618 10.1016/j.ccr.2008.12.005 10.1200/JCO.2013.54.3553 10.1002/pros.21301 |
ContentType | Journal Article |
Copyright | 2018 The Japanese Urological Association 2018 The Japanese Urological Association. Copyright © 2018 The Japanese Urological Association |
Copyright_xml | – notice: 2018 The Japanese Urological Association – notice: 2018 The Japanese Urological Association. – notice: Copyright © 2018 The Japanese Urological Association |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP K9. 7X8 |
DOI | 10.1111/iju.13526 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1442-2042 |
EndPage | 351 |
ExternalDocumentID | 29396873 10_1111_iju_13526 IJU13526 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 YFH YUY ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT CGR CUY CVF ECM EIF NPM WRC WUP 7QP K9. 7X8 |
ID | FETCH-LOGICAL-c4436-ac18ffac7d4677ab5feda48f3485ad3b0452e1caaabe7cf35ca2bfcad3f0ebfb3 |
IEDL.DBID | DR2 |
ISSN | 0919-8172 1442-2042 |
IngestDate | Fri Jul 11 16:07:19 EDT 2025 Fri Jul 25 10:06:26 EDT 2025 Wed Feb 19 02:34:10 EST 2025 Tue Jul 01 03:50:03 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Sun Sep 21 06:19:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | small cell carcinoma prostate cancer neuroendocrine |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 The Japanese Urological Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4436-ac18ffac7d4677ab5feda48f3485ad3b0452e1caaabe7cf35ca2bfcad3f0ebfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 29396873 |
PQID | 2024042381 |
PQPubID | 2045142 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1993997801 proquest_journals_2024042381 pubmed_primary_29396873 crossref_citationtrail_10_1111_iju_13526 crossref_primary_10_1111_iju_13526 wiley_primary_10_1111_iju_13526_IJU13526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2018 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
PublicationDecade | 2010 |
PublicationPlace | Australia |
PublicationPlace_xml | – name: Australia – name: Hoboken |
PublicationTitle | International journal of urology |
PublicationTitleAlternate | Int J Urol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2002; 19 2010; 18 2006; 38 2013; 368 2002; 277 2016; 30 2012; 18 2014; 371 2012; 367 1997; 3 2017; 355 2014; 20 2013; 19 2007; 178 2013; 15 2013; 14 2014; 4 2017; 71 2015; 136 2011; 71 1999; 59 1997; 57 2007; 9 2011; 22 2011; 24 1999; 257 2014; 17 1998; 95 2010; 5 2007; 67 2011; 364 2009; 15 2015; 12 2015; 163 2015; 15 2012; 461 2011; 1 2007; 282 2004; 45 2017; 67 2000; 275 2012; 227 2012; 30 2001; 21 2015; 26 2004; 351 2002; 20 2002; 62 2015; 22 1993; 53 2002; 21 2015; 21 2014; 38 2017; 19 2014; 74 2016; 29 1994; 91 2003; 63 2014; 32 2003; 22 2016; 22 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 Ohsaki Y (e_1_2_11_50_1) 1993; 53 e_1_2_11_19_1 e_1_2_11_71_1 Cox ME (e_1_2_11_40_1) 1999; 59 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Gingrich JR (e_1_2_11_56_1) 1997; 57 e_1_2_11_61_1 Okabe H (e_1_2_11_70_1) 2003; 63 Foster BA (e_1_2_11_57_1) 1997; 57 e_1_2_11_21_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 Kim J (e_1_2_11_44_1) 2002; 62 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 30353954 - Int J Urol. 2019 Jan;26(1):142 |
References_xml | – volume: 355 start-page: 78 year: 2017 end-page: 83 article-title: Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance publication-title: Science – volume: 57 start-page: 3325 year: 1997 end-page: 30 article-title: Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model publication-title: Cancer Res. – volume: 26 start-page: 1589 year: 2015 end-page: 604 article-title: Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015 publication-title: Ann. Oncol. – volume: 15 start-page: 1 year: 2013 end-page: 10 article-title: Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment‐related neuroendocrine prostate cancer publication-title: Neoplasia – volume: 19 start-page: 32 year: 2017 article-title: Emerging variants of castration‐resistant prostate cancer publication-title: Curr. Oncol. Rep. – volume: 95 start-page: 3644 year: 1998 end-page: 9 article-title: Etk/Bmx, a tyrosine kinase with a pleckstrin‐homology domain, is an effector of phosphatidylinositol 3′‐kinase and is involved in interleukin 6‐induced neuroendocrine differentiation of prostate cancer cells publication-title: Proc. Natl Acad. Sci. USA – volume: 461 start-page: 103 year: 2012 end-page: 7 article-title: Neuroendocrine differentiation does not have independent prognostic value in conservatively treated prostate cancer publication-title: Virchows Arch. – volume: 22 start-page: R165 year: 2015 end-page: 82 article-title: Regulation of tumor cell plasticity by the androgen receptor in prostate cancer publication-title: Endocr. Relat. Cancer – volume: 7 start-page: 54 year: 2017 end-page: 71 article-title: The master neural transcription factor BRN2 is an androgen receptor‐suppressed driver of neuroendocrine differentiation in prostate cancer publication-title: Cancer Discov. – volume: 12 start-page: 922 year: 2015 end-page: 36 article-title: The placental gene PEG10 promotes progression of neuroendocrine prostate cancer publication-title: Cell Rep. – volume: 351 start-page: 1513 year: 2004 end-page: 20 article-title: Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer publication-title: N. Engl. J. Med. – volume: 21 start-page: 6908 year: 2002 end-page: 14 article-title: RB and cyclin dependent kinase pathways: defining a distinction between RB and p16 loss in lung cancer publication-title: Oncogene – volume: 71 start-page: 846 year: 2011 end-page: 56 article-title: Neuroendocrine prostate cancer xenografts with large‐cell and small‐cell features derived from a single patient's tumor: morphological, immunohistochemical, and gene expression profiles publication-title: Prostate – volume: 22 start-page: 6704 year: 2003 end-page: 16 article-title: Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion‐induced neuroendocrine differentiation of androgen‐sensitive LNCaP human prostate cancer cells publication-title: Oncogene – volume: 227 start-page: 286 year: 2012 end-page: 97 article-title: From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer publication-title: J. Pathol. – volume: 59 start-page: 3821 year: 1999 end-page: 30 article-title: Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression publication-title: Cancer Res. – volume: 1 start-page: 466 year: 2011 end-page: 8 article-title: Understanding the lethal variant of prostate cancer: power of examining extremes publication-title: Cancer Discov. – volume: 22 start-page: 2476 year: 2011 end-page: 81 article-title: Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration‐resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito‐Urinary Tumor Group (GETUG) P01 trial publication-title: Ann. Oncol. – volume: 15 start-page: 4706 year: 2009 end-page: 11 article-title: Prevalence of TMPRSS2‐ERG fusion prostate cancer among men undergoing prostate biopsy in the United States publication-title: Clin. Cancer Res. – volume: 3 start-page: 67 year: 1997 end-page: 75 article-title: Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone‐depleted medium publication-title: Urol. Oncol. – volume: 57 start-page: 4687 year: 1997 end-page: 91 article-title: Androgen‐independent prostate cancer progression in the TRAMP model publication-title: Cancer Res. – volume: 15 start-page: 701 year: 2015 end-page: 11 article-title: Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer publication-title: Nat. Rev. Cancer – volume: 53 start-page: 3165 year: 1993 end-page: 71 article-title: Human small cell lung cancer cell lines express functional atrial natriuretic peptide receptors publication-title: Cancer Res. – volume: 20 start-page: 3072 year: 2002 end-page: 80 article-title: Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small‐cell carcinoma of the prostate publication-title: J. Clin. Oncol. – volume: 74 start-page: 1272 year: 2014 end-page: 83 article-title: High fidelity patient‐derived xenografts for accelerating prostate cancer discovery and drug development publication-title: Cancer Res. – volume: 29 start-page: 536 year: 2016 end-page: 47 article-title: N‐myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells publication-title: Cancer Cell – volume: 38 start-page: 756 year: 2014 end-page: 67 article-title: Proposed morphologic classification of prostate cancer with neuroendocrine differentiation publication-title: Am. J. Surg. Pathol. – volume: 178 start-page: 844 year: 2007 end-page: 8 article-title: Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers publication-title: J. Urol. – volume: 38 start-page: 101 year: 2006 end-page: 6 article-title: Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality publication-title: Nat. Genet. – volume: 22 start-page: 1510 year: 2016 end-page: 9 article-title: The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer publication-title: Clin. Cancer Res. – volume: 67 start-page: 7 year: 2017 end-page: 30 article-title: Cancer statistics, 2017 publication-title: CA Cancer J. Clin. – volume: 257 start-page: 609 year: 1999 end-page: 14 article-title: Interleukin‐6 induces G1 arrest through induction of p27(Kip1), a cyclin‐dependent kinase inhibitor, and neuron‐like morphology in LNCaP prostate tumor cells publication-title: Biochem. Biophys. Res. Commun. – volume: 1 start-page: 487 year: 2011 end-page: 95 article-title: Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets publication-title: Cancer Discov. – volume: 368 start-page: 138 year: 2013 end-page: 48 article-title: Abiraterone in metastatic prostate cancer without previous chemotherapy publication-title: N. Engl. J. Med. – volume: 282 start-page: 37359 year: 2007 end-page: 69 article-title: Mammalian gene PEG10 expresses two reading frames by high efficiency ‐1 frameshifting in embryonic‐associated tissues publication-title: J. Biol. Chem. – volume: 24 start-page: 820 year: 2011 end-page: 8 article-title: ERG gene rearrangements are common in prostatic small cell carcinomas publication-title: Mod. Pathol. – volume: 22 start-page: 1520 year: 2016 end-page: 30 article-title: Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers publication-title: Clin. Cancer Res. – volume: 20 start-page: 2846 year: 2014 end-page: 50 article-title: Aggressive variants of castration‐resistant prostate cancer publication-title: Clin. Cancer Res. – volume: 14 start-page: 15615 year: 2013 end-page: 35 article-title: Experimental evidence of persistent androgen‐receptor‐dependency in castration‐resistant prostate cancer publication-title: Int. J. Mol. Sci. – volume: 17 start-page: 220 year: 2014 end-page: 6 article-title: Characterization of prostate neuroendocrine cancers and therapeutic management: a literature review publication-title: Prostate Cancer Prostatic Dis. – volume: 21 start-page: 8471 year: 2001 end-page: 82 article-title: Interleukin‐6‐ and cyclic AMP‐mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells publication-title: Mol. Cell. Biol. – volume: 277 start-page: 44462 year: 2002 end-page: 74 article-title: Molecular characterization of a metastatic neuroendocrine cell cancer arising in the prostates of transgenic mice publication-title: J. Biol. Chem. – volume: 275 start-page: 13812 year: 2000 end-page: 8 article-title: Activated 3′,5′‐cyclic AMP‐dependent protein kinase is sufficient to induce neuroendocrine‐like differentiation of the LNCaP prostate tumor cell line publication-title: J. Biol. Chem. – volume: 19 start-page: 3621 year: 2013 end-page: 30 article-title: Platinum‐based chemotherapy for variant castrate‐resistant prostate cancer publication-title: Clin. Cancer Res. – volume: 15 start-page: 67 year: 2009 end-page: 78 article-title: Stabilization of N‐myc is a critical function of Aurora A in human neuroblastoma publication-title: Cancer Cell – volume: 19 start-page: 607 year: 2002 end-page: 14 article-title: The IARC TP53 database: new online mutation analysis and recommendations to users publication-title: Hum. Mutat. – volume: 4 start-page: 60 year: 2014 article-title: The many faces of neuroendocrine differentiation in prostate cancer progression publication-title: Front. Oncol. – volume: 371 start-page: 424 year: 2014 end-page: 33 article-title: Enzalutamide in metastatic prostate cancer before chemotherapy publication-title: N. Engl. J. Med. – volume: 364 start-page: 1995 year: 2011 end-page: 2005 article-title: Abiraterone and increased survival in metastatic prostate cancer publication-title: N. Engl. J. Med. – volume: 62 start-page: 1549 year: 2002 end-page: 54 article-title: Activation of the Erk mitogen‐activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3 phosphorylation publication-title: Cancer Res. – volume: 18 start-page: 666 year: 2012 end-page: 77 article-title: Modeling a lethal prostate cancer variant with small‐cell carcinoma features publication-title: Clin. Cancer Res. – volume: 367 start-page: 1187 year: 2012 end-page: 97 article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy publication-title: N. Engl. J. Med. – volume: 45 start-page: 586 year: 2004 end-page: 92 article-title: Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy publication-title: Eur. Urol. – volume: 32 start-page: 3383 year: 2014 end-page: 90 article-title: Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis‐a systematic review and pooled analysis publication-title: J. Clin. Oncol. – volume: 7 start-page: 736 year: 2017 end-page: 49 article-title: Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration‐resistant prostate cancer publication-title: Cancer Discov. – volume: 91 start-page: 5330 year: 1994 end-page: 4 article-title: Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP publication-title: Proc. Natl Acad. Sci. USA – volume: 30 start-page: 563 year: 2016 end-page: 77 article-title: N‐myc induces an EZH2‐mediated transcriptional program driving neuroendocrine prostate cancer publication-title: Cancer Cell – volume: 18 start-page: 23 year: 2010 end-page: 38 article-title: Siah2‐dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors publication-title: Cancer Cell – volume: 63 start-page: 3043 year: 2003 end-page: 8 article-title: Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1 publication-title: Cancer Res. – volume: 30 start-page: e386 year: 2012 end-page: 9 article-title: Challenges in recognizing treatment‐related neuroendocrine prostate cancer publication-title: J. Clin. Oncol. – volume: 22 start-page: 298 year: 2016 end-page: 305 article-title: Divergent clonal evolution of castration‐resistant neuroendocrine prostate cancer publication-title: Nat. Med. – volume: 5 start-page: e8686 year: 2010 article-title: Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation publication-title: PLoS One – volume: 67 start-page: 3663 year: 2007 end-page: 72 article-title: Androgen‐independent growth and tumorigenesis of prostate cancer cells are enhanced by the presence of PKA‐differentiated neuroendocrine cells publication-title: Cancer Res. – volume: 163 start-page: 1011 year: 2015 end-page: 25 article-title: The molecular taxonomy of primary prostate cancer publication-title: Cell – volume: 9 start-page: 200 year: 2007 end-page: 6 article-title: Molecular characterization of TMPRSS2‐ERG gene fusion in the NCI‐H660 prostate cancer cell line: a new perspective for an old model publication-title: Neoplasia – volume: 136 start-page: E359 year: 2015 end-page: 86 article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 publication-title: Int. J. Cancer – volume: 355 start-page: 84 year: 2017 end-page: 8 article-title: SOX2 promotes lineage plasticity and antiandrogen resistance in TP53‐ and RB1‐deficient prostate cancer publication-title: Science – volume: 20 start-page: 890 year: 2014 end-page: 903 article-title: Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma publication-title: Clin. Cancer Res. – volume: 21 start-page: 5619 year: 2015 end-page: 29 article-title: Cyclin D1 loss distinguishes prostatic small‐cell carcinoma from most prostatic adenocarcinomas publication-title: Clin. Cancer Res. – volume: 71 start-page: 68 year: 2017 end-page: 78 article-title: SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition publication-title: Eur. Urol. – ident: e_1_2_11_36_1 doi: 10.1016/j.ccell.2016.03.001 – ident: e_1_2_11_63_1 doi: 10.1158/1078-0432.CCR-15-0744 – ident: e_1_2_11_3_1 doi: 10.1002/ijc.29210 – ident: e_1_2_11_47_1 doi: 10.1158/1078-0432.CCR-15-1259 – ident: e_1_2_11_27_1 doi: 10.3389/fonc.2014.00060 – volume: 53 start-page: 3165 year: 1993 ident: e_1_2_11_50_1 article-title: Human small cell lung cancer cell lines express functional atrial natriuretic peptide receptors publication-title: Cancer Res. – ident: e_1_2_11_18_1 doi: 10.1097/PAS.0000000000000208 – ident: e_1_2_11_55_1 doi: 10.1016/j.ccell.2016.09.005 – ident: e_1_2_11_2_1 doi: 10.3322/caac.21387 – ident: e_1_2_11_60_1 doi: 10.1002/humu.10081 – ident: e_1_2_11_13_1 doi: 10.1038/pcan.2014.17 – ident: e_1_2_11_64_1 doi: 10.1016/j.ccr.2010.05.024 – volume: 59 start-page: 3821 year: 1999 ident: e_1_2_11_40_1 article-title: Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression publication-title: Cancer Res. – ident: e_1_2_11_51_1 doi: 10.1593/neo.07103 – ident: e_1_2_11_12_1 doi: 10.1200/JCO.2011.41.5166 – ident: e_1_2_11_43_1 doi: 10.1128/MCB.21.24.8471-8482.2001 – ident: e_1_2_11_33_1 doi: 10.1158/1078-0432.CCR-08-2927 – ident: e_1_2_11_7_1 doi: 10.1056/NEJMoa1405095 – ident: e_1_2_11_28_1 doi: 10.1074/jbc.M205784200 – ident: e_1_2_11_65_1 doi: 10.1158/2159-8290.CD-15-1263 – ident: e_1_2_11_67_1 doi: 10.1371/journal.pone.0008686 – ident: e_1_2_11_21_1 doi: 10.1158/2159-8290.CD-11-0259 – ident: e_1_2_11_34_1 doi: 10.1016/j.cell.2015.10.025 – ident: e_1_2_11_54_1 doi: 10.1002/path.4047 – ident: e_1_2_11_45_1 doi: 10.1158/0008-5472.CAN-06-2616 – ident: e_1_2_11_38_1 doi: 10.1038/sj.onc.1206764 – ident: e_1_2_11_68_1 doi: 10.1038/ng1699 – ident: e_1_2_11_16_1 doi: 10.1530/ERC-15-0137 – ident: e_1_2_11_23_1 doi: 10.1056/NEJMoa041318 – ident: e_1_2_11_29_1 doi: 10.1016/j.celrep.2015.07.012 – ident: e_1_2_11_4_1 doi: 10.1093/annonc/mdv257 – ident: e_1_2_11_10_1 doi: 10.1056/NEJMoa1209096 – ident: e_1_2_11_35_1 doi: 10.1038/modpathol.2011.7 – ident: e_1_2_11_48_1 doi: 10.1126/science.aah4307 – ident: e_1_2_11_66_1 doi: 10.1074/jbc.M705676200 – ident: e_1_2_11_11_1 doi: 10.1016/j.eururo.2003.11.032 – ident: e_1_2_11_30_1 doi: 10.1158/0008-5472.CAN-13-2921-T – ident: e_1_2_11_20_1 doi: 10.1158/2159-8290.CD-11-0130 – ident: e_1_2_11_41_1 doi: 10.1074/jbc.275.18.13812 – ident: e_1_2_11_25_1 doi: 10.1016/j.juro.2007.05.044 – ident: e_1_2_11_49_1 doi: 10.1126/science.aah4199 – ident: e_1_2_11_26_1 doi: 10.1200/JCO.2002.12.065 – ident: e_1_2_11_8_1 doi: 10.1056/NEJMoa1207506 – ident: e_1_2_11_14_1 doi: 10.1158/1078-0432.CCR-12-3791 – ident: e_1_2_11_59_1 doi: 10.1593/neo.121550 – ident: e_1_2_11_61_1 doi: 10.1038/sj.onc.1205834 – ident: e_1_2_11_31_1 doi: 10.1158/2159-8290.CD-16-1174 – volume: 57 start-page: 3325 year: 1997 ident: e_1_2_11_57_1 article-title: Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model publication-title: Cancer Res. – ident: e_1_2_11_24_1 doi: 10.1093/annonc/mdr004 – ident: e_1_2_11_32_1 doi: 10.1038/nm.4045 – ident: e_1_2_11_71_1 doi: 10.1158/1078-0432.CCR-15-0137 – ident: e_1_2_11_6_1 doi: 10.1038/nrc4016 – ident: e_1_2_11_42_1 doi: 10.1073/pnas.95.7.3644 – volume: 57 start-page: 4687 year: 1997 ident: e_1_2_11_56_1 article-title: Androgen‐independent prostate cancer progression in the TRAMP model publication-title: Cancer Res. – ident: e_1_2_11_46_1 doi: 10.1006/bbrc.1999.0515 – ident: e_1_2_11_17_1 doi: 10.1007/s00428-012-1259-2 – ident: e_1_2_11_37_1 doi: 10.1016/S1078-1439(97)00039-2 – ident: e_1_2_11_39_1 doi: 10.1073/pnas.91.12.5330 – ident: e_1_2_11_53_1 doi: 10.1158/1078-0432.CCR-11-1867 – volume: 62 start-page: 1549 year: 2002 ident: e_1_2_11_44_1 article-title: Activation of the Erk mitogen‐activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3 phosphorylation publication-title: Cancer Res. – ident: e_1_2_11_69_1 doi: 10.1016/j.eururo.2016.04.028 – ident: e_1_2_11_19_1 doi: 10.1007/s11912-017-0593-6 – ident: e_1_2_11_62_1 doi: 10.1158/1078-0432.CCR-13-1982 – ident: e_1_2_11_5_1 doi: 10.3390/ijms140815615 – ident: e_1_2_11_15_1 doi: 10.1158/1078-0432.CCR-13-3309 – ident: e_1_2_11_9_1 doi: 10.1056/NEJMoa1014618 – ident: e_1_2_11_58_1 doi: 10.1016/j.ccr.2008.12.005 – volume: 63 start-page: 3043 year: 2003 ident: e_1_2_11_70_1 article-title: Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1 publication-title: Cancer Res. – ident: e_1_2_11_22_1 doi: 10.1200/JCO.2013.54.3553 – ident: e_1_2_11_52_1 doi: 10.1002/pros.21301 – reference: 30353954 - Int J Urol. 2019 Jan;26(1):142 |
SSID | ssj0013218 |
Score | 2.5059907 |
SecondaryResourceType | review_article |
Snippet | Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer... Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 345 |
SubjectTerms | Adenocarcinoma Androgen Receptor Antagonists - adverse effects Androgen receptors Androgens Antineoplastic Agents, Hormonal - adverse effects Biomarkers Biomarkers, Tumor - genetics Cancer therapies Castration Cell Transdifferentiation - drug effects Cell Transdifferentiation - genetics Chemotherapy Cytology Gene Expression Regulation, Neoplastic - drug effects Humans Incidence Male Metastases Neoplasms, Second Primary - chemically induced Neoplasms, Second Primary - epidemiology Neoplasms, Second Primary - genetics Neoplasms, Second Primary - pathology neuroendocrine Neuroendocrine Tumors - chemically induced Neuroendocrine Tumors - epidemiology Neuroendocrine Tumors - genetics Neuroendocrine Tumors - pathology p53 Protein Platinum Prognosis Prostate - drug effects Prostate - pathology Prostate cancer Prostatic Neoplasms, Castration-Resistant - drug therapy Prostatic Neoplasms, Castration-Resistant - pathology Receptors, Androgen - metabolism Signal Transduction - drug effects small cell carcinoma Tumor suppressor genes |
Title | Clinical and molecular features of treatment‐related neuroendocrine prostate cancer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fiju.13526 https://www.ncbi.nlm.nih.gov/pubmed/29396873 https://www.proquest.com/docview/2024042381 https://www.proquest.com/docview/1993997801 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG7Eg3jRGF-rJrTiwcvIPHqmZ8hJTGQj6EFc8CAM1S9Q19llH5ec_An5jfklqep5sJoEJLeBrqZnup7TXfUVY8dxIkEKKALIpAiECCGAQoWBiQDdXegMCCpwvrrO-gNxeZfeLbEvbS1MjQ_RHbiRZnh7TQoOarqg5A-Pc2raEBPcdpRkhJv_9SZeuEHwZ3voDumYS8YNqhBl8XQzX_uiPwLM1_GqdzgX6-y-fdU6z-TpdD5Tp_rHGxTH__yWD2ytCUT5WS05G2zJVh_ZylVz1b7JBg1i6JBDZfhz20WXO-uhQKd85HiXpf7r5acvirGGe4BMW5mRprpCPqaqEhzgmsRrssUGF99uz_tB04Mh0EIkWQA6yp0DLQ1aVAkqdRbZl7tE5CmYRBEiu400ACgrtUtSDbFyGodcaJVTyTZbrkaV3WUcQysBOKNAKyGMECoyoY6MME5aNHNpj5203Ch1A1BOfTKGZfujgttU-m3qsaOOdFyjcvyN6KBladko5rSMCdNNUJzSY4fdMKoU3ZNAZUfzaUk5jQUhMyHNTi0K3SoYHRVZLhN8Wc_Qfy9ffr8c-Ie995Pus1UMyPI6M-iALc8mc_sJg56Z-uyl-zce6QAY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXoDzKQktdxIFLqjycOJG4IES1Ld0eqq7UC4rGLwlos1V398KJn8Bv5Jcw4zzUQpGq3iJ5LCf2PL7YM58B3qaZQiWxirBQMpIyxggrHUc2QQp3sbcoucB5cliMp3L_JD9Zgfd9LUzLDzFsuLFlBH_NBs4b0pes_Ou3Jd_akBZ34G44n2NIdJReOkMIu3sUEHmjS6UdrxDn8Qxdr0ajfyDmVcQaQs7uI_jSv2ybafJ9Z7nQO-bHXzyOt_2ax_Cww6LiQ6s8a7Dimidwb9Kdtj-FaUcaeiqwseKsv0hXeBfYQOdi5sWQqP77569QF-OsCByZrrEzw6WF4pwLS6hBGNawi2cw3f10_HEcddcwREbKrIjQJKX3aJQlp6pQ597RCpY-k2WONtNMyu4Sg4jaKeOz3GCqvaEmHzvtdfYcVptZ416AIHQlkXpU5CiklVInNjaJldYrR54uH8G7fjlq03GU81UZp3X_r0LTVIdpGsGbQfS8Jea4TmijX9O6s815nTKtm2SoMoLtoZmsio9KsHGz5bzmtMaKyZlIZr3VhWEUAkhVUaqMXjas6P-Hr_f2p-Hh5c1Ft-D--HhyUB_sHX5-BQ8In5VtotAGrC4ulm6TMNBCvw6q_gcTSgQ2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5ihOAlxmdWo7biwcuEefRMz5BTUJckmiDiQg7CUP0Ckzi7ZHcvnvIT8hv9JanqeZD4APE20N30TNfrm-6qrwFep5lCJbGKsFAykjLGCCsdRzZBCnextyi5wPnwqNibyIPj_HgFdvpamJYfYthwY8sI_poNfGb9NSP_drLkSxvS4hbclgWFSUZEn9NrRwhhc4_iIe9zqbSjFeI0nmHozWD0G8K8CVhDxBnfha_9u7aJJqfby4XeNj9-oXH8z4_ZgPUOiYrdVnXuwYpr7sPaYXfW_gAmHWXomcDGiu_9NbrCu8AFOhdTL4Y09Z8Xl6EqxlkRGDJdY6eGCwvFjMtKqEEY1q_zhzAZv__ydi_qLmGIjJRZEaFJSu_RKEsuVaHOvSP5lT6TZY4200zJ7hKDiNop47PcYKq9oSYfO-119ghWm2njNkEQtpJIIypyE9JKqRMbm8RK65UjP5eP4E0vjdp0DOV8UcZZ3f-p0DLVYZlG8GroOmtpOf7UaasXad1Z5rxOmdRNMlAZwcuhmWyKD0qwcdPlvOakxoqpmajP41YVhlkIHlVFqTJ62SDQv09f7x9MwsOTf-_6AtY-vRvXH_ePPjyFOwTOyjZLaAtWF-dL94wA0EI_D4p-BRE9AuU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+and+molecular+features+of+treatment%E2%80%90related+neuroendocrine+prostate+cancer&rft.jtitle=International+journal+of+urology&rft.au=Akamatsu%2C+Shusuke&rft.au=Inoue%2C+Takahiro&rft.au=Ogawa%2C+Osamu&rft.au=Gleave%2C+Martin+E&rft.date=2018-04-01&rft.issn=0919-8172&rft.eissn=1442-2042&rft.volume=25&rft.issue=4&rft.spage=345&rft.epage=351&rft_id=info:doi/10.1111%2Fiju.13526&rft.externalDBID=10.1111%252Fiju.13526&rft.externalDocID=IJU13526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0919-8172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0919-8172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0919-8172&client=summon |