Clinical and molecular features of treatment‐related neuroendocrine prostate cancer

Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer treatment. Treatment‐related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen recept...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of urology Vol. 25; no. 4; pp. 345 - 351
Main Authors Akamatsu, Shusuke, Inoue, Takahiro, Ogawa, Osamu, Gleave, Martin E
Format Journal Article
LanguageEnglish
Published Australia Wiley Subscription Services, Inc 01.04.2018
Subjects
Online AccessGet full text
ISSN0919-8172
1442-2042
1442-2042
DOI10.1111/iju.13526

Cover

Abstract Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer treatment. Treatment‐related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment‐related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment‐related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate‐specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum‐based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment‐related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment‐related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment‐related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment‐related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration‐resistant prostate cancer transdifferentiates to treatment‐related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
AbstractList Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer treatment. Treatment‐related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment‐related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment‐related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate‐specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum‐based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment‐related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment‐related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment‐related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10 , are also necessary for treatment‐related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2 , that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration‐resistant prostate cancer transdifferentiates to treatment‐related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer treatment. Treatment‐related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment‐related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment‐related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate‐specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum‐based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment‐related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment‐related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment‐related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment‐related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration‐resistant prostate cancer transdifferentiates to treatment‐related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
Author Ogawa, Osamu
Akamatsu, Shusuke
Inoue, Takahiro
Gleave, Martin E
Author_xml – sequence: 1
  givenname: Shusuke
  surname: Akamatsu
  fullname: Akamatsu, Shusuke
  organization: Kyoto University Graduate School of Medicine
– sequence: 2
  givenname: Takahiro
  surname: Inoue
  fullname: Inoue, Takahiro
  organization: Kyoto University Graduate School of Medicine
– sequence: 3
  givenname: Osamu
  surname: Ogawa
  fullname: Ogawa, Osamu
  email: ogawao@kuhp.kyoto-u.ac.jp
  organization: Kyoto University Graduate School of Medicine
– sequence: 4
  givenname: Martin E
  surname: Gleave
  fullname: Gleave, Martin E
  organization: University of British Columbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29396873$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1u2zAQhYkiQf3TLnqBQkA26UIJ_2RJy8BoUgcBsonXxIgaAjQo0iUlFNnlCD1jT1I6djZByw1BzPfe8M0syJkPHgn5wugVy-fa7qYrJiq--kDmTEpecir5GZnTlrVlw2o-I4uUdpQywVnzkcx4K9pVU4s52a6d9VaDK8D3xRAc6slBLAzCOEVMRTDFGPNjQD_-efkd0cGIfeFxigF9H3S0Hot9DGnMhUKD1xg_kXMDLuHn070k29vvT-sf5cPj3WZ981BqKcWqBM0aY0DXvVzVNXSVwR5kY4RsKuhFR2XFkWkA6LDWRlQaeGd0LhmKnenEklwefXP_nxOmUQ02aXQOPIYpKdbmoG3d5OBLcvEO3YUp-vw7xSmXeWCiOVBfT9TUDdirfbQDxGf1NrAMXB8BnROniEZpm4Pb4McI1ilG1WElKq9Eva4kK769U7yZ_os9uf-yDp__D6rN_fao-AtdFZ3j
CitedBy_id crossref_primary_10_1016_j_ejmech_2018_09_023
crossref_primary_10_1038_s42003_023_05727_9
crossref_primary_10_1016_j_prp_2021_153731
crossref_primary_10_1016_j_canlet_2022_215794
crossref_primary_10_1016_j_critrevonc_2023_104157
crossref_primary_10_1016_j_clgc_2019_05_029
crossref_primary_10_1016_j_ajur_2018_11_002
crossref_primary_10_3390_ijms24043719
crossref_primary_10_1093_jjco_hyac102
crossref_primary_10_1155_2021_6649579
crossref_primary_10_1002_iju5_12172
crossref_primary_10_1111_iju_15550
crossref_primary_10_1111_bju_15621
crossref_primary_10_3390_cancers11040434
crossref_primary_10_1016_j_molimm_2019_11_012
crossref_primary_10_1158_1535_7163_MCT_20_0227
crossref_primary_10_1177_03936155231156458
crossref_primary_10_1007_s10719_024_10173_8
crossref_primary_10_3390_ijms22042100
crossref_primary_10_1002_cam4_70047
crossref_primary_10_1186_s13062_024_00500_2
crossref_primary_10_1093_gigascience_giy050
crossref_primary_10_1007_s00345_022_04237_3
crossref_primary_10_1016_j_trecan_2019_05_008
crossref_primary_10_1002_pros_24127
crossref_primary_10_1159_000531134
crossref_primary_10_1002_pros_24404
crossref_primary_10_1002_iju5_12442
crossref_primary_10_1111_cas_14935
crossref_primary_10_3390_cancers13195020
crossref_primary_10_3390_medicines6030082
crossref_primary_10_1002_iju5_12679
crossref_primary_10_1080_14737140_2020_1838280
crossref_primary_10_1158_1541_7786_MCR_18_0605
crossref_primary_10_1158_1078_0432_CCR_18_0653
crossref_primary_10_1093_jjco_hyad011
crossref_primary_10_1101_mcs_a005801
crossref_primary_10_1515_labmed_2018_0190
crossref_primary_10_7888_juoeh_46_23
crossref_primary_10_1146_annurev_cancerbio_070120_092840
crossref_primary_10_1186_s12957_022_02841_6
crossref_primary_10_1093_jscr_rjaa117
crossref_primary_10_1016_j_canlet_2021_11_004
crossref_primary_10_1016_j_pbiomolbio_2021_08_003
crossref_primary_10_1007_s00345_021_03649_x
crossref_primary_10_1158_0008_5472_CAN_20_3351
crossref_primary_10_1016_j_celrep_2022_111097
crossref_primary_10_5858_arpa_2019_0124_RA
crossref_primary_10_1038_s41388_024_03261_4
crossref_primary_10_2139_ssrn_4060092
crossref_primary_10_1002_iju5_12543
crossref_primary_10_2174_1381612827666210612052317
crossref_primary_10_1111_cas_13869
crossref_primary_10_1080_13685538_2021_1944085
crossref_primary_10_1038_s41585_019_0272_5
crossref_primary_10_3390_cells13161396
crossref_primary_10_3390_cancers14215425
crossref_primary_10_3390_cancers16040805
crossref_primary_10_1007_s00330_023_09619_8
crossref_primary_10_1016_j_clgc_2019_12_017
crossref_primary_10_1016_j_pharmthera_2022_108255
crossref_primary_10_1038_s41598_019_53384_y
crossref_primary_10_1530_JME_18_0226
crossref_primary_10_3390_cancers12123792
crossref_primary_10_1016_j_clgc_2019_09_006
crossref_primary_10_1007_s00345_019_02664_3
crossref_primary_10_1007_s00092_020_4240_4
crossref_primary_10_1016_j_jfma_2020_06_021
crossref_primary_10_1038_s41585_021_00490_0
crossref_primary_10_1038_s41467_019_14219_6
crossref_primary_10_3390_cancers15153998
crossref_primary_10_2217_fon_2018_0546
crossref_primary_10_1016_j_critrevonc_2021_103370
crossref_primary_10_1038_s41416_023_02449_x
crossref_primary_10_1016_j_ctarc_2020_100221
crossref_primary_10_3390_cancers11101405
crossref_primary_10_1158_1078_0432_CCR_19_0317
crossref_primary_10_7759_cureus_60790
crossref_primary_10_1002_pros_24022
crossref_primary_10_1016_j_modpat_2024_100541
crossref_primary_10_1038_s41419_024_06916_y
crossref_primary_10_1080_14737140_2021_1843430
crossref_primary_10_1002_iju5_12242
crossref_primary_10_1016_j_bbcan_2018_06_006
crossref_primary_10_3390_ijms20122883
crossref_primary_10_7759_cureus_18160
crossref_primary_10_1096_fba_2021_00066
crossref_primary_10_1002_iju5_12518
crossref_primary_10_1002_pros_24055
crossref_primary_10_1002_pros_24453
crossref_primary_10_1111_iju_13832
crossref_primary_10_1080_07853890_2024_2320301
crossref_primary_10_1016_j_bbrc_2020_01_026
crossref_primary_10_1093_nar_gkad700
crossref_primary_10_2967_jnumed_124_268020
crossref_primary_10_62347_YFRP8901
crossref_primary_10_1158_0008_5472_CAN_21_0163
crossref_primary_10_1111_pin_13137
crossref_primary_10_3390_ijms24108955
crossref_primary_10_1016_j_clgc_2022_04_004
crossref_primary_10_3389_fcell_2021_639615
crossref_primary_10_1101_mcs_a003657
crossref_primary_10_1016_j_ctrv_2019_03_001
crossref_primary_10_3390_cells9051073
crossref_primary_10_17650_1726_9776_2023_19_1_85_101
crossref_primary_10_1016_j_jbc_2021_101556
crossref_primary_10_1186_s13046_023_02776_0
crossref_primary_10_3390_ijms24021418
Cites_doi 10.1016/j.ccell.2016.03.001
10.1158/1078-0432.CCR-15-0744
10.1002/ijc.29210
10.1158/1078-0432.CCR-15-1259
10.3389/fonc.2014.00060
10.1097/PAS.0000000000000208
10.1016/j.ccell.2016.09.005
10.3322/caac.21387
10.1002/humu.10081
10.1038/pcan.2014.17
10.1016/j.ccr.2010.05.024
10.1593/neo.07103
10.1200/JCO.2011.41.5166
10.1128/MCB.21.24.8471-8482.2001
10.1158/1078-0432.CCR-08-2927
10.1056/NEJMoa1405095
10.1074/jbc.M205784200
10.1158/2159-8290.CD-15-1263
10.1371/journal.pone.0008686
10.1158/2159-8290.CD-11-0259
10.1016/j.cell.2015.10.025
10.1002/path.4047
10.1158/0008-5472.CAN-06-2616
10.1038/sj.onc.1206764
10.1038/ng1699
10.1530/ERC-15-0137
10.1056/NEJMoa041318
10.1016/j.celrep.2015.07.012
10.1093/annonc/mdv257
10.1056/NEJMoa1209096
10.1038/modpathol.2011.7
10.1126/science.aah4307
10.1074/jbc.M705676200
10.1016/j.eururo.2003.11.032
10.1158/0008-5472.CAN-13-2921-T
10.1158/2159-8290.CD-11-0130
10.1074/jbc.275.18.13812
10.1016/j.juro.2007.05.044
10.1126/science.aah4199
10.1200/JCO.2002.12.065
10.1056/NEJMoa1207506
10.1158/1078-0432.CCR-12-3791
10.1593/neo.121550
10.1038/sj.onc.1205834
10.1158/2159-8290.CD-16-1174
10.1093/annonc/mdr004
10.1038/nm.4045
10.1158/1078-0432.CCR-15-0137
10.1038/nrc4016
10.1073/pnas.95.7.3644
10.1006/bbrc.1999.0515
10.1007/s00428-012-1259-2
10.1016/S1078-1439(97)00039-2
10.1073/pnas.91.12.5330
10.1158/1078-0432.CCR-11-1867
10.1016/j.eururo.2016.04.028
10.1007/s11912-017-0593-6
10.1158/1078-0432.CCR-13-1982
10.3390/ijms140815615
10.1158/1078-0432.CCR-13-3309
10.1056/NEJMoa1014618
10.1016/j.ccr.2008.12.005
10.1200/JCO.2013.54.3553
10.1002/pros.21301
ContentType Journal Article
Copyright 2018 The Japanese Urological Association
2018 The Japanese Urological Association.
Copyright © 2018 The Japanese Urological Association
Copyright_xml – notice: 2018 The Japanese Urological Association
– notice: 2018 The Japanese Urological Association.
– notice: Copyright © 2018 The Japanese Urological Association
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
7X8
DOI 10.1111/iju.13526
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1442-2042
EndPage 351
ExternalDocumentID 29396873
10_1111_iju_13526
IJU13526
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
NPM
WRC
WUP
7QP
K9.
7X8
ID FETCH-LOGICAL-c4436-ac18ffac7d4677ab5feda48f3485ad3b0452e1caaabe7cf35ca2bfcad3f0ebfb3
IEDL.DBID DR2
ISSN 0919-8172
1442-2042
IngestDate Fri Jul 11 16:07:19 EDT 2025
Fri Jul 25 10:06:26 EDT 2025
Wed Feb 19 02:34:10 EST 2025
Tue Jul 01 03:50:03 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Sun Sep 21 06:19:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords small cell carcinoma
prostate cancer
neuroendocrine
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 The Japanese Urological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-ac18ffac7d4677ab5feda48f3485ad3b0452e1caaabe7cf35ca2bfcad3f0ebfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 29396873
PQID 2024042381
PQPubID 2045142
PageCount 7
ParticipantIDs proquest_miscellaneous_1993997801
proquest_journals_2024042381
pubmed_primary_29396873
crossref_citationtrail_10_1111_iju_13526
crossref_primary_10_1111_iju_13526
wiley_primary_10_1111_iju_13526_IJU13526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Hoboken
PublicationTitle International journal of urology
PublicationTitleAlternate Int J Urol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2002; 19
2010; 18
2006; 38
2013; 368
2002; 277
2016; 30
2012; 18
2014; 371
2012; 367
1997; 3
2017; 355
2014; 20
2013; 19
2007; 178
2013; 15
2013; 14
2014; 4
2017; 71
2015; 136
2011; 71
1999; 59
1997; 57
2007; 9
2011; 22
2011; 24
1999; 257
2014; 17
1998; 95
2010; 5
2007; 67
2011; 364
2009; 15
2015; 12
2015; 163
2015; 15
2012; 461
2011; 1
2007; 282
2004; 45
2017; 67
2000; 275
2012; 227
2012; 30
2001; 21
2015; 26
2004; 351
2002; 20
2002; 62
2015; 22
1993; 53
2002; 21
2015; 21
2014; 38
2017; 19
2014; 74
2016; 29
1994; 91
2003; 63
2014; 32
2003; 22
2016; 22
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
Ohsaki Y (e_1_2_11_50_1) 1993; 53
e_1_2_11_19_1
e_1_2_11_71_1
Cox ME (e_1_2_11_40_1) 1999; 59
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Gingrich JR (e_1_2_11_56_1) 1997; 57
e_1_2_11_61_1
Okabe H (e_1_2_11_70_1) 2003; 63
Foster BA (e_1_2_11_57_1) 1997; 57
e_1_2_11_21_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
Kim J (e_1_2_11_44_1) 2002; 62
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
30353954 - Int J Urol. 2019 Jan;26(1):142
References_xml – volume: 355
  start-page: 78
  year: 2017
  end-page: 83
  article-title: Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance
  publication-title: Science
– volume: 57
  start-page: 3325
  year: 1997
  end-page: 30
  article-title: Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model
  publication-title: Cancer Res.
– volume: 26
  start-page: 1589
  year: 2015
  end-page: 604
  article-title: Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015
  publication-title: Ann. Oncol.
– volume: 15
  start-page: 1
  year: 2013
  end-page: 10
  article-title: Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment‐related neuroendocrine prostate cancer
  publication-title: Neoplasia
– volume: 19
  start-page: 32
  year: 2017
  article-title: Emerging variants of castration‐resistant prostate cancer
  publication-title: Curr. Oncol. Rep.
– volume: 95
  start-page: 3644
  year: 1998
  end-page: 9
  article-title: Etk/Bmx, a tyrosine kinase with a pleckstrin‐homology domain, is an effector of phosphatidylinositol 3′‐kinase and is involved in interleukin 6‐induced neuroendocrine differentiation of prostate cancer cells
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 461
  start-page: 103
  year: 2012
  end-page: 7
  article-title: Neuroendocrine differentiation does not have independent prognostic value in conservatively treated prostate cancer
  publication-title: Virchows Arch.
– volume: 22
  start-page: R165
  year: 2015
  end-page: 82
  article-title: Regulation of tumor cell plasticity by the androgen receptor in prostate cancer
  publication-title: Endocr. Relat. Cancer
– volume: 7
  start-page: 54
  year: 2017
  end-page: 71
  article-title: The master neural transcription factor BRN2 is an androgen receptor‐suppressed driver of neuroendocrine differentiation in prostate cancer
  publication-title: Cancer Discov.
– volume: 12
  start-page: 922
  year: 2015
  end-page: 36
  article-title: The placental gene PEG10 promotes progression of neuroendocrine prostate cancer
  publication-title: Cell Rep.
– volume: 351
  start-page: 1513
  year: 2004
  end-page: 20
  article-title: Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer
  publication-title: N. Engl. J. Med.
– volume: 21
  start-page: 6908
  year: 2002
  end-page: 14
  article-title: RB and cyclin dependent kinase pathways: defining a distinction between RB and p16 loss in lung cancer
  publication-title: Oncogene
– volume: 71
  start-page: 846
  year: 2011
  end-page: 56
  article-title: Neuroendocrine prostate cancer xenografts with large‐cell and small‐cell features derived from a single patient's tumor: morphological, immunohistochemical, and gene expression profiles
  publication-title: Prostate
– volume: 22
  start-page: 6704
  year: 2003
  end-page: 16
  article-title: Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion‐induced neuroendocrine differentiation of androgen‐sensitive LNCaP human prostate cancer cells
  publication-title: Oncogene
– volume: 227
  start-page: 286
  year: 2012
  end-page: 97
  article-title: From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer
  publication-title: J. Pathol.
– volume: 59
  start-page: 3821
  year: 1999
  end-page: 30
  article-title: Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression
  publication-title: Cancer Res.
– volume: 1
  start-page: 466
  year: 2011
  end-page: 8
  article-title: Understanding the lethal variant of prostate cancer: power of examining extremes
  publication-title: Cancer Discov.
– volume: 22
  start-page: 2476
  year: 2011
  end-page: 81
  article-title: Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration‐resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito‐Urinary Tumor Group (GETUG) P01 trial
  publication-title: Ann. Oncol.
– volume: 15
  start-page: 4706
  year: 2009
  end-page: 11
  article-title: Prevalence of TMPRSS2‐ERG fusion prostate cancer among men undergoing prostate biopsy in the United States
  publication-title: Clin. Cancer Res.
– volume: 3
  start-page: 67
  year: 1997
  end-page: 75
  article-title: Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone‐depleted medium
  publication-title: Urol. Oncol.
– volume: 57
  start-page: 4687
  year: 1997
  end-page: 91
  article-title: Androgen‐independent prostate cancer progression in the TRAMP model
  publication-title: Cancer Res.
– volume: 15
  start-page: 701
  year: 2015
  end-page: 11
  article-title: Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer
  publication-title: Nat. Rev. Cancer
– volume: 53
  start-page: 3165
  year: 1993
  end-page: 71
  article-title: Human small cell lung cancer cell lines express functional atrial natriuretic peptide receptors
  publication-title: Cancer Res.
– volume: 20
  start-page: 3072
  year: 2002
  end-page: 80
  article-title: Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small‐cell carcinoma of the prostate
  publication-title: J. Clin. Oncol.
– volume: 74
  start-page: 1272
  year: 2014
  end-page: 83
  article-title: High fidelity patient‐derived xenografts for accelerating prostate cancer discovery and drug development
  publication-title: Cancer Res.
– volume: 29
  start-page: 536
  year: 2016
  end-page: 47
  article-title: N‐myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells
  publication-title: Cancer Cell
– volume: 38
  start-page: 756
  year: 2014
  end-page: 67
  article-title: Proposed morphologic classification of prostate cancer with neuroendocrine differentiation
  publication-title: Am. J. Surg. Pathol.
– volume: 178
  start-page: 844
  year: 2007
  end-page: 8
  article-title: Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers
  publication-title: J. Urol.
– volume: 38
  start-page: 101
  year: 2006
  end-page: 6
  article-title: Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality
  publication-title: Nat. Genet.
– volume: 22
  start-page: 1510
  year: 2016
  end-page: 9
  article-title: The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer
  publication-title: Clin. Cancer Res.
– volume: 67
  start-page: 7
  year: 2017
  end-page: 30
  article-title: Cancer statistics, 2017
  publication-title: CA Cancer J. Clin.
– volume: 257
  start-page: 609
  year: 1999
  end-page: 14
  article-title: Interleukin‐6 induces G1 arrest through induction of p27(Kip1), a cyclin‐dependent kinase inhibitor, and neuron‐like morphology in LNCaP prostate tumor cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 1
  start-page: 487
  year: 2011
  end-page: 95
  article-title: Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets
  publication-title: Cancer Discov.
– volume: 368
  start-page: 138
  year: 2013
  end-page: 48
  article-title: Abiraterone in metastatic prostate cancer without previous chemotherapy
  publication-title: N. Engl. J. Med.
– volume: 282
  start-page: 37359
  year: 2007
  end-page: 69
  article-title: Mammalian gene PEG10 expresses two reading frames by high efficiency ‐1 frameshifting in embryonic‐associated tissues
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 820
  year: 2011
  end-page: 8
  article-title: ERG gene rearrangements are common in prostatic small cell carcinomas
  publication-title: Mod. Pathol.
– volume: 22
  start-page: 1520
  year: 2016
  end-page: 30
  article-title: Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers
  publication-title: Clin. Cancer Res.
– volume: 20
  start-page: 2846
  year: 2014
  end-page: 50
  article-title: Aggressive variants of castration‐resistant prostate cancer
  publication-title: Clin. Cancer Res.
– volume: 14
  start-page: 15615
  year: 2013
  end-page: 35
  article-title: Experimental evidence of persistent androgen‐receptor‐dependency in castration‐resistant prostate cancer
  publication-title: Int. J. Mol. Sci.
– volume: 17
  start-page: 220
  year: 2014
  end-page: 6
  article-title: Characterization of prostate neuroendocrine cancers and therapeutic management: a literature review
  publication-title: Prostate Cancer Prostatic Dis.
– volume: 21
  start-page: 8471
  year: 2001
  end-page: 82
  article-title: Interleukin‐6‐ and cyclic AMP‐mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells
  publication-title: Mol. Cell. Biol.
– volume: 277
  start-page: 44462
  year: 2002
  end-page: 74
  article-title: Molecular characterization of a metastatic neuroendocrine cell cancer arising in the prostates of transgenic mice
  publication-title: J. Biol. Chem.
– volume: 275
  start-page: 13812
  year: 2000
  end-page: 8
  article-title: Activated 3′,5′‐cyclic AMP‐dependent protein kinase is sufficient to induce neuroendocrine‐like differentiation of the LNCaP prostate tumor cell line
  publication-title: J. Biol. Chem.
– volume: 19
  start-page: 3621
  year: 2013
  end-page: 30
  article-title: Platinum‐based chemotherapy for variant castrate‐resistant prostate cancer
  publication-title: Clin. Cancer Res.
– volume: 15
  start-page: 67
  year: 2009
  end-page: 78
  article-title: Stabilization of N‐myc is a critical function of Aurora A in human neuroblastoma
  publication-title: Cancer Cell
– volume: 19
  start-page: 607
  year: 2002
  end-page: 14
  article-title: The IARC TP53 database: new online mutation analysis and recommendations to users
  publication-title: Hum. Mutat.
– volume: 4
  start-page: 60
  year: 2014
  article-title: The many faces of neuroendocrine differentiation in prostate cancer progression
  publication-title: Front. Oncol.
– volume: 371
  start-page: 424
  year: 2014
  end-page: 33
  article-title: Enzalutamide in metastatic prostate cancer before chemotherapy
  publication-title: N. Engl. J. Med.
– volume: 364
  start-page: 1995
  year: 2011
  end-page: 2005
  article-title: Abiraterone and increased survival in metastatic prostate cancer
  publication-title: N. Engl. J. Med.
– volume: 62
  start-page: 1549
  year: 2002
  end-page: 54
  article-title: Activation of the Erk mitogen‐activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3 phosphorylation
  publication-title: Cancer Res.
– volume: 18
  start-page: 666
  year: 2012
  end-page: 77
  article-title: Modeling a lethal prostate cancer variant with small‐cell carcinoma features
  publication-title: Clin. Cancer Res.
– volume: 367
  start-page: 1187
  year: 2012
  end-page: 97
  article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy
  publication-title: N. Engl. J. Med.
– volume: 45
  start-page: 586
  year: 2004
  end-page: 92
  article-title: Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy
  publication-title: Eur. Urol.
– volume: 32
  start-page: 3383
  year: 2014
  end-page: 90
  article-title: Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis‐a systematic review and pooled analysis
  publication-title: J. Clin. Oncol.
– volume: 7
  start-page: 736
  year: 2017
  end-page: 49
  article-title: Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration‐resistant prostate cancer
  publication-title: Cancer Discov.
– volume: 91
  start-page: 5330
  year: 1994
  end-page: 4
  article-title: Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 30
  start-page: 563
  year: 2016
  end-page: 77
  article-title: N‐myc induces an EZH2‐mediated transcriptional program driving neuroendocrine prostate cancer
  publication-title: Cancer Cell
– volume: 18
  start-page: 23
  year: 2010
  end-page: 38
  article-title: Siah2‐dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors
  publication-title: Cancer Cell
– volume: 63
  start-page: 3043
  year: 2003
  end-page: 8
  article-title: Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1
  publication-title: Cancer Res.
– volume: 30
  start-page: e386
  year: 2012
  end-page: 9
  article-title: Challenges in recognizing treatment‐related neuroendocrine prostate cancer
  publication-title: J. Clin. Oncol.
– volume: 22
  start-page: 298
  year: 2016
  end-page: 305
  article-title: Divergent clonal evolution of castration‐resistant neuroendocrine prostate cancer
  publication-title: Nat. Med.
– volume: 5
  start-page: e8686
  year: 2010
  article-title: Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation
  publication-title: PLoS One
– volume: 67
  start-page: 3663
  year: 2007
  end-page: 72
  article-title: Androgen‐independent growth and tumorigenesis of prostate cancer cells are enhanced by the presence of PKA‐differentiated neuroendocrine cells
  publication-title: Cancer Res.
– volume: 163
  start-page: 1011
  year: 2015
  end-page: 25
  article-title: The molecular taxonomy of primary prostate cancer
  publication-title: Cell
– volume: 9
  start-page: 200
  year: 2007
  end-page: 6
  article-title: Molecular characterization of TMPRSS2‐ERG gene fusion in the NCI‐H660 prostate cancer cell line: a new perspective for an old model
  publication-title: Neoplasia
– volume: 136
  start-page: E359
  year: 2015
  end-page: 86
  article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012
  publication-title: Int. J. Cancer
– volume: 355
  start-page: 84
  year: 2017
  end-page: 8
  article-title: SOX2 promotes lineage plasticity and antiandrogen resistance in TP53‐ and RB1‐deficient prostate cancer
  publication-title: Science
– volume: 20
  start-page: 890
  year: 2014
  end-page: 903
  article-title: Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma
  publication-title: Clin. Cancer Res.
– volume: 21
  start-page: 5619
  year: 2015
  end-page: 29
  article-title: Cyclin D1 loss distinguishes prostatic small‐cell carcinoma from most prostatic adenocarcinomas
  publication-title: Clin. Cancer Res.
– volume: 71
  start-page: 68
  year: 2017
  end-page: 78
  article-title: SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition
  publication-title: Eur. Urol.
– ident: e_1_2_11_36_1
  doi: 10.1016/j.ccell.2016.03.001
– ident: e_1_2_11_63_1
  doi: 10.1158/1078-0432.CCR-15-0744
– ident: e_1_2_11_3_1
  doi: 10.1002/ijc.29210
– ident: e_1_2_11_47_1
  doi: 10.1158/1078-0432.CCR-15-1259
– ident: e_1_2_11_27_1
  doi: 10.3389/fonc.2014.00060
– volume: 53
  start-page: 3165
  year: 1993
  ident: e_1_2_11_50_1
  article-title: Human small cell lung cancer cell lines express functional atrial natriuretic peptide receptors
  publication-title: Cancer Res.
– ident: e_1_2_11_18_1
  doi: 10.1097/PAS.0000000000000208
– ident: e_1_2_11_55_1
  doi: 10.1016/j.ccell.2016.09.005
– ident: e_1_2_11_2_1
  doi: 10.3322/caac.21387
– ident: e_1_2_11_60_1
  doi: 10.1002/humu.10081
– ident: e_1_2_11_13_1
  doi: 10.1038/pcan.2014.17
– ident: e_1_2_11_64_1
  doi: 10.1016/j.ccr.2010.05.024
– volume: 59
  start-page: 3821
  year: 1999
  ident: e_1_2_11_40_1
  article-title: Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression
  publication-title: Cancer Res.
– ident: e_1_2_11_51_1
  doi: 10.1593/neo.07103
– ident: e_1_2_11_12_1
  doi: 10.1200/JCO.2011.41.5166
– ident: e_1_2_11_43_1
  doi: 10.1128/MCB.21.24.8471-8482.2001
– ident: e_1_2_11_33_1
  doi: 10.1158/1078-0432.CCR-08-2927
– ident: e_1_2_11_7_1
  doi: 10.1056/NEJMoa1405095
– ident: e_1_2_11_28_1
  doi: 10.1074/jbc.M205784200
– ident: e_1_2_11_65_1
  doi: 10.1158/2159-8290.CD-15-1263
– ident: e_1_2_11_67_1
  doi: 10.1371/journal.pone.0008686
– ident: e_1_2_11_21_1
  doi: 10.1158/2159-8290.CD-11-0259
– ident: e_1_2_11_34_1
  doi: 10.1016/j.cell.2015.10.025
– ident: e_1_2_11_54_1
  doi: 10.1002/path.4047
– ident: e_1_2_11_45_1
  doi: 10.1158/0008-5472.CAN-06-2616
– ident: e_1_2_11_38_1
  doi: 10.1038/sj.onc.1206764
– ident: e_1_2_11_68_1
  doi: 10.1038/ng1699
– ident: e_1_2_11_16_1
  doi: 10.1530/ERC-15-0137
– ident: e_1_2_11_23_1
  doi: 10.1056/NEJMoa041318
– ident: e_1_2_11_29_1
  doi: 10.1016/j.celrep.2015.07.012
– ident: e_1_2_11_4_1
  doi: 10.1093/annonc/mdv257
– ident: e_1_2_11_10_1
  doi: 10.1056/NEJMoa1209096
– ident: e_1_2_11_35_1
  doi: 10.1038/modpathol.2011.7
– ident: e_1_2_11_48_1
  doi: 10.1126/science.aah4307
– ident: e_1_2_11_66_1
  doi: 10.1074/jbc.M705676200
– ident: e_1_2_11_11_1
  doi: 10.1016/j.eururo.2003.11.032
– ident: e_1_2_11_30_1
  doi: 10.1158/0008-5472.CAN-13-2921-T
– ident: e_1_2_11_20_1
  doi: 10.1158/2159-8290.CD-11-0130
– ident: e_1_2_11_41_1
  doi: 10.1074/jbc.275.18.13812
– ident: e_1_2_11_25_1
  doi: 10.1016/j.juro.2007.05.044
– ident: e_1_2_11_49_1
  doi: 10.1126/science.aah4199
– ident: e_1_2_11_26_1
  doi: 10.1200/JCO.2002.12.065
– ident: e_1_2_11_8_1
  doi: 10.1056/NEJMoa1207506
– ident: e_1_2_11_14_1
  doi: 10.1158/1078-0432.CCR-12-3791
– ident: e_1_2_11_59_1
  doi: 10.1593/neo.121550
– ident: e_1_2_11_61_1
  doi: 10.1038/sj.onc.1205834
– ident: e_1_2_11_31_1
  doi: 10.1158/2159-8290.CD-16-1174
– volume: 57
  start-page: 3325
  year: 1997
  ident: e_1_2_11_57_1
  article-title: Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model
  publication-title: Cancer Res.
– ident: e_1_2_11_24_1
  doi: 10.1093/annonc/mdr004
– ident: e_1_2_11_32_1
  doi: 10.1038/nm.4045
– ident: e_1_2_11_71_1
  doi: 10.1158/1078-0432.CCR-15-0137
– ident: e_1_2_11_6_1
  doi: 10.1038/nrc4016
– ident: e_1_2_11_42_1
  doi: 10.1073/pnas.95.7.3644
– volume: 57
  start-page: 4687
  year: 1997
  ident: e_1_2_11_56_1
  article-title: Androgen‐independent prostate cancer progression in the TRAMP model
  publication-title: Cancer Res.
– ident: e_1_2_11_46_1
  doi: 10.1006/bbrc.1999.0515
– ident: e_1_2_11_17_1
  doi: 10.1007/s00428-012-1259-2
– ident: e_1_2_11_37_1
  doi: 10.1016/S1078-1439(97)00039-2
– ident: e_1_2_11_39_1
  doi: 10.1073/pnas.91.12.5330
– ident: e_1_2_11_53_1
  doi: 10.1158/1078-0432.CCR-11-1867
– volume: 62
  start-page: 1549
  year: 2002
  ident: e_1_2_11_44_1
  article-title: Activation of the Erk mitogen‐activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3 phosphorylation
  publication-title: Cancer Res.
– ident: e_1_2_11_69_1
  doi: 10.1016/j.eururo.2016.04.028
– ident: e_1_2_11_19_1
  doi: 10.1007/s11912-017-0593-6
– ident: e_1_2_11_62_1
  doi: 10.1158/1078-0432.CCR-13-1982
– ident: e_1_2_11_5_1
  doi: 10.3390/ijms140815615
– ident: e_1_2_11_15_1
  doi: 10.1158/1078-0432.CCR-13-3309
– ident: e_1_2_11_9_1
  doi: 10.1056/NEJMoa1014618
– ident: e_1_2_11_58_1
  doi: 10.1016/j.ccr.2008.12.005
– volume: 63
  start-page: 3043
  year: 2003
  ident: e_1_2_11_70_1
  article-title: Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1
  publication-title: Cancer Res.
– ident: e_1_2_11_22_1
  doi: 10.1200/JCO.2013.54.3553
– ident: e_1_2_11_52_1
  doi: 10.1002/pros.21301
– reference: 30353954 - Int J Urol. 2019 Jan;26(1):142
SSID ssj0013218
Score 2.5059907
SecondaryResourceType review_article
Snippet Treatment‐related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration‐resistant prostate cancer...
Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms Adenocarcinoma
Androgen Receptor Antagonists - adverse effects
Androgen receptors
Androgens
Antineoplastic Agents, Hormonal - adverse effects
Biomarkers
Biomarkers, Tumor - genetics
Cancer therapies
Castration
Cell Transdifferentiation - drug effects
Cell Transdifferentiation - genetics
Chemotherapy
Cytology
Gene Expression Regulation, Neoplastic - drug effects
Humans
Incidence
Male
Metastases
Neoplasms, Second Primary - chemically induced
Neoplasms, Second Primary - epidemiology
Neoplasms, Second Primary - genetics
Neoplasms, Second Primary - pathology
neuroendocrine
Neuroendocrine Tumors - chemically induced
Neuroendocrine Tumors - epidemiology
Neuroendocrine Tumors - genetics
Neuroendocrine Tumors - pathology
p53 Protein
Platinum
Prognosis
Prostate - drug effects
Prostate - pathology
Prostate cancer
Prostatic Neoplasms, Castration-Resistant - drug therapy
Prostatic Neoplasms, Castration-Resistant - pathology
Receptors, Androgen - metabolism
Signal Transduction - drug effects
small cell carcinoma
Tumor suppressor genes
Title Clinical and molecular features of treatment‐related neuroendocrine prostate cancer
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fiju.13526
https://www.ncbi.nlm.nih.gov/pubmed/29396873
https://www.proquest.com/docview/2024042381
https://www.proquest.com/docview/1993997801
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG7Eg3jRGF-rJrTiwcvIPHqmZ8hJTGQj6EFc8CAM1S9Q19llH5ec_An5jfklqep5sJoEJLeBrqZnup7TXfUVY8dxIkEKKALIpAiECCGAQoWBiQDdXegMCCpwvrrO-gNxeZfeLbEvbS1MjQ_RHbiRZnh7TQoOarqg5A-Pc2raEBPcdpRkhJv_9SZeuEHwZ3voDumYS8YNqhBl8XQzX_uiPwLM1_GqdzgX6-y-fdU6z-TpdD5Tp_rHGxTH__yWD2ytCUT5WS05G2zJVh_ZylVz1b7JBg1i6JBDZfhz20WXO-uhQKd85HiXpf7r5acvirGGe4BMW5mRprpCPqaqEhzgmsRrssUGF99uz_tB04Mh0EIkWQA6yp0DLQ1aVAkqdRbZl7tE5CmYRBEiu400ACgrtUtSDbFyGodcaJVTyTZbrkaV3WUcQysBOKNAKyGMECoyoY6MME5aNHNpj5203Ch1A1BOfTKGZfujgttU-m3qsaOOdFyjcvyN6KBladko5rSMCdNNUJzSY4fdMKoU3ZNAZUfzaUk5jQUhMyHNTi0K3SoYHRVZLhN8Wc_Qfy9ffr8c-Ie995Pus1UMyPI6M-iALc8mc_sJg56Z-uyl-zce6QAY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXoDzKQktdxIFLqjycOJG4IES1Ld0eqq7UC4rGLwlos1V398KJn8Bv5Jcw4zzUQpGq3iJ5LCf2PL7YM58B3qaZQiWxirBQMpIyxggrHUc2QQp3sbcoucB5cliMp3L_JD9Zgfd9LUzLDzFsuLFlBH_NBs4b0pes_Ou3Jd_akBZ34G44n2NIdJReOkMIu3sUEHmjS6UdrxDn8Qxdr0ajfyDmVcQaQs7uI_jSv2ybafJ9Z7nQO-bHXzyOt_2ax_Cww6LiQ6s8a7Dimidwb9Kdtj-FaUcaeiqwseKsv0hXeBfYQOdi5sWQqP77569QF-OsCByZrrEzw6WF4pwLS6hBGNawi2cw3f10_HEcddcwREbKrIjQJKX3aJQlp6pQ597RCpY-k2WONtNMyu4Sg4jaKeOz3GCqvaEmHzvtdfYcVptZ416AIHQlkXpU5CiklVInNjaJldYrR54uH8G7fjlq03GU81UZp3X_r0LTVIdpGsGbQfS8Jea4TmijX9O6s815nTKtm2SoMoLtoZmsio9KsHGz5bzmtMaKyZlIZr3VhWEUAkhVUaqMXjas6P-Hr_f2p-Hh5c1Ft-D--HhyUB_sHX5-BQ8In5VtotAGrC4ulm6TMNBCvw6q_gcTSgQ2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5ihOAlxmdWo7biwcuEefRMz5BTUJckmiDiQg7CUP0Ckzi7ZHcvnvIT8hv9JanqeZD4APE20N30TNfrm-6qrwFep5lCJbGKsFAykjLGCCsdRzZBCnextyi5wPnwqNibyIPj_HgFdvpamJYfYthwY8sI_poNfGb9NSP_drLkSxvS4hbclgWFSUZEn9NrRwhhc4_iIe9zqbSjFeI0nmHozWD0G8K8CVhDxBnfha_9u7aJJqfby4XeNj9-oXH8z4_ZgPUOiYrdVnXuwYpr7sPaYXfW_gAmHWXomcDGiu_9NbrCu8AFOhdTL4Y09Z8Xl6EqxlkRGDJdY6eGCwvFjMtKqEEY1q_zhzAZv__ydi_qLmGIjJRZEaFJSu_RKEsuVaHOvSP5lT6TZY4200zJ7hKDiNop47PcYKq9oSYfO-119ghWm2njNkEQtpJIIypyE9JKqRMbm8RK65UjP5eP4E0vjdp0DOV8UcZZ3f-p0DLVYZlG8GroOmtpOf7UaasXad1Z5rxOmdRNMlAZwcuhmWyKD0qwcdPlvOakxoqpmajP41YVhlkIHlVFqTJ62SDQv09f7x9MwsOTf-_6AtY-vRvXH_ePPjyFOwTOyjZLaAtWF-dL94wA0EI_D4p-BRE9AuU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+and+molecular+features+of+treatment%E2%80%90related+neuroendocrine+prostate+cancer&rft.jtitle=International+journal+of+urology&rft.au=Akamatsu%2C+Shusuke&rft.au=Inoue%2C+Takahiro&rft.au=Ogawa%2C+Osamu&rft.au=Gleave%2C+Martin+E&rft.date=2018-04-01&rft.issn=0919-8172&rft.eissn=1442-2042&rft.volume=25&rft.issue=4&rft.spage=345&rft.epage=351&rft_id=info:doi/10.1111%2Fiju.13526&rft.externalDBID=10.1111%252Fiju.13526&rft.externalDocID=IJU13526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0919-8172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0919-8172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0919-8172&client=summon