Assessing the colonic microbiome, hydrogenogenic and hydrogenotrophic genes, transit and breath methane in constipation

Background Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic microbiota, transit, and breath tests remains unclear. Methods In 25 healthy and 25 constipated females we evaluated the sigmoid colonic mucosal...

Full description

Saved in:
Bibliographic Details
Published inNeurogastroenterology and motility Vol. 29; no. 10; pp. 1 - 9
Main Authors Wolf, P. G., Parthasarathy, G., Chen, J., O'Connor, H. M., Chia, N., Bharucha, A. E., Gaskins, H. R.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.10.2017
Subjects
Online AccessGet full text
ISSN1350-1925
1365-2982
1365-2982
DOI10.1111/nmo.13056

Cover

Abstract Background Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic microbiota, transit, and breath tests remains unclear. Methods In 25 healthy and 25 constipated females we evaluated the sigmoid colonic mucosal and fecal microbiota using 16S rRNA gene sequencing, abundance of hydrogenogenic FeFe (FeFe‐hydA) and hydrogenotrophic (methyl coenzyme M reductase A [mrcA] and dissimilatory sulfite reductase A [dsrA]) genes with real‐time qPCR assays, breath hydrogen and methane levels after oral lactulose, and colonic transit with scintigraphy. Key Results Breath hydrogen and methane were not correlated with constipation, slow colon transit, or with abundance of corresponding genes. After adjusting for colonic transit, the abundance of FeFehydA, dsrA, and mcrA were greater (P<.005) in colonic mucosa, but not stool, of constipated patients. The abundance of the selected functional gene targets also correlated with that of selected taxa. The colonic mucosal abundance of FeFe‐hydA, but not mcrA, correlated positively (P<.05) with breath methane production, slow colonic transit, and overall microbiome composition. In the colonic mucosa and feces, the abundance of hydrogenogenic and hydrogenotrophic genes were positively correlated (P<.05). Breath methane production was not associated with constipation or colonic transit. Conclusions & Inferences Corroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated vs. healthy subjects independent of colonic transit. Breath gases do not directly reflect the abundance of target genes contributing to their production. The relationship between colonic microbiota, transit, and breath hydrogen and methane production in chronic constipation is unclear. Corroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated than healthy subjects independent of colonic transit. Breath gas excretion after lactulose was not correlated with the abundance of target genes contributing to their production.
AbstractList Abbreviated abstract: The relationship between colonic microbiota, transit, and breath hydrogen and methane production in chronic constipation is unclear. Corroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated than healthy subjects independent of colonic transit. Breath gas excretion after lactulose was not correlated with the abundance of target genes contributing to their production.
Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic microbiota, transit, and breath tests remains unclear.BACKGROUNDDifferences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic microbiota, transit, and breath tests remains unclear.In 25 healthy and 25 constipated females we evaluated the sigmoid colonic mucosal and fecal microbiota using 16S rRNA gene sequencing, abundance of hydrogenogenic FeFe (FeFe-hydA) and hydrogenotrophic (methyl coenzyme M reductase A [mrcA] and dissimilatory sulfite reductase A [dsrA]) genes with real-time qPCR assays, breath hydrogen and methane levels after oral lactulose, and colonic transit with scintigraphy.METHODSIn 25 healthy and 25 constipated females we evaluated the sigmoid colonic mucosal and fecal microbiota using 16S rRNA gene sequencing, abundance of hydrogenogenic FeFe (FeFe-hydA) and hydrogenotrophic (methyl coenzyme M reductase A [mrcA] and dissimilatory sulfite reductase A [dsrA]) genes with real-time qPCR assays, breath hydrogen and methane levels after oral lactulose, and colonic transit with scintigraphy.Breath hydrogen and methane were not correlated with constipation, slow colon transit, or with abundance of corresponding genes. After adjusting for colonic transit, the abundance of FeFehydA, dsrA, and mcrA were greater (P<.005) in colonic mucosa, but not stool, of constipated patients. The abundance of the selected functional gene targets also correlated with that of selected taxa. The colonic mucosal abundance of FeFe-hydA, but not mcrA, correlated positively (P<.05) with breath methane production, slow colonic transit, and overall microbiome composition. In the colonic mucosa and feces, the abundance of hydrogenogenic and hydrogenotrophic genes were positively correlated (P<.05). Breath methane production was not associated with constipation or colonic transit.KEY RESULTSBreath hydrogen and methane were not correlated with constipation, slow colon transit, or with abundance of corresponding genes. After adjusting for colonic transit, the abundance of FeFehydA, dsrA, and mcrA were greater (P<.005) in colonic mucosa, but not stool, of constipated patients. The abundance of the selected functional gene targets also correlated with that of selected taxa. The colonic mucosal abundance of FeFe-hydA, but not mcrA, correlated positively (P<.05) with breath methane production, slow colonic transit, and overall microbiome composition. In the colonic mucosa and feces, the abundance of hydrogenogenic and hydrogenotrophic genes were positively correlated (P<.05). Breath methane production was not associated with constipation or colonic transit.Corroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated vs. healthy subjects independent of colonic transit. Breath gases do not directly reflect the abundance of target genes contributing to their production.CONCLUSIONS & INFERENCESCorroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated vs. healthy subjects independent of colonic transit. Breath gases do not directly reflect the abundance of target genes contributing to their production.
Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic microbiota, transit, and breath tests remains unclear. In 25 healthy and 25 constipated females we evaluated the sigmoid colonic mucosal and fecal microbiota using 16S rRNA gene sequencing, abundance of hydrogenogenic FeFe (FeFe-hydA) and hydrogenotrophic (methyl coenzyme M reductase A [mrcA] and dissimilatory sulfite reductase A [dsrA]) genes with real-time qPCR assays, breath hydrogen and methane levels after oral lactulose, and colonic transit with scintigraphy. Breath hydrogen and methane were not correlated with constipation, slow colon transit, or with abundance of corresponding genes. After adjusting for colonic transit, the abundance of FeFehydA, dsrA, and mcrA were greater (P<.005) in colonic mucosa, but not stool, of constipated patients. The abundance of the selected functional gene targets also correlated with that of selected taxa. The colonic mucosal abundance of FeFe-hydA, but not mcrA, correlated positively (P<.05) with breath methane production, slow colonic transit, and overall microbiome composition. In the colonic mucosa and feces, the abundance of hydrogenogenic and hydrogenotrophic genes were positively correlated (P<.05). Breath methane production was not associated with constipation or colonic transit. Corroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated vs. healthy subjects independent of colonic transit. Breath gases do not directly reflect the abundance of target genes contributing to their production.
Background Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic microbiota, transit, and breath tests remains unclear. Methods In 25 healthy and 25 constipated females we evaluated the sigmoid colonic mucosal and fecal microbiota using 16S rRNA gene sequencing, abundance of hydrogenogenic FeFe (FeFe‐hydA) and hydrogenotrophic (methyl coenzyme M reductase A [mrcA] and dissimilatory sulfite reductase A [dsrA]) genes with real‐time qPCR assays, breath hydrogen and methane levels after oral lactulose, and colonic transit with scintigraphy. Key Results Breath hydrogen and methane were not correlated with constipation, slow colon transit, or with abundance of corresponding genes. After adjusting for colonic transit, the abundance of FeFehydA, dsrA, and mcrA were greater (P<.005) in colonic mucosa, but not stool, of constipated patients. The abundance of the selected functional gene targets also correlated with that of selected taxa. The colonic mucosal abundance of FeFe‐hydA, but not mcrA, correlated positively (P<.05) with breath methane production, slow colonic transit, and overall microbiome composition. In the colonic mucosa and feces, the abundance of hydrogenogenic and hydrogenotrophic genes were positively correlated (P<.05). Breath methane production was not associated with constipation or colonic transit. Conclusions & Inferences Corroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated vs. healthy subjects independent of colonic transit. Breath gases do not directly reflect the abundance of target genes contributing to their production. The relationship between colonic microbiota, transit, and breath hydrogen and methane production in chronic constipation is unclear. Corroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated than healthy subjects independent of colonic transit. Breath gas excretion after lactulose was not correlated with the abundance of target genes contributing to their production.
Background Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic microbiota, transit, and breath tests remains unclear. Methods In 25 healthy and 25 constipated females we evaluated the sigmoid colonic mucosal and fecal microbiota using 16S rRNA gene sequencing, abundance of hydrogenogenic FeFe (FeFe-hydA) and hydrogenotrophic (methyl coenzyme M reductase A [mrcA] and dissimilatory sulfite reductase A [dsrA]) genes with real-time qPCR assays, breath hydrogen and methane levels after oral lactulose, and colonic transit with scintigraphy. Key Results Breath hydrogen and methane were not correlated with constipation, slow colon transit, or with abundance of corresponding genes. After adjusting for colonic transit, the abundance of FeFehydA,dsrA, and mcrA were greater (P<.005) in colonic mucosa, but not stool, of constipated patients. The abundance of the selected functional gene targets also correlated with that of selected taxa. The colonic mucosal abundance of FeFe-hydA, but not mcrA, correlated positively (P<.05) with breath methane production, slow colonic transit, and overall microbiome composition. In the colonic mucosa and feces, the abundance of hydrogenogenic and hydrogenotrophic genes were positively correlated (P<.05). Breath methane production was not associated with constipation or colonic transit. Conclusions & Inferences Corroborating our earlier findings with 16S rRNA genes, colonic mucosal but not fecal hydrogenogenic and hydrogenotrophic genes were more abundant in constipated vs. healthy subjects independent of colonic transit. Breath gases do not directly reflect the abundance of target genes contributing to their production.
Author Wolf, P. G.
Chen, J.
Bharucha, A. E.
Gaskins, H. R.
Parthasarathy, G.
Chia, N.
O'Connor, H. M.
AuthorAffiliation 4 Clinical Research and Trials Unit, Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55905 USA
5 Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
1 Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
2 Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
3 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
6 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
AuthorAffiliation_xml – name: 3 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
– name: 1 Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– name: 2 Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
– name: 5 Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
– name: 6 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– name: 4 Clinical Research and Trials Unit, Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55905 USA
Author_xml – sequence: 1
  givenname: P. G.
  surname: Wolf
  fullname: Wolf, P. G.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 2
  givenname: G.
  surname: Parthasarathy
  fullname: Parthasarathy, G.
  organization: Mayo Clinic
– sequence: 3
  givenname: J.
  surname: Chen
  fullname: Chen, J.
  organization: Mayo Clinic
– sequence: 4
  givenname: H. M.
  surname: O'Connor
  fullname: O'Connor, H. M.
  organization: Center for Clinical and Translational Science
– sequence: 5
  givenname: N.
  surname: Chia
  fullname: Chia, N.
  organization: Center for Individualized Medicine
– sequence: 6
  givenname: A. E.
  orcidid: 0000-0002-7644-0390
  surname: Bharucha
  fullname: Bharucha, A. E.
  email: bharucha.adil@mayo.edu
  organization: Mayo Clinic
– sequence: 7
  givenname: H. R.
  surname: Gaskins
  fullname: Gaskins, H. R.
  organization: University of Illinois at Urbana‐Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28295896$$D View this record in MEDLINE/PubMed
BookMark eNp9kdtu1DAQhi1URA9wwQugSNwAalof4iS-qVRVnKRCb-DacuzJxlViB9thtW-Pd7dQqEQtWbY83_ye-ecYHTjvAKGXBJ-RvM7d5M8Iw7x-go4Iq3lJRUsPtneOSyIoP0THMd5ijGta1c_QIW2p4K2oj9D6MkaI0bpVkQYotB-9s7qYrA6-s36C02LYmOBX4LY7h5Qz908p-HnIj_kO8bRIQblo047pAqg0FBOkQTkorMviLiY7q2S9e46e9mqM8OLuPEHfP7z_dvWpvL75-Pnq8rrUVcXqknWi6xkYwVlNWa9Z2_SYcCrAGMxFU2FRGdJxwNSAwC3TxJjcnCatwVh37AS92-sublabtRpHOQc7qbCRBMutezK7J3fuZfhiD89LN4HR4HJD9wleWflvxNlBrvxPyblgTY2zwJs7geB_LBCTnGzUMI7ZAb9ESdqmafNHgmT09QP01i_BZS8kyWKMthzTTL36u6I_pfweYAbe7oE8rxgD9I-2d_6A1TbtppGbseNjGWs7wub_0vLrl5t9xi8licyS
CitedBy_id crossref_primary_10_2217_fmb_2019_0283
crossref_primary_10_1016_j_cgh_2018_08_054
crossref_primary_10_1111_nmo_14050
crossref_primary_10_1111_nmo_13194
crossref_primary_10_14309_ctg_0000000000000766
crossref_primary_10_1111_nmo_13350
crossref_primary_10_5194_amt_12_6803_2019
crossref_primary_10_1155_2022_3240573
crossref_primary_10_1111_nmo_13541
crossref_primary_10_3389_fcimb_2020_515614
crossref_primary_10_3390_nu14235013
crossref_primary_10_1097_MCG_0000000000001239
crossref_primary_10_2147_IJGM_S380208
crossref_primary_10_3390_jcm12062198
crossref_primary_10_4166_kjg_2020_75_1_23
crossref_primary_10_1053_j_gastro_2022_04_002
crossref_primary_10_1111_apt_16369
crossref_primary_10_1186_s13073_018_0586_6
crossref_primary_10_1371_journal_pcbi_1010714
crossref_primary_10_1038_s41575_021_00487_5
Cites_doi 10.1038/nrgastro.2012.85
10.1038/nrgastro.2014.200
10.1152/ajpgi.00574.2004
10.1053/j.gastro.2015.10.005
10.1007/s10620-011-1590-5
10.1111/j.1574-6941.1993.tb00023.x
10.1128/AEM.01996-06
10.1016/j.cgh.2013.09.055
10.1128/AEM.69.9.5483-5491.2003
10.1128/AEM.01285-09
10.1002/mas.20108
10.1016/S0076-6879(05)97028-6
10.1136/gutjnl-2011-301501
10.1093/bioinformatics/btu170
10.1016/0016-5085(92)90765-Q
10.1016/j.cgh.2005.11.006
10.1128/JB.183.20.6028-6035.2001
10.1053/j.gastro.2015.12.023
10.1038/ajg.2009.655
10.1128/AEM.01541-09
10.1093/molbev/msp077
10.1038/ismej.2015.153
10.1128/AEM.01946-07
10.1007/BF00423270
10.1371/journal.pntd.0003382
10.1016/0016-5085(87)90132-6
10.1111/nmo.12568
10.1371/journal.pone.0114804
10.1111/j.1462-2920.2011.02577.x
10.1093/bioinformatics/btp157
10.1101/gr.096651.109
10.1016/j.cgh.2015.10.027
10.1186/1471-2180-8-79
10.1080/19490976.2016.1182288
10.1073/pnas.1312524110
10.1128/AEM.00582-09
10.1016/j.ajhg.2015.04.003
10.1128/JB.188.2.642-658.2006
10.1038/nmeth.2604
10.1038/ajg.2015.47
10.1074/jbc.M111.228841
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/nmo.13056
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1365-2982
EndPage 9
ExternalDocumentID 10.1111/nmo.13056
PMC5593760
28295896
10_1111_nmo_13056
NMO13056
Genre article
Journal Article
GrantInformation_xml – fundername: National Center for Advancing Translational Sciences
  funderid: UL1 TR000135
– fundername: National Institutes of Health
  funderid: R01 DK78924
– fundername: Mayo Clinic‐University of Illinois Strategic Alliance for Technology‐Based Healthcare
– fundername: Mayo Clinic Center for Individualized Medicine
– fundername: NIDDK NIH HHS
  grantid: R01 DK078924
– fundername: NIDDK NIH HHS
  grantid: P30 DK084567
– fundername: NCI NIH HHS
  grantid: R01 CA179243
– fundername: NCATS NIH HHS
  grantid: UL1 TR000135
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4436-3b9bf3ed953623fc387f01529edd05974094d1b5e02de9083c1dd829c18d00cb3
IEDL.DBID DR2
ISSN 1350-1925
1365-2982
IngestDate Wed Oct 01 16:40:02 EDT 2025
Tue Sep 30 16:15:26 EDT 2025
Fri Sep 05 12:42:41 EDT 2025
Sun Jul 13 04:16:29 EDT 2025
Mon Jul 21 06:07:51 EDT 2025
Wed Oct 01 01:14:24 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Wed Jan 22 16:21:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords breath methane
constipation
microbiota
breath hydrogen
genes
transit
methane
hydrogen
lactulose
microbiome
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-3b9bf3ed953623fc387f01529edd05974094d1b5e02de9083c1dd829c18d00cb3
Notes Funding information
No funding declared.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7644-0390
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nmo.13056
PMID 28295896
PQID 1937328502
PQPubID 1006536
PageCount 9
ParticipantIDs unpaywall_primary_10_1111_nmo_13056
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5593760
proquest_miscellaneous_1877856391
proquest_journals_1937328502
pubmed_primary_28295896
crossref_primary_10_1111_nmo_13056
crossref_citationtrail_10_1111_nmo_13056
wiley_primary_10_1111_nmo_13056_NMO13056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Neurogastroenterology and motility
PublicationTitleAlternate Neurogastroenterol Motil
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 61
2015; 12
2009; 25
2010; 76
2001; 183
2005; 397
2010; 105
1987; 92
1992; 102
2015; 96
2016; 10
2008; 8
2011; 13
2011; 56
2006; 290
2006; 4
2007; 73
2008; 74
2015; 9
2016; 14
1985; 141
2009; 26
2016; 7
1993; 12
2015; 27
2009; 75
2013; 10
2015; 110
2003; 69
2013; 110
2014; 9
2014; 30
2009; 19
2014; 12
2006; 188
2007; 26
2011; 286
2016; 150
2012; 9
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
12957937 - Appl Environ Microbiol. 2003 Sep;69(9):5483-91
22585131 - Nat Rev Gastroenterol Hepatol. 2012 Sep;9(9):504-18
3792775 - Gastroenterology. 1987 Feb;92(2):383-9
27123663 - Gut Microbes. 2016 May 3;7(3):235-45
19377059 - Mol Biol Evol. 2009 Jul;26(7):1641-50
1551534 - Gastroenterology. 1992 Apr;102(4 Pt 1):1269-77
17220268 - Appl Environ Microbiol. 2007 Mar;73(5):1576-85
25957468 - Am J Hum Genet. 2015 May 7;96(5):797-807
19429563 - Appl Environ Microbiol. 2009 Jul;75(13):4620-3
26710987 - Gastroenterology. 2016 Feb;150(2):300-3
16293652 - Am J Physiol Gastrointest Liver Physiol. 2006 Jun;290(6):G1089-95
22180058 - Gut. 2012 Jul;61(7):997-1006
16260309 - Methods Enzymol. 2005;397:454-69
18492229 - BMC Microbiol. 2008 May 20;8:79
25675250 - PLoS Negl Trop Dis. 2015 Feb 12;9(2):e0003382
24095975 - Clin Gastroenterol Hepatol. 2014 Dec;12(12):1964-72; quiz e119-20
18156331 - Appl Environ Microbiol. 2008 Feb;74(4):1232-9
19953090 - Am J Gastroenterol. 2010 Jun;105(6):1407-11
19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
11567003 - J Bacteriol. 2001 Oct;183(20):6028-35
26460205 - Gastroenterology. 2016 Feb;150(2):367-79.e1
3994486 - Arch Microbiol. 1985 Mar;141(2):116-22
25952409 - Neurogastroenterol Motil. 2015 Jul;27(7):945-53
26528801 - Clin Gastroenterol Hepatol. 2016 Feb;14 (2):209-11
24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20
16469670 - Clin Gastroenterol Hepatol. 2006 Feb;4(2):123-9
26405831 - ISME J. 2016 Mar;10 (3):761-77
19819907 - Genome Res. 2009 Dec;19(12):2317-23
16921475 - Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78
25803403 - Am J Gastroenterol. 2015 Jun;110(6):891-8
21507958 - J Biol Chem. 2011 Jul 22;286(29):25973-82
25446728 - Nat Rev Gastroenterol Hepatol. 2015 Jan;12(1):36-49
23955772 - Nat Methods. 2013 Oct;10(10):996-8
25506826 - PLoS One. 2014 Dec 15;9(12):e114804
20139321 - Appl Environ Microbiol. 2010 Apr;76(7):2192-202
23898195 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13582-7
19307242 - Bioinformatics. 2009 May 15;25(10):1335-7
16385054 - J Bacteriol. 2006 Jan;188(2):642-58
21286935 - Dig Dis Sci. 2011 Jun;56(6):1612-8
21910812 - Environ Microbiol. 2011 Nov;13(11):3000-9
References_xml – volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  article-title: Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities
  publication-title: Appl Environ Microbiol
– volume: 96
  start-page: 797
  year: 2015
  end-page: 807
  article-title: Testing in microbiome‐profiling studies with MiRKAT, the microbiome regression‐based Kernel Association Test
  publication-title: Am J Hum Genet
– volume: 141
  start-page: 116
  year: 1985
  end-page: 122
  article-title: gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen
  publication-title: Arch Microbiol
– volume: 12
  start-page: 36
  year: 2015
  end-page: 49
  article-title: Crosstalk at the mucosal border: importance of the gut microenvironment in IBS
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 290
  start-page: G1089
  year: 2006
  end-page: G1095
  article-title: Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 150
  start-page: 367
  year: 2016
  end-page: 379
  article-title: Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation
  publication-title: Gastroenterology
– volume: 74
  start-page: 1232
  year: 2008
  end-page: 1239
  article-title: Genetic diversity of hydrogen‐producing bacteria in an acidophilic ethanol‐H ‐coproducing system, analyzed using the [Fe]‐hydrogenase gene
  publication-title: Appl Environ Microbiol
– volume: 12
  start-page: 1964
  year: 2014
  end-page: 1972
  article-title: Breath testing for small intestinal bacterial overgrowth: maximizing test accuracy
  publication-title: Clin Gastroenterol Hepatol
– volume: 110
  start-page: 13582
  year: 2013
  end-page: 13587
  article-title: Metabolic niche of a prominent sulfate‐reducing human gut bacterium
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 1641
  year: 2009
  end-page: 1650
  article-title: FastTree: computing large minimum evolution trees with profiles instead of a distance matrix
  publication-title: Mol Biol Evol
– volume: 9
  start-page: e0003382
  year: 2015
  article-title: The newest “omics”–metagenomics and metabolomics–enter the battle against the neglected tropical diseases
  publication-title: PLoS Negl Trop Dis
– volume: 397
  start-page: 454
  year: 2005
  end-page: 469
  article-title: Community‐level analysis: key genes of CO ‐reductive acetogenesis
  publication-title: Methods Enzymol
– volume: 12
  start-page: 117
  year: 1993
  end-page: 125
  article-title: Metabolic interactions involving sulfate‐reducing and methanogenic bacteria in the human large‐intestine
  publication-title: FEMS Microbiol Ecol
– volume: 92
  start-page: 383
  year: 1987
  end-page: 389
  article-title: H excretion after ingestion of complex carbohydrates
  publication-title: Gastroenterology
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 105
  start-page: 1407
  year: 2010
  end-page: 1411
  article-title: Methanogenic flora is associated with altered colonic transit but not stool characteristics in constipation without IBS
  publication-title: Am J Gastroenterol
– volume: 110
  start-page: 891
  year: 2015
  end-page: 898
  article-title: Breath methane excretion is not an accurate marker of colonic methane production in irritable bowel syndrome
  publication-title: Am J Gastroenterol
– volume: 8
  start-page: 79
  year: 2008
  article-title: Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis
  publication-title: BMC Microbiol
– volume: 102
  start-page: 1269
  year: 1992
  end-page: 1277
  article-title: Production, metabolism, and excretion of hydrogen in the large intestine
  publication-title: Gastroenterology
– volume: 73
  start-page: 1576
  year: 2007
  end-page: 1585
  article-title: Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities
  publication-title: Appl Environ Microbiol
– volume: 4
  start-page: 123
  year: 2006
  end-page: 129
  article-title: Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements
  publication-title: Clin Gastroenterol Hepatol
– volume: 188
  start-page: 642
  year: 2006
  end-page: 658
  article-title: The genome sequence of reveals why this human intestinal archaeon is restricted to methanol and H for methane formation and ATP synthesis
  publication-title: J Bacteriol
– volume: 7
  start-page: 235
  year: 2016
  end-page: 245
  article-title: H metabolism is widespread and diverse among human colonic microbes
  publication-title: Gut Microbes
– volume: 69
  start-page: 5483
  year: 2003
  end-page: 5491
  article-title: Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane‐oxidizing archaea
  publication-title: Appl Environ Microbiol
– volume: 14
  start-page: 209
  year: 2016
  end-page: 211
  article-title: A breath of fresh air
  publication-title: Clin Gastroenterol Hepatol
– volume: 10
  start-page: 761
  year: 2016
  end-page: 777
  article-title: Genomic and metagenomic surveys of hydrogenase distribution indicate H is a widely utilised energy source for microbial growth and survival
  publication-title: ISME J
– volume: 9
  start-page: e114804
  year: 2014
  article-title: IM‐TORNADO: a tool for comparison of 16S reads from paired‐end libraries
  publication-title: PLoS ONE
– volume: 150
  start-page: 300
  year: 2016
  end-page: 303
  article-title: Constipation and the Microbiome: Lumen Versus Mucosa!
  publication-title: Gastroenterology
– volume: 19
  start-page: 2317
  year: 2009
  end-page: 2323
  article-title: The NIH human microbiome project
  publication-title: Genome Res
– volume: 13
  start-page: 3000
  year: 2011
  end-page: 3009
  article-title: On the suitability of short reads of 16S rRNA for phylogeny‐based analyses in environmental surveys
  publication-title: Environ Microbiol
– volume: 25
  start-page: 1335
  year: 2009
  end-page: 1337
  article-title: Infernal 1.0: inference of RNA alignments
  publication-title: Bioinformatics
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat Methods
– volume: 61
  start-page: 997
  year: 2012
  end-page: 1006
  article-title: An irritable bowel syndrome subtype defined by species‐specific alterations in faecal microbiota
  publication-title: Gut
– volume: 26
  start-page: 51
  year: 2007
  end-page: 78
  article-title: Mass spectrometry‐based metabolomics
  publication-title: Mass Spectrom Rev
– volume: 286
  start-page: 25973
  year: 2011
  end-page: 25982
  article-title: Sulfatases and a radical S‐adenosyl‐L‐methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont,
  publication-title: J Biol Chem
– volume: 56
  start-page: 1612
  year: 2011
  end-page: 1618
  article-title: Methane on breath testing is associated with constipation: a systematic review and meta‐analysis
  publication-title: Dig Dis Sci
– volume: 75
  start-page: 4620
  year: 2009
  end-page: 4623
  article-title: [FeFe] hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community
  publication-title: Appl Environ Microbiol
– volume: 9
  start-page: 504
  year: 2012
  end-page: 518
  article-title: Contributions of the microbial hydrogen economy to colonic homeostasis
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 76
  start-page: 2192
  year: 2010
  end-page: 2202
  article-title: Detection and quantification of functional genes of cellulose‐ degrading, fermentative, and sulfate‐reducing bacteria and methanogenic archaea
  publication-title: Appl Environ Microbiol
– volume: 183
  start-page: 6028
  year: 2001
  end-page: 6035
  article-title: Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate‐reducing prokaryotes
  publication-title: J Bacteriol
– volume: 27
  start-page: 945
  year: 2015
  end-page: 953
  article-title: Breath methane in functional constipation: response to treatment with Ispaghula husk
  publication-title: Neurogastroenterol Motil
– ident: e_1_2_10_7_1
  doi: 10.1038/nrgastro.2012.85
– ident: e_1_2_10_2_1
  doi: 10.1038/nrgastro.2014.200
– ident: e_1_2_10_32_1
  doi: 10.1152/ajpgi.00574.2004
– ident: e_1_2_10_5_1
  doi: 10.1053/j.gastro.2015.10.005
– ident: e_1_2_10_6_1
  doi: 10.1007/s10620-011-1590-5
– ident: e_1_2_10_14_1
  doi: 10.1111/j.1574-6941.1993.tb00023.x
– ident: e_1_2_10_29_1
  doi: 10.1128/AEM.01996-06
– ident: e_1_2_10_16_1
  doi: 10.1016/j.cgh.2013.09.055
– ident: e_1_2_10_26_1
  doi: 10.1128/AEM.69.9.5483-5491.2003
– ident: e_1_2_10_28_1
  doi: 10.1128/AEM.01285-09
– ident: e_1_2_10_37_1
  doi: 10.1002/mas.20108
– ident: e_1_2_10_12_1
  doi: 10.1016/S0076-6879(05)97028-6
– ident: e_1_2_10_4_1
  doi: 10.1136/gutjnl-2011-301501
– ident: e_1_2_10_20_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_2_10_8_1
  doi: 10.1016/0016-5085(92)90765-Q
– ident: e_1_2_10_33_1
  doi: 10.1016/j.cgh.2005.11.006
– ident: e_1_2_10_27_1
  doi: 10.1128/JB.183.20.6028-6035.2001
– ident: e_1_2_10_31_1
  doi: 10.1053/j.gastro.2015.12.023
– ident: e_1_2_10_3_1
  doi: 10.1038/ajg.2009.655
– ident: e_1_2_10_21_1
  doi: 10.1128/AEM.01541-09
– ident: e_1_2_10_24_1
  doi: 10.1093/molbev/msp077
– ident: e_1_2_10_15_1
  doi: 10.1038/ismej.2015.153
– ident: e_1_2_10_38_1
  doi: 10.1128/AEM.01946-07
– ident: e_1_2_10_35_1
  doi: 10.1007/BF00423270
– ident: e_1_2_10_42_1
  doi: 10.1371/journal.pntd.0003382
– ident: e_1_2_10_41_1
  doi: 10.1016/0016-5085(87)90132-6
– ident: e_1_2_10_34_1
  doi: 10.1111/nmo.12568
– ident: e_1_2_10_19_1
  doi: 10.1371/journal.pone.0114804
– ident: e_1_2_10_18_1
  doi: 10.1111/j.1462-2920.2011.02577.x
– ident: e_1_2_10_22_1
  doi: 10.1093/bioinformatics/btp157
– ident: e_1_2_10_17_1
  doi: 10.1101/gr.096651.109
– ident: e_1_2_10_10_1
  doi: 10.1016/j.cgh.2015.10.027
– ident: e_1_2_10_13_1
  doi: 10.1186/1471-2180-8-79
– ident: e_1_2_10_11_1
  doi: 10.1080/19490976.2016.1182288
– ident: e_1_2_10_40_1
  doi: 10.1073/pnas.1312524110
– ident: e_1_2_10_25_1
  doi: 10.1128/AEM.00582-09
– ident: e_1_2_10_30_1
  doi: 10.1016/j.ajhg.2015.04.003
– ident: e_1_2_10_36_1
  doi: 10.1128/JB.188.2.642-658.2006
– ident: e_1_2_10_23_1
  doi: 10.1038/nmeth.2604
– ident: e_1_2_10_9_1
  doi: 10.1038/ajg.2015.47
– ident: e_1_2_10_39_1
  doi: 10.1074/jbc.M111.228841
– reference: 16469670 - Clin Gastroenterol Hepatol. 2006 Feb;4(2):123-9
– reference: 22180058 - Gut. 2012 Jul;61(7):997-1006
– reference: 25952409 - Neurogastroenterol Motil. 2015 Jul;27(7):945-53
– reference: 12957937 - Appl Environ Microbiol. 2003 Sep;69(9):5483-91
– reference: 19819907 - Genome Res. 2009 Dec;19(12):2317-23
– reference: 21507958 - J Biol Chem. 2011 Jul 22;286(29):25973-82
– reference: 16921475 - Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78
– reference: 25506826 - PLoS One. 2014 Dec 15;9(12):e114804
– reference: 19307242 - Bioinformatics. 2009 May 15;25(10):1335-7
– reference: 25446728 - Nat Rev Gastroenterol Hepatol. 2015 Jan;12(1):36-49
– reference: 16385054 - J Bacteriol. 2006 Jan;188(2):642-58
– reference: 20139321 - Appl Environ Microbiol. 2010 Apr;76(7):2192-202
– reference: 18492229 - BMC Microbiol. 2008 May 20;8:79
– reference: 23898195 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13582-7
– reference: 21286935 - Dig Dis Sci. 2011 Jun;56(6):1612-8
– reference: 21910812 - Environ Microbiol. 2011 Nov;13(11):3000-9
– reference: 3994486 - Arch Microbiol. 1985 Mar;141(2):116-22
– reference: 16260309 - Methods Enzymol. 2005;397:454-69
– reference: 26460205 - Gastroenterology. 2016 Feb;150(2):367-79.e1
– reference: 26528801 - Clin Gastroenterol Hepatol. 2016 Feb;14 (2):209-11
– reference: 3792775 - Gastroenterology. 1987 Feb;92(2):383-9
– reference: 27123663 - Gut Microbes. 2016 May 3;7(3):235-45
– reference: 22585131 - Nat Rev Gastroenterol Hepatol. 2012 Sep;9(9):504-18
– reference: 19429563 - Appl Environ Microbiol. 2009 Jul;75(13):4620-3
– reference: 25675250 - PLoS Negl Trop Dis. 2015 Feb 12;9(2):e0003382
– reference: 24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20
– reference: 26710987 - Gastroenterology. 2016 Feb;150(2):300-3
– reference: 18156331 - Appl Environ Microbiol. 2008 Feb;74(4):1232-9
– reference: 23955772 - Nat Methods. 2013 Oct;10(10):996-8
– reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
– reference: 1551534 - Gastroenterology. 1992 Apr;102(4 Pt 1):1269-77
– reference: 24095975 - Clin Gastroenterol Hepatol. 2014 Dec;12(12):1964-72; quiz e119-20
– reference: 19953090 - Am J Gastroenterol. 2010 Jun;105(6):1407-11
– reference: 17220268 - Appl Environ Microbiol. 2007 Mar;73(5):1576-85
– reference: 11567003 - J Bacteriol. 2001 Oct;183(20):6028-35
– reference: 19377059 - Mol Biol Evol. 2009 Jul;26(7):1641-50
– reference: 25957468 - Am J Hum Genet. 2015 May 7;96(5):797-807
– reference: 16293652 - Am J Physiol Gastrointest Liver Physiol. 2006 Jun;290(6):G1089-95
– reference: 26405831 - ISME J. 2016 Mar;10 (3):761-77
– reference: 25803403 - Am J Gastroenterol. 2015 Jun;110(6):891-8
SSID ssj0006246
Score 2.320268
Snippet Background Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic...
Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic microbiota,...
Background Differences in the gut microbiota and breath methane production have been observed in chronic constipation, but the relationship between colonic...
Abbreviated abstract: The relationship between colonic microbiota, transit, and breath hydrogen and methane production in chronic constipation is unclear....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Abundance
Adult
breath hydrogen
breath methane
Breath Tests
Coenzyme M
Colon
Constipation
Constipation - microbiology
Constipation - physiopathology
DNA, Bacterial - analysis
Fecal microflora
Feces
Female
Gases
Gastrointestinal Microbiome - physiology
Gastrointestinal Transit - physiology
Genes
Humans
hydrogen
Intestinal microflora
Lactulose
Methane
Methane - analysis
microbiome
microbiota
Middle Aged
Mucosa
rRNA 16S
Scintigraphy
Sulfite
Sulfite reductase
transit
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKgEXHi0FQ0HLQ6iHunj9XB8jRFUhJXAgUjkZe3dNIpJ1FBxV4dczs34gU0BIHCJZ3skmXs_sfOMZfwPw0uO5EmWSuDz3EjcsfIkmVaZuxAOdxmUQ8IICxck0Pp-F7y6ii7bPKb0L0_BD9A_cyDLsfk0GvlZls893pv7arCpqZxzF12EvpgzTCPZm0w_jTzbMijwX8UvUv3mVCr_lFhp8d-iRrsDMq9WSN7dmne8u8-VyiGitSzq7A5-7i2kqUb6ebuviVH7_hefxP672Ltxu4SobN_p1D65psw8HY4Oh-mrHXjFbQGqfzO_DjUmbpz-AyyaXjG6RIcBkxIxtFpKtFg3t00qfsPlObSpiiMUPDuVG_TxVb6r1HE9-oY34hNXkTxe1lSkI5M4ZNb7OjWYLg5NTvUNTGH4fZmdvP745d9sWD64MwyB2gyItykArSiL7QSkDkZQIUPxUK-VRrIPRp-JFpD1f6RThouRKCT-VXCjPk0VwCCNTGf0QmBYhFyKXKkKPywnYqkR5OpY-IqIyFg4cd7c5ky3_ObXhWGZdHITrm9n1deB5L7puSD9-J3TU6UrW2v23DOEwsR9Fnu_As34YLZbSMLgs1RZlRJKICJEhd-BBo1r9r1BeOxIpTp4MlK4XIDbw4YhZzC0rOIaGVODkwItePf_254-ttv1ZIptO3tuDR_804WO45RPgsWWORzCqN1v9BOFaXTxtTfIHmIZANQ
  priority: 102
  providerName: Unpaywall
Title Assessing the colonic microbiome, hydrogenogenic and hydrogenotrophic genes, transit and breath methane in constipation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnmo.13056
https://www.ncbi.nlm.nih.gov/pubmed/28295896
https://www.proquest.com/docview/1937328502
https://www.proquest.com/docview/1877856391
https://pubmed.ncbi.nlm.nih.gov/PMC5593760
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nmo.13056
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO - Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1365-2982
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0006246
  issn: 1365-2982
  databaseCode: ABDBF
  dateStart: 19981101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1365-2982
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2982
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006246
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KBfWlaqvtaS3rB9KHpmSz2WSDT4dYinCniAcVhJDsbrzg3ea45ijnX-_M5qOeVREfAmF38rWZyfwmM_tbQl76LNOyiGOPZX7shXmgwKSKxBOMmyQqOGc5BoqjcXQ-Cd9diIst8rqbC9PwQ_Q_3NAy3PcaDTzLL38ycjuvcCljgXTbjAuXov14TR0VBc3MIi58D1CMaFmFsIqnP3LTF90AmDfrJO-s7CJbX2Wz2SaWdc7o7B750j1GU4Py7XRV56fq-y8Mj__5nPfJTgtS6bDRqgdky9hdsje0EKDP1_QVdWWj7n_8Lrk9arPze-SqySCDM6QAKynyYdtS0XnZkD3NzQmdrvWyQl5Y2KArs_q6qV5Wiyk0fsXP7wmt0YuWtZPJEdpOKS53nVlDSwsnxyqHphz8IZmcvf305txrF3bwVBjyyON5khfcaEwdB7xQXMYFwJIgMVr7GOFAzKlZLowfaJMASFRMaxkkiknt-yrnj8i2raw5INTIkEmZKS3AzzKEszrWvolUADioiOSAHHevOFUt6zkuvjFLu-gHxjd14zsgz3vRRUP18Tuhw05P0tbaL1MAwch5JPxgQJ713WCnmHyBYalWICPjWArAg2xA9hu16q-C2WwhEzh5vKFwvQBygG_22HLquMAhIMSypgF50avm327-2GnanyXS8ei923n876JPyN0AsY6rcDwk2_VyZZ4CUqvzI2eSR-TWZPxh-PkHENA9eA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIlFeOFqOQAFzCPWhqXKsE0fipQKqBbqLhFqpLyhKbIeN2HVWS1bV8uuZcY6yFBDiIVIUTw47M5lvPJPPAC88P1OiiGPXz7zYHeSBRJMqEpf7oU6iIgz9nALF0Tgang7en_GzDXjV_QvT8EP0E25kGfZ7TQZOE9I_WbmZVbSWMY-uwFXKz5FZvvl0QR4VBc2_RSH3XMQxvOUVojqe_tR1b3QJYl6ulNxamnm2Os-m03U0a93R0U343HWkqUL5erCs8wP5_ReOx__t6S240eJUdtgo1m3Y0GYbdg4NxuizFXvJbOWonZLfhmujNkG_A-dNEhn9IUNkyYgS25SSzcqG72mm99lkpRYVUcPihk2ZUReH6kU1n-DBL_QF3mc1OdKytjI5odsJoxWvM6NZafDiVOjQVITfgdOjtyevh267toMrB4MwcsM8yYtQK8oeB2EhQxEXiEyCRCvlUZCDYafyc669QOkEcaL0lRJBIn2hPE_m4V3YNJXR94FpMfCFyKTi6Gp9QrQqVp6OZIBQqIiEA3vdO05lS3xO629M0y4AwvFN7fg68KwXnTdsH78T2u0UJW0N_luKOJhoj7gXOPC0b0ZTpfwLDku1RBkRx4IjJPQduNfoVX8XSmhzkeDF4zWN6wWIBny9xZQTSweOMSFVNjnwvNfNvz38nlW1P0uk49FHu_Pg30WfwNbwZHScHr8bf3gI1wOCPrbgcRc268VSP0LgVuePrX3-ALrCP-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIhVeOFqOQAFzCPWhqZI4hyOeKmBVjl0QolIfKkWJ7bARu97VklW1_HpmnKMsBYR4iBTZk8uZyXyTGX8GeOb5uRJlkrh-7iVuWAQSTapM3cjnOo1Lzv2CAsXhKD46Dt-eRCcb8KKbC9PwQ_Q_3Mgy7PeaDHyuyp-M3ExntJRxFF-Cy2GM0RUhok_n3FFx0Ewt4pHnIoyJWlohKuPpD113RhcQ5sVCyStLM89XZ_lksg5mrTcaXIfT7jmaIpSvB8u6OJDff6F4_M8HvQHXWpTKDhu1ugkb2mzDzqHBCH26Ys-ZrRu1P-S3YWvYpud34KxJIaM3ZIgrGRFim0qyadWwPU31Phuv1GJGxLC4YVdu1HlTvZjNx9j4hb6_-6wmN1rVVqYgbDtmtN51bjSrDJ6cyhyaevBbcDx4_fnlkduu7ODKMOSxy4u0KLlWlDsOeCm5SErEJUGqlfIoxMGgU_lFpL1A6RRRovSVEkEqfaE8Txb8NmyamdF3gWkR-kLkUkXoaH3CsypRno5lgECojIUDe90rzmRLe06rb0yyLvzB8c3s-DrwpBedN1wfvxPa7fQka839W4YomEiPIi9w4HHfjYZK2RccltkSZUSSiAgBoe_AnUat-qtQOjsSKZ48WVO4XoBIwNd7TDW2ZOAYEVJdkwNPe9X8283vWU37s0Q2Gn6wO_f-XfQRbH18Ncjevxm9uw9XA8I9ttpxFzbrxVI_QNRWFw-tdf4A1F8-kw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKgEXHi0FQ0HLQ6iHunj9XB8jRFUhJXAgUjkZe3dNIpJ1FBxV4dczs34gU0BIHCJZ3skmXs_sfOMZfwPw0uO5EmWSuDz3EjcsfIkmVaZuxAOdxmUQ8IICxck0Pp-F7y6ii7bPKb0L0_BD9A_cyDLsfk0GvlZls893pv7arCpqZxzF12EvpgzTCPZm0w_jTzbMijwX8UvUv3mVCr_lFhp8d-iRrsDMq9WSN7dmne8u8-VyiGitSzq7A5-7i2kqUb6ebuviVH7_hefxP672Ltxu4SobN_p1D65psw8HY4Oh-mrHXjFbQGqfzO_DjUmbpz-AyyaXjG6RIcBkxIxtFpKtFg3t00qfsPlObSpiiMUPDuVG_TxVb6r1HE9-oY34hNXkTxe1lSkI5M4ZNb7OjWYLg5NTvUNTGH4fZmdvP745d9sWD64MwyB2gyItykArSiL7QSkDkZQIUPxUK-VRrIPRp-JFpD1f6RThouRKCT-VXCjPk0VwCCNTGf0QmBYhFyKXKkKPywnYqkR5OpY-IqIyFg4cd7c5ky3_ObXhWGZdHITrm9n1deB5L7puSD9-J3TU6UrW2v23DOEwsR9Fnu_As34YLZbSMLgs1RZlRJKICJEhd-BBo1r9r1BeOxIpTp4MlK4XIDbw4YhZzC0rOIaGVODkwItePf_254-ttv1ZIptO3tuDR_804WO45RPgsWWORzCqN1v9BOFaXTxtTfIHmIZANQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+colonic+microbiome%2C+hydrogenogenic+and+hydrogenotrophic+genes%2C+transit+and+breath+methane+in+constipation&rft.jtitle=Neurogastroenterology+and+motility&rft.au=Wolf%2C+P+G&rft.au=Parthasarathy%2C+G&rft.au=Chen%2C+J&rft.au=O%27Connor%2C+H+M&rft.date=2017-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1350-1925&rft.eissn=1365-2982&rft.volume=29&rft.issue=10&rft.spage=1&rft_id=info:doi/10.1111%2Fnmo.13056&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-1925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-1925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-1925&client=summon