Identification of mineralocorticoid receptor target genes in the mouse hippocampus
Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR‐specific target genes must exist and might underlie the distinct effects of the rec...
Saved in:
Published in | Journal of neuroendocrinology Vol. 31; no. 8; pp. e12735 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.08.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0953-8194 1365-2826 1365-2826 |
DOI | 10.1111/jne.12735 |
Cover
Abstract | Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR‐specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR‐specific target genes in the hippocampus, a brain region where MR and GR are co‐localised and play a role in the stress response. Using genome‐wide binding of both receptor types, we previously identified MR‐specific, MR‐GR overlapping and GR‐specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR‐specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down‐regulation was also observed for the MR‐specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up‐regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR‐selective DNA binding can reveal functional regulation of genes and further identify distinct MR‐specific effector pathways. |
---|---|
AbstractList | Brain mineralocorticoid receptors (
MR
s) and glucocorticoid receptors (
GR
s) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that
MR
‐specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify
MR
‐specific target genes in the hippocampus, a brain region where
MR
and
GR
are co‐localised and play a role in the stress response. Using genome‐wide binding of both receptor types, we previously identified
MR
‐specific,
MR
‐
GR
overlapping and
GR
‐specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain
MR
knockout (fb
MRKO
) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with
MR
‐specific binding, the most robust effect was a 50% reduction in
Jun dimerization protein 2
(
Jdp2
)
mRNA
levels in fb
MRKO
mice. Down‐regulation was also observed for the
MR
‐specific
Nitric oxide synthase 1 adaptor protein
(
Nos1ap
) and
Suv3 like
RNA
helicase
(
Supv3 l1
). Interestingly, the classical glucocorticoid target gene
FK
506 binding protein 5
(
Fkbp5
), which is associated with
MR
and
GR
chromatin binding, was expressed at substantially lower levels in fb
MRKO
mice. Subsequently, hippocampal
Jdp2
was confirmed to be up‐regulated in a restraint stress model, posing
Jdp2
as a bona fide
MR
target that is also responsive in an acute stress condition. Thus, we show that
MR
‐selective
DNA
binding can reveal functional regulation of genes and further identify distinct
MR
‐specific effector pathways. Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways. Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways. Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR‐specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR‐specific target genes in the hippocampus, a brain region where MR and GR are co‐localised and play a role in the stress response. Using genome‐wide binding of both receptor types, we previously identified MR‐specific, MR‐GR overlapping and GR‐specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR‐specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down‐regulation was also observed for the MR‐specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up‐regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR‐selective DNA binding can reveal functional regulation of genes and further identify distinct MR‐specific effector pathways. |
Author | Tuckermann, Jan P. Hartmann, Jakob Mol, Isabel M. Zwart, Wilbert Roozendaal, Benno Prekovic, Stefan Sarabdjitsingh, R. Angela Buurstede, Jacobus C. Sips, Hetty C. M. Schmidt, Mathias V. Meijer, Onno C. Vettorazzi, Sabine van Weert, Lisa T. C. M. |
AuthorAffiliation | 4 Institute of Comparative Molecular Endocrinology University of Ulm Ulm Germany 5 Department of Psychiatry Harvard Medical School McLean Hospital Belmont Massachusetts 2 Department of Cognitive Neuroscience Radboud University Medical Center Nijmegen The Netherlands 6 Division of Oncogenomics Oncode Institute The Netherlands Cancer Institute Amsterdam The Netherlands 1 Einthoven Laboratory Division of Endocrinology Department of Medicine Leiden University Medical Center Leiden The Netherlands 7 Department of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Munich Germany 3 Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen The Netherlands 8 Department of Translational Neuroscience UMC Utrecht Brain Center University Medical Center Utrecht The Netherlands |
AuthorAffiliation_xml | – name: 8 Department of Translational Neuroscience UMC Utrecht Brain Center University Medical Center Utrecht The Netherlands – name: 4 Institute of Comparative Molecular Endocrinology University of Ulm Ulm Germany – name: 5 Department of Psychiatry Harvard Medical School McLean Hospital Belmont Massachusetts – name: 7 Department of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Munich Germany – name: 3 Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen The Netherlands – name: 6 Division of Oncogenomics Oncode Institute The Netherlands Cancer Institute Amsterdam The Netherlands – name: 2 Department of Cognitive Neuroscience Radboud University Medical Center Nijmegen The Netherlands – name: 1 Einthoven Laboratory Division of Endocrinology Department of Medicine Leiden University Medical Center Leiden The Netherlands |
Author_xml | – sequence: 1 givenname: Lisa T. C. M. orcidid: 0000-0002-8470-4675 surname: van Weert fullname: van Weert, Lisa T. C. M. organization: Radboud University – sequence: 2 givenname: Jacobus C. surname: Buurstede fullname: Buurstede, Jacobus C. organization: Leiden University Medical Center – sequence: 3 givenname: Hetty C. M. surname: Sips fullname: Sips, Hetty C. M. organization: Leiden University Medical Center – sequence: 4 givenname: Sabine surname: Vettorazzi fullname: Vettorazzi, Sabine organization: University of Ulm – sequence: 5 givenname: Isabel M. surname: Mol fullname: Mol, Isabel M. organization: Leiden University Medical Center – sequence: 6 givenname: Jakob surname: Hartmann fullname: Hartmann, Jakob organization: McLean Hospital – sequence: 7 givenname: Stefan surname: Prekovic fullname: Prekovic, Stefan organization: The Netherlands Cancer Institute – sequence: 8 givenname: Wilbert surname: Zwart fullname: Zwart, Wilbert organization: The Netherlands Cancer Institute – sequence: 9 givenname: Mathias V. surname: Schmidt fullname: Schmidt, Mathias V. organization: Max Planck Institute of Psychiatry – sequence: 10 givenname: Benno surname: Roozendaal fullname: Roozendaal, Benno organization: Radboud University – sequence: 11 givenname: Jan P. surname: Tuckermann fullname: Tuckermann, Jan P. organization: University of Ulm – sequence: 12 givenname: R. Angela surname: Sarabdjitsingh fullname: Sarabdjitsingh, R. Angela organization: University Medical Center – sequence: 13 givenname: Onno C. surname: Meijer fullname: Meijer, Onno C. email: o.c.meijer@lumc.nl organization: Leiden University Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31121060$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9PFTEUxRuDkQe68AuYJm5kMdB_0-lsTAgBxRBNjK6bTufOe32Zace2I-HbU3lIlAS66aK_e3rOPQdozwcPCL2l5JiWc7L1cExZw-sXaEW5rCummNxDK9LWvFK0FfvoIKUtIbSpOXmF9jmljBJJVuj7ZQ8-u8FZk13wOAx4ch6iGYMNMTsbXI8jWJhziDibuIaM1-AhYedx3gCewpIAb9w8B2umeUmv0cvBjAne3N-H6OfF-Y-zz9XVt0-XZ6dXlRWC11UngTVSGtaxTlhDVG1FL3rbWNv0cmgHyxtFQVlerKqOc1HLFmzf9ooOvG35Ifq4052XboLelhzFtp6jm0y80cE4_f-Ldxu9Dr-1bBoqFCkCH-4FYvi1QMp6csnCOBoPJZRmrHzNaNlrQd8_Qrdhib7EK5SiQjJJVaHe_evowcrfdRfgaAfYGFKKMDwglOg_VepSpb6rsrAnj1jr8l1JJYwbn5u4diPcPC2tv3w9303cAg0hsGw |
CitedBy_id | crossref_primary_10_1016_j_celrep_2021_109185 crossref_primary_10_1210_js_2019_00158 crossref_primary_10_3389_fendo_2022_960279 crossref_primary_10_1111_jne_13072 crossref_primary_10_1210_jendso_bvac188 crossref_primary_10_1016_j_ynstr_2022_100455 crossref_primary_10_1016_j_coemr_2022_100352 crossref_primary_10_1016_j_nsa_2024_104047 crossref_primary_10_1111_jne_13125 crossref_primary_10_1111_jne_13213 crossref_primary_10_1063_5_0197177 crossref_primary_10_1016_j_cobeha_2024_101439 crossref_primary_10_1016_j_mce_2024_112323 crossref_primary_10_1016_j_neuropharm_2022_109186 crossref_primary_10_1038_s41467_020_17429_5 crossref_primary_10_1111_acel_13474 crossref_primary_10_3390_ijms20071575 crossref_primary_10_1111_fcp_12576 crossref_primary_10_1111_bph_15746 crossref_primary_10_1210_endocr_bqab105 crossref_primary_10_1111_bph_15719 crossref_primary_10_1080_10253890_2020_1806226 |
Cites_doi | 10.1016/S1074-7613(00)80398-2 10.1046/j.0953-816x.2001.01685.x 10.1128/MCB.13.4.2031 10.1016/j.psyneuen.2009.05.021 10.1073/pnas.0503878102 10.1006/bbrc.1997.6307 10.1038/79910 10.1038/nature05453 10.1111/j.1365-2826.1995.tb00804.x 10.1371/journal.pone.0025875 10.1111/j.1365-2826.2010.02051.x 10.1210/en.2016-1422 10.1210/en.2012-2233 10.1073/pnas.0507572102 10.1615/CritRevNeurobiol.v12.i1-2.10 10.1210/en.2018-00819 10.1124/pr.112.005892 10.1242/dev.126.13.2935 10.1210/endo-117-6-2505 10.1093/nar/gkt581 10.1210/en.2010-0237 10.1074/jbc.M115.668558 10.1016/j.mcn.2011.03.009 10.1016/j.psyneuen.2017.01.021 10.1073/pnas.0801551105 10.1128/MCB.22.15.5451-5466.2002 10.1074/jbc.M508658200 10.1073/pnas.96.5.2514 10.1038/nmeth.4146 10.1210/me.2013-1079 10.1016/j.cell.2016.07.049 10.1128/MCB.17.6.3094 10.1037/0735-7044.106.1.62 10.1038/nrn1683 10.1016/S0306-4522(97)00008-0 10.1016/j.cmet.2013.01.016 10.1016/j.gene.2017.04.048 10.1016/j.cell.2011.03.027 10.26508/lsa.201800115 10.1210/jc.2011-2562 10.1210/me.2005-0089 10.1073/pnas.1605246113 10.1016/j.tins.2007.10.005 10.1073/pnas.87.12.4495 10.1210/me.2014-1101 10.1073/pnas.231313998 10.1210/en.2011-0287 10.1101/gr.097022.109 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology 2019 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology. Copyright © 2019 British Society for Neuroendocrinology |
Copyright_xml | – notice: 2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology – notice: 2019 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology. – notice: Copyright © 2019 British Society for Neuroendocrinology |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1111/jne.12735 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | van WEERT et al |
EISSN | 1365-2826 |
EndPage | n/a |
ExternalDocumentID | PMC6771480 31121060 10_1111_jne_12735 JNE12735 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: COST Action ADMIRE funderid: BM1301 – fundername: Deutsche Forschungsgemeinschaft funderid: CRC1149/C02 INST 40/492‐1 – fundername: NWO ALW Grant funderid: 823.02.002 – fundername: NWO ALW Grant grantid: 823.02.002 – fundername: Deutsche Forschungsgemeinschaft grantid: CRC1149/C02 INST 40/492‐1 – fundername: COST Action ADMIRE grantid: BM1301 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FYBCS FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4435-b6e2766a2b2b4ca085c4d4dc7cc7d6f9fc3781e8c32108b334569ecd9d81f3993 |
IEDL.DBID | DR2 |
ISSN | 0953-8194 1365-2826 |
IngestDate | Thu Aug 21 14:32:08 EDT 2025 Fri Jul 11 15:21:38 EDT 2025 Fri Jul 25 03:26:46 EDT 2025 Mon Jul 21 05:40:55 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Tue Jul 01 02:01:35 EDT 2025 Wed Jan 22 16:38:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | glucocorticoids transcription mineralocorticoid receptor knockout restraint stress Jdp2 |
Language | English |
License | Attribution 2019 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4435-b6e2766a2b2b4ca085c4d4dc7cc7d6f9fc3781e8c32108b334569ecd9d81f3993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 van Weert and Buurstede contributed equally. |
ORCID | 0000-0002-8470-4675 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjne.12735 |
PMID | 31121060 |
PQID | 2281462618 |
PQPubID | 34202 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771480 proquest_miscellaneous_2232121735 proquest_journals_2281462618 pubmed_primary_31121060 crossref_primary_10_1111_jne_12735 crossref_citationtrail_10_1111_jne_12735 wiley_primary_10_1111_jne_12735_JNE12735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Journal of neuroendocrinology |
PublicationTitleAlternate | J Neuroendocrinol |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1997; 80 2007; 445 2013; 27 2019; 2 2000; 3 1997; 232 2013; 41 1992; 106 2016; 166 2008; 105 2008; 31 2014; 28 2011; 152 1999; 126 2011; 6 2019; 160 2017; 158 2012; 97 1997; 7 1995; 7 2009; 34 2017; 625 2010; 22 2005; 280 1993; 13 1990; 87 2005; 19 2015; 290 2013; 17 2017; 14 2005; 102 2017; 78 2002; 22 2016; 113 1997; 17 2005; 6 1985; 117 2010; 151 1999; 96 2013; 154 2011; 47 2009; 19 2001; 14 1998; 12 2011; 145 2012; 64 2006; 103 2001; 98 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Finotto S (e_1_2_7_34_1) 1999; 126 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 31 start-page: 1 year: 2008 end-page: 7 article-title: The coming out of the brain mineralocorticoid receptor publication-title: Trends Neurosci – volume: 160 start-page: 1044 year: 2019 end-page: 1056 article-title: Glucocorticoid receptor tethered mineralocorticoid receptors increase glucocorticoid‐induced transcriptional responses publication-title: Endocrinology – volume: 22 start-page: 5451 year: 2002 end-page: 5466 article-title: Jun dimerization protein 2 functions as a progesterone receptor N‐terminal domain coactivator publication-title: Mol Cell Biol – volume: 126 start-page: 2935 year: 1999 end-page: 2944 article-title: Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells publication-title: Development – volume: 290 start-page: 19756 year: 2015 end-page: 19769 article-title: Response element composition governs correlations between binding site affinity and transcription in glucocorticoid receptor feed‐forward loops publication-title: J Biol Chem – volume: 22 start-page: 1093 year: 2010 end-page: 1100 article-title: Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus publication-title: J Neuroendocrinol – volume: 103 start-page: 195 year: 2006 end-page: 200 article-title: Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity publication-title: Proc Natl Acad Sci USA – volume: 87 start-page: 4495 year: 1990 end-page: 4498 article-title: Mineralocorticoid receptor‐mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro publication-title: Proc Natl Acad Sci USA – volume: 102 start-page: 19204 year: 2005 end-page: 19207 article-title: Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone publication-title: Proc Natl Acad Sci USA – volume: 2 start-page: e201800115 year: 2019 article-title: Optimized ChIP‐seq method facilitates transcription factor profiling in human tumors publication-title: Life Sci Alliance – volume: 34 start-page: S186 issue: Suppl 1 year: 2009 end-page: S195 article-title: The role of FKBP5, a co‐chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders publication-title: Psychoneuroendocrinology – volume: 28 start-page: 1571 year: 2014 end-page: 1584 article-title: Use of phage display to identify novel mineralocorticoid receptor‐interacting proteins publication-title: Mol Endocrinol – volume: 47 start-page: 137 year: 2011 end-page: 144 article-title: ERK‐associated changes of AP‐1 proteins during fear extinction publication-title: Mol Cell Neurosci – volume: 158 start-page: 1511 year: 2017 end-page: 1522 article-title: NeuroD factors discriminate mineralocorticoid from glucocorticoid receptor DNA Binding in the male rat brain publication-title: Endocrinology – volume: 106 start-page: 62 year: 1992 end-page: 71 article-title: Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning publication-title: Behav Neurosci – volume: 41 start-page: 8045 year: 2013 end-page: 8060 article-title: Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression publication-title: Nucleic Acids Res – volume: 14 start-page: 675 year: 2001 end-page: 689 article-title: Identification of corticosteroid‐responsive genes in rat hippocampus using serial analysis of gene expression publication-title: Eur J Neuorsci – volume: 6 start-page: e25875 year: 2011 article-title: Binding‐folding induced regulation of AF1 transactivation domain of the glucocorticoid receptor by a cofactor that binds to its DNA binding domain publication-title: PLoS One – volume: 113 start-page: 11336 year: 2016 end-page: 11341 article-title: Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus publication-title: Proc Natl Acad Sci USA – volume: 98 start-page: 12790 year: 2001 end-page: 12795 article-title: Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory publication-title: Proc Natl Acad Sci USA – volume: 80 start-page: 419 year: 1997 end-page: 426 article-title: Elevated basal trough levels of corticosterone suppress hippocampal 5‐hydroxytryptamine(1A) receptor expression in adrenally intact rats: implication for the pathogenesis of depression publication-title: Neuroscience – volume: 145 start-page: 224 year: 2011 end-page: 241 article-title: Widespread negative response elements mediate direct repression by agonist‐liganded glucocorticoid receptor publication-title: Cell – volume: 625 start-page: 42 year: 2017 end-page: 48 article-title: Nitric oxide pathway genes (NOS1AP and NOS1) are involved in PTSD severity, depression, anxiety, stress and resilience publication-title: Gene – volume: 17 start-page: 423 year: 2013 end-page: 435 article-title: Adipose subtype‐selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs publication-title: Cell Metab – volume: 232 start-page: 437 year: 1997 end-page: 443 article-title: Tissue distribution and abundance of human FKBP51, and FK506‐binding protein that can mediate calcineurin inhibition publication-title: Biochem Biophys Res Comm – volume: 13 start-page: 2031 year: 1993 end-page: 2040 article-title: Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum publication-title: Mol Cell Biol – volume: 14 start-page: 125 year: 2017 end-page: 134 article-title: How best to identify chromosomal interactions: a comparison of approaches publication-title: Nat Methods – volume: 154 start-page: 3261 year: 2013 end-page: 3272 article-title: Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus publication-title: Endocrinology – volume: 166 start-page: pp. 1269–81 e19 year: 2016 article-title: Direct GR binding sites potentiate clusters of TF binding across the human genome publication-title: Cell – volume: 97 start-page: E376 year: 2012 end-page: E392 article-title: Kruppel‐like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis publication-title: J Clin Endocrinol Metab – volume: 6 start-page: 463 year: 2005 end-page: 475 article-title: Stress and the brain: from adaptation to disease publication-title: Nat Rev Neurosci – volume: 19 start-page: 2163 year: 2009 end-page: 2171 article-title: Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation publication-title: Genome Res – volume: 27 start-page: 1142 year: 2013 end-page: 1152 article-title: Dexamethasone induces a putative repressor complex and chromatin modifications in the CRH promoter publication-title: Mol Endocrinol – volume: 117 start-page: 2505 year: 1985 end-page: 2511 article-title: Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation publication-title: Endocrinology – volume: 96 start-page: 2514 year: 1999 end-page: 2519 article-title: Epithelial sodium channel regulated by aldosterone‐induced protein sgk publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 803 year: 1997 end-page: 812 article-title: A new dexamethasone‐induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3‐activated cell death publication-title: Immunity – volume: 7 start-page: 653 year: 1995 end-page: 657 article-title: A role for the mineralocorticoid receptor in a rapid and transient suppression of hippocampal 5‐HT1A receptor mRNA by corticosterone publication-title: J Neuroendocrinol – volume: 151 start-page: 4467 year: 2010 end-page: 4476 article-title: Molecular signature of mineralocorticoid receptor signaling in cardiomyocytes: from cultured cells to mouse heart publication-title: Endocrinology – volume: 3 start-page: 977 year: 2000 end-page: 978 article-title: Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers publication-title: Nat Neurosci – volume: 19 start-page: 2211 year: 2005 end-page: 2221 article-title: The mineralocorticoid receptor: a journey exploring its diversity and specificity of action publication-title: Mol Endocrinol – volume: 280 start-page: 39970 year: 2005 end-page: 39981 article-title: A novel role for glucocorticoid‐induced leucine zipper protein in epithelial sodium channel‐mediated sodium transport publication-title: J Biol Chem – volume: 445 start-page: 168 year: 2007 end-page: 176 article-title: Genome‐wide atlas of gene expression in the adult mouse brain publication-title: Nature – volume: 12 start-page: 1 year: 1998 end-page: 20 article-title: Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity publication-title: Crit Rev Neurobiol – volume: 64 start-page: 901 year: 2012 end-page: 938 article-title: Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes publication-title: Pharmacol Rev – volume: 78 start-page: 213 year: 2017 end-page: 221 article-title: An adverse early life environment can enhance stress resilience in adulthood publication-title: Psychoneuroendocrinology – volume: 105 start-page: 5745 year: 2008 end-page: 5749 article-title: Conservation analysis predicts in vivo occupancy of glucocorticoid receptor‐binding sequences at glucocorticoid‐induced genes publication-title: Proc Natl Acad Sci USA – volume: 152 start-page: 3749 year: 2011 end-page: 3757 article-title: Specific regulatory motifs predict glucocorticoid responsiveness of hippocampal gene expression publication-title: Endocrinology – volume: 17 start-page: 3094 year: 1997 end-page: 3102 article-title: Isolation of an AP‐1 repressor by a novel method for detecting protein‐protein interactions publication-title: Mol Cell Biol – ident: e_1_2_7_19_1 doi: 10.1016/S1074-7613(00)80398-2 – ident: e_1_2_7_9_1 doi: 10.1046/j.0953-816x.2001.01685.x – ident: e_1_2_7_21_1 doi: 10.1128/MCB.13.4.2031 – ident: e_1_2_7_40_1 doi: 10.1016/j.psyneuen.2009.05.021 – ident: e_1_2_7_26_1 doi: 10.1073/pnas.0503878102 – ident: e_1_2_7_18_1 doi: 10.1006/bbrc.1997.6307 – ident: e_1_2_7_6_1 doi: 10.1038/79910 – ident: e_1_2_7_27_1 doi: 10.1038/nature05453 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-2826.1995.tb00804.x – ident: e_1_2_7_43_1 doi: 10.1371/journal.pone.0025875 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-2826.2010.02051.x – ident: e_1_2_7_25_1 doi: 10.1210/en.2016-1422 – ident: e_1_2_7_31_1 doi: 10.1210/en.2012-2233 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.0507572102 – ident: e_1_2_7_22_1 doi: 10.1615/CritRevNeurobiol.v12.i1-2.10 – ident: e_1_2_7_44_1 doi: 10.1210/en.2018-00819 – ident: e_1_2_7_12_1 doi: 10.1124/pr.112.005892 – volume: 126 start-page: 2935 year: 1999 ident: e_1_2_7_34_1 article-title: Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells publication-title: Development doi: 10.1242/dev.126.13.2935 – ident: e_1_2_7_2_1 doi: 10.1210/endo-117-6-2505 – ident: e_1_2_7_23_1 doi: 10.1093/nar/gkt581 – ident: e_1_2_7_14_1 doi: 10.1210/en.2010-0237 – ident: e_1_2_7_45_1 doi: 10.1074/jbc.M115.668558 – ident: e_1_2_7_48_1 doi: 10.1016/j.mcn.2011.03.009 – ident: e_1_2_7_29_1 doi: 10.1016/j.psyneuen.2017.01.021 – ident: e_1_2_7_32_1 doi: 10.1073/pnas.0801551105 – ident: e_1_2_7_42_1 doi: 10.1128/MCB.22.15.5451-5466.2002 – ident: e_1_2_7_15_1 doi: 10.1074/jbc.M508658200 – ident: e_1_2_7_17_1 doi: 10.1073/pnas.96.5.2514 – ident: e_1_2_7_30_1 doi: 10.1038/nmeth.4146 – ident: e_1_2_7_38_1 doi: 10.1210/me.2013-1079 – ident: e_1_2_7_35_1 doi: 10.1016/j.cell.2016.07.049 – ident: e_1_2_7_41_1 doi: 10.1128/MCB.17.6.3094 – ident: e_1_2_7_7_1 doi: 10.1037/0735-7044.106.1.62 – ident: e_1_2_7_4_1 doi: 10.1038/nrn1683 – ident: e_1_2_7_36_1 doi: 10.1016/S0306-4522(97)00008-0 – ident: e_1_2_7_47_1 doi: 10.1016/j.cmet.2013.01.016 – ident: e_1_2_7_49_1 doi: 10.1016/j.gene.2017.04.048 – ident: e_1_2_7_39_1 doi: 10.1016/j.cell.2011.03.027 – ident: e_1_2_7_28_1 doi: 10.26508/lsa.201800115 – ident: e_1_2_7_46_1 doi: 10.1210/jc.2011-2562 – ident: e_1_2_7_10_1 doi: 10.1210/me.2005-0089 – ident: e_1_2_7_16_1 doi: 10.1073/pnas.1605246113 – ident: e_1_2_7_3_1 doi: 10.1016/j.tins.2007.10.005 – ident: e_1_2_7_5_1 doi: 10.1073/pnas.87.12.4495 – ident: e_1_2_7_11_1 doi: 10.1210/me.2014-1101 – ident: e_1_2_7_8_1 doi: 10.1073/pnas.231313998 – ident: e_1_2_7_33_1 doi: 10.1210/en.2011-0287 – ident: e_1_2_7_37_1 doi: 10.1101/gr.097022.109 |
SSID | ssj0017530 |
Score | 2.4017384 |
Snippet | Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on... Brain mineralocorticoid receptors ( MR s) and glucocorticoid receptors ( GR s) respond to the same glucocorticoid hormones but can have differential effects on... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e12735 |
SubjectTerms | Animals Binding Sites - genetics Cellular stress response Chromatin Corticosterone Dimerization DNA helicase Female Forebrain Gene expression Gene Expression Regulation Gene regulation Genomes Glucocorticoid receptors Glucocorticoids Hippocampus Hippocampus - metabolism Jdp2 Male Menopause Mice Mice, Inbred C57BL Mice, Knockout mineralocorticoid receptor knockout Mineralocorticoid receptors Nitric-oxide synthase Original Proteins Receptors, Glucocorticoid - genetics Receptors, Glucocorticoid - metabolism Receptors, Mineralocorticoid - genetics Receptors, Mineralocorticoid - physiology restraint stress RNA helicase Tacrolimus Tacrolimus-binding protein transcription |
Title | Identification of mineralocorticoid receptor target genes in the mouse hippocampus |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjne.12735 https://www.ncbi.nlm.nih.gov/pubmed/31121060 https://www.proquest.com/docview/2281462618 https://www.proquest.com/docview/2232121735 https://pubmed.ncbi.nlm.nih.gov/PMC6771480 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1365-2826 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0017530 issn: 0953-8194 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0953-8194 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2826 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017530 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RTlxaCn0sUORWFeKSFYkdJ1FPqAIhDgihInFAiuJHSgTrjdjdA_x6ZuwkYqGVqt4iZeLEscfzzXjmM8B3FdukUFxHcWzTSCgtoiqvVZTWRhh0mokxhbItzuTJpTi9Sq9W4EdfCxP4IYaAG2mGX69JwSs1e67kzo5jNL5UYB7z1G_RXgzUUURAeRB49niEVk90rEI-i6d_ctkWvQKYr_Mkn-NXb4CO38F1_-kh7-R2vJirsX58wer4n31bh7cdMGWHYSa9hxXrNmDz0KFTPnlge8ynivoY_CZchPLeuov3sWnNJo2nr56iM4sNTBvDcCm1LXr0LCSbs9-0qrLGMYScjAIOlt00bYu2dNIuZh_g8vjo18-TqDucIdICIVakpE0yKatEJUroCpGbFji8OtM6M7Iuas2zPLa5piKhXHGOSK2w2hQmj2tCRR9h1U2d_QyMS6GIE0ZZaYk7Jue46CZ5ZbRJTSr5CPb7YSp1x1xOB2jclYMH42zp_9cIvg2ibaDr-JPQTj_WZaexszJJKBiK_mQ-gq_DbdQ12kCpnMXfgjLYGfThqIlPYWoMb-ExUbHJgxFkS5NmECAe7-U7rrnxfN4yy9ApxSf3_Zz4-4eXp2dH_mLr30W3YQ0xXhFyFndgdX6_sF8QR83VLrxJxPmuV5sn9jwcLQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sfbAvRavVs2rXIuJL5LK72STgi4hyVXuUouBbyH5EA95eqPrgf9-ZTS54WMG3QGbzsZOZ-c3s7C8Aezp2PNfCRHHskkhqI6Myq3SUVFZaTJqJMYW6LcZqdC3Pb5KbBTia7YVp-SH6ghtZRvDXZOBUkH5p5d4dxhh9kw_wUSo-pG-ay9_9GgIC8WHLtCcijHuy4xUKfTyzofPR6BXEfN0p-RLBhhB0tgyfO-zIjltlr8CC819g9dhj3jx5ZvssdHOGMvkq_Gl34FZdSY5NKzapA8P0FPNNvMC0tgy9nWsw6WZtPzi7JcfHas8QFTKqCTh2VzcNhrtJ8_SwBtdnp1cno6j7f0JkJKKgSCvHU6VKrrmWpkRwZSRqwKTGpFZVeWVEmsUuM7SPJ9NCIJjKnbG5zeKKgMtXWPRT7zaACSU10bZopxzRu2QC_SLPSmtsYhMlBnAwm8fCdOTi9I-L-6JPMrwrwpQP4Ecv2rSMGv8T2popo-iM6qHgnOqVmPJlA9jtT6M50BpH6R1OC8rgy2CaRZdYb3XX30XExJamhgNI57TaCxDV9vwZX98Fym2Vppg34siDoP-3H7w4H5-Gg833i36HpdHVr8vi8uf44ht8QkiWty2GW7D4-PfJbSPsedQ74ev-BxJ0_q8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qBfHFr2o9bXUVkb7kaLKbTYJPpfaoVQ4pFvoghOxHbLC3F9q7h_avd2Y3CT2rIL4FdjZfu7Pz-01mfwF4p2KbFIrrKI5tGgmlRVTltYrS2giDpJkUU6jaYioPT8TRaXq6Bh_6vTBBH2JIuJFn-PWaHLw19U0nd3YcY_BN78BdIZFdESI6HrSjSIFyNwjt8QjDnuhkhXwZT991NRjdQpi3CyVvAlgfgSYP4Xt_76Hw5Od4uVBjff2brON_PtwjeNAhU7YXptJjWLPuCWzsOWTlsyv2nvlaUZ-E34DjsL-37hJ-bF6zWeP1q-fIZvEE88YwXEtti5SehWpz9oOWVdY4hpiTUcbBsrOmbTGYztrl5VM4mRx82z-Mur8zRFogxoqUtEkmZZWoRAldIXTTAsdXZ1pnRtZFrXmWxzbXtEsoV5wjVCusNoXJ45pg0TNYd3NnnwPjUigShVFWWhKPyTmuukleGW1Sk0o-gp1-mErdSZfTHzTOy4HCOFv69zWCt4NpG_Q6_mS01Y912bnsZZkklA1FQpmP4M3QjM5GX1AqZ_G1oA0-DJI4OsVmmBrDVXhMWmxydwTZyqQZDEjIe7XFNWde0FtmGbJS7Lnj58Tfb7w8mh74gxf_bvoa7n39OCm_fJp-fgn3Ee8VoX5xC9YXF0u7jZhqoV553_kFfD0eIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+mineralocorticoid+receptor+target+genes+in+the+mouse+hippocampus&rft.jtitle=Journal+of+neuroendocrinology&rft.au=van+Weert%2C+Lisa+T+C+M&rft.au=Buurstede%2C+Jacobus+C&rft.au=Sips%2C+Hetty+C+M&rft.au=Vettorazzi%2C+Sabine&rft.date=2019-08-01&rft.issn=1365-2826&rft.eissn=1365-2826&rft.volume=31&rft.issue=8&rft.spage=e12735&rft_id=info:doi/10.1111%2Fjne.12735&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8194&client=summon |