Identification of mineralocorticoid receptor target genes in the mouse hippocampus

Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR‐specific target genes must exist and might underlie the distinct effects of the rec...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroendocrinology Vol. 31; no. 8; pp. e12735 - n/a
Main Authors van Weert, Lisa T. C. M., Buurstede, Jacobus C., Sips, Hetty C. M., Vettorazzi, Sabine, Mol, Isabel M., Hartmann, Jakob, Prekovic, Stefan, Zwart, Wilbert, Schmidt, Mathias V., Roozendaal, Benno, Tuckermann, Jan P., Sarabdjitsingh, R. Angela, Meijer, Onno C.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0953-8194
1365-2826
1365-2826
DOI10.1111/jne.12735

Cover

Abstract Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR‐specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR‐specific target genes in the hippocampus, a brain region where MR and GR are co‐localised and play a role in the stress response. Using genome‐wide binding of both receptor types, we previously identified MR‐specific, MR‐GR overlapping and GR‐specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR‐specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down‐regulation was also observed for the MR‐specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up‐regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR‐selective DNA binding can reveal functional regulation of genes and further identify distinct MR‐specific effector pathways.
AbstractList Brain mineralocorticoid receptors ( MR s) and glucocorticoid receptors ( GR s) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR ‐specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR ‐specific target genes in the hippocampus, a brain region where MR and GR are co‐localised and play a role in the stress response. Using genome‐wide binding of both receptor types, we previously identified MR ‐specific, MR ‐ GR overlapping and GR ‐specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fb MRKO ) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR ‐specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 ( Jdp2 ) mRNA levels in fb MRKO mice. Down‐regulation was also observed for the MR ‐specific Nitric oxide synthase 1 adaptor protein ( Nos1ap ) and Suv3 like RNA helicase ( Supv3 l1 ). Interestingly, the classical glucocorticoid target gene FK 506 binding protein 5  ( Fkbp5 ), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fb MRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up‐regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR ‐selective DNA binding can reveal functional regulation of genes and further identify distinct MR ‐specific effector pathways.
Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.
Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.
Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR‐specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR‐specific target genes in the hippocampus, a brain region where MR and GR are co‐localised and play a role in the stress response. Using genome‐wide binding of both receptor types, we previously identified MR‐specific, MR‐GR overlapping and GR‐specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR‐specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down‐regulation was also observed for the MR‐specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up‐regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR‐selective DNA binding can reveal functional regulation of genes and further identify distinct MR‐specific effector pathways.
Author Tuckermann, Jan P.
Hartmann, Jakob
Mol, Isabel M.
Zwart, Wilbert
Roozendaal, Benno
Prekovic, Stefan
Sarabdjitsingh, R. Angela
Buurstede, Jacobus C.
Sips, Hetty C. M.
Schmidt, Mathias V.
Meijer, Onno C.
Vettorazzi, Sabine
van Weert, Lisa T. C. M.
AuthorAffiliation 4 Institute of Comparative Molecular Endocrinology University of Ulm Ulm Germany
5 Department of Psychiatry Harvard Medical School McLean Hospital Belmont Massachusetts
2 Department of Cognitive Neuroscience Radboud University Medical Center Nijmegen The Netherlands
6 Division of Oncogenomics Oncode Institute The Netherlands Cancer Institute Amsterdam The Netherlands
1 Einthoven Laboratory Division of Endocrinology Department of Medicine Leiden University Medical Center Leiden The Netherlands
7 Department of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Munich Germany
3 Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen The Netherlands
8 Department of Translational Neuroscience UMC Utrecht Brain Center University Medical Center Utrecht The Netherlands
AuthorAffiliation_xml – name: 8 Department of Translational Neuroscience UMC Utrecht Brain Center University Medical Center Utrecht The Netherlands
– name: 4 Institute of Comparative Molecular Endocrinology University of Ulm Ulm Germany
– name: 5 Department of Psychiatry Harvard Medical School McLean Hospital Belmont Massachusetts
– name: 7 Department of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Munich Germany
– name: 3 Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen The Netherlands
– name: 6 Division of Oncogenomics Oncode Institute The Netherlands Cancer Institute Amsterdam The Netherlands
– name: 2 Department of Cognitive Neuroscience Radboud University Medical Center Nijmegen The Netherlands
– name: 1 Einthoven Laboratory Division of Endocrinology Department of Medicine Leiden University Medical Center Leiden The Netherlands
Author_xml – sequence: 1
  givenname: Lisa T. C. M.
  orcidid: 0000-0002-8470-4675
  surname: van Weert
  fullname: van Weert, Lisa T. C. M.
  organization: Radboud University
– sequence: 2
  givenname: Jacobus C.
  surname: Buurstede
  fullname: Buurstede, Jacobus C.
  organization: Leiden University Medical Center
– sequence: 3
  givenname: Hetty C. M.
  surname: Sips
  fullname: Sips, Hetty C. M.
  organization: Leiden University Medical Center
– sequence: 4
  givenname: Sabine
  surname: Vettorazzi
  fullname: Vettorazzi, Sabine
  organization: University of Ulm
– sequence: 5
  givenname: Isabel M.
  surname: Mol
  fullname: Mol, Isabel M.
  organization: Leiden University Medical Center
– sequence: 6
  givenname: Jakob
  surname: Hartmann
  fullname: Hartmann, Jakob
  organization: McLean Hospital
– sequence: 7
  givenname: Stefan
  surname: Prekovic
  fullname: Prekovic, Stefan
  organization: The Netherlands Cancer Institute
– sequence: 8
  givenname: Wilbert
  surname: Zwart
  fullname: Zwart, Wilbert
  organization: The Netherlands Cancer Institute
– sequence: 9
  givenname: Mathias V.
  surname: Schmidt
  fullname: Schmidt, Mathias V.
  organization: Max Planck Institute of Psychiatry
– sequence: 10
  givenname: Benno
  surname: Roozendaal
  fullname: Roozendaal, Benno
  organization: Radboud University
– sequence: 11
  givenname: Jan P.
  surname: Tuckermann
  fullname: Tuckermann, Jan P.
  organization: University of Ulm
– sequence: 12
  givenname: R. Angela
  surname: Sarabdjitsingh
  fullname: Sarabdjitsingh, R. Angela
  organization: University Medical Center
– sequence: 13
  givenname: Onno C.
  surname: Meijer
  fullname: Meijer, Onno C.
  email: o.c.meijer@lumc.nl
  organization: Leiden University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31121060$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PFTEUxRuDkQe68AuYJm5kMdB_0-lsTAgBxRBNjK6bTufOe32Zace2I-HbU3lIlAS66aK_e3rOPQdozwcPCL2l5JiWc7L1cExZw-sXaEW5rCummNxDK9LWvFK0FfvoIKUtIbSpOXmF9jmljBJJVuj7ZQ8-u8FZk13wOAx4ch6iGYMNMTsbXI8jWJhziDibuIaM1-AhYedx3gCewpIAb9w8B2umeUmv0cvBjAne3N-H6OfF-Y-zz9XVt0-XZ6dXlRWC11UngTVSGtaxTlhDVG1FL3rbWNv0cmgHyxtFQVlerKqOc1HLFmzf9ooOvG35Ifq4052XboLelhzFtp6jm0y80cE4_f-Ldxu9Dr-1bBoqFCkCH-4FYvi1QMp6csnCOBoPJZRmrHzNaNlrQd8_Qrdhib7EK5SiQjJJVaHe_evowcrfdRfgaAfYGFKKMDwglOg_VepSpb6rsrAnj1jr8l1JJYwbn5u4diPcPC2tv3w9303cAg0hsGw
CitedBy_id crossref_primary_10_1016_j_celrep_2021_109185
crossref_primary_10_1210_js_2019_00158
crossref_primary_10_3389_fendo_2022_960279
crossref_primary_10_1111_jne_13072
crossref_primary_10_1210_jendso_bvac188
crossref_primary_10_1016_j_ynstr_2022_100455
crossref_primary_10_1016_j_coemr_2022_100352
crossref_primary_10_1016_j_nsa_2024_104047
crossref_primary_10_1111_jne_13125
crossref_primary_10_1111_jne_13213
crossref_primary_10_1063_5_0197177
crossref_primary_10_1016_j_cobeha_2024_101439
crossref_primary_10_1016_j_mce_2024_112323
crossref_primary_10_1016_j_neuropharm_2022_109186
crossref_primary_10_1038_s41467_020_17429_5
crossref_primary_10_1111_acel_13474
crossref_primary_10_3390_ijms20071575
crossref_primary_10_1111_fcp_12576
crossref_primary_10_1111_bph_15746
crossref_primary_10_1210_endocr_bqab105
crossref_primary_10_1111_bph_15719
crossref_primary_10_1080_10253890_2020_1806226
Cites_doi 10.1016/S1074-7613(00)80398-2
10.1046/j.0953-816x.2001.01685.x
10.1128/MCB.13.4.2031
10.1016/j.psyneuen.2009.05.021
10.1073/pnas.0503878102
10.1006/bbrc.1997.6307
10.1038/79910
10.1038/nature05453
10.1111/j.1365-2826.1995.tb00804.x
10.1371/journal.pone.0025875
10.1111/j.1365-2826.2010.02051.x
10.1210/en.2016-1422
10.1210/en.2012-2233
10.1073/pnas.0507572102
10.1615/CritRevNeurobiol.v12.i1-2.10
10.1210/en.2018-00819
10.1124/pr.112.005892
10.1242/dev.126.13.2935
10.1210/endo-117-6-2505
10.1093/nar/gkt581
10.1210/en.2010-0237
10.1074/jbc.M115.668558
10.1016/j.mcn.2011.03.009
10.1016/j.psyneuen.2017.01.021
10.1073/pnas.0801551105
10.1128/MCB.22.15.5451-5466.2002
10.1074/jbc.M508658200
10.1073/pnas.96.5.2514
10.1038/nmeth.4146
10.1210/me.2013-1079
10.1016/j.cell.2016.07.049
10.1128/MCB.17.6.3094
10.1037/0735-7044.106.1.62
10.1038/nrn1683
10.1016/S0306-4522(97)00008-0
10.1016/j.cmet.2013.01.016
10.1016/j.gene.2017.04.048
10.1016/j.cell.2011.03.027
10.26508/lsa.201800115
10.1210/jc.2011-2562
10.1210/me.2005-0089
10.1073/pnas.1605246113
10.1016/j.tins.2007.10.005
10.1073/pnas.87.12.4495
10.1210/me.2014-1101
10.1073/pnas.231313998
10.1210/en.2011-0287
10.1101/gr.097022.109
ContentType Journal Article
Copyright 2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology
2019 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.
Copyright © 2019 British Society for Neuroendocrinology
Copyright_xml – notice: 2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology
– notice: 2019 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.
– notice: Copyright © 2019 British Society for Neuroendocrinology
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1111/jne.12735
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Technology Research Database


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate van WEERT et al
EISSN 1365-2826
EndPage n/a
ExternalDocumentID PMC6771480
31121060
10_1111_jne_12735
JNE12735
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: COST Action ADMIRE
  funderid: BM1301
– fundername: Deutsche Forschungsgemeinschaft
  funderid: CRC1149/C02 INST 40/492‐1
– fundername: NWO ALW Grant
  funderid: 823.02.002
– fundername: NWO ALW Grant
  grantid: 823.02.002
– fundername: Deutsche Forschungsgemeinschaft
  grantid: CRC1149/C02 INST 40/492‐1
– fundername: COST Action ADMIRE
  grantid: BM1301
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4435-b6e2766a2b2b4ca085c4d4dc7cc7d6f9fc3781e8c32108b334569ecd9d81f3993
IEDL.DBID DR2
ISSN 0953-8194
1365-2826
IngestDate Thu Aug 21 14:32:08 EDT 2025
Fri Jul 11 15:21:38 EDT 2025
Fri Jul 25 03:26:46 EDT 2025
Mon Jul 21 05:40:55 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Tue Jul 01 02:01:35 EDT 2025
Wed Jan 22 16:38:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords glucocorticoids
transcription
mineralocorticoid receptor knockout
restraint stress
Jdp2
Language English
License Attribution
2019 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4435-b6e2766a2b2b4ca085c4d4dc7cc7d6f9fc3781e8c32108b334569ecd9d81f3993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
van Weert and Buurstede contributed equally.
ORCID 0000-0002-8470-4675
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjne.12735
PMID 31121060
PQID 2281462618
PQPubID 34202
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771480
proquest_miscellaneous_2232121735
proquest_journals_2281462618
pubmed_primary_31121060
crossref_primary_10_1111_jne_12735
crossref_citationtrail_10_1111_jne_12735
wiley_primary_10_1111_jne_12735_JNE12735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Journal of neuroendocrinology
PublicationTitleAlternate J Neuroendocrinol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1997; 80
2007; 445
2013; 27
2019; 2
2000; 3
1997; 232
2013; 41
1992; 106
2016; 166
2008; 105
2008; 31
2014; 28
2011; 152
1999; 126
2011; 6
2019; 160
2017; 158
2012; 97
1997; 7
1995; 7
2009; 34
2017; 625
2010; 22
2005; 280
1993; 13
1990; 87
2005; 19
2015; 290
2013; 17
2017; 14
2005; 102
2017; 78
2002; 22
2016; 113
1997; 17
2005; 6
1985; 117
2010; 151
1999; 96
2013; 154
2011; 47
2009; 19
2001; 14
1998; 12
2011; 145
2012; 64
2006; 103
2001; 98
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Finotto S (e_1_2_7_34_1) 1999; 126
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 31
  start-page: 1
  year: 2008
  end-page: 7
  article-title: The coming out of the brain mineralocorticoid receptor
  publication-title: Trends Neurosci
– volume: 160
  start-page: 1044
  year: 2019
  end-page: 1056
  article-title: Glucocorticoid receptor tethered mineralocorticoid receptors increase glucocorticoid‐induced transcriptional responses
  publication-title: Endocrinology
– volume: 22
  start-page: 5451
  year: 2002
  end-page: 5466
  article-title: Jun dimerization protein 2 functions as a progesterone receptor N‐terminal domain coactivator
  publication-title: Mol Cell Biol
– volume: 126
  start-page: 2935
  year: 1999
  end-page: 2944
  article-title: Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells
  publication-title: Development
– volume: 290
  start-page: 19756
  year: 2015
  end-page: 19769
  article-title: Response element composition governs correlations between binding site affinity and transcription in glucocorticoid receptor feed‐forward loops
  publication-title: J Biol Chem
– volume: 22
  start-page: 1093
  year: 2010
  end-page: 1100
  article-title: Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus
  publication-title: J Neuroendocrinol
– volume: 103
  start-page: 195
  year: 2006
  end-page: 200
  article-title: Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity
  publication-title: Proc Natl Acad Sci USA
– volume: 87
  start-page: 4495
  year: 1990
  end-page: 4498
  article-title: Mineralocorticoid receptor‐mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 19204
  year: 2005
  end-page: 19207
  article-title: Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone
  publication-title: Proc Natl Acad Sci USA
– volume: 2
  start-page: e201800115
  year: 2019
  article-title: Optimized ChIP‐seq method facilitates transcription factor profiling in human tumors
  publication-title: Life Sci Alliance
– volume: 34
  start-page: S186
  issue: Suppl 1
  year: 2009
  end-page: S195
  article-title: The role of FKBP5, a co‐chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders
  publication-title: Psychoneuroendocrinology
– volume: 28
  start-page: 1571
  year: 2014
  end-page: 1584
  article-title: Use of phage display to identify novel mineralocorticoid receptor‐interacting proteins
  publication-title: Mol Endocrinol
– volume: 47
  start-page: 137
  year: 2011
  end-page: 144
  article-title: ERK‐associated changes of AP‐1 proteins during fear extinction
  publication-title: Mol Cell Neurosci
– volume: 158
  start-page: 1511
  year: 2017
  end-page: 1522
  article-title: NeuroD factors discriminate mineralocorticoid from glucocorticoid receptor DNA Binding in the male rat brain
  publication-title: Endocrinology
– volume: 106
  start-page: 62
  year: 1992
  end-page: 71
  article-title: Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning
  publication-title: Behav Neurosci
– volume: 41
  start-page: 8045
  year: 2013
  end-page: 8060
  article-title: Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 675
  year: 2001
  end-page: 689
  article-title: Identification of corticosteroid‐responsive genes in rat hippocampus using serial analysis of gene expression
  publication-title: Eur J Neuorsci
– volume: 6
  start-page: e25875
  year: 2011
  article-title: Binding‐folding induced regulation of AF1 transactivation domain of the glucocorticoid receptor by a cofactor that binds to its DNA binding domain
  publication-title: PLoS One
– volume: 113
  start-page: 11336
  year: 2016
  end-page: 11341
  article-title: Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus
  publication-title: Proc Natl Acad Sci USA
– volume: 98
  start-page: 12790
  year: 2001
  end-page: 12795
  article-title: Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory
  publication-title: Proc Natl Acad Sci USA
– volume: 80
  start-page: 419
  year: 1997
  end-page: 426
  article-title: Elevated basal trough levels of corticosterone suppress hippocampal 5‐hydroxytryptamine(1A) receptor expression in adrenally intact rats: implication for the pathogenesis of depression
  publication-title: Neuroscience
– volume: 145
  start-page: 224
  year: 2011
  end-page: 241
  article-title: Widespread negative response elements mediate direct repression by agonist‐liganded glucocorticoid receptor
  publication-title: Cell
– volume: 625
  start-page: 42
  year: 2017
  end-page: 48
  article-title: Nitric oxide pathway genes (NOS1AP and NOS1) are involved in PTSD severity, depression, anxiety, stress and resilience
  publication-title: Gene
– volume: 17
  start-page: 423
  year: 2013
  end-page: 435
  article-title: Adipose subtype‐selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs
  publication-title: Cell Metab
– volume: 232
  start-page: 437
  year: 1997
  end-page: 443
  article-title: Tissue distribution and abundance of human FKBP51, and FK506‐binding protein that can mediate calcineurin inhibition
  publication-title: Biochem Biophys Res Comm
– volume: 13
  start-page: 2031
  year: 1993
  end-page: 2040
  article-title: Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum
  publication-title: Mol Cell Biol
– volume: 14
  start-page: 125
  year: 2017
  end-page: 134
  article-title: How best to identify chromosomal interactions: a comparison of approaches
  publication-title: Nat Methods
– volume: 154
  start-page: 3261
  year: 2013
  end-page: 3272
  article-title: Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus
  publication-title: Endocrinology
– volume: 166
  start-page: pp. 1269–81 e19
  year: 2016
  article-title: Direct GR binding sites potentiate clusters of TF binding across the human genome
  publication-title: Cell
– volume: 97
  start-page: E376
  year: 2012
  end-page: E392
  article-title: Kruppel‐like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis
  publication-title: J Clin Endocrinol Metab
– volume: 6
  start-page: 463
  year: 2005
  end-page: 475
  article-title: Stress and the brain: from adaptation to disease
  publication-title: Nat Rev Neurosci
– volume: 19
  start-page: 2163
  year: 2009
  end-page: 2171
  article-title: Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation
  publication-title: Genome Res
– volume: 27
  start-page: 1142
  year: 2013
  end-page: 1152
  article-title: Dexamethasone induces a putative repressor complex and chromatin modifications in the CRH promoter
  publication-title: Mol Endocrinol
– volume: 117
  start-page: 2505
  year: 1985
  end-page: 2511
  article-title: Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation
  publication-title: Endocrinology
– volume: 96
  start-page: 2514
  year: 1999
  end-page: 2519
  article-title: Epithelial sodium channel regulated by aldosterone‐induced protein sgk
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 803
  year: 1997
  end-page: 812
  article-title: A new dexamethasone‐induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3‐activated cell death
  publication-title: Immunity
– volume: 7
  start-page: 653
  year: 1995
  end-page: 657
  article-title: A role for the mineralocorticoid receptor in a rapid and transient suppression of hippocampal 5‐HT1A receptor mRNA by corticosterone
  publication-title: J Neuroendocrinol
– volume: 151
  start-page: 4467
  year: 2010
  end-page: 4476
  article-title: Molecular signature of mineralocorticoid receptor signaling in cardiomyocytes: from cultured cells to mouse heart
  publication-title: Endocrinology
– volume: 3
  start-page: 977
  year: 2000
  end-page: 978
  article-title: Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers
  publication-title: Nat Neurosci
– volume: 19
  start-page: 2211
  year: 2005
  end-page: 2221
  article-title: The mineralocorticoid receptor: a journey exploring its diversity and specificity of action
  publication-title: Mol Endocrinol
– volume: 280
  start-page: 39970
  year: 2005
  end-page: 39981
  article-title: A novel role for glucocorticoid‐induced leucine zipper protein in epithelial sodium channel‐mediated sodium transport
  publication-title: J Biol Chem
– volume: 445
  start-page: 168
  year: 2007
  end-page: 176
  article-title: Genome‐wide atlas of gene expression in the adult mouse brain
  publication-title: Nature
– volume: 12
  start-page: 1
  year: 1998
  end-page: 20
  article-title: Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity
  publication-title: Crit Rev Neurobiol
– volume: 64
  start-page: 901
  year: 2012
  end-page: 938
  article-title: Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes
  publication-title: Pharmacol Rev
– volume: 78
  start-page: 213
  year: 2017
  end-page: 221
  article-title: An adverse early life environment can enhance stress resilience in adulthood
  publication-title: Psychoneuroendocrinology
– volume: 105
  start-page: 5745
  year: 2008
  end-page: 5749
  article-title: Conservation analysis predicts in vivo occupancy of glucocorticoid receptor‐binding sequences at glucocorticoid‐induced genes
  publication-title: Proc Natl Acad Sci USA
– volume: 152
  start-page: 3749
  year: 2011
  end-page: 3757
  article-title: Specific regulatory motifs predict glucocorticoid responsiveness of hippocampal gene expression
  publication-title: Endocrinology
– volume: 17
  start-page: 3094
  year: 1997
  end-page: 3102
  article-title: Isolation of an AP‐1 repressor by a novel method for detecting protein‐protein interactions
  publication-title: Mol Cell Biol
– ident: e_1_2_7_19_1
  doi: 10.1016/S1074-7613(00)80398-2
– ident: e_1_2_7_9_1
  doi: 10.1046/j.0953-816x.2001.01685.x
– ident: e_1_2_7_21_1
  doi: 10.1128/MCB.13.4.2031
– ident: e_1_2_7_40_1
  doi: 10.1016/j.psyneuen.2009.05.021
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.0503878102
– ident: e_1_2_7_18_1
  doi: 10.1006/bbrc.1997.6307
– ident: e_1_2_7_6_1
  doi: 10.1038/79910
– ident: e_1_2_7_27_1
  doi: 10.1038/nature05453
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-2826.1995.tb00804.x
– ident: e_1_2_7_43_1
  doi: 10.1371/journal.pone.0025875
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2826.2010.02051.x
– ident: e_1_2_7_25_1
  doi: 10.1210/en.2016-1422
– ident: e_1_2_7_31_1
  doi: 10.1210/en.2012-2233
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.0507572102
– ident: e_1_2_7_22_1
  doi: 10.1615/CritRevNeurobiol.v12.i1-2.10
– ident: e_1_2_7_44_1
  doi: 10.1210/en.2018-00819
– ident: e_1_2_7_12_1
  doi: 10.1124/pr.112.005892
– volume: 126
  start-page: 2935
  year: 1999
  ident: e_1_2_7_34_1
  article-title: Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells
  publication-title: Development
  doi: 10.1242/dev.126.13.2935
– ident: e_1_2_7_2_1
  doi: 10.1210/endo-117-6-2505
– ident: e_1_2_7_23_1
  doi: 10.1093/nar/gkt581
– ident: e_1_2_7_14_1
  doi: 10.1210/en.2010-0237
– ident: e_1_2_7_45_1
  doi: 10.1074/jbc.M115.668558
– ident: e_1_2_7_48_1
  doi: 10.1016/j.mcn.2011.03.009
– ident: e_1_2_7_29_1
  doi: 10.1016/j.psyneuen.2017.01.021
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.0801551105
– ident: e_1_2_7_42_1
  doi: 10.1128/MCB.22.15.5451-5466.2002
– ident: e_1_2_7_15_1
  doi: 10.1074/jbc.M508658200
– ident: e_1_2_7_17_1
  doi: 10.1073/pnas.96.5.2514
– ident: e_1_2_7_30_1
  doi: 10.1038/nmeth.4146
– ident: e_1_2_7_38_1
  doi: 10.1210/me.2013-1079
– ident: e_1_2_7_35_1
  doi: 10.1016/j.cell.2016.07.049
– ident: e_1_2_7_41_1
  doi: 10.1128/MCB.17.6.3094
– ident: e_1_2_7_7_1
  doi: 10.1037/0735-7044.106.1.62
– ident: e_1_2_7_4_1
  doi: 10.1038/nrn1683
– ident: e_1_2_7_36_1
  doi: 10.1016/S0306-4522(97)00008-0
– ident: e_1_2_7_47_1
  doi: 10.1016/j.cmet.2013.01.016
– ident: e_1_2_7_49_1
  doi: 10.1016/j.gene.2017.04.048
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cell.2011.03.027
– ident: e_1_2_7_28_1
  doi: 10.26508/lsa.201800115
– ident: e_1_2_7_46_1
  doi: 10.1210/jc.2011-2562
– ident: e_1_2_7_10_1
  doi: 10.1210/me.2005-0089
– ident: e_1_2_7_16_1
  doi: 10.1073/pnas.1605246113
– ident: e_1_2_7_3_1
  doi: 10.1016/j.tins.2007.10.005
– ident: e_1_2_7_5_1
  doi: 10.1073/pnas.87.12.4495
– ident: e_1_2_7_11_1
  doi: 10.1210/me.2014-1101
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.231313998
– ident: e_1_2_7_33_1
  doi: 10.1210/en.2011-0287
– ident: e_1_2_7_37_1
  doi: 10.1101/gr.097022.109
SSID ssj0017530
Score 2.4017384
Snippet Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on...
Brain mineralocorticoid receptors ( MR s) and glucocorticoid receptors ( GR s) respond to the same glucocorticoid hormones but can have differential effects on...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12735
SubjectTerms Animals
Binding Sites - genetics
Cellular stress response
Chromatin
Corticosterone
Dimerization
DNA helicase
Female
Forebrain
Gene expression
Gene Expression Regulation
Gene regulation
Genomes
Glucocorticoid receptors
Glucocorticoids
Hippocampus
Hippocampus - metabolism
Jdp2
Male
Menopause
Mice
Mice, Inbred C57BL
Mice, Knockout
mineralocorticoid receptor knockout
Mineralocorticoid receptors
Nitric-oxide synthase
Original
Proteins
Receptors, Glucocorticoid - genetics
Receptors, Glucocorticoid - metabolism
Receptors, Mineralocorticoid - genetics
Receptors, Mineralocorticoid - physiology
restraint stress
RNA helicase
Tacrolimus
Tacrolimus-binding protein
transcription
Title Identification of mineralocorticoid receptor target genes in the mouse hippocampus
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjne.12735
https://www.ncbi.nlm.nih.gov/pubmed/31121060
https://www.proquest.com/docview/2281462618
https://www.proquest.com/docview/2232121735
https://pubmed.ncbi.nlm.nih.gov/PMC6771480
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1365-2826
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0017530
  issn: 0953-8194
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0953-8194
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2826
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017530
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RTlxaCn0sUORWFeKSFYkdJ1FPqAIhDgihInFAiuJHSgTrjdjdA_x6ZuwkYqGVqt4iZeLEscfzzXjmM8B3FdukUFxHcWzTSCgtoiqvVZTWRhh0mokxhbItzuTJpTi9Sq9W4EdfCxP4IYaAG2mGX69JwSs1e67kzo5jNL5UYB7z1G_RXgzUUURAeRB49niEVk90rEI-i6d_ctkWvQKYr_Mkn-NXb4CO38F1_-kh7-R2vJirsX58wer4n31bh7cdMGWHYSa9hxXrNmDz0KFTPnlge8ynivoY_CZchPLeuov3sWnNJo2nr56iM4sNTBvDcCm1LXr0LCSbs9-0qrLGMYScjAIOlt00bYu2dNIuZh_g8vjo18-TqDucIdICIVakpE0yKatEJUroCpGbFji8OtM6M7Iuas2zPLa5piKhXHGOSK2w2hQmj2tCRR9h1U2d_QyMS6GIE0ZZaYk7Jue46CZ5ZbRJTSr5CPb7YSp1x1xOB2jclYMH42zp_9cIvg2ibaDr-JPQTj_WZaexszJJKBiK_mQ-gq_DbdQ12kCpnMXfgjLYGfThqIlPYWoMb-ExUbHJgxFkS5NmECAe7-U7rrnxfN4yy9ApxSf3_Zz4-4eXp2dH_mLr30W3YQ0xXhFyFndgdX6_sF8QR83VLrxJxPmuV5sn9jwcLQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sfbAvRavVs2rXIuJL5LK72STgi4hyVXuUouBbyH5EA95eqPrgf9-ZTS54WMG3QGbzsZOZ-c3s7C8Aezp2PNfCRHHskkhqI6Myq3SUVFZaTJqJMYW6LcZqdC3Pb5KbBTia7YVp-SH6ghtZRvDXZOBUkH5p5d4dxhh9kw_wUSo-pG-ay9_9GgIC8WHLtCcijHuy4xUKfTyzofPR6BXEfN0p-RLBhhB0tgyfO-zIjltlr8CC819g9dhj3jx5ZvssdHOGMvkq_Gl34FZdSY5NKzapA8P0FPNNvMC0tgy9nWsw6WZtPzi7JcfHas8QFTKqCTh2VzcNhrtJ8_SwBtdnp1cno6j7f0JkJKKgSCvHU6VKrrmWpkRwZSRqwKTGpFZVeWVEmsUuM7SPJ9NCIJjKnbG5zeKKgMtXWPRT7zaACSU10bZopxzRu2QC_SLPSmtsYhMlBnAwm8fCdOTi9I-L-6JPMrwrwpQP4Ecv2rSMGv8T2popo-iM6qHgnOqVmPJlA9jtT6M50BpH6R1OC8rgy2CaRZdYb3XX30XExJamhgNI57TaCxDV9vwZX98Fym2Vppg34siDoP-3H7w4H5-Gg833i36HpdHVr8vi8uf44ht8QkiWty2GW7D4-PfJbSPsedQ74ev-BxJ0_q8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qBfHFr2o9bXUVkb7kaLKbTYJPpfaoVQ4pFvoghOxHbLC3F9q7h_avd2Y3CT2rIL4FdjZfu7Pz-01mfwF4p2KbFIrrKI5tGgmlRVTltYrS2giDpJkUU6jaYioPT8TRaXq6Bh_6vTBBH2JIuJFn-PWaHLw19U0nd3YcY_BN78BdIZFdESI6HrSjSIFyNwjt8QjDnuhkhXwZT991NRjdQpi3CyVvAlgfgSYP4Xt_76Hw5Od4uVBjff2brON_PtwjeNAhU7YXptJjWLPuCWzsOWTlsyv2nvlaUZ-E34DjsL-37hJ-bF6zWeP1q-fIZvEE88YwXEtti5SehWpz9oOWVdY4hpiTUcbBsrOmbTGYztrl5VM4mRx82z-Mur8zRFogxoqUtEkmZZWoRAldIXTTAsdXZ1pnRtZFrXmWxzbXtEsoV5wjVCusNoXJ45pg0TNYd3NnnwPjUigShVFWWhKPyTmuukleGW1Sk0o-gp1-mErdSZfTHzTOy4HCOFv69zWCt4NpG_Q6_mS01Y912bnsZZkklA1FQpmP4M3QjM5GX1AqZ_G1oA0-DJI4OsVmmBrDVXhMWmxydwTZyqQZDEjIe7XFNWde0FtmGbJS7Lnj58Tfb7w8mh74gxf_bvoa7n39OCm_fJp-fgn3Ee8VoX5xC9YXF0u7jZhqoV553_kFfD0eIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+mineralocorticoid+receptor+target+genes+in+the+mouse+hippocampus&rft.jtitle=Journal+of+neuroendocrinology&rft.au=van+Weert%2C+Lisa+T+C+M&rft.au=Buurstede%2C+Jacobus+C&rft.au=Sips%2C+Hetty+C+M&rft.au=Vettorazzi%2C+Sabine&rft.date=2019-08-01&rft.issn=1365-2826&rft.eissn=1365-2826&rft.volume=31&rft.issue=8&rft.spage=e12735&rft_id=info:doi/10.1111%2Fjne.12735&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8194&client=summon