Ultra‐high spatial resolution BOLD fMRI in humans using combined segmented‐accelerated VFA‐FLEET with a recursive RF pulse design

Purpose To alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. Theory and Methods Segmented EPI can reduce reado...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 85; no. 1; pp. 120 - 139
Main Authors Berman, Avery J. L., Grissom, William A., Witzel, Thomas, Nasr, Shahin, Park, Daniel J., Setsompop, Kawin, Polimeni, Jonathan R.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.28415

Cover

Abstract Purpose To alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. Theory and Methods Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, “FLEET” segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA‐FLEET) to improve inter‐segment fidelity and maximize signal for fMRI. Scaling a sinc pulse’s flip angle for each segment (VFA‐FLEET‐Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar‐Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA‐FLEET‐SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. Results The temporal stability of VFA‐FLEET‐SLR was compared against conventional‐segmented EPI and VFA‐FLEET‐Sinc at 3T and 7T. VFA‐FLEET‐SLR showed reductions in both intermittent and stable ghosting compared to conventional‐segmented and VFA‐FLEET‐Sinc, resulting in improved image quality with a minor trade‐off in temporal SNR. Combining VFA‐FLEET‐SLR with acceleration, we achieved a 0.6‐mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level‐dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi‐slice VFA‐FLEET‐SLR was demonstrated using RF‐encoded controlled aliasing. Conclusions VFA‐FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a “full‐brain” field of view.
AbstractList To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing. VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view.
To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration.PURPOSETo alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration.Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals.THEORY AND METHODSSegmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals.The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing.RESULTSThe temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing.VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view.CONCLUSIONSVFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view.
PurposeTo alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration.Theory and MethodsSegmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, “FLEET” segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA‐FLEET) to improve inter‐segment fidelity and maximize signal for fMRI. Scaling a sinc pulse’s flip angle for each segment (VFA‐FLEET‐Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar‐Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA‐FLEET‐SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals.ResultsThe temporal stability of VFA‐FLEET‐SLR was compared against conventional‐segmented EPI and VFA‐FLEET‐Sinc at 3T and 7T. VFA‐FLEET‐SLR showed reductions in both intermittent and stable ghosting compared to conventional‐segmented and VFA‐FLEET‐Sinc, resulting in improved image quality with a minor trade‐off in temporal SNR. Combining VFA‐FLEET‐SLR with acceleration, we achieved a 0.6‐mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level‐dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi‐slice VFA‐FLEET‐SLR was demonstrated using RF‐encoded controlled aliasing.ConclusionsVFA‐FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a “full‐brain” field of view.
Purpose To alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. Theory and Methods Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, “FLEET” segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA‐FLEET) to improve inter‐segment fidelity and maximize signal for fMRI. Scaling a sinc pulse’s flip angle for each segment (VFA‐FLEET‐Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar‐Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA‐FLEET‐SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. Results The temporal stability of VFA‐FLEET‐SLR was compared against conventional‐segmented EPI and VFA‐FLEET‐Sinc at 3T and 7T. VFA‐FLEET‐SLR showed reductions in both intermittent and stable ghosting compared to conventional‐segmented and VFA‐FLEET‐Sinc, resulting in improved image quality with a minor trade‐off in temporal SNR. Combining VFA‐FLEET‐SLR with acceleration, we achieved a 0.6‐mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level‐dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi‐slice VFA‐FLEET‐SLR was demonstrated using RF‐encoded controlled aliasing. Conclusions VFA‐FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a “full‐brain” field of view.
Author Grissom, William A.
Nasr, Shahin
Witzel, Thomas
Berman, Avery J. L.
Polimeni, Jonathan R.
Setsompop, Kawin
Park, Daniel J.
AuthorAffiliation 3 Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
2 Department of Radiology, Harvard Medical School, Boston, MA, USA
1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
5 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
4 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
AuthorAffiliation_xml – name: 4 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
– name: 2 Department of Radiology, Harvard Medical School, Boston, MA, USA
– name: 5 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 3 Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
– name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
Author_xml – sequence: 1
  givenname: Avery J. L.
  orcidid: 0000-0001-7631-1049
  surname: Berman
  fullname: Berman, Avery J. L.
  email: ajberman@mgh.harvard.edu
  organization: Harvard Medical School
– sequence: 2
  givenname: William A.
  orcidid: 0000-0002-3289-1827
  surname: Grissom
  fullname: Grissom, William A.
  organization: Vanderbilt University
– sequence: 3
  givenname: Thomas
  surname: Witzel
  fullname: Witzel, Thomas
  organization: Harvard Medical School
– sequence: 4
  givenname: Shahin
  surname: Nasr
  fullname: Nasr, Shahin
  organization: Harvard Medical School
– sequence: 5
  givenname: Daniel J.
  surname: Park
  fullname: Park, Daniel J.
  organization: Massachusetts General Hospital
– sequence: 6
  givenname: Kawin
  surname: Setsompop
  fullname: Setsompop, Kawin
  organization: Massachusetts Institute of Technology
– sequence: 7
  givenname: Jonathan R.
  surname: Polimeni
  fullname: Polimeni, Jonathan R.
  organization: Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32705723$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9u1DAQhy1URLeFAy-ALHGhh7T-u1lfkErZhUq7qrRquVqOM0lcJc5iJ616640rz8iT4LJbBBWcrLG_-fQbeQ7Qnu89IPSakmNKCDvpQnfMZoLKZ2hCJWMZk0rsoQnJBck4VWIfHcR4TQhRKhcv0D5nOZE54xP07aodgvlx_71xdYPjxgzOtDhA7NtxcL3HHy6WH3G1Wp9j53EzdsZHPEbna2z7rnAeShyh7sAPUCaNsRZaCCZV-MviNN0slvP5Jb51Q4NNEtsxRHcDeL3Am7GNgEuIrvYv0fPKpPLV7jxEV4v55dnnbHnx6fzsdJlZIbjMlCgVMDmrFFheUVmw6TSfUlNYWVhblgYEn7KCU0YLYKpSlVU5zKAsS2FnUvBD9H7r3YxFB6VNuYNp9Sa4zoQ73Run_37xrtF1f6PznDHKWBK82wlC_3WEOOjOxTRzazz0Y9RMsJwTPmM8oW-foNf9GHwaL1GSUsK5pIl682ei31Ee_ygBJ1vAhj7GAJW2bjAPn5MCulZToh-2QKct0L-2IHUcPel4lP6L3dlvXQt3_wf1ar3advwE90fFvw
CitedBy_id crossref_primary_10_1002_mrm_29491
crossref_primary_10_1093_cercor_bhaa284
crossref_primary_10_1109_TMI_2022_3186913
crossref_primary_10_1002_nbm_4885
crossref_primary_10_1002_mrm_30301
crossref_primary_10_1002_mrm_28850
crossref_primary_10_1002_jmri_28911
crossref_primary_10_1016_j_pneurobio_2022_102374
crossref_primary_10_1016_j_cobeha_2021_01_011
crossref_primary_10_1016_j_neuroimage_2021_118435
crossref_primary_10_1002_hbm_25855
crossref_primary_10_1016_j_pneurobio_2020_101936
crossref_primary_10_1002_mrm_29608
crossref_primary_10_3389_fnimg_2022_869454
Cites_doi 10.1002/mrm.22610
10.2174/1874440001105010074
10.1038/s41598-018-35333-3
10.1002/(SICI)1099-1492(199706/08)10:4/5<179::AID-NBM463>3.0.CO;2-X
10.1016/j.neuron.2018.06.012
10.1002/mrm.26382
10.1002/mrm.1910350618
10.1016/j.neuroimage.2010.01.108
10.1038/nn.4533
10.1016/j.neuron.2012.09.019
10.1109/42.75611
10.1016/j.neuroimage.2017.02.038
10.1002/mrm.1910050305
10.1016/j.neuroimage.2012.06.033
10.1016/j.neuroimage.2011.09.015
10.1002/jmri.22437
10.1002/mrm.1910140112
10.1002/hbm.1053
10.1002/mrm.23097
10.1016/j.neuroimage.2017.01.028
10.1002/mrm.1080
10.1371/journal.pone.0183562
10.1016/0006-8993(79)90485-2
10.1002/mrm.25628
10.1002/mrm.27695
10.1016/j.jmr.2012.08.017
10.1371/journal.pone.0015710
10.1002/hbm.10062
10.1002/mrm.1910300512
10.1002/mrm.20401
10.1093/brain/120.4.701
10.1002/mrm.24398
10.1016/S0896-6273(01)00477-9
10.1002/mrm.1910010308
10.1002/mrm.1910380312
10.1148/radiology.156.3.4023236
10.1002/(SICI)1522-2594(199902)41:2<230::AID-MRM3>3.0.CO;2-O
10.1146/annurev.physiol.66.082602.092845
10.1016/j.jmr.2009.11.003
10.1016/j.neuroimage.2019.02.008
10.1016/j.neuroimage.2018.06.056
10.1016/j.neuroimage.2005.08.016
10.1002/mrm.1910340412
10.1016/j.neuroimage.2007.05.020
10.1002/mrm.23007
10.1006/nimg.2002.1103
10.1006/nimg.2001.0931
10.1016/j.neuroimage.2019.01.054
10.2217/iim.10.62
10.1002/mrm.1910380524
10.1002/mrm.1910340111
10.1002/mrm.26249
10.1016/j.neuroimage.2017.02.052
10.1016/j.conb.2018.04.026
10.1002/mrm.21120
10.1002/nbm.3478
10.1002/hbm.20936
10.1016/j.neuroimage.2011.10.025
10.1002/mrm.1910320418
10.1371/journal.pone.0225286
10.1016/j.neuroimage.2013.01.038
10.1016/j.neuroimage.2011.08.056
10.1002/mrm.24898
10.1002/mrm.25839
10.1002/mrm.21122
10.1002/mrm.24427
10.1016/j.neuroimage.2016.11.039
10.1016/j.mri.2012.07.001
10.1073/pnas.1608117113
10.1016/j.neuroimage.2017.04.053
10.1523/JNEUROSCI.3518-15.2016
10.1002/mrm.1910310111
10.1016/j.neuroimage.2010.05.005
10.1016/j.neuroimage.2010.07.020
10.1002/mrm.24156
10.1016/j.neuron.2017.11.005
10.1017/CBO9780511605505
10.1002/mrm.10171
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28415
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 139
ExternalDocumentID PMC7722122
32705723
10_1002_mrm_28415
MRM28415
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: P41‐EB015896; R01‐EB016695; R01‐EB019437; U01‐EB025162
– fundername: National Eye Institute
  funderid: R01‐EY026881
– fundername: National Center for Research Resources
  funderid: S10‐RR019371; S10‐RR023043
– fundername: Canadian Institutes of Health Research
  funderid: MFE‐164755
– fundername: National Institute of Mental Health
  funderid: R01‐MH111419
– fundername: NCRR NIH HHS
  grantid: S10 RR019371
– fundername: CIHR
  grantid: MFE-164755
– fundername: NIBIB NIH HHS
  grantid: P41 EB015896
– fundername: NEI NIH HHS
  grantid: R01 EY026881
– fundername: NIBIB NIH HHS
  grantid: R01 EB016695
– fundername: NCRR NIH HHS
  grantid: S10 RR023043
– fundername: NIBIB NIH HHS
  grantid: U01 EB025162
– fundername: NIBIB NIH HHS
  grantid: R01 EB019437
– fundername: NIMH NIH HHS
  grantid: R01 MH111419
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4435-94d9e258f9ec3f15b266761abc5bccddae4362b3121be29f9fc97e8eddd4c8543
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:24:06 EDT 2025
Wed Oct 01 13:32:39 EDT 2025
Fri Jul 25 12:08:07 EDT 2025
Mon Jul 21 06:00:45 EDT 2025
Wed Oct 01 05:05:33 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Wed Jan 22 16:33:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords FLEET
fMRI
high spatial resolution
variable flip angle
SMS
multi-shot EPI
segmented EPI
BOLD
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4435-94d9e258f9ec3f15b266761abc5bccddae4362b3121be29f9fc97e8eddd4c8543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7631-1049
0000-0002-3289-1827
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.28415
PMID 32705723
PQID 2451103351
PQPubID 1016391
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7722122
proquest_miscellaneous_2427303823
proquest_journals_2451103351
pubmed_primary_32705723
crossref_citationtrail_10_1002_mrm_28415
crossref_primary_10_1002_mrm_28415
wiley_primary_10_1002_mrm_28415_MRM28415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 164
2004; 66
2002; 17
2010; 53
2013; 69
1990; 14
1991; 10
2018; 168
1995; 34
1987; 5
2019; 14
2016; 76
2016; 75
2013; 70
1999; 42
1999; 41
2001; 45
1996; 35
2016; 36
2007; 37
2002; 47
2018; 8
1997; 10
2017; 77
1993; 30
2017; 78
2016; 113
2006; 29
2011; 65
2012; 68
2010; 2
2012; 67
2010; 5
2001; 14
1994; 32
2012; 63
1994; 31
2012; 62
2017; 20
2010; 31
2018; 181
2012
2011
2010; 202
2009
1996
2011; 33
1993
2012; 224
2011; 5
2012; 76
2007; 57
2019; 188
2019; 189
1999
1979; 179
2017; 96
2019; 82
1984; 1
2020
1997; 120
2013; 72
2013; 31
2017; 12
1985; 156
2019
2005; 53
1997; 38
2018; 50
2013
2016; 29
2018; 99
2014; 72
2010; 52
2010; 51
2001; 32
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Haacke EM (e_1_2_9_16_1) 1999
References_xml – year: 2011
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: Sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 34
  start-page: 65
  year: 1995
  end-page: 73
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magn Reson Med
– year: 2009
– volume: 72
  start-page: 93
  year: 2014
  end-page: 102
  article-title: Interslice leakage artifact reduction technique for simultaneous multislice acquisitions
  publication-title: Magn Reson Med
– volume: 189
  start-page: 601
  year: 2019
  end-page: 614
  article-title: Intracortical smoothing of small‐voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large‐voxel fMRI data
  publication-title: NeuroImage
– volume: 17
  start-page: 272
  year: 2002
  end-page: 286
  article-title: Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution
  publication-title: NeuroImage
– volume: 179
  start-page: 3
  year: 1979
  end-page: 20
  article-title: Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey
  publication-title: Brain Res
– volume: 10
  start-page: 179
  year: 1997
  end-page: 182
  article-title: Investigation of BOLD contrast in fMRI using multi‐shot EPI
  publication-title: NMR Biomed
– volume: 38
  start-page: 852
  year: 1997
  end-page: 857
  article-title: Signal‐to‐noise measurements in magnitude images from NMR phased arrays
  publication-title: Magn Reson Med
– volume: 62
  start-page: 791
  year: 2012
  end-page: 800
  article-title: SPM: A history
  publication-title: NeuroImage
– volume: 82
  start-page: 495
  year: 2019
  end-page: 509
  article-title: Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64‐channel receive array
  publication-title: Magn Reson Med
– volume: 96
  start-page: 1253
  year: 2017
  end-page: 1263.e7
  article-title: High‐resolution CBV‐fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1
  publication-title: Neuron
– volume: 31
  start-page: 1297
  year: 2010
  end-page: 1304
  article-title: Layer‐specific BOLD activation in human V1
  publication-title: Hum Brain Mapp
– volume: 69
  start-page: 1657
  year: 2013
  end-page: 1664
  article-title: High‐resolution functional MRI at 3 T: 3D/2D echo‐planar imaging with optimized physiological noise correction
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 65
  start-page: 165
  year: 2011
  end-page: 175
  article-title: A modified EPI sequence for high‐resolution imaging at ultra‐short echo time
  publication-title: Magn Reson Med
– volume: 70
  start-page: 248
  year: 2013
  end-page: 258
  article-title: A 64‐channel 3T array coil for accelerated brain MRI
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1198
  year: 2016
  end-page: 1221
  article-title: Rapid brain MRI acquisition techniques at ultra‐high fields
  publication-title: NMR Biomed
– volume: 202
  start-page: 180
  year: 2010
  end-page: 189
  article-title: Slice profile effects in 2D slice‐selective MRI of hyperpolarized nuclei
  publication-title: J Magn Reson
– start-page: 1169
  year: 2019
– start-page: 4175
  year: 2012
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty
  publication-title: Magn Reson Med
– volume: 156
  start-page: 743
  year: 1985
  end-page: 747
  article-title: Inner volume MR imaging: Technical concepts and their application
  publication-title: Radiology
– volume: 31
  start-page: 67
  year: 1994
  end-page: 72
  article-title: Interleaved echo planar imaging on a standard MRI system
  publication-title: Magn Reson Med
– volume: 14
  start-page: 123
  year: 1990
  end-page: 139
  article-title: Analysis of T2 limitations and off‐resonance effects on spatial resolution and artifacts in echo‐planar imaging
  publication-title: Magn Reson Med
– volume: 62
  start-page: 743
  year: 2012
  end-page: 747
  article-title: AFNI: What a long strange trip it’s been
  publication-title: NeuroImage
– volume: 30
  start-page: 609
  year: 1993
  end-page: 616
  article-title: Ultrafast interleaved gradient‐echo‐planar imaging on a standard scanner
  publication-title: Magn Reson Med
– volume: 5
  start-page: 1
  year: 2010
  end-page: 11
  article-title: Multiplexed echo planar imaging for sub‐second whole brain FMRI and fast diffusion imaging
  publication-title: PLoS ONE
– volume: 37
  start-page: 1161
  year: 2007
  end-page: 1177
  article-title: Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla
  publication-title: NeuroImage
– volume: 14
  start-page: 1
  year: 2019
  end-page: 17
  article-title: Comparison of SMS‐EPI and 3D‐EPI at 7T in an fMRI localizer study with matched spatiotemporal resolution and homogenized excitation profiles
  publication-title: PLoS ONE
– volume: 45
  start-page: 588
  year: 2001
  end-page: 594
  article-title: Imaging brain function in humans at 7 Tesla
  publication-title: Magn Reson Med
– volume: 52
  start-page: 1334
  year: 2010
  end-page: 1346
  article-title: Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1
  publication-title: NeuroImage
– volume: 1
  start-page: 370
  year: 1984
  end-page: 386
  article-title: Spatial mapping of the chemical shift in NMR
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1593
  year: 2017
  end-page: 1605
  article-title: Simultaneous multislice accelerated interleaved EPI DWI using generalized blipped‐CAIPI acquisition and 3D K‐space reconstruction
  publication-title: Magn Reson Med
– start-page: 3316
  year: 2013
– volume: 20
  start-page: 717
  year: 2017
  end-page: 726
  article-title: Capillary K(+)‐sensing initiates retrograde hyperpolarization to increase local cerebral blood flow
  publication-title: Nat Neurosci
– volume: 14
  start-page: 210
  year: 2001
  end-page: 217
  article-title: Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI
  publication-title: Hum Brain Mapp
– volume: 78
  start-page: 494
  year: 2017
  end-page: 507
  article-title: Multi‐shot sensitivity‐encoded diffusion data recovery using structured low‐rank matrix completion (MUSSELS)
  publication-title: Magn Reson Med
– volume: 5
  start-page: 246
  year: 1987
  end-page: 254
  article-title: Real‐time movie imaging from a single cardiac cycle by NMR
  publication-title: Magn Reson Med
– volume: 63
  start-page: 569
  year: 2012
  end-page: 580
  article-title: Improving diffusion MRI using simultaneous multi‐slice echo planar imaging
  publication-title: NeuroImage
– volume: 31
  start-page: 212
  year: 2013
  end-page: 220
  article-title: Signal fluctuations in fMRI data acquired with 2D‐EPI and 3D‐EPI at 7 Tesla
  publication-title: Magn Reson Imaging
– volume: 10
  start-page: 53
  year: 1991
  end-page: 65
  article-title: Parameter relations for the Shinnar‐Leroux selective excitation pulse design algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 32
  start-page: 359
  year: 2001
  end-page: 374
  article-title: Human ocular dominance columns as revealed by high‐field functional magnetic resonance imaging
  publication-title: Neuron
– start-page: 2209
  year: 2012
– volume: 41
  start-page: 230
  year: 1999
  end-page: 235
  article-title: Submillimeter functional localization in human striate cortex using BOLD contrast at 4 Tesla: Implications for the vascular point‐spread function
  publication-title: Magn Reson Med
– volume: 164
  start-page: 131
  year: 2018
  end-page: 143
  article-title: Techniques for blood volume fMRI with VASO: From low‐resolution mapping towards sub‐millimeter layer‐dependent applications
  publication-title: NeuroImage
– start-page: 2222
  year: 2012
– volume: 29
  start-page: 879
  year: 2006
  end-page: 887
  article-title: Combined imaging‐histological study of cortical laminar specificity of fMRI signals
  publication-title: NeuroImage
– volume: 67
  start-page: 344
  year: 2012
  end-page: 352
  article-title: Temporal SNR characteristics in segmented 3D‐EPI at 7T
  publication-title: Magn Reson Med
– volume: 99
  start-page: 362
  year: 2018
  end-page: 375.e4
  article-title: Vascular compartmentalization of functional hyperemia from the synapse to the Pia
  publication-title: Neuron
– volume: 32
  start-page: 535
  year: 1994
  end-page: 539
  article-title: Phase errors in multi‐shot echo planar imaging
  publication-title: Magn Reson Med
– volume: 35
  start-page: 895
  year: 1996
  end-page: 902
  article-title: Fast interleaved echo‐planar imaging with navigator: High resolution anatomic and functional images at 4 Tesla
  publication-title: Magn Reson Med
– volume: 120
  start-page: 701
  year: 1997
  end-page: 722
  article-title: The columnar organization of the neocortex
  publication-title: Brain
– volume: 168
  start-page: 345
  year: 2018
  end-page: 357
  article-title: Ultra‐high field MRI: Advancing systems neuroscience towards mesoscopic human brain function
  publication-title: NeuroImage
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 66
  start-page: 735
  year: 2004
  end-page: 769
  article-title: Interpreting the BOLD signal
  publication-title: Annu Rev Physiol
– volume: 5
  start-page: 74
  year: 2011
  end-page: 89
  article-title: High‐field FMRI for human applications: An overview of spatial resolution and signal specificity
  publication-title: Open Neuroimag J
– volume: 57
  start-page: 308
  year: 2007
  end-page: 318
  article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo
  publication-title: Magn Reson Med
– volume: 50
  start-page: 250
  year: 2018
  end-page: 260
  article-title: Magnetic resonance imaging technology‐bridging the gap between noninvasive human imaging and optical microscopy
  publication-title: Curr Opin Neurobiol
– volume: 53
  start-page: 1181
  year: 2010
  end-page: 1196
  article-title: Highly accurate inverse consistent registration: A robust approach
  publication-title: NeuroImage
– volume: 113
  start-page: E6679
  year: 2016
  end-page: E6685
  article-title: Fast fMRI can detect oscillatory neural activity in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 168
  start-page: 296
  year: 2018
  end-page: 320
  article-title: Analysis strategies for high‐resolution UHF‐fMRI data
  publication-title: NeuroImage
– year: 1996
– volume: 38
  start-page: 429
  year: 1997
  end-page: 439
  article-title: Quantification and reduction of ghosting artifacts in interleaved echo‐planar imaging
  publication-title: Magn Reson Med
– start-page: 1189
  year: 1993
– volume: 72
  start-page: 41
  year: 2013
  end-page: 47
  article-title: A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE)
  publication-title: NeuroImage
– volume: 224
  start-page: 53
  year: 2012
  end-page: 60
  article-title: Uncertainty estimations for quantitative in vivo MRI T1 mapping
  publication-title: J Magn Reson
– volume: 76
  start-page: 32
  year: 2016
  end-page: 44
  article-title: Dual‐polarity GRAPPA for simultaneous reconstruction and ghost correction of echo planar imaging data
  publication-title: Magn Reson Med
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– volume: 2
  start-page: 675
  year: 2010
  end-page: 693
  article-title: Improving high‐field MRI using parallel excitation
  publication-title: Imaging Med
– volume: 14
  start-page: 1370
  year: 2001
  end-page: 1386
  article-title: Temporal autocorrelation in univariate linear modeling of FMRI data
  publication-title: NeuroImage
– volume: 181
  start-page: 279
  year: 2018
  end-page: 291
  article-title: Stimulus‐dependent hemodynamic response timing across the human subcortical‐cortical visual pathway identified through high spatiotemporal resolution 7T fMRI
  publication-title: NeuroImage
– volume: 68
  start-page: 1506
  year: 2012
  end-page: 1516
  article-title: Isotropic submillimeter fMRI in the human brain at 7 T: Combining reduced field‐of‐view imaging and partially parallel acquisitions
  publication-title: Magn Reson Med
– start-page: 5236
  year: 2020
– volume: 51
  start-page: 261
  year: 2010
  end-page: 266
  article-title: Three dimensional echo‐planar imaging at 7 Tesla
  publication-title: NeuroImage
– volume: 33
  start-page: 287
  year: 2011
  end-page: 295
  article-title: Whole‐brain cerebral blood flow mapping using 3D echo planar imaging and pulsed arterial tagging
  publication-title: J Magn Reson Imaging
– volume: 188
  start-page: 807
  year: 2019
  end-page: 820
  article-title: On the analysis of rapidly sampled fMRI data
  publication-title: NeuroImage
– volume: 53
  start-page: 684
  year: 2005
  end-page: 691
  article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging
  publication-title: Magn Reson Med
– volume: 76
  start-page: 629
  year: 2012
  end-page: 639
  article-title: High‐resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses
  publication-title: Neuron
– volume: 8
  start-page: 17063
  year: 2018
  article-title: Resolving laminar activation in human V1 using ultra‐high spatial resolution fMRI at 7T
  publication-title: Sci Rep
– start-page: 4574
  year: 2011
– volume: 12
  start-page: 1
  year: 2017
  end-page: 16
  article-title: Homogeneous non‐selective and slice‐selective parallel‐transmit excitations at 7 Tesla with universal pulses: A validation study on two commercial RF coils
  publication-title: PLoS ONE
– start-page: 2453
  year: 2012
– volume: 164
  start-page: 100
  year: 2018
  end-page: 111
  article-title: Laminar imaging of positive and negative BOLD in human visual cortex at 7 T
  publication-title: NeuroImage
– volume: 75
  start-page: 665
  year: 2016
  end-page: 679
  article-title: Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition
  publication-title: Magn Reson Med
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  article-title: Fsl
  publication-title: Neuroimage
– volume: 34
  start-page: 555
  year: 1995
  end-page: 566
  article-title: MR contrast due to intravascular magnetic‐susceptibility perturbations
  publication-title: Magn Reson Med
– volume: 36
  start-page: 1841
  year: 2016
  end-page: 1857
  article-title: Interdigitated color‐ and disparity‐selective columns within human visual cortical areas V2 and V3
  publication-title: J Neurosci
– volume: 168
  start-page: 412
  year: 2018
  end-page: 426
  article-title: Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI
  publication-title: NeuroImage
– year: 1999
– ident: e_1_2_9_42_1
– ident: e_1_2_9_66_1
  doi: 10.1002/mrm.22610
– ident: e_1_2_9_20_1
  doi: 10.2174/1874440001105010074
– ident: e_1_2_9_76_1
  doi: 10.1038/s41598-018-35333-3
– ident: e_1_2_9_34_1
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<179::AID-NBM463>3.0.CO;2-X
– ident: e_1_2_9_10_1
  doi: 10.1016/j.neuron.2018.06.012
– ident: e_1_2_9_74_1
  doi: 10.1002/mrm.26382
– ident: e_1_2_9_25_1
– ident: e_1_2_9_41_1
  doi: 10.1002/mrm.1910350618
– ident: e_1_2_9_65_1
– ident: e_1_2_9_86_1
  doi: 10.1016/j.neuroimage.2010.01.108
– ident: e_1_2_9_11_1
  doi: 10.1038/nn.4533
– ident: e_1_2_9_33_1
  doi: 10.1016/j.neuron.2012.09.019
– ident: e_1_2_9_45_1
  doi: 10.1109/42.75611
– ident: e_1_2_9_67_1
  doi: 10.1016/j.neuroimage.2017.02.038
– ident: e_1_2_9_36_1
  doi: 10.1002/mrm.1910050305
– ident: e_1_2_9_84_1
  doi: 10.1016/j.neuroimage.2012.06.033
– ident: e_1_2_9_51_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_9_91_1
  doi: 10.1002/jmri.22437
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.1910140112
– ident: e_1_2_9_43_1
– ident: e_1_2_9_39_1
– ident: e_1_2_9_31_1
  doi: 10.1002/hbm.1053
– ident: e_1_2_9_58_1
  doi: 10.1002/mrm.23097
– ident: e_1_2_9_9_1
  doi: 10.1016/j.neuroimage.2017.01.028
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.1080
– ident: e_1_2_9_72_1
  doi: 10.1371/journal.pone.0183562
– ident: e_1_2_9_2_1
  doi: 10.1016/0006-8993(79)90485-2
– ident: e_1_2_9_37_1
  doi: 10.1002/mrm.25628
– ident: e_1_2_9_60_1
– ident: e_1_2_9_82_1
  doi: 10.1002/mrm.27695
– ident: e_1_2_9_53_1
  doi: 10.1016/j.jmr.2012.08.017
– ident: e_1_2_9_77_1
  doi: 10.1371/journal.pone.0015710
– ident: e_1_2_9_46_1
– ident: e_1_2_9_55_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_9_64_1
  doi: 10.1002/mrm.1910300512
– ident: e_1_2_9_80_1
  doi: 10.1002/mrm.20401
– ident: e_1_2_9_3_1
  doi: 10.1093/brain/120.4.701
– ident: e_1_2_9_87_1
  doi: 10.1002/mrm.24398
– ident: e_1_2_9_29_1
  doi: 10.1016/S0896-6273(01)00477-9
– ident: e_1_2_9_38_1
  doi: 10.1002/mrm.1910010308
– ident: e_1_2_9_49_1
– ident: e_1_2_9_35_1
  doi: 10.1002/mrm.1910380312
– ident: e_1_2_9_22_1
  doi: 10.1148/radiology.156.3.4023236
– ident: e_1_2_9_28_1
  doi: 10.1002/(SICI)1522-2594(199902)41:2<230::AID-MRM3>3.0.CO;2-O
– ident: e_1_2_9_13_1
  doi: 10.1146/annurev.physiol.66.082602.092845
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jmr.2009.11.003
– ident: e_1_2_9_78_1
  doi: 10.1016/j.neuroimage.2019.02.008
– ident: e_1_2_9_79_1
  doi: 10.1016/j.neuroimage.2018.06.056
– ident: e_1_2_9_32_1
  doi: 10.1016/j.neuroimage.2005.08.016
– ident: e_1_2_9_68_1
  doi: 10.1002/mrm.1910340412
– ident: e_1_2_9_6_1
  doi: 10.1016/j.neuroimage.2007.05.020
– ident: e_1_2_9_92_1
  doi: 10.1002/mrm.23007
– ident: e_1_2_9_24_1
  doi: 10.1006/nimg.2002.1103
– ident: e_1_2_9_56_1
  doi: 10.1006/nimg.2001.0931
– ident: e_1_2_9_70_1
  doi: 10.1016/j.neuroimage.2019.01.054
– ident: e_1_2_9_71_1
  doi: 10.2217/iim.10.62
– ident: e_1_2_9_59_1
– ident: e_1_2_9_62_1
  doi: 10.1002/mrm.1910380524
– ident: e_1_2_9_14_1
  doi: 10.1002/mrm.1910340111
– ident: e_1_2_9_83_1
  doi: 10.1002/mrm.26249
– ident: e_1_2_9_8_1
  doi: 10.1016/j.neuroimage.2017.02.052
– ident: e_1_2_9_21_1
  doi: 10.1016/j.conb.2018.04.026
– ident: e_1_2_9_48_1
  doi: 10.1002/mrm.21120
– ident: e_1_2_9_26_1
  doi: 10.1002/nbm.3478
– ident: e_1_2_9_5_1
  doi: 10.1002/hbm.20936
– ident: e_1_2_9_54_1
  doi: 10.1016/j.neuroimage.2011.10.025
– ident: e_1_2_9_47_1
  doi: 10.1002/mrm.1910320418
– ident: e_1_2_9_90_1
  doi: 10.1371/journal.pone.0225286
– ident: e_1_2_9_73_1
  doi: 10.1016/j.neuroimage.2013.01.038
– ident: e_1_2_9_50_1
  doi: 10.1016/j.neuroimage.2011.08.056
– ident: e_1_2_9_61_1
  doi: 10.1002/mrm.24898
– ident: e_1_2_9_85_1
– ident: e_1_2_9_40_1
– ident: e_1_2_9_63_1
  doi: 10.1002/mrm.25839
– ident: e_1_2_9_52_1
  doi: 10.1002/mrm.21122
– ident: e_1_2_9_81_1
  doi: 10.1002/mrm.24427
– ident: e_1_2_9_89_1
  doi: 10.1016/j.neuroimage.2016.11.039
– ident: e_1_2_9_88_1
  doi: 10.1016/j.mri.2012.07.001
– ident: e_1_2_9_12_1
  doi: 10.1073/pnas.1608117113
– ident: e_1_2_9_69_1
  doi: 10.1016/j.neuroimage.2017.04.053
– ident: e_1_2_9_7_1
  doi: 10.1523/JNEUROSCI.3518-15.2016
– volume-title: Magnetic Resonance Imaging: Physical Principles and Sequence Design
  year: 1999
  ident: e_1_2_9_16_1
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.1910310111
– ident: e_1_2_9_4_1
  doi: 10.1016/j.neuroimage.2010.05.005
– ident: e_1_2_9_57_1
  doi: 10.1016/j.neuroimage.2010.07.020
– ident: e_1_2_9_23_1
  doi: 10.1002/mrm.24156
– ident: e_1_2_9_75_1
  doi: 10.1016/j.neuron.2017.11.005
– ident: e_1_2_9_17_1
  doi: 10.1017/CBO9780511605505
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_9_18_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
SSID ssj0009974
Score 2.4402897
Snippet Purpose To alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution...
To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution...
PurposeTo alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120
SubjectTerms Aliasing
BOLD
Brain - diagnostic imaging
Brain Mapping
Echo-Planar Imaging
Field of view
FLEET
fMRI
Functional magnetic resonance imaging
Ghosting
high spatial resolution
Humans
Image processing
Image Processing, Computer-Assisted
Image quality
Image segmentation
Magnetic Resonance Imaging
Medical imaging
multi‐shot EPI
Neuroimaging
Oxygenation
Radio frequency
segmented EPI
SMS
Spatial discrimination
Spatial resolution
variable flip angle
Visual stimuli
Title Ultra‐high spatial resolution BOLD fMRI in humans using combined segmented‐accelerated VFA‐FLEET with a recursive RF pulse design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28415
https://www.ncbi.nlm.nih.gov/pubmed/32705723
https://www.proquest.com/docview/2451103351
https://www.proquest.com/docview/2427303823
https://pubmed.ncbi.nlm.nih.gov/PMC7722122
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSiAuFMqjWwoyiAOXbBPbqWNxamGjgrogrbqoB6QofpWKNq2aXQ6cuHHtb-wv6YzzKEtBQtyieJI4zozns_3lMyEvdaYtAygfeSnLSFjuIrVlRWSkiQ2PM69tIMh-2NqdivcH6cESed39C9PoQ_QTbhgZob_GAC91vXktGnpyfjKEvjX8YJ7wNCzRTq6lo5RqFJilwH5GiU5VKGab_ZWLuegGwLzJk_wVv4YElK-Qz13VG97J1-F8pofm-2-qjv_5bvfI3RaY0u3Gk-6TJVetktvjdul9ldwKXFFTPyA_p8dQz8sfFyh1TGukZMOFMGxvvZjufNx7S_148o4eVTRsAlhT5NcfUqgHjMSdpbU7DGqgFm5TGgO5DyUrLP2Ub8OZfG802qc4RUxLuLHBGY1vjk5yejaHVE5toJ08JNN8tP9mN2r3c4iMAFQWKWGVY2nmlTPcJ6lmSLBNSm1SbYy1pROQTjVPWKIdU155o6TLnLVWmCwV_BFZrk4rt0ao9LHlJrZMK4PyNprFmfQahsQOWs1lA_Kq-7KFacXOcc-N46KRaWYFNHERmnhAXvSmZ43Cx5-MNjr3KNogrwuG2m4x52kyIM_7YghPXHMpK3c6RxvAhzEutg7I48ab-qdwJgEtY4lc8LPeAKW_F0uqoy9BAhzGRIA5GLxmcKO_V7wYT8bhYP3fTZ-QOwyZO2GiaYMsz87n7ilAr5l-FmLsCtCwL4Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRTwuPMorUGBBHLg4tdfr2itxKTRWCkmRogT1gizvw23V1q3qhAMnblz5jfwSZtaPEgoS4hZlx856M7Pz7eznbwFeqkQZjlDeK-I494QJrSc3jfB0rH0d-kmhjCPI7m4OZ-LdXrS3Aq_bd2FqfYiu4EaR4eZrCnAqSG9cqIaenJ_0cXKlN8yv0P4cheX25EI8SspagzkWNNNI0eoK-Xyju3Q5G12CmJeZkr8iWJeC0lvwqe18zTw56i_mqq-__Kbr-L9PdxtuNtiUbdXOdAdWbLkG18bN7vsaXHV0UV3dhW-zY-zoj6_fSe2YVcTKxgtx5d44MnvzYbTNivFkhx2WzJ0DWDGi2O8z7Aguxq1hld13gqAGb5NrjemPVCsM-5hu4TfpaDCYMqoSsxxvrKmo8dmyScrOFpjNmXHMk3swSwfTt0OvOdLB0wKBmSeFkZZHSSGtDosgUpw4tkGudKS0Nia3AjOqCgMeKMtlIQstY5tYY4zQSSTC-7Banpb2IbC48E2ofcOV1KRwo7ifxIXCVbHFUbNJD161f22mG71zOnbjOKuVmnmGQ5y5Ie7Bi870rBb5-JPReusfWRPnVcZJ3s0PwyjowfOuGSOUtl3y0p4uyAYhok_7rT14ULtT9yshjxEwU0u85GidAal_L7eUhwdOBRyXRQg7OD6m86O_dzwbT8buw6N_N30G14fT8Sgb7ey-fww3OBF5XN1pHVbn5wv7BJHYXD11AfcTmBgzoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRVRceJRXoMCCOHBxau-uY684FRqrhaSgqEE9VLK8r1LRulGdcODEjSu_kV_CzPpRQkFC3KLs2FlvZna-2f38LSHPVaoMAygfuCQpAmG4DeTAiEAnOtQ8TJ0yniC7N9iZijcH8cEKedm-C1PrQ3QLbhgZfr7GAJ8Zt3khGnp6ftqHuRVfML8iBlBdISKaXGhHSVlLMCcCJxopWlmhkG12ly4no0sI8zJR8lcA6zNQdoMctn2viSef-ou56usvv8k6_ufD3STXG2RKt2pXukVWbLlO1sbN3vs6uerJorq6Tb5NT6CfP75-R61jWiEnGy6Eur1xY_rq3WibuvFklx6X1J8CWFEk2B9R6AeU4tbQyh55OVADtym0huSHmhWGfsi24JtsNBzuU1wjpgXcWOOSxmdLJxmdLSCXU-N5J3fINBvuv94JmgMdAi0AlgVSGGlZnDppNXdRrBgybKNC6VhpbUxhBeRTxSMWKcukk07LxKbWGCN0Ggt-l6yWZ6W9T2jiQsN1aJiSGvVtFAvTxCmoiS2Mmk175EX7z-a6UTvHQzdO8lqnmeUwxLkf4h551pnOaomPPxlttO6RN1Fe5QzF3ULO46hHnnbNEJ-46VKU9myBNgAQQ9xt7ZF7tTd1v8JZAnAZW5IlP-sMUPt7uaU8_ug1wKEoAtDB4DG9G_294_l4MvYfHvy76ROy9n47y0e7e28fkmsMWTx-0WmDrM7PF_YRwLC5euzD7SfnczJP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra%E2%80%90high+spatial+resolution+BOLD+fMRI+in+humans+using+combined+segmented%E2%80%90accelerated+VFA%E2%80%90FLEET+with+a+recursive+RF+pulse+design&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Berman%2C+Avery+J.+L.&rft.au=Grissom%2C+William+A.&rft.au=Witzel%2C+Thomas&rft.au=Nasr%2C+Shahin&rft.date=2021-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=1&rft.spage=120&rft.epage=139&rft_id=info:doi/10.1002%2Fmrm.28415&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_28415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon