Ultra‐high spatial resolution BOLD fMRI in humans using combined segmented‐accelerated VFA‐FLEET with a recursive RF pulse design
Purpose To alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. Theory and Methods Segmented EPI can reduce reado...
Saved in:
Published in | Magnetic resonance in medicine Vol. 85; no. 1; pp. 120 - 139 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.28415 |
Cover
Abstract | Purpose
To alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration.
Theory and Methods
Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, “FLEET” segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA‐FLEET) to improve inter‐segment fidelity and maximize signal for fMRI. Scaling a sinc pulse’s flip angle for each segment (VFA‐FLEET‐Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar‐Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA‐FLEET‐SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals.
Results
The temporal stability of VFA‐FLEET‐SLR was compared against conventional‐segmented EPI and VFA‐FLEET‐Sinc at 3T and 7T. VFA‐FLEET‐SLR showed reductions in both intermittent and stable ghosting compared to conventional‐segmented and VFA‐FLEET‐Sinc, resulting in improved image quality with a minor trade‐off in temporal SNR. Combining VFA‐FLEET‐SLR with acceleration, we achieved a 0.6‐mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level‐dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi‐slice VFA‐FLEET‐SLR was demonstrated using RF‐encoded controlled aliasing.
Conclusions
VFA‐FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a “full‐brain” field of view. |
---|---|
AbstractList | To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration.
Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals.
The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing.
VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view. To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration.PURPOSETo alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration.Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals.THEORY AND METHODSSegmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals.The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing.RESULTSThe temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing.VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view.CONCLUSIONSVFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view. PurposeTo alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration.Theory and MethodsSegmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, “FLEET” segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA‐FLEET) to improve inter‐segment fidelity and maximize signal for fMRI. Scaling a sinc pulse’s flip angle for each segment (VFA‐FLEET‐Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar‐Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA‐FLEET‐SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals.ResultsThe temporal stability of VFA‐FLEET‐SLR was compared against conventional‐segmented EPI and VFA‐FLEET‐Sinc at 3T and 7T. VFA‐FLEET‐SLR showed reductions in both intermittent and stable ghosting compared to conventional‐segmented and VFA‐FLEET‐Sinc, resulting in improved image quality with a minor trade‐off in temporal SNR. Combining VFA‐FLEET‐SLR with acceleration, we achieved a 0.6‐mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level‐dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi‐slice VFA‐FLEET‐SLR was demonstrated using RF‐encoded controlled aliasing.ConclusionsVFA‐FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a “full‐brain” field of view. Purpose To alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. Theory and Methods Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, “FLEET” segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA‐FLEET) to improve inter‐segment fidelity and maximize signal for fMRI. Scaling a sinc pulse’s flip angle for each segment (VFA‐FLEET‐Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar‐Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA‐FLEET‐SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. Results The temporal stability of VFA‐FLEET‐SLR was compared against conventional‐segmented EPI and VFA‐FLEET‐Sinc at 3T and 7T. VFA‐FLEET‐SLR showed reductions in both intermittent and stable ghosting compared to conventional‐segmented and VFA‐FLEET‐Sinc, resulting in improved image quality with a minor trade‐off in temporal SNR. Combining VFA‐FLEET‐SLR with acceleration, we achieved a 0.6‐mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level‐dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi‐slice VFA‐FLEET‐SLR was demonstrated using RF‐encoded controlled aliasing. Conclusions VFA‐FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a “full‐brain” field of view. |
Author | Grissom, William A. Nasr, Shahin Witzel, Thomas Berman, Avery J. L. Polimeni, Jonathan R. Setsompop, Kawin Park, Daniel J. |
AuthorAffiliation | 3 Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA 2 Department of Radiology, Harvard Medical School, Boston, MA, USA 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA 5 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA 4 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA |
AuthorAffiliation_xml | – name: 4 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA – name: 2 Department of Radiology, Harvard Medical School, Boston, MA, USA – name: 5 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA – name: 3 Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA – name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA |
Author_xml | – sequence: 1 givenname: Avery J. L. orcidid: 0000-0001-7631-1049 surname: Berman fullname: Berman, Avery J. L. email: ajberman@mgh.harvard.edu organization: Harvard Medical School – sequence: 2 givenname: William A. orcidid: 0000-0002-3289-1827 surname: Grissom fullname: Grissom, William A. organization: Vanderbilt University – sequence: 3 givenname: Thomas surname: Witzel fullname: Witzel, Thomas organization: Harvard Medical School – sequence: 4 givenname: Shahin surname: Nasr fullname: Nasr, Shahin organization: Harvard Medical School – sequence: 5 givenname: Daniel J. surname: Park fullname: Park, Daniel J. organization: Massachusetts General Hospital – sequence: 6 givenname: Kawin surname: Setsompop fullname: Setsompop, Kawin organization: Massachusetts Institute of Technology – sequence: 7 givenname: Jonathan R. surname: Polimeni fullname: Polimeni, Jonathan R. organization: Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32705723$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9u1DAQhy1URLeFAy-ALHGhh7T-u1lfkErZhUq7qrRquVqOM0lcJc5iJ616640rz8iT4LJbBBWcrLG_-fQbeQ7Qnu89IPSakmNKCDvpQnfMZoLKZ2hCJWMZk0rsoQnJBck4VWIfHcR4TQhRKhcv0D5nOZE54xP07aodgvlx_71xdYPjxgzOtDhA7NtxcL3HHy6WH3G1Wp9j53EzdsZHPEbna2z7rnAeShyh7sAPUCaNsRZaCCZV-MviNN0slvP5Jb51Q4NNEtsxRHcDeL3Am7GNgEuIrvYv0fPKpPLV7jxEV4v55dnnbHnx6fzsdJlZIbjMlCgVMDmrFFheUVmw6TSfUlNYWVhblgYEn7KCU0YLYKpSlVU5zKAsS2FnUvBD9H7r3YxFB6VNuYNp9Sa4zoQ73Run_37xrtF1f6PznDHKWBK82wlC_3WEOOjOxTRzazz0Y9RMsJwTPmM8oW-foNf9GHwaL1GSUsK5pIl682ei31Ee_ygBJ1vAhj7GAJW2bjAPn5MCulZToh-2QKct0L-2IHUcPel4lP6L3dlvXQt3_wf1ar3advwE90fFvw |
CitedBy_id | crossref_primary_10_1002_mrm_29491 crossref_primary_10_1093_cercor_bhaa284 crossref_primary_10_1109_TMI_2022_3186913 crossref_primary_10_1002_nbm_4885 crossref_primary_10_1002_mrm_30301 crossref_primary_10_1002_mrm_28850 crossref_primary_10_1002_jmri_28911 crossref_primary_10_1016_j_pneurobio_2022_102374 crossref_primary_10_1016_j_cobeha_2021_01_011 crossref_primary_10_1016_j_neuroimage_2021_118435 crossref_primary_10_1002_hbm_25855 crossref_primary_10_1016_j_pneurobio_2020_101936 crossref_primary_10_1002_mrm_29608 crossref_primary_10_3389_fnimg_2022_869454 |
Cites_doi | 10.1002/mrm.22610 10.2174/1874440001105010074 10.1038/s41598-018-35333-3 10.1002/(SICI)1099-1492(199706/08)10:4/5<179::AID-NBM463>3.0.CO;2-X 10.1016/j.neuron.2018.06.012 10.1002/mrm.26382 10.1002/mrm.1910350618 10.1016/j.neuroimage.2010.01.108 10.1038/nn.4533 10.1016/j.neuron.2012.09.019 10.1109/42.75611 10.1016/j.neuroimage.2017.02.038 10.1002/mrm.1910050305 10.1016/j.neuroimage.2012.06.033 10.1016/j.neuroimage.2011.09.015 10.1002/jmri.22437 10.1002/mrm.1910140112 10.1002/hbm.1053 10.1002/mrm.23097 10.1016/j.neuroimage.2017.01.028 10.1002/mrm.1080 10.1371/journal.pone.0183562 10.1016/0006-8993(79)90485-2 10.1002/mrm.25628 10.1002/mrm.27695 10.1016/j.jmr.2012.08.017 10.1371/journal.pone.0015710 10.1002/hbm.10062 10.1002/mrm.1910300512 10.1002/mrm.20401 10.1093/brain/120.4.701 10.1002/mrm.24398 10.1016/S0896-6273(01)00477-9 10.1002/mrm.1910010308 10.1002/mrm.1910380312 10.1148/radiology.156.3.4023236 10.1002/(SICI)1522-2594(199902)41:2<230::AID-MRM3>3.0.CO;2-O 10.1146/annurev.physiol.66.082602.092845 10.1016/j.jmr.2009.11.003 10.1016/j.neuroimage.2019.02.008 10.1016/j.neuroimage.2018.06.056 10.1016/j.neuroimage.2005.08.016 10.1002/mrm.1910340412 10.1016/j.neuroimage.2007.05.020 10.1002/mrm.23007 10.1006/nimg.2002.1103 10.1006/nimg.2001.0931 10.1016/j.neuroimage.2019.01.054 10.2217/iim.10.62 10.1002/mrm.1910380524 10.1002/mrm.1910340111 10.1002/mrm.26249 10.1016/j.neuroimage.2017.02.052 10.1016/j.conb.2018.04.026 10.1002/mrm.21120 10.1002/nbm.3478 10.1002/hbm.20936 10.1016/j.neuroimage.2011.10.025 10.1002/mrm.1910320418 10.1371/journal.pone.0225286 10.1016/j.neuroimage.2013.01.038 10.1016/j.neuroimage.2011.08.056 10.1002/mrm.24898 10.1002/mrm.25839 10.1002/mrm.21122 10.1002/mrm.24427 10.1016/j.neuroimage.2016.11.039 10.1016/j.mri.2012.07.001 10.1073/pnas.1608117113 10.1016/j.neuroimage.2017.04.053 10.1523/JNEUROSCI.3518-15.2016 10.1002/mrm.1910310111 10.1016/j.neuroimage.2010.05.005 10.1016/j.neuroimage.2010.07.020 10.1002/mrm.24156 10.1016/j.neuron.2017.11.005 10.1017/CBO9780511605505 10.1002/mrm.10171 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S |
ContentType | Journal Article |
Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.28415 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 139 |
ExternalDocumentID | PMC7722122 32705723 10_1002_mrm_28415 MRM28415 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: P41‐EB015896; R01‐EB016695; R01‐EB019437; U01‐EB025162 – fundername: National Eye Institute funderid: R01‐EY026881 – fundername: National Center for Research Resources funderid: S10‐RR019371; S10‐RR023043 – fundername: Canadian Institutes of Health Research funderid: MFE‐164755 – fundername: National Institute of Mental Health funderid: R01‐MH111419 – fundername: NCRR NIH HHS grantid: S10 RR019371 – fundername: CIHR grantid: MFE-164755 – fundername: NIBIB NIH HHS grantid: P41 EB015896 – fundername: NEI NIH HHS grantid: R01 EY026881 – fundername: NIBIB NIH HHS grantid: R01 EB016695 – fundername: NCRR NIH HHS grantid: S10 RR023043 – fundername: NIBIB NIH HHS grantid: U01 EB025162 – fundername: NIBIB NIH HHS grantid: R01 EB019437 – fundername: NIMH NIH HHS grantid: R01 MH111419 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c4435-94d9e258f9ec3f15b266761abc5bccddae4362b3121be29f9fc97e8eddd4c8543 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:24:06 EDT 2025 Wed Oct 01 13:32:39 EDT 2025 Fri Jul 25 12:08:07 EDT 2025 Mon Jul 21 06:00:45 EDT 2025 Wed Oct 01 05:05:33 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Wed Jan 22 16:33:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | FLEET fMRI high spatial resolution variable flip angle SMS multi-shot EPI segmented EPI BOLD |
Language | English |
License | 2020 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4435-94d9e258f9ec3f15b266761abc5bccddae4362b3121be29f9fc97e8eddd4c8543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7631-1049 0000-0002-3289-1827 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.28415 |
PMID | 32705723 |
PQID | 2451103351 |
PQPubID | 1016391 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7722122 proquest_miscellaneous_2427303823 proquest_journals_2451103351 pubmed_primary_32705723 crossref_citationtrail_10_1002_mrm_28415 crossref_primary_10_1002_mrm_28415 wiley_primary_10_1002_mrm_28415_MRM28415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 164 2004; 66 2002; 17 2010; 53 2013; 69 1990; 14 1991; 10 2018; 168 1995; 34 1987; 5 2019; 14 2016; 76 2016; 75 2013; 70 1999; 42 1999; 41 2001; 45 1996; 35 2016; 36 2007; 37 2002; 47 2018; 8 1997; 10 2017; 77 1993; 30 2017; 78 2016; 113 2006; 29 2011; 65 2012; 68 2010; 2 2012; 67 2010; 5 2001; 14 1994; 32 2012; 63 1994; 31 2012; 62 2017; 20 2010; 31 2018; 181 2012 2011 2010; 202 2009 1996 2011; 33 1993 2012; 224 2011; 5 2012; 76 2007; 57 2019; 188 2019; 189 1999 1979; 179 2017; 96 2019; 82 1984; 1 2020 1997; 120 2013; 72 2013; 31 2017; 12 1985; 156 2019 2005; 53 1997; 38 2018; 50 2013 2016; 29 2018; 99 2014; 72 2010; 52 2010; 51 2001; 32 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 Haacke EM (e_1_2_9_16_1) 1999 |
References_xml | – year: 2011 – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: Sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 34 start-page: 65 year: 1995 end-page: 73 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magn Reson Med – year: 2009 – volume: 72 start-page: 93 year: 2014 end-page: 102 article-title: Interslice leakage artifact reduction technique for simultaneous multislice acquisitions publication-title: Magn Reson Med – volume: 189 start-page: 601 year: 2019 end-page: 614 article-title: Intracortical smoothing of small‐voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large‐voxel fMRI data publication-title: NeuroImage – volume: 17 start-page: 272 year: 2002 end-page: 286 article-title: Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution publication-title: NeuroImage – volume: 179 start-page: 3 year: 1979 end-page: 20 article-title: Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey publication-title: Brain Res – volume: 10 start-page: 179 year: 1997 end-page: 182 article-title: Investigation of BOLD contrast in fMRI using multi‐shot EPI publication-title: NMR Biomed – volume: 38 start-page: 852 year: 1997 end-page: 857 article-title: Signal‐to‐noise measurements in magnitude images from NMR phased arrays publication-title: Magn Reson Med – volume: 62 start-page: 791 year: 2012 end-page: 800 article-title: SPM: A history publication-title: NeuroImage – volume: 82 start-page: 495 year: 2019 end-page: 509 article-title: Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64‐channel receive array publication-title: Magn Reson Med – volume: 96 start-page: 1253 year: 2017 end-page: 1263.e7 article-title: High‐resolution CBV‐fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1 publication-title: Neuron – volume: 31 start-page: 1297 year: 2010 end-page: 1304 article-title: Layer‐specific BOLD activation in human V1 publication-title: Hum Brain Mapp – volume: 69 start-page: 1657 year: 2013 end-page: 1664 article-title: High‐resolution functional MRI at 3 T: 3D/2D echo‐planar imaging with optimized physiological noise correction publication-title: Magn Reson Med – volume: 47 start-page: 1202 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 65 start-page: 165 year: 2011 end-page: 175 article-title: A modified EPI sequence for high‐resolution imaging at ultra‐short echo time publication-title: Magn Reson Med – volume: 70 start-page: 248 year: 2013 end-page: 258 article-title: A 64‐channel 3T array coil for accelerated brain MRI publication-title: Magn Reson Med – volume: 29 start-page: 1198 year: 2016 end-page: 1221 article-title: Rapid brain MRI acquisition techniques at ultra‐high fields publication-title: NMR Biomed – volume: 202 start-page: 180 year: 2010 end-page: 189 article-title: Slice profile effects in 2D slice‐selective MRI of hyperpolarized nuclei publication-title: J Magn Reson – start-page: 1169 year: 2019 – start-page: 4175 year: 2012 – volume: 67 start-page: 1210 year: 2012 end-page: 1224 article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty publication-title: Magn Reson Med – volume: 156 start-page: 743 year: 1985 end-page: 747 article-title: Inner volume MR imaging: Technical concepts and their application publication-title: Radiology – volume: 31 start-page: 67 year: 1994 end-page: 72 article-title: Interleaved echo planar imaging on a standard MRI system publication-title: Magn Reson Med – volume: 14 start-page: 123 year: 1990 end-page: 139 article-title: Analysis of T2 limitations and off‐resonance effects on spatial resolution and artifacts in echo‐planar imaging publication-title: Magn Reson Med – volume: 62 start-page: 743 year: 2012 end-page: 747 article-title: AFNI: What a long strange trip it’s been publication-title: NeuroImage – volume: 30 start-page: 609 year: 1993 end-page: 616 article-title: Ultrafast interleaved gradient‐echo‐planar imaging on a standard scanner publication-title: Magn Reson Med – volume: 5 start-page: 1 year: 2010 end-page: 11 article-title: Multiplexed echo planar imaging for sub‐second whole brain FMRI and fast diffusion imaging publication-title: PLoS ONE – volume: 37 start-page: 1161 year: 2007 end-page: 1177 article-title: Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla publication-title: NeuroImage – volume: 14 start-page: 1 year: 2019 end-page: 17 article-title: Comparison of SMS‐EPI and 3D‐EPI at 7T in an fMRI localizer study with matched spatiotemporal resolution and homogenized excitation profiles publication-title: PLoS ONE – volume: 45 start-page: 588 year: 2001 end-page: 594 article-title: Imaging brain function in humans at 7 Tesla publication-title: Magn Reson Med – volume: 52 start-page: 1334 year: 2010 end-page: 1346 article-title: Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 publication-title: NeuroImage – volume: 1 start-page: 370 year: 1984 end-page: 386 article-title: Spatial mapping of the chemical shift in NMR publication-title: Magn Reson Med – volume: 77 start-page: 1593 year: 2017 end-page: 1605 article-title: Simultaneous multislice accelerated interleaved EPI DWI using generalized blipped‐CAIPI acquisition and 3D K‐space reconstruction publication-title: Magn Reson Med – start-page: 3316 year: 2013 – volume: 20 start-page: 717 year: 2017 end-page: 726 article-title: Capillary K(+)‐sensing initiates retrograde hyperpolarization to increase local cerebral blood flow publication-title: Nat Neurosci – volume: 14 start-page: 210 year: 2001 end-page: 217 article-title: Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI publication-title: Hum Brain Mapp – volume: 78 start-page: 494 year: 2017 end-page: 507 article-title: Multi‐shot sensitivity‐encoded diffusion data recovery using structured low‐rank matrix completion (MUSSELS) publication-title: Magn Reson Med – volume: 5 start-page: 246 year: 1987 end-page: 254 article-title: Real‐time movie imaging from a single cardiac cycle by NMR publication-title: Magn Reson Med – volume: 63 start-page: 569 year: 2012 end-page: 580 article-title: Improving diffusion MRI using simultaneous multi‐slice echo planar imaging publication-title: NeuroImage – volume: 31 start-page: 212 year: 2013 end-page: 220 article-title: Signal fluctuations in fMRI data acquired with 2D‐EPI and 3D‐EPI at 7 Tesla publication-title: Magn Reson Imaging – volume: 10 start-page: 53 year: 1991 end-page: 65 article-title: Parameter relations for the Shinnar‐Leroux selective excitation pulse design algorithm publication-title: IEEE Trans Med Imaging – volume: 32 start-page: 359 year: 2001 end-page: 374 article-title: Human ocular dominance columns as revealed by high‐field functional magnetic resonance imaging publication-title: Neuron – start-page: 2209 year: 2012 – volume: 41 start-page: 230 year: 1999 end-page: 235 article-title: Submillimeter functional localization in human striate cortex using BOLD contrast at 4 Tesla: Implications for the vascular point‐spread function publication-title: Magn Reson Med – volume: 164 start-page: 131 year: 2018 end-page: 143 article-title: Techniques for blood volume fMRI with VASO: From low‐resolution mapping towards sub‐millimeter layer‐dependent applications publication-title: NeuroImage – start-page: 2222 year: 2012 – volume: 29 start-page: 879 year: 2006 end-page: 887 article-title: Combined imaging‐histological study of cortical laminar specificity of fMRI signals publication-title: NeuroImage – volume: 67 start-page: 344 year: 2012 end-page: 352 article-title: Temporal SNR characteristics in segmented 3D‐EPI at 7T publication-title: Magn Reson Med – volume: 99 start-page: 362 year: 2018 end-page: 375.e4 article-title: Vascular compartmentalization of functional hyperemia from the synapse to the Pia publication-title: Neuron – volume: 32 start-page: 535 year: 1994 end-page: 539 article-title: Phase errors in multi‐shot echo planar imaging publication-title: Magn Reson Med – volume: 35 start-page: 895 year: 1996 end-page: 902 article-title: Fast interleaved echo‐planar imaging with navigator: High resolution anatomic and functional images at 4 Tesla publication-title: Magn Reson Med – volume: 120 start-page: 701 year: 1997 end-page: 722 article-title: The columnar organization of the neocortex publication-title: Brain – volume: 168 start-page: 345 year: 2018 end-page: 357 article-title: Ultra‐high field MRI: Advancing systems neuroscience towards mesoscopic human brain function publication-title: NeuroImage – volume: 57 start-page: 192 year: 2007 end-page: 200 article-title: Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field publication-title: Magn Reson Med – volume: 66 start-page: 735 year: 2004 end-page: 769 article-title: Interpreting the BOLD signal publication-title: Annu Rev Physiol – volume: 5 start-page: 74 year: 2011 end-page: 89 article-title: High‐field FMRI for human applications: An overview of spatial resolution and signal specificity publication-title: Open Neuroimag J – volume: 57 start-page: 308 year: 2007 end-page: 318 article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo publication-title: Magn Reson Med – volume: 50 start-page: 250 year: 2018 end-page: 260 article-title: Magnetic resonance imaging technology‐bridging the gap between noninvasive human imaging and optical microscopy publication-title: Curr Opin Neurobiol – volume: 53 start-page: 1181 year: 2010 end-page: 1196 article-title: Highly accurate inverse consistent registration: A robust approach publication-title: NeuroImage – volume: 113 start-page: E6679 year: 2016 end-page: E6685 article-title: Fast fMRI can detect oscillatory neural activity in humans publication-title: Proc Natl Acad Sci USA – volume: 168 start-page: 296 year: 2018 end-page: 320 article-title: Analysis strategies for high‐resolution UHF‐fMRI data publication-title: NeuroImage – year: 1996 – volume: 38 start-page: 429 year: 1997 end-page: 439 article-title: Quantification and reduction of ghosting artifacts in interleaved echo‐planar imaging publication-title: Magn Reson Med – start-page: 1189 year: 1993 – volume: 72 start-page: 41 year: 2013 end-page: 47 article-title: A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE) publication-title: NeuroImage – volume: 224 start-page: 53 year: 2012 end-page: 60 article-title: Uncertainty estimations for quantitative in vivo MRI T1 mapping publication-title: J Magn Reson – volume: 76 start-page: 32 year: 2016 end-page: 44 article-title: Dual‐polarity GRAPPA for simultaneous reconstruction and ghost correction of echo planar imaging data publication-title: Magn Reson Med – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – volume: 2 start-page: 675 year: 2010 end-page: 693 article-title: Improving high‐field MRI using parallel excitation publication-title: Imaging Med – volume: 14 start-page: 1370 year: 2001 end-page: 1386 article-title: Temporal autocorrelation in univariate linear modeling of FMRI data publication-title: NeuroImage – volume: 181 start-page: 279 year: 2018 end-page: 291 article-title: Stimulus‐dependent hemodynamic response timing across the human subcortical‐cortical visual pathway identified through high spatiotemporal resolution 7T fMRI publication-title: NeuroImage – volume: 68 start-page: 1506 year: 2012 end-page: 1516 article-title: Isotropic submillimeter fMRI in the human brain at 7 T: Combining reduced field‐of‐view imaging and partially parallel acquisitions publication-title: Magn Reson Med – start-page: 5236 year: 2020 – volume: 51 start-page: 261 year: 2010 end-page: 266 article-title: Three dimensional echo‐planar imaging at 7 Tesla publication-title: NeuroImage – volume: 33 start-page: 287 year: 2011 end-page: 295 article-title: Whole‐brain cerebral blood flow mapping using 3D echo planar imaging and pulsed arterial tagging publication-title: J Magn Reson Imaging – volume: 188 start-page: 807 year: 2019 end-page: 820 article-title: On the analysis of rapidly sampled fMRI data publication-title: NeuroImage – volume: 53 start-page: 684 year: 2005 end-page: 691 article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging publication-title: Magn Reson Med – volume: 76 start-page: 629 year: 2012 end-page: 639 article-title: High‐resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses publication-title: Neuron – volume: 8 start-page: 17063 year: 2018 article-title: Resolving laminar activation in human V1 using ultra‐high spatial resolution fMRI at 7T publication-title: Sci Rep – start-page: 4574 year: 2011 – volume: 12 start-page: 1 year: 2017 end-page: 16 article-title: Homogeneous non‐selective and slice‐selective parallel‐transmit excitations at 7 Tesla with universal pulses: A validation study on two commercial RF coils publication-title: PLoS ONE – start-page: 2453 year: 2012 – volume: 164 start-page: 100 year: 2018 end-page: 111 article-title: Laminar imaging of positive and negative BOLD in human visual cortex at 7 T publication-title: NeuroImage – volume: 75 start-page: 665 year: 2016 end-page: 679 article-title: Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition publication-title: Magn Reson Med – volume: 62 start-page: 782 year: 2012 end-page: 790 article-title: Fsl publication-title: Neuroimage – volume: 34 start-page: 555 year: 1995 end-page: 566 article-title: MR contrast due to intravascular magnetic‐susceptibility perturbations publication-title: Magn Reson Med – volume: 36 start-page: 1841 year: 2016 end-page: 1857 article-title: Interdigitated color‐ and disparity‐selective columns within human visual cortical areas V2 and V3 publication-title: J Neurosci – volume: 168 start-page: 412 year: 2018 end-page: 426 article-title: Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI publication-title: NeuroImage – year: 1999 – ident: e_1_2_9_42_1 – ident: e_1_2_9_66_1 doi: 10.1002/mrm.22610 – ident: e_1_2_9_20_1 doi: 10.2174/1874440001105010074 – ident: e_1_2_9_76_1 doi: 10.1038/s41598-018-35333-3 – ident: e_1_2_9_34_1 doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<179::AID-NBM463>3.0.CO;2-X – ident: e_1_2_9_10_1 doi: 10.1016/j.neuron.2018.06.012 – ident: e_1_2_9_74_1 doi: 10.1002/mrm.26382 – ident: e_1_2_9_25_1 – ident: e_1_2_9_41_1 doi: 10.1002/mrm.1910350618 – ident: e_1_2_9_65_1 – ident: e_1_2_9_86_1 doi: 10.1016/j.neuroimage.2010.01.108 – ident: e_1_2_9_11_1 doi: 10.1038/nn.4533 – ident: e_1_2_9_33_1 doi: 10.1016/j.neuron.2012.09.019 – ident: e_1_2_9_45_1 doi: 10.1109/42.75611 – ident: e_1_2_9_67_1 doi: 10.1016/j.neuroimage.2017.02.038 – ident: e_1_2_9_36_1 doi: 10.1002/mrm.1910050305 – ident: e_1_2_9_84_1 doi: 10.1016/j.neuroimage.2012.06.033 – ident: e_1_2_9_51_1 doi: 10.1016/j.neuroimage.2011.09.015 – ident: e_1_2_9_91_1 doi: 10.1002/jmri.22437 – ident: e_1_2_9_15_1 doi: 10.1002/mrm.1910140112 – ident: e_1_2_9_43_1 – ident: e_1_2_9_39_1 – ident: e_1_2_9_31_1 doi: 10.1002/hbm.1053 – ident: e_1_2_9_58_1 doi: 10.1002/mrm.23097 – ident: e_1_2_9_9_1 doi: 10.1016/j.neuroimage.2017.01.028 – ident: e_1_2_9_30_1 doi: 10.1002/mrm.1080 – ident: e_1_2_9_72_1 doi: 10.1371/journal.pone.0183562 – ident: e_1_2_9_2_1 doi: 10.1016/0006-8993(79)90485-2 – ident: e_1_2_9_37_1 doi: 10.1002/mrm.25628 – ident: e_1_2_9_60_1 – ident: e_1_2_9_82_1 doi: 10.1002/mrm.27695 – ident: e_1_2_9_53_1 doi: 10.1016/j.jmr.2012.08.017 – ident: e_1_2_9_77_1 doi: 10.1371/journal.pone.0015710 – ident: e_1_2_9_46_1 – ident: e_1_2_9_55_1 doi: 10.1002/hbm.10062 – ident: e_1_2_9_64_1 doi: 10.1002/mrm.1910300512 – ident: e_1_2_9_80_1 doi: 10.1002/mrm.20401 – ident: e_1_2_9_3_1 doi: 10.1093/brain/120.4.701 – ident: e_1_2_9_87_1 doi: 10.1002/mrm.24398 – ident: e_1_2_9_29_1 doi: 10.1016/S0896-6273(01)00477-9 – ident: e_1_2_9_38_1 doi: 10.1002/mrm.1910010308 – ident: e_1_2_9_49_1 – ident: e_1_2_9_35_1 doi: 10.1002/mrm.1910380312 – ident: e_1_2_9_22_1 doi: 10.1148/radiology.156.3.4023236 – ident: e_1_2_9_28_1 doi: 10.1002/(SICI)1522-2594(199902)41:2<230::AID-MRM3>3.0.CO;2-O – ident: e_1_2_9_13_1 doi: 10.1146/annurev.physiol.66.082602.092845 – ident: e_1_2_9_44_1 doi: 10.1016/j.jmr.2009.11.003 – ident: e_1_2_9_78_1 doi: 10.1016/j.neuroimage.2019.02.008 – ident: e_1_2_9_79_1 doi: 10.1016/j.neuroimage.2018.06.056 – ident: e_1_2_9_32_1 doi: 10.1016/j.neuroimage.2005.08.016 – ident: e_1_2_9_68_1 doi: 10.1002/mrm.1910340412 – ident: e_1_2_9_6_1 doi: 10.1016/j.neuroimage.2007.05.020 – ident: e_1_2_9_92_1 doi: 10.1002/mrm.23007 – ident: e_1_2_9_24_1 doi: 10.1006/nimg.2002.1103 – ident: e_1_2_9_56_1 doi: 10.1006/nimg.2001.0931 – ident: e_1_2_9_70_1 doi: 10.1016/j.neuroimage.2019.01.054 – ident: e_1_2_9_71_1 doi: 10.2217/iim.10.62 – ident: e_1_2_9_59_1 – ident: e_1_2_9_62_1 doi: 10.1002/mrm.1910380524 – ident: e_1_2_9_14_1 doi: 10.1002/mrm.1910340111 – ident: e_1_2_9_83_1 doi: 10.1002/mrm.26249 – ident: e_1_2_9_8_1 doi: 10.1016/j.neuroimage.2017.02.052 – ident: e_1_2_9_21_1 doi: 10.1016/j.conb.2018.04.026 – ident: e_1_2_9_48_1 doi: 10.1002/mrm.21120 – ident: e_1_2_9_26_1 doi: 10.1002/nbm.3478 – ident: e_1_2_9_5_1 doi: 10.1002/hbm.20936 – ident: e_1_2_9_54_1 doi: 10.1016/j.neuroimage.2011.10.025 – ident: e_1_2_9_47_1 doi: 10.1002/mrm.1910320418 – ident: e_1_2_9_90_1 doi: 10.1371/journal.pone.0225286 – ident: e_1_2_9_73_1 doi: 10.1016/j.neuroimage.2013.01.038 – ident: e_1_2_9_50_1 doi: 10.1016/j.neuroimage.2011.08.056 – ident: e_1_2_9_61_1 doi: 10.1002/mrm.24898 – ident: e_1_2_9_85_1 – ident: e_1_2_9_40_1 – ident: e_1_2_9_63_1 doi: 10.1002/mrm.25839 – ident: e_1_2_9_52_1 doi: 10.1002/mrm.21122 – ident: e_1_2_9_81_1 doi: 10.1002/mrm.24427 – ident: e_1_2_9_89_1 doi: 10.1016/j.neuroimage.2016.11.039 – ident: e_1_2_9_88_1 doi: 10.1016/j.mri.2012.07.001 – ident: e_1_2_9_12_1 doi: 10.1073/pnas.1608117113 – ident: e_1_2_9_69_1 doi: 10.1016/j.neuroimage.2017.04.053 – ident: e_1_2_9_7_1 doi: 10.1523/JNEUROSCI.3518-15.2016 – volume-title: Magnetic Resonance Imaging: Physical Principles and Sequence Design year: 1999 ident: e_1_2_9_16_1 – ident: e_1_2_9_27_1 doi: 10.1002/mrm.1910310111 – ident: e_1_2_9_4_1 doi: 10.1016/j.neuroimage.2010.05.005 – ident: e_1_2_9_57_1 doi: 10.1016/j.neuroimage.2010.07.020 – ident: e_1_2_9_23_1 doi: 10.1002/mrm.24156 – ident: e_1_2_9_75_1 doi: 10.1016/j.neuron.2017.11.005 – ident: e_1_2_9_17_1 doi: 10.1017/CBO9780511605505 – ident: e_1_2_9_19_1 doi: 10.1002/mrm.10171 – ident: e_1_2_9_18_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S |
SSID | ssj0009974 |
Score | 2.4402897 |
Snippet | Purpose
To alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution... To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution... PurposeTo alleviate the spatial encoding limitations of single‐shot echo‐planar imaging (EPI) by developing multi‐shot segmented EPI for ultra‐high‐resolution... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120 |
SubjectTerms | Aliasing BOLD Brain - diagnostic imaging Brain Mapping Echo-Planar Imaging Field of view FLEET fMRI Functional magnetic resonance imaging Ghosting high spatial resolution Humans Image processing Image Processing, Computer-Assisted Image quality Image segmentation Magnetic Resonance Imaging Medical imaging multi‐shot EPI Neuroimaging Oxygenation Radio frequency segmented EPI SMS Spatial discrimination Spatial resolution variable flip angle Visual stimuli |
Title | Ultra‐high spatial resolution BOLD fMRI in humans using combined segmented‐accelerated VFA‐FLEET with a recursive RF pulse design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28415 https://www.ncbi.nlm.nih.gov/pubmed/32705723 https://www.proquest.com/docview/2451103351 https://www.proquest.com/docview/2427303823 https://pubmed.ncbi.nlm.nih.gov/PMC7722122 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0740-3194 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSiAuFMqjWwoyiAOXbBPbqWNxamGjgrogrbqoB6QofpWKNq2aXQ6cuHHtb-wv6YzzKEtBQtyieJI4zozns_3lMyEvdaYtAygfeSnLSFjuIrVlRWSkiQ2PM69tIMh-2NqdivcH6cESed39C9PoQ_QTbhgZob_GAC91vXktGnpyfjKEvjX8YJ7wNCzRTq6lo5RqFJilwH5GiU5VKGab_ZWLuegGwLzJk_wVv4YElK-Qz13VG97J1-F8pofm-2-qjv_5bvfI3RaY0u3Gk-6TJVetktvjdul9ldwKXFFTPyA_p8dQz8sfFyh1TGukZMOFMGxvvZjufNx7S_148o4eVTRsAlhT5NcfUqgHjMSdpbU7DGqgFm5TGgO5DyUrLP2Ub8OZfG802qc4RUxLuLHBGY1vjk5yejaHVE5toJ08JNN8tP9mN2r3c4iMAFQWKWGVY2nmlTPcJ6lmSLBNSm1SbYy1pROQTjVPWKIdU155o6TLnLVWmCwV_BFZrk4rt0ao9LHlJrZMK4PyNprFmfQahsQOWs1lA_Kq-7KFacXOcc-N46KRaWYFNHERmnhAXvSmZ43Cx5-MNjr3KNogrwuG2m4x52kyIM_7YghPXHMpK3c6RxvAhzEutg7I48ab-qdwJgEtY4lc8LPeAKW_F0uqoy9BAhzGRIA5GLxmcKO_V7wYT8bhYP3fTZ-QOwyZO2GiaYMsz87n7ilAr5l-FmLsCtCwL4Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRTwuPMorUGBBHLg4tdfr2itxKTRWCkmRogT1gizvw23V1q3qhAMnblz5jfwSZtaPEgoS4hZlx856M7Pz7eznbwFeqkQZjlDeK-I494QJrSc3jfB0rH0d-kmhjCPI7m4OZ-LdXrS3Aq_bd2FqfYiu4EaR4eZrCnAqSG9cqIaenJ_0cXKlN8yv0P4cheX25EI8SspagzkWNNNI0eoK-Xyju3Q5G12CmJeZkr8iWJeC0lvwqe18zTw56i_mqq-__Kbr-L9PdxtuNtiUbdXOdAdWbLkG18bN7vsaXHV0UV3dhW-zY-zoj6_fSe2YVcTKxgtx5d44MnvzYbTNivFkhx2WzJ0DWDGi2O8z7Aguxq1hld13gqAGb5NrjemPVCsM-5hu4TfpaDCYMqoSsxxvrKmo8dmyScrOFpjNmXHMk3swSwfTt0OvOdLB0wKBmSeFkZZHSSGtDosgUpw4tkGudKS0Nia3AjOqCgMeKMtlIQstY5tYY4zQSSTC-7Banpb2IbC48E2ofcOV1KRwo7ifxIXCVbHFUbNJD161f22mG71zOnbjOKuVmnmGQ5y5Ie7Bi870rBb5-JPReusfWRPnVcZJ3s0PwyjowfOuGSOUtl3y0p4uyAYhok_7rT14ULtT9yshjxEwU0u85GidAal_L7eUhwdOBRyXRQg7OD6m86O_dzwbT8buw6N_N30G14fT8Sgb7ey-fww3OBF5XN1pHVbn5wv7BJHYXD11AfcTmBgzoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRVRceJRXoMCCOHBxau-uY684FRqrhaSgqEE9VLK8r1LRulGdcODEjSu_kV_CzPpRQkFC3KLs2FlvZna-2f38LSHPVaoMAygfuCQpAmG4DeTAiEAnOtQ8TJ0yniC7N9iZijcH8cEKedm-C1PrQ3QLbhgZfr7GAJ8Zt3khGnp6ftqHuRVfML8iBlBdISKaXGhHSVlLMCcCJxopWlmhkG12ly4no0sI8zJR8lcA6zNQdoMctn2viSef-ou56usvv8k6_ufD3STXG2RKt2pXukVWbLlO1sbN3vs6uerJorq6Tb5NT6CfP75-R61jWiEnGy6Eur1xY_rq3WibuvFklx6X1J8CWFEk2B9R6AeU4tbQyh55OVADtym0huSHmhWGfsi24JtsNBzuU1wjpgXcWOOSxmdLJxmdLSCXU-N5J3fINBvuv94JmgMdAi0AlgVSGGlZnDppNXdRrBgybKNC6VhpbUxhBeRTxSMWKcukk07LxKbWGCN0Ggt-l6yWZ6W9T2jiQsN1aJiSGvVtFAvTxCmoiS2Mmk175EX7z-a6UTvHQzdO8lqnmeUwxLkf4h551pnOaomPPxlttO6RN1Fe5QzF3ULO46hHnnbNEJ-46VKU9myBNgAQQ9xt7ZF7tTd1v8JZAnAZW5IlP-sMUPt7uaU8_ug1wKEoAtDB4DG9G_294_l4MvYfHvy76ROy9n47y0e7e28fkmsMWTx-0WmDrM7PF_YRwLC5euzD7SfnczJP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra%E2%80%90high+spatial+resolution+BOLD+fMRI+in+humans+using+combined+segmented%E2%80%90accelerated+VFA%E2%80%90FLEET+with+a+recursive+RF+pulse+design&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Berman%2C+Avery+J.+L.&rft.au=Grissom%2C+William+A.&rft.au=Witzel%2C+Thomas&rft.au=Nasr%2C+Shahin&rft.date=2021-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=1&rft.spage=120&rft.epage=139&rft_id=info:doi/10.1002%2Fmrm.28415&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_28415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |